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alternative at this stage of model development is to simulate data to test the
applicability of such an approach. Chapter 3 presents a simulation procedure
for analyzing componert failures with symptomatic emitter information.

For this approach to be practical and implementable, the faflure proba-
bility of the component calculated, based on the explanatory variables should
reliably change when the component is truly changing for a degraded situation
signaling an impending failure and should not deviate significantly if the com-
ponent performance has not changed. Chapter 4 presents a deciston framework for
fmplementing a repair/replace policy based on the failure probability calculated
at each test., Obviously, the decision rule must be used as an alarm to decide
the repair necessary. The repair may be performed such that the explanatory
variables are brought back to the normal level, Besides forestalling an impend-
ing failure, this may serve another purpose. At any time during plant opera-
tion, the plants may maintain the list of important components that are exhibit-
ing higher probability of failures. In case of an accident, the operators can

mouitor these components more closely to take corrective actions in case the
component actually fails.
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A(t;z)dt is the probability of failure of an item that has lived for time t ~d
exhibits the characteristics described by 2zy, the kth component of the explan-
atory variable profile or vector z = (2],22,e0032k,00eZp)e Ag{t) is an
arbitrary non-negative function of t representing the unspecified baseline
hazard function. The unknown parameters B describe the influence of each such
variable upon the instantaneous hazard, A(t;z); furthermore, Cox states that a
given, known function of t can be incorporated into the explanatory variables,
€.g+, 23 = tz, Other indicators which remain fixed throughout the analysis,
possibly identifying manufacturer or operating company cr location in the case
of equipment (nuclear) reliability, can be used.

Conditional Likelihood Estimates of Rgg;ession Coefficients

A unique contribution of the Cox (1972) paper was to estimate the regres-
sion parameters , B, from failure time data taken in continuous or discrete sam-~
pling time without assuming a specific form for A (t). Here ie the basic
idea. Suppose there are J items of age t susceptible to failure, and a particu~
lar one fails; mark his/aer distinguishing explanatory z-vector by a piime (z').
Now the probability that one of the J fails in (t, t+dt) is assuming independ-
ence of their failures and the mcdel (2.1),

L A (tlexp(z(£)Bydt . (2.2)
kel

Here we have used J to denote the set, the J items susceptible at t. The proba-
bility that the item with description z' actually falled is

Xo(t)exp(i' g)dt . (2.3)

Hence the conditional probability that the item with 2z' actually failed is che
ratio of 12:3) to (2.2) or

exp(z'B)dt
[ exp(z(D)8 :
LeJ(t)

(2.4)

since the Ay(t)~term factors out. This term is now viewed as a contribution
to a likelihood for B. The methodology discussed by Cox addresses the general
situation in which any known number of items are at risk at the time, t(j), of
the ith failure to occur. In his notation, and ours, at time (t(q), 2' =
z(1), the description of the item actually failing at t(j). Conseque;tlyo the
conditional likelihood becomes

ﬁ exp(z(i)8)
L(B) = : T exp(z(DB . (2.5)
LeJ(t(i))

One can next take logarithms and proceed to get reasonable estimates, at least
asymptotically, i.e., after many failures have occurred.
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2.3 Application of the Cox Model: Discrete Time Adaptation Using the Logistic
Representation

Suppose a system is examined at intervals T time urits apart; let T = | for
convenience for the moment. Think of the explanatory profile z(t) observed at t
as {influencing the probability of failure in the interval t: Ehmely the times
teom (T, 2+1), In reliability applications Zlseesy,Zy may be fixed fartors
identifying the manufacturer, location of the system, etc., while the remaining
factors vary with time: Zrs1(t), zr+2(t),...zp(t) are quantities that
change from period to perfod; for instance current levels of vibration, oil
leakage, and temperature are candidates to explain tailure propensity for pumps.

Because of the discrete time sampling, 1t is convenient, even necessary, to

consider the logistic model for p(t,z(t)), the probability of failure during in-~
terval t, given the explanatory variable values relevant to that interval, i.e.,

z(t). That is, represent model odds for a failure at t as follows:

p(t,z) P, (t)
(l"p(t'i)) ” exp(.z_ ﬁ) . l'Po(t) ’ (2.6)

or, calling the log~-odds the logit, as is usual,

logit p(t,z) =z B + Y, (t) . (2.7)

Note that if p(t,z) = A(t,z)dt and Po(t)=A,dt, then as dt*0 the discrete
time model and the continuous time model approach each other. The above implies
that the probability of failure is:

g By (t)
St 1 (]

e
pltog) = 2 TN (2.8)

l+e
The primary objective is to estimate the coefficients b at this stage.

Conditional Likelihood Estimates; Single Cowponent

The Cox method for estimating £ appears to be best dapted to situations
for which many nearly identical units journey through time experiencing about
the same initial and environmental conditions. Such may not often be a natural
situation in reliability applications.

Under some circumstances it may be necessary to estimate B using Cox condi-
tional likelihood arguments when a single system is observed. To do 80, think
of the successive times to failure for the systems in question as representing
Independent and identically distributed sanple histories or realizations of a
group of identical systems, all started simultaneously: this is, of course, im-
mediately questionable if any kind of reliability growih occurs between succes-
sive failures. Nevertheless, proceed as follows by analogy to the earlier argu-
ments. Suppose first that ties are unlikely, and can be ignored. Then if a
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(the ith) failure ozcurs in time (actually, age) interval (tj,ti+l) the con-
ditional probability that it is in the unit observed that has description z' is

proportional to

exp(z'B)

2.9
exp(z(2)8) ; g

LeT(t)

which again eliminates the time-dependent factor Yo(t) in (2.8). 1I1f ties are
present, i.e., 1f the system has failed two or more times in the interval

(ty,ti=1), a form similar to (2.9) can be derived by thinking of the multi-
nomia! sampling features of the situation; details omitted for now.

Conditional Likelihood Estimates; Several Component Copies

Suppose there are a number of copies of the same component design in use in
various locations. In other words, 8],52,+++,5; denotes these component
copies, and their failure rates are influenced by variables z],Z2,eceZi o0
2z5. The discrete time-sample proportional hazards model would attempt to des-
cribe failure probability for each copy by use of model (2.8):

explz.8) + v (t)]

M ] :
pj(tvE) = exp[(_z_jg) + Yo(t)] » (2.10)

f.e., the same regression coefficients hold for all copies, meaning that the ex-

planatory variables zj exert the same leverage upon probability of failure for
each copy.

In order to explain or represent the extra variability in failure rate or
probability not explained by known explanatory variables z, one can consider
using an empirical Bayes version of (2.8). For this, one assumes, for example,
that

exp((z 8) + € |
R (2.11)

] + exp[(ijg) + cj] ’

pj(t.g) -

where €4 is a realization of a random variable (or sample) from a distribu-
tion. he assumption that €; comes from a Normal distribution with mean M and
variance ¢° can be entertained. The problem then is to use the data to 1) esti-
mate p and 0°, and 2) to use the estimates to improve the estimate »f the indi-
vidual component. This can possibly be checked if enough data are available --
then the Cox conditional likelihood method can be applied to estimate B. The
idea is to use (2.5) as the likelihood, and to maximize it.

The above discussion suggests that the semi-nonparametric feature of the
Cox conditional likelihood fitting procedure may not be necessary for current
purposes, €.g., to predict what may occur during the next time (sampling)
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period, one month, for example. Rether, one might better simply assume Ap(t)
= A, a constant, to be incorporated into z B in (2.8), and that the logistic
model could then be fit into pj(tti) probabilities. Time-dependent informa-
tion on the covariates can also be treated within this approach. Appendix A
provides a diecussion on the extended Cox model for time-dependent covariates
following the approach of Prentice and Gloeckler (1978).



3, SIMULATION OF FAILURES AND RELATED SYMPTOMATIC EMITTERS

It is recognized that data required to analyze the effectfveness of a Cox-
type proportional hazard model are not easily available, At the same time, be-
fore one gets into such data collection, which may be expensive, the efficacy of
such an approach should be carefully studied to determine the conditions or sit-
uations under which such an approach will produce meaningful practical results.
Simulated data can be very effective in such circumstances, and in this section
the process of simulating failures along with symptomatic emittei 1s presented.

3.1 The ldea of Symptcmatic Emitters and Some Notation

A component or subsystem 1is inspected at regular intervals, T, and its
state reccrded. The state is taken to be Xp4| at the time of the (n+i)th in-
spection following a failure, and
;zl(n),zl(n-l),...;zz(n),zz(n-l),...;zi(n),zi(n-l),...)

X -(1n

n+l +1

3 { 0 1f the item is up, i.e., no failure at (n+l1)
n+l ) {f the item is down, i.e., has failed at (n+l)

I

(1-1,2,-..,p)

while z4(n) 1is the strength of the ith symptomatic emitter (S.E.) at the time

of the nth inspection after the last failure event. The idea of an S.E. is that
it 1s a physical evidence of change in failure propensity of the item; and its
numerical value or strength is taken to be 1) an indicator function of the event
that such a physical change has occurred, or 2) a measurement of the magnitude
of such a change, or a suitable transformation thereof.

Example: A symptomatic emitter of physical change in a pump is considered
to be an oil leak, so the sequence of events and corresponding values might be

n: i 2 3 4 5 6 7
011 leak/No oil leak : N N N N N p
z(n): 0 0 0 0 0 1 1

{ndicating no oil leak (N) at the first 5 inspections, strengths (indicators)
thus being 0, and finally a noticeable oil leak at n=6 (Y), with strength now
zg=l, and again at n=7, 8o z7=1, etc.

A more refined description might well include the magnitude of the oil leak
(for example, volume in a drip pan), or even color or chemical composition of
the oil leaking. 1In this case z, is potentially a real number.

0f course, the notion behind recording S.E. strengths is that an unusual or
abnormal strength signals an important change in the hazard rate of the item,
and hence can be used as information upon which to base removal or repair. It
stands to reason that pump oil leaks, like considerable increase in human blood
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pressure, "should” signify a much increased hazard rate or death rate unless
there i{s intervention. But a quantitative study is necessary 1) to derive
appropriate rules for combining the various possible emitter values to provide a
sensitive signal of impending failure, and then 2) to derive decision aiding
rules for remova! or replacement in advance of actual failure.

3.2 The Simplest Emitter Behavior; Step-Function Change of One Emitter's Rate

In order to illustrate the ideas described above consider the following
illustrative case.

Situation l: A single emitter signals in a exponentially distributed time
W (W~expla]) preceding a shift of failure rate from Ag to A1 (O\g). The
strength of the emitter is taken to be z.

For example, the item survives to n with conditional probability

-A T -nA T
Pi1 = ul Wnj = (e © )" ae © o (3.1)

Otherwise and unconditionally, 1t survives to n with probability

-AOT -aT n-} AT . -XlT —_
P{1 =0} = (e el Y Paile L P ' (3.2)
n , o
n'=0
where
T -Kox -AI(T-x) -ax
P{Transition from Xo to Al} R | e e e adx
o
AT =(A +a)T
a 1 0
 popse (g " -y | (3.3)
5 S |
Summing out the geometric series gives the formula
-(Xo+u)Tn =AT(n=]) l_e~(Ao-xl)Tn
P{1 =0} = e *V e Ceve v alk Pz w] . (3.4)
l-e

where Ty 1s the survival time of the com

ponent, assuming no usage of the emit-
ter's signals.,

Now introduce the notion of the emitter's signal. Suppose that when the
rate A, is in fcrce, z)(n)=zp, while when Ag switches to A1 (A1>Ag) then
z)(n)=zg+A, 8>0. For the moment assume that as soon as a Ag=>A, shift occurs,
it is detectea. This is relatively simplistic, but it can be handled most
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easily. For example, z switches from 0 to | as soon as a noticeable oil leak
becomes evident. This corresponds to the Cox-type model of survival through an

juspection cycle of

~[A, T+(A A )Tz
e

(3.5)

Remember that the system state is only visible or detectable at inspection

times, while the switch occurs between two such times. Presumably action 1s
taken the moment the oil leak is noticed, so we are interested in the probabili-
ty of detection before failure. In this case notice that

P{detection at end of period of rate switch, before failure| equals

- -AlT -(Ao+ a)T
Bk o b s

3.3 Simulation of the Previous Model

Situation l: In order to simulate *the emitter signals, failures, and rve-
placement or repair actions, follow this procedure:

Simulation Procedure for Situation |

l. Specify Ay (basic rate), A} (degraded rate), T (inspection interval,,
a (rate of emitter occurrence; a~' is expected (average or mean) time
until Ay changes to Aj).

2. Obtain random number with exponential distribution and rate (Ag+ a):

1
v -'{()T-a 1n(Ul) . £3:7)

Up=Uniform (0,1), f.e., U} is an ordinary random number. V is the

time until either a failure occurs or the emitter signals.

3. Obtain the identification of V: Let Uz be an independent (of U;)
random number, and identify time V or time to

A
O ;
Failure if 0 < U2 < X;:hu’ then V VF (3.8a)
A0
Emitter blinal & - _X—;—:—‘l _(_ l12 < 1; then V = VE (3.8b)

4, 1f a fatlure is identified under (3), then the component is down from
time

\'F until NT 5 (3.9)




where
N = {n:(n=1)T < V < nT}
Vg denotes a time V identified or ending with a failure.

5. If an Emitter Signal is identified, obtain an exponentially distributed
numwher

1
- o ( .
H X In \U3) 5 (3.10)

where Uz~Uniform (0,1) and independent of Uy, Ugse This 18 the time
to failure, measured from the moment of emitter signal beginniug.

6. NOW. if

vE + H < NT {3:.11)

then the component is down (failed) from time Vg+H until NT. Here
Vi stands for the time V when the latter is identified as an emitter

(see Step (3)). Note that at time NT, start again from (2), following
a repair.

ARl

vF + H > NT {3:12)

there 18 no failure. the emitter is assumed to be noted, and a repaired
anit is put into effect before a failure can occur.

In this case, start again with (2).

Comments :

————.

a) The above setup can be completely analyzed by Markov chain methods, so
that one can, for instance, find the long-run expected time that the system is
down, or the time until some independent Poissonian initiating event occurs dur-
lng a down period. This can also be done by simulation,

b) For this simple setup there is just one explanatory variable, z,, and,
if no replacements are made until a failure actually occurs (Policy: replace-
ment at fallure in force) then if n represents the number of inspections after
the installation of a new component (equivalent to complete repair) we have

zl(n) s ) for nT £ ¥ (3.13)

zl(n) = | for VE < nT < VF + H (3.14)
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Thus we could see the following state combinations

= = = h
1) §n+l (In*l f4 zl(n) 0) if either

{(n+1)T < v} or {nT < V_ < (n+1)T and V. + H > (n+1)T}

- (1

{(nT <V < (n+1)T} and {V + H < (n+1)T}

2) =1, z/(n) = g it

En+l n+l

) E.i® (1“ﬂ «0, g,(n) = 3 I T

{(n=1)T < V£ nT} and {vE + H D> (n+1)T}
4) £n+l = (Iv+l = 1, zl(n) = 1) if

{(a=1)T < v, < nT} and {V, + H (n+1)T}

One could presumably setup a discrimination procedure to show that knowledge of
z, e.8., that z)(n)=1, is a strong predictor that In4)=l. 0f course, Ip=l

may already have occurred; if the failure rate A, assoclated with time H is too
high then failure may occur too soon after the emitter signals to be useful.
The only countermeasure is to attempt to reduce T or improve the sensitivity of
the emitter.

Situation 2: In order to generalize the above model in a realistic way,
one can proceed to introduce other S.E. factors. Let aj be the rate of occur=
rence of S.E. 1(1=1,2,.4+,P)s There are p > | emitters, all acting independent~
ly; the ith emitter signals a rate increase ot §; at an exponentially distrib-
uted time Wi(Wi~exp[aq]). Thus, if no emitters have occurred the rate
is A,; 1f emitter 3 only has occurred then the rate is Ao+83; 1f emitters 3

and 5 have occurred, the rate is A +83+8g, etc.
Let

| 1f the ith S.E. has occurred
0 otherwise

zi(t) = {

Then the Cox proportional hazard model for survival to t is

- ' l
[Ao+ 1§1 éizi(t)Jt
P{T8 > t} - e

where Tg is the time to failure of the component.
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In order to conveniently simulate this situation assume that 6y=6, so
that each emitter's appearance slgnals the same increase in the hazard. Also,
let ay=a, so the rate of emitter occurrence is the same. Such assumptions can

be relaxed. The present simulation procedure depends on its relative simplicity
upon the above assumptions.

Simulation Procedures for Situation 2

1.

2.

3.

4,

Specify Ay, 6, p (the number of emitters), T, a.

Obtain a random number with exponential distribution having rate
Aptpa:

V(l) =

In(U,)
Ao+pu 1

Uy is an ordinary random number.

Obtain the identification of V:

A
- 4 0 . =
Failure if 0 < Ull < Xo+p0 ; then V(1) VF(l)
Ao
Emitter Signal 1f X;:B; < ”11-5 l; then V(1) = VE(I)

Uy} 18 an independent (of Uj) random number.

If a failure is identified under (3), then the component is down from
VP(1) until Ny , where: N = {n:(n=1)T < V(1) < nT}

(Note: The component is down for time {NIT-VF(I)} out of a total

exposure time of N|T, presuming, as seems reasonable, that the process
begins again after repair.)

[f an Emitter Signal is identiiied, so z1(n)=1 for n > N}, z,(n) = 0,
etc., obtain an exponentially distributed random number

1 1
H(1l) = - In (Ulz) o In (Ul

0 1

2) :

where A;=Ag+8, 15 the new failure rate, and Uz 18 a random number,
(1ndependent of Uy, Ujp).
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8.

10,

1f

v (1) + H(L) <N T,

then the component is down (failed or unavailable) from time

VE(l) + H(1) until Nll .

The process starts over (after a repair) at stage (2).
Otherwise, 1if

VE(l) + K(1) > NIT

there is no failure, the emitter presence is noted, and the process
continues as follows.

Obtain an exponential random number

t
V(2) = X::?E:TTE In (UZ) ’

where Al-xo+6, and Up 18 an independent random number.
Obtain the identification of V(2):

A

. R e 9
Failure if 0 < U,, < Xl+(p-l)a ; then V(2) VF(L)

A

1 : &
Emitter Signal if XT:~TE:TTE‘S U21 < 1; then V(2) VE(Z)

where Up; 1s an independent random number.
If a failure is identified, above (9), then the system is down from

VF(2) until NZT ¥
where
Ng = {n:(n=1)T < Vg(1) + V(2) < nT}

If an Emitter Sigggl is identified

H(2) = ;l In (U,
2

5)

where Ap=)rg+28, and Upp is an independent random uumber.
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13,

l4.

154

17,
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It

V(D) + V,(2) + H(2) < N,T

then the component is down (failed) from time

™ .

VE(l) + VE(Z) + H(2) until N2

The process starts over (after repair) at stage (2).

Otherwise, if

VE(l) + VE(Z) + H(2) > NZT

there is no failure, the second emitter's presence is noted (z5(n)=]

for n > Ny) and the process continues, now with p-2 emitters to signal
and with failure rate A=A +24,

In general, suppose i emitters have signalled, and failure has not
occurred. Then the next simulation step proceeds as follows:

Obtain an exponential random number

1

V(i+1) = T::?E:TTZ

In (Ui) 5
where Ai-xo+i6.

Obtain the identification of V(i+1):

A

Failure 1f 0 < U i

S Biwt,1 € TRTpATTR 1 WIHD 5 Rtten)

A
5 ‘ . =
Emitter Signal if A(+ ey < Ui+l,l £ 13 v(i+1) VE(1+I) .

If a fallure is identified, above (9), then the system is down from

VF(1+1) until Nl+lT :

where

N4l = {n:(n=1)T < VE(1) + VE(2) + «os + V(141) < 0T} .

If an Emitter Signal is identified, obtain

H(i+1) =

In (U )
xi*l i+1,2 .

where Aq41.A148,




3~9

8. 1If

Ve(1) + Vg(2) +o0Vp(i41) + H(i4D) < N, T

then the component is down (failed) from

VE(I) * VE(Z) +...VE(1+1) 4+ H(1+41) until Ni#lT .

and the process starts over from stage (2).
19. Otherwise, if

VE(l) +"'+VE(1+1) + H(i+l) > N1+1T

and the process continues by advancing i+]1 to 142 and starting at stage
14. Also, zj(n)=z(n)= ... = z441(n)=1, other emitter values = 0 for

n>Nj4]e
Comments :

The above process, involving p(>1) emitters is relatively simple. Various
embellishments are possible: for instance, the observed emitter value may be
obtained by adding a normally distributed error Xalue to z4(n); one coyld let
the mean be zero, while the variance of error, o“, varies; for large o° it will
be' impossible to tell the true emitter rate state, and hence the prevailing
failure rate.

3.4 Discussion

The setup described permits generation of synthetic data to be analyzed by
survival analysis with covariates or explanatory variable techniques, e.g., by
use of the Cox analysis of a proportional hazards model. 0f course it would not
be assumed in such a data analysis that p is known, and the variables might well
not be taken to be simple indicators. But such an analysis might well help pro-
vide an indication of a much increased failure rate.

It remains to specify a good, or possible optimum, decision rule to follow
concerning actions to be taken, given the values of z,, Zgyeseslg (where g=p
{f the true mechanism is as described). That is, if

1y 24 <3
no action is necessary, but if
Zi z, 23

one might repair or replace in anticipation of failure, since failure is quite
likely. Such a pre-failure repair is no doubt expensive both in time and money,
but it may help to forestall a failure between inspection periods.















(4.4c)

g l-e-(koovo)r VO [e-xlt-e-(v0+xo)tj
v0+ko-ll
and
-Alt
a‘l(x) = g (4.5a)
-Alt
alz(t) = |- e (4.5b)

These can be regarded as describing the transition probabilities in a pure death
process {S(t;d)} that passes through the same states as described, but never
experiences inspection or repair. Explanations are simple: for instance ag1(1)
simply expresses the probability of a transfer from event rate Ag to A; without
failure, while ag2(1) refers to the probability of transition to the failed
state, either directly or in the intermediate, symptomatic emitter state.

Rule 0: Repair Only Upon Failure (State 2)

Suppose inspection is only capable of detecting failure (State 2), or non=-
failure (States 0 or 1), 1In particular, no action is taken if the unit is in

State 1. Here is the matrix of one-step Markov transition probabilities for the
Sn-process; denote this by P(R) = {P14(R)}. We have

1 0 1 2
0 ﬂoo(T) GOl(T) Ioz(T)
P(0) = 1 0 a11(T) a)a(m) (4.6)
2 agg(T-Ly) apg)(T-Ly) aga(T-Ly)

An explanation of the sz entries is simply that 1if the system is seen to have
failed (State 2) at the nth inspection, then repair occurs for an interval L
thereafter, after which the unit is returned to perfect condition (State 0), and
the process acts like a pure death process until the time of the next inspec-
tion. The Plj entries reflect the fact that the symptomatic emission is
occurring (State 1) is unrecognized--unintentionally or intentionally,

Now the use of (4.6) in connection with either (4.1) or (4.2) yields
13(0). which describes the situation prevailing at the start of an inepection
interval in the long run. In order to obtain the long-run unavailability we
first calculate the expected time down during an interval, conditional upon
starting in State j. For convenience, define
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at the beginning

yve fraction depends upon the

see that

Finally ’

4.9)

nt ] r repair for

starts in + (T=Lo)fo(T=Lo; , cognized as the

e remainder

btain the unconditional

r-run unavailability, simpl

be written down, but they omplicated and uninforma-
valuations are sim nd ' nd a small computer program

« Note that sinc le ites tion only upon failure,

babilities p




Turn next to a consideration of

Rule 1: Maintain When Symptoms are Emitted (State 1); Repair Upon Failure
(State 2)

By way of contrast to Rule 0, suppose that it is possible t. ascertain sys-
tem state perfectly, and the rule is to maintain the system as soon as it is
found to be in State 1, i.e., to be emitting symptoms. In this case the system
may, sometimes at least, be returned to State 0 before failure at the cost of
incurring L), rather than L2>0, units of downtime.

First, evaluate the transition probabilities, as before.

LY5 9 1 2
0 ago(T) ag(T) aga(T)
P{l) = 1 ago(T-Ly) ag1(T-Ly) ay2(T-Ly) (4.11)
2 ago(T-L2) ag1(T-L2) ag2(T-L2)

One now combines the above transition probabilities (4.9) with (4.1) or (4.2) to
find the long-run probability distribution {Ij(l)} to find the long-run un-
availability., The conditional unavailabilities are expressed in terms of (4.7),
(4.8), and (4.9):

fO(T;l) = fO(T;O) (4.12a)
1

£,(T31) » 3 [1l + (T-Ll)fo('r-l.l;o)] (4412b)
1 .

£,(T31) = & [L2 + (T-Lz)fO(I-LZ;O)J (4412¢)

Once again the long-run availability is evaluated as:

2

£(T;1) = ) w (DE (T;1) (4.13)
e 3 3

It 18 now possible to compare f(T;1) given by (4.13) to f(T;0) given by
(4.10):

* If £(T:1) € £(T:0), thare i» potential benefit from utilizing symptoma=-
tic emitter information, i.e., from information that the component is
actually 1in State (1), a pre-failure state from which failures are like-
ly to occur.

* If £(T;1) > f(T;0) there is no use in attempting to utilize symptomatic
emitter information, unless conditions can be changed, e.g., unless Ly,

the maintenance time, can be decreased enough to make f(T;1) smalier
than £(T;0).
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This is, of course, a stopgap measure only; a conservative assumption would be
that my =0 and certainly a great many other possibilities suggest themselves.
The unique feature of the present model is that misperception of the system
state induces possibly inappropriate action, which in turn influences the long-
run distribution of states, and hence long-run availability.

In order to evaluate the corresponding long-run availability it is only
necessary to utilize the conditional expected unavailabilities as given by
(4412); the expected unavailability is then

2
£(T;2) = § wj(Z)fj('r;l) .
j=0

It is now sensible to compare Rules 0 and 2:
« If £(T;2) < £f(T;0), there is evidence of overall benefit from utilizing
symptomatic emitter information, even though the latter is imperfect and
error-prone, as evidenced by dy4<l. That is, there is evidence that a

"repair on warning" policy may be beneficial.

« If £(T;2) > £f(T;0) there appears to be no use in employing the currently

available Eymptomatic emitter information. 1If either the sharpness of

the information were increased (dij made closer to unity), or the con-

requences of maintenance made less severe (L, shortened), or if mainte-
nance reduced i;, then there is justification for following the policy

based on symptomatic emitter evidence.
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APPENDIX A

1NCORPORATION OF TIME DEPENDENT COVARIATES

In the main report, the proportional hazard model of D. Cox (1972)

-

A(t;z) = A (t)eé'i' ’
0

was analyzed, and the conditional likelibood approach of estimating B was pre-
sented. In this appendix, the consideration of time-dcpendent variables in
estimating B is discussed.

The question of time-dependent covariates or symptomatic emitters is impor~
tant in analyzing the component degradation in nuclear power plants. Typically
a component is being tested at a fixed test interval, and the value of the symp~
tomatic emitter will va.y from one testing interval to another. The symptomatic
emitter information of interes® to us is not only the value of the variable at
the interval it failed, but also the entire path of the variable.

The analysis of the component degradation and trends can be performed in-
corporating time-dependent covariates, and the Cox formulation of the propor-
tional hazard model takes the shape

Z(t)B
L 3

A(t;2(t)) = A () . (a-1)

Here, Z(t) signifies not only the value of the covariate at time t, but the en-
tire covariate path up to time t. That 1is, the failure rate depends upon the
historical value of the explanatory variable, i.e. values reading from the pre~-
sent value (t) to any previous time point, in this case, the time of first test-
ing. Mathematically speaking, Z(t) is really a functional.

Consider that a component is tested at regular intervals, and t), tg,eee,~
tk,++s denotes the times of test. At each of the test, one records the ex-
planatory variable vector z and also observes any failure of the component. The
value of the explanatory variable or the symptomatic emitter is assumed to be
constant within a test interval, but can vary from one test interval to another.
If a demand occurs within a test interval and the component fails to perform its
required function, the failure is assumed to occur at the end of the interval.
Therefore, the actual failure time is known to the nearest test interval. The
explanatory variable vector for the nth component at the jth interval {is

Enj ' (znjl’ ¥

where the component is defined in terms of p variables considered to provide the
symptoms of failure.




aA~2

Let Z denote the entire covariate process, i1.e., Znk denotes the covari-
ate process up to the kth interval for the nth component.

Bo=ls 1wgn.

The fallure times are grouped into intervals [O=tg,t}), [t1,t2),ee([tk=1,tk),
where Ty denote the interval [tyg-y,tk), k = 1,2..4 &

Survivor Function

Let T be the random variable representing the failure time, then the sur~-
vivor function F(t) is the probability that T is at least as great as t and is
given by

HE) * NI D>2), e i
For the continuous random variable,

t
F(t) = exp(- [ A(u)du)
o

where A(t) 1ie the hazard rate at T=t.

In the proportienal hazard model, the survivor function of T given Z is
F(t;Z) and s given by

%
£(t) = exp [= [ A (wexp(z B)du] = [F (t)|*P2E) (A-2)
(8]

where Fo(t) denstes the baseline survivor function for z = 0.

The hazard in the interval for a component with covariate z, is:

F(t,_52)-F(t 5z)

{ T

P(T ety 10 £ /T2t ) F(t, 2

t

-z B i

= | - exple E-—-] Ao(u)du] o (A-3)

t

i~1
Using
i
a, = exp (- J XO(U)du] ) (A-4)
t

i=]




one obtains,

[ slsa™Lp "

plT (ti_l,ti)/'l’?_ti_l] i =, (A=5)
Note that a4 is the conditional probability of an individual with covariate
z = 0 surviving the interval (tj-l' tj) given that it has survived up to the
interval (tj-2, tj-1).

Maximum Likelihood Estimation of B for Time-Dependent Covariates

The probability of observing a failure time ty for a component with the
covariate path Znpq is:

BB TN G S R

= [prob. that it fails in the interval Tq] x
[prob. that it survived up to Ty.j]

exp(z . B) 1i=] exp(z_, 8)
= [1- o, o i S (R ~ (A=6)
gt *

where a; is as defined earlier in Eq.(A-4) and denotes the conditional survi-
val probability in Ty for a component with z,y=0. Note that the hazard
function depends not only on the information about the covariates at the inter-
val it failed, but alsc on its values at previous intervals.

Kalbfleisch and Prentice (1980) provides further discussion on the use of
time~-dependent covariates. The reader is also referred to Prentice and
Gloeckler (1978) foi the maximum likelihood estimatfion process to develop compu~-
tationally feasible estimations. At this point, one develops the likelihood
function to estimate ay,..., ay, and 8.
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