50-275/323-0LA 6/17/87 I-SC-9

DOCKETED

R. J. FRITZ

Conneral Electric Co. Scheminictudy, N.Y. Minim, ASME

The Effect of Liquids on the Dynamic Motions of Immersed Solids

The school blat the presence at training can significantly after the dynamic motions of immersed solids. This paper proposes a method for evaluating duid forces for use in the dynamic analysis at maxing systems in which solid nodies are completely immersed in incompressible, frictionless fluids. A damping parameter is suggested to determine whether a fluid system may be considered frictionless. The incompressibility remire ment is also discussed. Experimental data are ested to support the proposed method, Formulas for hydrodynamic masses are labulated.

Introduction

Whister and more a contact with liquids, the juids must be displaced to accommodate these motions. Find pressures are generated as a result. Fluid forces occur on these solids due to the integrated effect of these pressures. In this paper the case of moving solids completely immersed in frictionless, incompressible heads is considered. In this case, the fluid force is usually proportioned to the relative accelerations of the moving solids, and therefore gives rise to an effective or hydrodynamic mass. Where the liquids must flow dynamically in small passages, the hydrodynamic masses may be many times larger than the solid masses, even though the solids may be of large specific gravity. For such systems, dynamic analyses of the solid motions must consider the presence of the liquids in order to provide meaningful results. It is expected that the results of this paper would be found ascful in the dynamic analysis of nuclear reactor and steam generator internals subjected to mismic shock as well as in the dynamic analysis of some fluidie devices, including fluidae shock absorbers.

The concept of the hydrodynamic mass has been described by Stokes [1], \pm Lamb [2]. Birkhoff [3], Patton [4], and others. These reports have generally considered the motion of a single body in a fluid. In this paper, existing information, particularly from Lamb [2], is applied to the dynamic analysis of systems with more than a single solid completely immersed in a liquid. The plan of presentation will be a marked with hquid coupling, to theory of multiple-body motion with liquid coupling, the experimental data on two-body motions

 ¹ Numbers in brackets designate References at end of paper. Contributed by the Design Engineering Division and presented the Vibrations Conference Toronto, Canada, September 8 10, 1971, of THE AVERUS SOLUTY OF MECHANICAL ENGINEERS Manuscript received at ASME Readquarters, June 11, 1971. Paper No. 71-Vibr-100.

Journal of Engineering for Industry

with liquid coupling, and (d) discussion of analysis of multipledegrees of freedom systems, with hydrodynamic effects.

Two-Body Motions With Fluid Coupling

Consider the case of two long concentric cylinders separated by a liquid annulus, see Fig. 1. The inner cylinder of radius a is surrounded by an outer concentric cylindrical container of inner radius b. The length of the annulus is l, where l is much greater than b. The outer cylinder is assumed to have a velocity x_2 and the inner cylinder x_1 . The relative displacement $x_2 = x_1$ is assumed small compared to b = a. A velocity potential ϕ may be defined (similar to Lambel 2, p. 76) who considers single cylinder mation).

$$-\frac{\partial \phi}{\partial r} = -\frac{1}{r} \frac{\partial \phi}{\partial \theta}$$
(1)

where

Sierra Club Exhibit 9

1', radial fluid velocity

1's taugential fluid velocity

The fluid is considered frictionless and to be at rest when the evhinders are at rest. Under such conditions the fluid is irrotational and ϕ will be single-valued. The boundary conditions are:

 $\phi = f(r) \phi$

$$-\frac{\partial \varphi}{\partial r} = \frac{x_{\rm r}\cos\theta}{\alpha} \quad \text{at} \quad r = n \tag{2}$$

$$\frac{\partial \phi}{\partial r} = \dot{x} \cdot \cos \theta$$
 at $r = b$ (3)

a continuity equation is

$$\frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r} \frac{\partial^2 \phi}{\partial \theta^2} = 0$$

A form of solution was assumed

$$= \theta$$
 (

FEBRUARY 1972 / 167

NUCLEAR REGUL	ATORY COMMISSION
Docket No. $50-275-014$ In the matter of $PG+E$	Official Esh. No. SC#9 CompAMY
S'aff	IDENTIFIED
Applicant	RECEIVED
Intervenor	REJECTED
Cont'g Off'r	-
Contractor	DATE 6-17-81
Other	Witness
Reporter Harry St.	UNDE

62 Second

the state

1. Sect

$$T_{f} = \int_{a}^{b} \int_{0}^{2\pi} \frac{1}{2} \rho r L dr d\theta (V_{r}^{2} + V_{\theta}^{2})$$

From equations (7), (8), (12), and (13)
$$F_{21} = -M_{H} x_{1} + (M_{1} + M_{H}) x_{2}^{2}$$

$$M_1 = (M_1 + M_H)\hat{x}_1 - (M_1 + M_2 + M_H)\hat{x}_1$$

+ My) 129

where F_{f1} and F_{f2} are the fluid reaction forces on the inner outer cylinders, respectively, and

$$M_1 = \pi a^3 L \rho = \text{mass of fluid displaced by the inner evlinder}$$

 $M_2 = \pi b^2 L \rho$ = mass of fluid that could fill the outer cylindrical cavity in the absence of the inner cylinder

$$f_{H} = M_{1} \frac{b^{2} + a^{2}}{b^{2} - a^{2}}$$

For the ease of concentric spheres separated by a friction incompressible fluid (see Fig. 1), the fluid forces that result a similar analysis are also given by equations (14) and (15) F_{f1} and F_{f2} are the fluid reaction forces on the inner and of spheres, respectively, and

$$M_1 = \frac{4}{3}\pi a^4 \rho = \text{mass of fluid displaced by inner sphere$$

$$M_2 = \frac{4}{3} \pi b^4 \rho$$
 = mass of fluid that could fill the outer
spherical cavity in the absence of the
inner sphere

$$t_{\mu} = \frac{M_{1}}{2} \frac{b^{2} + 2a}{b^{2} - a^{2}}$$

sis of Fluid Forces for Two-Body Problem

tions (14) and (15) may be developed in a more gen way. Consider the case where fluid motion is determined by motion of immersed solids. Similar to Lamb [2, p. 188], the kinetic energy is taken as a quadratic function

$$2T_{i} = A_{11}\dot{x}^{2} + A_{22}\dot{x}_{1}^{3} + \cdots + 2A_{12}\dot{x}_{1}\dot{x}_{2} + \cdots$$

or in matrix form

$$2T_f = \dot{x}^T A \dot{x}$$

ere \dot{x} is a column vector and A is a square matrix. Since indratic form can be expressed in terms of a symmetric mass) the mass matrix A may be considered symmetric so that A For the two-body problem

$$2T_{1} = A_{11}\dot{x}_{1}^{2} + 2A_{12}\dot{x}_{1}\dot{x}_{1} + A_{22}\dot{x}_{1}^{2}$$

From equations (12) and (20)

$$F_{f1} = -A_{11}x_1 - A_{12}x_1$$
$$F_{f2} = -A_{12}x_2 - A_{12}x_2$$

where again, F_{I1} and F_{I2} are the fluid reaction forces on solution bodies 1 and 2. The coefficients A will now be determined Assume for this example that body 2 surrounds body 1, similar to the condition of the problem above for the cylinders and spheres. Now equations (21) and (22) are generally true for d values of x_1 and x_2 . If $x_1 = x_2$, then the fluid acceleration is tat every point in an incompressible fluid and a pressure gradied exists throughout the fluid due to the fluid inertia,

$$-\frac{\partial P}{\partial x_i}=\rho x_i$$

Transactions of the ASME

from which

and

$$M_{\pi} =$$
 the

Equations the three u Assume the equation (21

As indicated evaluated by the continuit evaluated. tion of mom

where
$$T_f$$
 is
tion will giv
tain a fluid
will usually
and (28), eq
which were
able by the

giving hydr motion and at rest or by these tabuli relations w1 CULLAGRET V lady for th where the e emsidered

The read hydrodymat BIN . sted Million and the

Where n the liquid : described : determinant hunner of the

```
serve that
apply for a
```

Journal o

$$F_{Ii} = -\frac{d}{dl} \frac{\partial T_{I}}{\partial x_{i}} + \frac{\partial T_{J}}{\partial x_{i}}$$
(11)
where x, are the generalized coordinates of motion and T_{J} is the

fluid kiaetic energy. In this paper x_i will generally be the translational motion of a solid body (body i), and F_{fi} will be the fluid reaction orce on that solid body.

It is reasonable to neglect the contribution of the last term in equation (11) if the solid motions are assumed to be small with respect to fluid channel thicknesses. Such an assumption is made in this paper. Lamb [2] considers a few cases of singlebody motion including the last term. Neglecting the last term of equation (11), the fluid reaction force is

$$\gamma_{i} = -\frac{d}{dt} \left(\frac{\delta T_f}{\delta x_i} \right) = (\text{approximately})$$
 (12)

The fluid kinetic energy is

168

The final solution is 1B

where

From equations (4) and (5)

where the prime indicates differentiation wi

$$r^{2}f'' + rf' - f = 0$$
 (6)
here the prime indicates differentiation with respect to r. $M_{2} = \frac{4}{3}\pi b^{4}\rho = 1$
The solution of this equation is reasonably straightforward.

$$= \left(\frac{B}{r^{2}} - A\right) \cos \theta \qquad (1)$$
$$= \left(\frac{B}{r^{3}} + A\right) \sin \theta \qquad (8)$$

$$V_{\theta} = \left(\frac{B}{r^2} + A\right) \sin \theta$$

$$= \left(\frac{B}{r^{2}} - A\right) \cos \theta \qquad (7)$$
$$= \left(\frac{B}{r^{2}} + A\right) \sin \theta \qquad (8) \qquad \text{Synthes}$$
Equal

$$b = \frac{b^{4}a^{2}}{b^{4} - a^{4}} (\dot{x}_{1} - \dot{x}_{2})$$
(9)

$$b^{1} - a^{2} \\ \dot{x}_{1}a^{1} - \dot{x}_{2}b^{1}$$
(10)

1072

conclude force
$$F_{f_i}$$
 in such a system is given by Lag

$$A = \frac{2\pi a^2 - 2\pi^2}{b^2 - a^2}$$
(10)
locity of much disid marticle is uniquely deter

$$B = \frac{b^2 a^2}{b^2 - a^2} (\dot{x}_1 - \dot{x}_2)$$
(9)

$$= \frac{1}{b^{2} - a^{2}} \frac{(x_{1} - x_{2})}{(x_{1} - x_{2})}$$
(9)
$$\frac{1}{a^{2} - x^{2}} \frac{(x_{1} - x_{2})}{(x_{1} - x_{2})^{2}}$$
(10)

$$A = \frac{\dot{x}_1 a^2 - \dot{x}_2 b^2}{b^2 - a^2}$$
(10)

Since the velocity of mode fluid contributes an inducity deter-
mined by the generalized variables of motion
$$x_i$$
 and x_i then,
Lagrange's equations of motion will apply a frictionness, an
compressible fluid in irrotational motion will be more an motioning
energy and may be palled an inertial Lagrangian system. They
fluid togation force $F_{i,i}$ in such a system is given by Lagrange's

Fig. 1 Two-body motions with fluid coupling

 $r^{2}f'' + rf' - f = ()$

The pressure distribution gives rise to a buoyancy force of an Archimedes type, so that

$$F_{I1} = -(A_{11} + A_{12})x = M_1 x_1$$
 (24)

$$F_{12} = -(A_{12} + A_{22})x_1 = -M_2x_2 \tag{25}$$

Fram which

he

and onter

tter

iore general

uned by the

8], the fluid

(18)

(19)

(20)

(21)

(2)

is It

ent

(23)

the ASME

ces on solid

determined.

ly 1, similar linders and true for all

eta'

ire

Since any

etric matrix , that A .. =

ALL ALL

die is

(26) $A_{11} + A_{12} = -M_1$

$$A_{12} + A_{22} = M_2$$
 (27)

It = the mass of fluid displaced by the inner body

Ms = the mass of fluid that would fill the body 2 in the absence of the inner body

Equations (26) and (27) provide two relations. To evaluate the three unknowns An. An. An. a third relation is needed Assume the containing body 2 to be static, $r_2 = 0$ From equation (21)

$$F_{I1} = -A_{10}x_1 = -M_H x_1$$
 (defines M_H) (28)

As indicated, equation (28) defines the term M_{H} . M_{H} may be evaluated by assuming the body 1 to have a velocity x, and by the continuity of flow, the fluid velocity distribution may also be evaluated. The fluid force may be evaluated using the conservation of momentum or by using equation (12), which results in

$$M_H = \frac{2T}{\dot{x}_1^4} \qquad (\text{for } \dot{x}_1 = 0) \tag{29}$$

core T, is the fluid kinetic energy. Since the momentum relation will give the fluid pressure which must be integrated to obthan a fluid force on an immersed body, the use of equation (29) will usually be simpler. From equations (21), (22), (26), (27), (28), equations (14) and (15) follow. Thus, these relations which were derived from basic fluid mechanics are also obtainthe by the method of synthesis described above.

The data in Table 1 are typical of some available information thing h drodynamic mass relations where a single body is in motion and is surrounded either by an unbounded fluid initially frest or by a static container. By use of the above procedure, tabulate i data are transformable into hydrodynamic mass mations where the single body is either surrounded by a moving motainer whose dimensions are large compared to the single for the cases where a single body is shown in Table 1 or me the oute surface for Cases 8, 9, 10, 11, and 14 may be idered in potion

mader 'asy note in equation (14) that when 2, and the tinuity requirement considering both effects. Another example of such a Helmholz resonator which interacts with the mechanical system occurs in the analysis of violins. first fect. In general, the hydrodynamic mass can be idered t, consist of these buoyancy and inertial squeeze-film stonen".

Antiple-Body Motions With Fluid Coupling

here many bodies are immersed in a frictionless, incompressiquid and are coupled by this liquid, the method of synthesis tribed above for the two-body problem should facilitate the mation of the hydrodynamic forces. This method is sumod for the multiple-body problem. From equations (19) and

$$F_{II} = A \hat{x}_{I} \qquad (30)$$

f and f are $(n \times 1)$ column vectors and A is a square Fie matrix $(n \times n)$. F_{f_i} is the vector component of fluid each solid body where z, is the instantaneous acceleration wolid body. To determine the components of A, we obthat since equation (30) must be generally true, it must any generalized input vector 2. We assume first that

all x's are equal. For this condition the fluid forces are usually easily determinable, similar to the two-body case already described. With these fluid forces determinable, n equations are established involving the components of A. There are n(n +1)/2 components of A which must be determined. The remaining equations may be established by setting all $x_{i} = 0$ except one, r_n and letting j = 1 to n. The values of the fluid forces are most easily determined if only one body at any one time is allowed to move. It is suggested that these fluid forces would be determined from the continuity of flow and by use of equation (12). Although it is difficult to predict all the possible configurations that may be met in practice, it is suggested that in solving the continuity equation, some method of series and parallel flow impedances might be considered, analogous to an electric network analysis. Following this prescription, the components of the fluid mass matrix A in equation (30) are determined. These fluid forces are then considered along with other forces present, to arrive at the complete dynamic solution.

For the multiple-body problem the analyst may find it more convenient to synthesize the dynamic problem by considering the response of single channels. The pressure distribution of these channels can be written in terms of entrance and exit fluid velocities and channel wall motions determined by the motion of immersed solids. By considering continuity and momentum or continuity and Lagrange's equation, a series of equations result. The pressure distributions are then considered as elements of dynamic force generation in the equations of motion of the solids. An eigenvalue problem results, which can be solved to develop the solution for frequency and deflectional responses, given the necessary boundary conditions. In many cases, it may be necessary for a fluid specialist to work with the dynamics specialist to develop the solution for the complex fluid-solid problem.

In some cases, fluid compressibility acts in conjunction with fluid inertiance or hydrodynamic mass to cause frequency modes largely due to the fluid. An example is a Helmholz resonator formed by a tubesheet vibrating relative to an adjacent plenum. Oscillation of the tubesheet must be accompanied by displacement of the fluid. This displacement can be accommodated by the compressibility of the adjacent fluid and by the flow through the tube: which causes an inertiance effect. The author developed equations of motion for such systems by first assuming that compressibility was so low that only tube flow was important. The methods of analysis of this paper were then used to develop dynamic equations. Then, the tube flow impedance was assumed to be so high that compressibility effects predominated. In such a case it was easy to write the equation for a fluid spring. It was then an easy step to write a continuity requirement considering both effects. Another example

The Effect of Fluid Damping

The preceding analysis assumes a frictionless fluid. The engineering designer must have some guidance to judge when a fluid may be considered frictionless. Some guidance is presented here

The frictional pressure drop is assumed to be based on the Darcy friction factors, obtained from steady-flow data,

$$\Delta P = \frac{fL}{D_H} \frac{V^2}{2} \rho \tag{31}$$

where

 $\Delta P =$ frictional pressure drop

- f = Darcy friction factor
- L = length of channelV = channel velocity, assumed uniform in channel
- p = fluid mass density

the of Engineering for Industry

Table 1 Hydrodynamic mass relations (where only one body is given, it is assumed that the dimensions of other surrounding bodies are leaded to the given body; small displacements are assumed)

 D_R = hydraulic diameter = 2c for a channel with parallel walls and separation thickness c, which will be used in this exposition

The frictional energy is

$$E_{f} = \int \Delta P A V dt$$

$$= \frac{f L \rho A}{4c} \int V^{3} dt$$
(32)

170

$$t = time$$

Assume the fluid velocity to be cyclic,

$1' = 1'_0 \sin \omega l$

Using equations (33), equation (32) may be integrated over half-cycle to give

$$E_f = \frac{fLpAV_0^3}{3k\omega c}$$

If the fluid damping force were linear and equal to
$$bV$$

be energy E_J over a half-cycle is

$$E_L = \int_0^* bV^2 dt = \frac{bV_0}{\omega} \int_0^* \sin^2 \omega t d\omega t$$
$$= \frac{\pi bV_0^2}{2\omega}$$

The effective by setting E_L

A parameter

and $M_f =$ fluid to the inertial damping for a ing b, mass M_f and (37) and x

Further, if Vo

Equation (persureter, the of fluid friction

 $f = \text{the D} \\ r_0 = \text{the di} \\ \text{(am)}$

c =the flu

A similar a channel gives

where

 $x \quad \text{fluid } \mathbf{k} \\
 \omega = \operatorname{angula} \\
 c = \operatorname{fluid } \mathbf{c}$

If the cond then the assumust be muc

calculated for

Fluid Compr

The prece When the pestraightforwar a fluid -pring of this paperless than albeigth is smivibratory dis avoid the po-

(間)

(81)

Comparison

Keone's Det surficient ded 1 we'r odd 1 o'r orig Unichions ar bydrodynau tegliameter from 1.2 to hydrodynau an in cavit

Journal of

Transactions of the ASME

The effective linear damping coefficient b may be determined by setting $E_{L} = E_{D}$ with the result

$$h = \frac{2}{3\pi} \frac{f V_0 \rho L A}{c} \quad (36)$$

A parameter 2ξ may be defined where

$$2\xi = \frac{h}{M_{\pi}\omega} (37)$$

and $M_{J} =$ fluid mass. 2ξ is the ratio of the damping impedance to the inertial impedance. ξ is similar to a fraction of critical damping for a one-degree-of-freedom system with linear damping b, mass M_{J} , and natural frequency ω . From equations (36) and (37) and with $M_{J} = \rho LA$,

$$\xi = \frac{2}{3\pi} \frac{fV_0}{\omega c}$$
(38)

Further, if $V_{\theta} = \omega x_{\theta}$, from equation (38)

$$2\xi = \frac{2}{3\pi} \frac{f x_b}{c} \qquad (\text{turbulent flow}) \tag{39}$$

Equation (39) defines a dimensionless number, a damping parameter, that should provide a reasonable measure of the ratio of fluid friction to fluid inertia. We recall that in equation (39)

f = the Darcy friction factor for turbulent flow

 z_6 = the distance that the fluid moves in an oscillatory cycle (amplitude of sinusoidal motion)

c = the fluid channel spacing

A similar analysis for laminar flow through a parallel plate schannel gives the result

$$2\xi = \frac{12\nu}{\omega c^2}$$
 (faminar flow) (40)

where

1

odies ure lorus

axially

than the

tion .

>> :

tegrated over a

(ual to bl', then

of the ASME

:41)

v = fluid kinematic viscosity

ω = angular frequency of oscillatory motion

c = fluid channel spacing

If the concept of this damping parameter 2ξ is reasonable, then the assumption of a frictionless fluid must require that 2ξ must be much smaller than 1. The quantity 2ξ will later be calculated for some test cases.

Fluid Compressibility

The preceding analysis assumed an incompressible fluid. Where the possibility of a fluid spring is present, it is usually a straightforward calculation to determine if the volume storage of a fluid spring will affect the continuity balance. The application of this paper is further restricted to cases of small Mach number clear than about 10 percent) and cases where the flow channel length is small compared to the wave length for propagating vibratory disturbances (less than about 10 percent), in order to avoid the possibility of standing-wave effects.

Comparison to Test Data

Keens's Dore. Keene [6] vibrated a circular cantilever tube prounded by an annular cavity. The empty space was filled with a liquid, which made the test consistent with item 8 of Table solutions and analyzed the cantilever beam with the added addredynamic mass. For one set of tests, Keane's beam lengthindiameter ratio was 17 and b/a (in item 8, Table 1) ranged and 1.2 to 6.5. According to Fig. 4.3.2 of Keane's report, the barden in cavity) to as low as 29 cps (with water in cavity), which

starnal of Engineering for Industry

seemed to agree exactly with prediction. For other points of his graphed data, the variation between measured natural frequency and predicted natural frequency was typically less than 2 percent.

For b/a = 1.2 and a frequency of 29 cps, the maximum value of the Reynolds number during the vibratory cycle is estimated from Kezne's data to be 24,000. Turbulence may be assumed to occur if the Reynolds number is greater than 3000. Thus, the water surrounding the beam can be considered turbulent. Relation (39) gives a value of 2ξ of 0.03, using a friction factor of 0.025. This friction factor is taken from Moody [7]. Since $2\xi = 0.03$ is much smaller than 1, the concept of this damping parameter would imply that the fluid could be considered essentially frictionless. The fact that the data on natural frequency agreed so well with theory would tend to validate the assumption of a frictionless fluid. The amplification in Kenne's test was about 15 at resonance, which can also be considered as evidence that the overall inertial impedance is considerably greater than the overall damping impedance.

Dote of Fritz and Kiss. Fritz and Kiss [8] reported the results of a test on a solid aluminum cylinder flexibly supported within a rigid cylindrical container. The equipment was vibrated on a shake-table. The length-to-diameter of the cylinder was about 1.0. The cylinder was surrounded by a thin annular fluid which was free to flow axially as well as circumferentially. The natural frequency was taken as the frequency at which the vibrational amplitude of the cylinder reached its maximum value with a constant table amplitude. The axial and circumferential hydrodynamic messes were combined as shown in item 10 of Table 1. The natural frequency of the cylinder in air was 35.5 cps. With water surrounding the cylinder, the frequency was reduced to 17.0 cps, which gave very satisfactory agreement with the prediction of 16.9 cps.

In reference [8] the Reynolds number was estimated to be 4800 which was considered turbulent. The value of 2ξ is calcuhated from equation (38) to be 0.03, using the data from reference [8]: f = 0.04, $V_{\theta} = 3.2$ fps, $\omega = 2\pi$ (17 cps), c = 0.090 in. Since 2ξ is much less than 1, the assumption of a frictionless fluid should be valid. This is validated in that the use of the hydrodynamic mass concept in reference [8] provided a very

Fig. 2 Vertical section of test equipment

accurate estimate of the natural frequency in the presence of the liquid.

Free Vibration of a Concentric Cylinder. A concentric cylinder assembly shown in Fig. 2 was available for test. An aluminum cylinder (part 5) is flexibly supported by column struts (parts 1). The cylinder is surrounded by an annulus. Fluid leakage from the annulus is limited by close-clearance metal seals, parts 4. The motion of the cylinder was measured by use of a cantilever displacement gage, fitted with strain gages, part 8. The fluid annulus width c was varied by machining the cylinder diameter. Table 2 shows some numerical data from these tests. Fig. 3 shows some typical oscillograph records of the free vibrations taken during these tests. The vibrations with air and the glycerol solution were created by velocity-shocking the cylinder with a large mallet. The vibrations with water and oil were created by causing an initial large deflection.

The hydrodynamic weight was calculated from item 8, Table 1. The hydrodynamic weight was also calculated from the test frequencies. Due to the nature of the equipment it was felt that there was a small amount of leakage past the end seals which would cause the actual hydrodynamic weight to be smaller than the theoretical value. Even though the value of 2ξ was as high as 0.7, the calculated hydrodynamic weight was felt to be in reasonable agreement with the test values.

It is noted that this apparatus was also used to measure the hydrodynamic mass of a thin annulus around a rotating cylinder. The results were published in [11].

General Comments on These Comparisons to Test Data. The above comparisons to test data apply to the effect of the inertial squeeze film and the use of the damping parameter 2ξ . The phenomenon of the inertial squeeze film or, in other words, the virtual mass effect, was first predicted by Stokes [1], and has since been widely accepted. Therefore, confirmation of this effect is not new. However, both references [6] and [8] involve annular fluid spaces where the outer and inner boundaries of the fluid annulus both move. Both references [6] and [8] report forms of fluid motion equations (cf. equation (4.2.15) of [6] and equa-

	NORAL OF	KANINGS LI	Ligard						Galaslated	Byteradyesta
a La.	62.000788.04 4 13.	*1.00005 Ky		Bossenil Presentory aps	(1)	1	*5	Maight Liss.	Render allerandes i Matiglies Lies .	fran June
4.0	.16	1.90	Nater	970	19,600	.096	.01	89	25.	Ldte
3.9	. 99	1.59	Mater	540	63,000	.080	99.	85	100	13
4.0	.85	1.50	Water	425	34,000	.021	.08	*	170	1.07
4.0	.15	6.2	Gipterral Bolesser	990	6,600	.0%	.66	28	390	190
4.0	.25	190	011	500	860	Lonias	1.1	26	190	900
(1) A _{RS}	- keymolds	Booders = $\frac{95}{2}$.	<u></u>		1/2: r .	070 530 #2147990 fr1#514	ey 1.100	Let define $h/\epsilon \left(\frac{\epsilon}{2}\right)$	tion is 4/7 and .u./ is the engr from L.F. Anody	Law Dunis Law Providence Tor except
		5/1 4								

tion (1) of [8]) that are consistent with equation (14) of the paper. These equations for two-body motions presented this paper connect buoyancy and inertial squeeze-film effect Therefore, references [6] and [8] are consistent with the motipresented in this paper. In references (6] and [8] the buoy ancy term implied negligible effects on natural frequency, but imply a significant effect on the predicted amplifications. The effect on amplification was specifically noted in reference [8].

References [6] and [8] do result in some confirmation of models proposed in this paper. Admittedly, more confirmation is desirable. However, since the information of this paper, based on basic principles, it is expected that the equations for the accurate for the specified conditions.

Comments of Multi-Degree-of-Freedom Dynamic Analysis

A salient feature of the most widely used multi-degreefreedom dynamic analyses of linear systems which are excite by some arbitrary base motion is the transformation of an arbitrary configuration of dynamic components into a decouple array of simple oscillators which are excited by the base motion

Air; F = 986 cpm

172

FEBRUARY 1972

Fig. 3 Oscillograph records of free vibrations of inner cylinder R = 4.0 in., annular clearance C = 0.25 in.

Glycerol solution; F = 390 cpm

The m the si have t most c case w The co couplir McCal analysi should treatin

Summ

Some masses friction of usin body is comparthe outs guidelin incomp solids is able ago

Referen

Cambrid

Transactions of the ASME

「湯をうか

「日本の

meni shown

Reight From Tax

set the first

14) of this sented in m effects the non-althe 1 - y, but aid mis. This use [8], ion of the ufirmation * paper is ations will

Analysis

-degree-ofare exceed of an areade led set. on. The motion of the complex array is then related to the motion of the simple oscillators. Many forms of this transformation have been reported in the literature in equations which are in most cases applicable without dynamic coupling, that is, for the case where the mass matrix is 'ingonal in the dynamic equations. The correct transformations to be used for the case of dynamic coupling, where the mass matrix is nondiagonal, is given by McCalley in reference [9]. The methods of hydrodynamic analysis of this paper generally result in dynamic coupling and should therefore use McCalley's relations (or equivalent) when treating fluid effects in a multi-degree-of-freedom analysis.

Summary

Some available relations are given in Table V for hydrodynamic masses for motions of a single solid body fully immersed in a frictionless incompressible fluid. This paper proposes a method of using these results for two-body motions. Where a single body is shown in Table 1, the second body is considered large compared to the single body. For cases 8, 9, 10, 11, and 14 the outer surfaces may be considered in arbitrary motion. Some guidelines are proposed to establish the conditions of frictionless, incompressible flow. The case of motions of multiple immersed solids is considered. Comparisons to test data indicated favorable agreement.

References

「「「「「「「」」」

 Stokes, G. G., "On Some Cases of Fluid Motion," Proceedings Cambridge Philosophical Soc., Vol. 8, May 1843, pp. 105–137. 2 Lazab, H., Hydrodynamics, 6th ed., Dover, 1943, ch. 6.

3 Bir hoff, G., Hydrodynamics, A Study in Logic, Fact, and Similitude University Press, 1969, cir. 6.

4 Pattas K. T., "Tables of flydrodynamic Mass Factors for Translational Jotion," ASME Paper No. 65-WA/Unt-2.

5 Crandiall, H., and McCasley, R. B., Numerical Methods of Analysis, Shore and Vibratian Hasdbook, Vol. 2 (ed. C. M. Harris, and C. E. Crece), McGraw-Hill, New York, N. Y.

6 Keane, J. A., "On The Elastic Vibration of A Circular Cantilever Tube in a Newtonian Fluid," PhD thesis, Carnegie Institute of Technology, Sept. 1963.

7 Moody, L. F., "Friction Factors for Pipe Flow," TRANS-ASME, Vol. 66, 1944, pp. 671-684.

8 Fritz, R. J., and Kiss, E., "The Vibration Response of a Cantilevered Cylinder Surrounded by An Annular Fluid." KAPL-M-6539, Feb. 1966. (Available from Clearinghouse for Federal Scientific and Technical Information, U. S. Department of Commerce. Springfield, Va. 22151.)

 McCalley, R. B., "Shock Analysis by Matrix Method, Notes for Short Course on Normal Modes," *Shock and Vibration*, Department of Engineering Mechanics, Pennsylvania State University, July 1966.

10-Private communication: -items 12, 13 are due to J. H. Germer, General Electric Co.

11 Fritz, R. J., "The Effects of an Annular Fluid on the Vibrations of a Long Rotor, Part 1-Theory; and Part 2-Test," *Journal* of Basic Engineering, TRANS, ASME, Series D, Vol. 92, No. 4, Dec. 1970, pp. 923-937.

12 Kiss, E., "Analysis of the Fundamental Vibration Frequency of a Radial Vane Internal Steam Generator Structure," ANL-7685, Proceedings of Conference on Flow-Induced Vibrations in Reactor System Components, May 1970, Argonne National Laboratory, Argonne, Ill.