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Abstract

The proportional hazard model (Cox, 1972) provides a fraciework for incor-
porating measurable parameters (covariates) into the description of failure
rates. In this report a methodology is presented for calculating the fallore
probability based on the parameters measured at a routine surveillance test of
the component. These parameters are expected to vary in an identifiable way be-
fore a failure indicating an impending failure, and are termed symptomatic emit-
ters. A decision framework for a repair / replacement policy based on such infor-
mation is presented.

The use of symptomatic emitter information in determining a component fail-
ure potential has great utility, particularly in hignly reliabic systems like
those in nuclear power plants. Further work on application of this methodology

is recommended. If actual data are not readily available, simulated data can be
develored using the simulation approach presented in this report.
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EXECUTIVE SUMMARY

The operability of standbv safety system components is assured through
periodic testing of components by detecting any failures that may have occurred
during the standby time period. However, in many cases, a test may not detect a
failure but may detect certain symptoms indicating a degraded condition of the
components. One useful approach to prevent component failure 13 to identify the
failure pc'ential of the component using the identifiable symptoms that are
exhibited before a failure. In this report, a methodology to develop a
repair / replacement strategy is presented incorporating information on the
parameters (symptoms exhibited by a component) observed during a surveillance
test.

The methodology is based on proportional hazards models (developed by D.
Cox, 1972) which express the failure rate as a function of the variables that
are identified to provide symptoms of component failure. As adapted for compo-

nent failure analysis, this formulation assumes that a component failure rate at
any time will be the basic failure rate, if the variables being measured on the
component remain at their normal operating values. However, the fluctuations on
those variables will influence the failure rate through a linear function multi-

plicative of the basic failure rate. This ability to express the failure rate
as a function of measurable variables in the component allows one to calculate
the higher failure rate assumed to be exhibited by the component before a fail-
u tre through changes in the parameters observed during a surveillance test. The
calculated higher failure rate is used to develop a remedial maintenance /exten-
sive repair or replacement strategy. The constraint in developing such a
strategy was to prevent unnecessary replacement or extensive repairs.

The methodology presented in this report has a strong appeal in component
failure analysis since it holds promise in preventing failures of risk-important
components in nuclear power plants. At the same time, the underlying assumption
in the approach that the inherent failure rate of a component will show signifi-
cant departure before a failure and that such departures can be identified using
the measurable parameters collected during the test of the component has not
been validated by actual failure data analyses. Recognizing the potential
utility of such an approach in analyzing the information obtained in routine
component testing, a study on the application of the methodology to nuclear
safety system components is recommended.

_. __ _ __
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1. INTRODUCTION

The standby safety system components play a very important role in case of
an abnormal event in a nuclear power plant. The basic role of these components
is to prevent a routine abnormal event from transforming into a serious safety
s igt.i fi cant one. A failure in one or more of these important components may re-

sult in such situations. In the operation of nuclear power plants, measures are
taken in terms of test and maintenance of these components to assure their oper-

,
ability. Nevertheless, thece components are subject to failure. The probabil-
istic risk assessment of nuclear power plants calculates the frequency of ex-
pected accidents in the plant, and such analyses develop the failure rates of
those components which contribute to the accident frequency. The failure rates
are developed from the failures of the components observed during testing and
actual demands. The objective of this report is to present a methodology that
can predict when a failure of a component is imminent. The ability can then be
used to develop a repair / replace policy to forestall the failure and thus pre- J
vent the chance of any serious consequence. |

The basic notions of this study are as follows:

a) Components exhibit some identifiable symptoms before they actually
fail. That is, there are observables in a component that can be
analyzed to determine the failure proneness.

b) The state of a component before a failure can be represented by a
higher failure rate and this failure rate can be determined based on
the symptoms exhibited by the component.

The methodology presented expresses failure times as a function of certain
variables. These variables are, in general, measures of a component's ability
to operate and changes in these variables are considered to be symptoms of fail-
ure. Modern interest in expressing failure rate as a function of explanatory
variables (as termed in regression analysis) was developed by D. Cox (1972), and
since then significant studies have been conducted in survival analyses. The
Cox formulation as adapted for component failure aaalysis assumes that the com-
ponent failure rate at any time will be the basic failure rate, if the variables
being measured on the component remain at their normal operating value. How-
ever, the fluctuations on these variables will influence the failure rate
through a linear function multiplicative of the basic failure rate. This abil-
ity to express the failure rate as a function of measurable variables in a com-
ponent will allow one to calculate the higher failure rate expected to be ex-
hibited by the component before a failure. The uce of the Cox model in develop-

ing such a model is presented in Chapter 2.

The components for which failure proneness is analyzed are standby safety
system components inspected or tested at regular intervals. The explanatory
variables or the symptoms of failures are expected to be observed or measured at
each of the tests. The requirement imposed by such an approach is to collect
the explanatory variables every time the component is tested. Currently, such a
data base is not available but can be developed from plant records. Another
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alternative at this stage of model development is to simulate data to test the
applicability of such-an approach. Chapter 3 presents a simulation procedure
for analyzing component failures with symptomatic emitter information.

For this approach to be practical and implementable, the failure proba-
bility of the component calculated, based on the explanatory variables should
reliably change when the component is truly changing for a degraded situation
signaling an impending failure and should not deviate significantly if the com-
ponent performance has not changed. Chapter 4 presents a decision framework for
implementing a repair / replace policy based on the failure probability calculated
at each test. Obviously, the decision rule must be used as an alarm to decide
the repair necessary. The repair may be performed such that the explanatory
variables are brought back to the normal level. Besides forestal11ng an impend-
ing failure, this may serve another purpose. At any time during plant opera-
tion, the plants may maintain the list of important components that are exhibit-
ing higher probability of failures. In case of an accident, the operators can
monitor these components more closely to take corrective actions in case the '

component actually fails.

|

l

|

|
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2. USE OF PROPORTIONAL HAZARD MODELS AND COX-STYLE FITTING
IN DETECTING COMPONENT FAILURE POTENTIAL

In this section a brief overview is presented of proportional hazard models
and how they can be used to detect the failure potential of a component.

A component in a nuclear power plant is subject to failure at any time. ;

The failure of a standby component to perform its function during an accident
can have serious consequences, and accordingly the standby components are tested
at regular intervals to detect any failures that may have occurred. However, in

many instarices, a component emits symptoms of failures that can be detected dur-
ing the test before being in a f ailed state. The objective here is to use these

symptoms to prevent an outright failure of the component. The proportional

hazard model is presented for incorporating the failure symptoms into the de-
scription of failure rates.

2.1 Problem Setting

In performing surveillance testing on risk important standby components,
the operability is assured through observation of component functional param-
eters. The observations can be divided into two cateapries:

| a. direct observations are made periodically on operability; e.g., a com-

ponent is inspected and tested once a month for operability, and

b. associated measurements of system environmental or related parameters
are also made at the same intervals or else possibly evidence their
changes on instrument readings or otherwise indirectly.

| The idea of (a) is to verify that the system is currently capable of per-
forming properly, while concomitant measures (b) may be organized to provide
warning that the desirably low failure probability associated with (a) is about
to change unless something is done.

Let us consider the monthly surveillance testing of an emergency core cool-

| ing pump. The pump is tested for its operability and the direct observation on
'

operability will be, for example, the flow rate developed by the pump and the
time required to develop the required flow rate. These measurements fall under
(a) and can be considered direct observations. If actual values of these para-
meters are maintained, they can also be used as indicators of future perf or-
mance. In addition to these observations, one can also measure other related
parametera. Examples of such parameters are the vibration of the pump, the pump
motor current, any leakage, or accumulation of any particles, corrosion, etc.
These measurements fall under Category (b) and can provide indication of aa
impending failure when analyzed adequately.

- ____



___

2-2

Therefore, at each surveillance testing, the following inf ormation is
obtained:

a. the actual capability of the item, i.e., whether it can indeed carry
ou t its mission, if required, and

b. the values or states of certain indicators that can influence the
operability of the component. In this report, these indicators are

termed symptomatic indicators.

The symptomatic indicators provide symptoms of an impending f ailure and,
from a component failure point of view, are those variables that influence the
f ailure rate of a component. In proportional hazard models such parameters are
termed covariates or explanatory variab'les. In this report, the terms sympto-
matic emitters, covariates, and explanatory variables are cynonymous and are
used interchangeably.

The objective of using the proportional hazard model incorporating the
symptomatic emitter inf ormation is primarily to develop a repair / replacement
policy so that an actual f ailure may be avoided. In achieving that overall
goal, the additional information necessary to make the judgment can be sum-
marized as follows:

Suitable measurements of symptomatic emitters, which may be combina-a.
tions of direct measurements and associated measurements, should be
identified. These symptomatic emitters can then be systematically
combined to provide a numerical assessment of the failure proneness of
the system during a subsequent period. The intent here is to find a
set of explanatory variables or symptomatic emitters that will, in
some combination, effectively and reliably represent the index of
failure proneness when the component is truly changing for the worse
but will not change much when all is as it should be.

b. Increase in the f ailure probability of the component should be mea-
sured incorporating the symptomatic emitter information to develop the
repair / replace policy of the component. Expectedly, there will be
fluctuations in the symptomatic emitter information and these will in-
duce some change in any formula-calculated probability of f ailure or
s!irvival from period to period even though nothing has really changed.
Prer,umably, a considerable increase in the f ailure probability signals
intervention. A decision framework for component repair / replace
policy using changes in f ailure probability is presented in Chapter 4.

2.2 The proportional Hazards (Cox) Model for Symptoms of Failure

In an important paper, David Cox (1972) systematically studied a regression
model for incorporating explanatory variables into the description of fai' lure
rates. His particular representation for the f ailure rate (in continuous time)
was

A(t ;z) = A (t)exp(z 8) (2.1) ),
9

. . _ _ _ _ _ _ .
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A (t ; z_)d t is the probability of failure of an item that has lived for time t ad
exhibits the characteristics described by zk, the kth component of the explan-
atory variable profile or vector z = (zi,z2 * * * * Zke * * * Zp)* A (t) is ano
arbitrary non-negative function of t representing the unspecified baseline
hazard function. The unknown parameters S describe the influence of each such
variable upon the instantaneous hazard, A(t;z); furthermore, Cox states that a

given, known function of t can be incorporated into the explanatory variables, ,

e.g., z2 = tz. Other indicators which remain fixed throughout the analysis, :

!possibly identifying manufacturer or operating company or location in the case
of equipment (nuclear) reliability, can be used.

Conditional Likelihood Estimates of Regression Coefficients

A unique contribution of the Cox (1972) paper was to estimate .the regres-
sion parameters , B_, from failure time data taken in continuous or discrete sam-
pling time without assuming a specific form for l (t). Here is the basico
idea. -Suppose there are J items of age t susceptible to failure, and a particu-
lar one fails; mark his/her distinguishing explanatory z-vector by a ptime (z').
Now the probability that one of the J fails in (t, t+dt) is assuming independ-
ence of their failures and the mcdel (2.1),

[ A (t)exp(~z(L)S)dt (2.2).
~

A c_J_

Here we have used J_ to denote the set, the J items susceptible at t. The proba-
bility that the item with description z_' actually failed is

A (t)exp(z' 8)dt (2.3).
g

Hence the conditional probability that the item with z_' actually failed is the
ratio of (2.3) to (2.2) or

exp(z'S)dt
(2.4),{ exp(z(t)6

EcJ(t)

since the l (t)-term factors out. This term is now viewed as a contributiono

to a likelihood for 6_. The methodology discussed by Cox addresses the general
situation in which any known number of items are at risk at the time, t(i), of
the ich failure to occur. In his notation, and ours, at time (t(i), z,' =

z_( 1 ) , the description of the item actually failing at t(i). Consequently,, the
conditional likelihood becomes

k exp(z(i)S)
L(6) " II (2.5)l .I exp(z(g)gi=1

t c,J_( t ( 1 ) )

One can next take logarithms and proceed to get reasonable estimates, at least
asymptotically, i.e., after many failures have occurred.
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2.3 Application of the Cox Model: Discrete Time Adaptation Using the Logistic
Representation

Suppose a system is examined at intervals T time urits apart; let T = 1 for
convenience for the moment. Think of the explanatory profile z_(t) observed at

3

t |as influencing the probability of failure in the interval t: namely the times
from (t, t+1). In reliability applications zt ,... ,z may be fixed factors i

j
r

identifying the manufacturer, location of the system, etc., while the remaining
factors vary with time: z +1(t), z +2(t),...zp(t) are quantities thatr rchange from period to period; for instance current levels of vibration, oil
leakage, and temperature are candidates to explain failure propensity for pumps.

Because of the discrete time sampling, it is convenient, even necessary, to
consider the logistic model for p(t,z_(t)), the probability of failure during in-
terval t, given the explanatory variable values relevant to that interval, i.e.,
z_( t ) . That is, represent model odds for a failure at t as follows:

p(t,z) p (t)

(1p(t -z))=exp(Z_1)* l p (t) ' *

o

or, calling the log-odds the logit, as is usual,

logit p(t,z) = z S_ + Y (t) (2.7).

Note that if p(t,z) = A(t,z)dt and po(t)=A dt, then as dt+0 the discreteo
time model and the continuous time model approach each other. The above implies
that the probability of failure is:

z {+Y (t)g
"

p(t,z) =
zS~ ~M ( t ) (2.8)

1+e

The primary objective is to estimate the coefficients i at this stage.

Conditional Likelihood Estimates; Single Con.ponent

The Cox method for estimating i appears to be best dapted to situations
for which many nearly identical units journey through time experiencing about
the same initial and environmental conditions. Such may not of ten be a naturalsituation in reliability applications.

Under some circumstances it may be necessary to estimate { using Cox condi-
tional likelihood arguments when a single system is observed. To do so, think
of the successive times to failure for the systems in question as representing
independent and identically distributed sample histories or realizations of a
group of identical systems, all started simultaneously; this is, of course, im-
mediately questionable if any kind of reliability growth occurs between succes-
sive failures. Nevertheless, proceed as follows by analogy to the earlier argu-
ments. Suppose first that ties are unlikely, and can be ignored. Then if a

u_ _ _ _ - - _ - - - - - - - - - - - - - - - - - - - - I
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(the ith) failure occurs in time (actually, age) interval (ti,ti+1) the con-
ditional probability that it is in the unit observed that has description z' is

proportional to

exp(z'S)
-- (2.9)

'

{ exp(z(L)S) -

icT(t)

which again climinates the time-dependent factor Yo(t) in (2.8). If ties are

present, i.e., if the system has failed two or more times in the interval
(ti,ti-1), a form similar to (2.9) can be derived by thinking of the multi-
nomial sampling features of the situation; details omitted for now.

Conditional Likelihood Estimates; Several Component Copies

Suppose there are a number of copies of the same component design in use in
S ,S ** Sn denotes these componentvarious locations. In other words, i 2

copies, and their failure rates are influenced by variables z_1,z2, **.Zi. **

z. The discrete time-sample proportional hazards model would attenpt to des-n
cribe failure probability for each copy by use of model (2.8):

explz 8) + Y (t)]
g

E ( 'b ~ l + exp[(z_ S_) + Y (t)] *
'j g

1.e., the same regression coefficients hold for all copies, meaning that the ex-

planatory variables zj exert the same leverage upon probability of failure for
each copy.

In order to explain or represent the extra variability in failure rate or
probability not explained by known explanatory variables z_, one can consider

using an empirical Bayes version of (2.8). For this, one assumes, for example,
that

exp[(gS_)+c j
(2.11)P( '*) " l + exp[(z 6) + c jj -

,

where cj is a realization of a random variable (or sample) from a distribu-
tion. The assumption that ej comes f rom a Normal distribution with mean p and

2
variance 0 ganbeentertained. The problem then is to use the data to 1) esti-
mate p and o , and 2) to use the estimates to improve the estimate of the indi-

vidual component. This can possibly be checked if enough data are available --
then the Cox conditional likelihood method can be applied to estimate 8_. The
idea is to use (2.5) as the likelihood, and to maximize it.

The above discussion suggests that the semi-nonparametric feature of the
Cox conditional likelihood fitting procedure may not be necessary for current
purposes, e.g., to predict what may occur during the next time (sampling)

- _ _ - _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ _ _ _ _ _
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period, one month, for example. Rather, one might better simply assume A (t)o=A a constant, to be incorporated into z_ B_ in (2.8), and that the logistico
model could then be fit into pj (t ,z) probabilities. Tine-dependent informa-
tion on the covariates can also be treated within this approach. Appendix A
provides a diecussion on the extended Cox model for time-dependent covariates !

following the approach of Prentice and Gloeckler (1978).

pv
!

i
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3. SIMULATION OF FAILURES AND RELATED SYMPTOMATIC EMITTERS

is recognized that data required to analyze the effectiveness of a Cox-It

type proportional hazard model are not easily available. At the same time, be- >

fore one gets into such data collection, which may be expensive, the efficacy of '

such an approach should be carefully studied to determine the conditions or sit-
uations under which such an approach will produce meaningful practical results.
Simulated data can be very effective in such circumstances, and in this section j

the process of simulating failures along with symptomatic emitter is presented. I

3.1 The Idea of Symptomatic Emitters and Some Notation

A component or subsystem is inspected at regular intervals, T, and its
state reccrded. The state is taken to be X +1 at the time of the (n+1)th in-p

spection following a failure, and

n+1 *1 " **1
"- ''**I'2 " '*2 "~ ''**I*1 " '*1 "~ ****

X +1" 3
n

0 if the item is up, i.e., no failure at (n+1)
'n+1" I if the item is down, i.e., has failed at (n+1),

(i=1,2,....p)

while zf(n) is the strength of the ith symptomatic emitter (S.E.) at the time
of the nth inspection after the last failure event. The idea of an S.E. is that

is a physical evidence of change in failure propensity of the item; and itsit
numerical value or strength is taken to be 1) an indicator function of the event

such a physical change has occurred, or 2) a measurement of the magnitudethat
of such a change, or a suitable transformation thereof.

Example: A symptomatic emitter of physical change in a pump is considered
to be an oil leak, so the sequence of events and corresponding values might be

n: 1 2 3 4 5 6 7

011 leak /No oil leak : N N N N N Y Y

z(n): 0 0 0 0 0 1 1

indicating no oil leak (N) at the first 5 inspections, strengths (indicators)
thus being 0, and finally a noticeable oil leak at n=6 (Y), with strength now
z6-1, and again at n=7, so z7-1, etc.

A more refined description might well include the magnitude of the oil leak
(for example, volume in a drip pan), or even color or chemical composition of
the oil leaking. In this case zn is potentially a real number.

Of course, the notion behind recording S.E. strengths is that an unusual or
abnormal strength signals an important change in the hazard rate of the item,
and hence can be used as information upon which to base removal or repair. It

stands to reason that pump oil leaks, like considerable increase in human blood

.__ ___ _______ ______ ______ __ ____
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pressure, "should" signify a much increased hazard rate or death rate unless
there is intervention. But a quantitative study is necessary 1) to derive
appropriate rules for combining the various possible emitter values to provide a
sensitive signal of impending failure, and then 2) to derive decision aiding

|

,

rules for removel or replacement in advance of actual failure.
|
I3.2 The Simplest Emitter Behavior; Step-Function Change of One Emitter's Rate

In order to illustrate the ideas described above consider the following
illustrative case.

Situation 1: A single emitter signals in a exponentially distributed time
i

W (W explaj) preceding a shift of failure rate from Ao to A (>Ao). The1
attength of the emitter is taken to be z.

For example, the item survives to n with conditional probability

-A T -nA T
PfI=U W>n}=(e )" = e (3.1).

Otherwise and unconditionally, it survives to n with probability

-A T ~ n-1 -A T -A T
P{I=0}=(e e " )" + { (e )"v(e I)"~"'~I (3.2),

n'=0

where

T -A * ~A (T-x) -ax
P[TransitionfromA toA}=v =fe O l

e e adxg

o

-A T -(A
0

"A-A a [e ) (3.3)-c .

Summing out the geometric series gives the formula

-(A +a)Tn -AT(n-1)
~

~ l "
o

P{I=0}=e =P{T>n} (3.4)+v en _( _x ) ,s
1-e

where Ts is the survival time of the component, assuming no usage of the emit-
ter's signals.

Now introduce the notiun of the emitter's signal. Suppose that when the
rate Ao is in f(rce, z1(n)=zo, while when Ao switches to A (A >Ao) then1 1z1(n)=zo+A, A>0. For the moment assume that as soon as a Ao->A, shift occurs,

,it is detectea. This is relatively simplistic, but it can be handled most |

|

l

-
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easily. For example, z switches from 0 to 1 as soon as a noticeabic oil leak
becomes evident. This corresponds to the Cox-type model of survival through an
faspection cycle of

[ A W -A MZ)o i o (3.5)

Remember that the system state is only visible or detectable g inspection
times, while the switch occurs between two such times. Presumably action is

takcn the moment the oil leak is noticed, so we are interested in the probabili-
ty of detection before failure. In this case notice that

P{detectionatendofperiodofrateswitch,beforefailure} equals

-A T -(A + a)T
] (3.6)v, y _"1 ,[e -e .

o

3.3 Simulation of the Previous Model

Situation 1: In order to simulate the smitter signals, failures, and re-

placement or repair actions, follow this procedure:

Simulation Procedure for Situation 1
I

1. Specify An (basic rate), A1 (degraded rate), T (inspection interval,,
o (rate of emitter occurrence; a 1 is expected (average or mean) time
until Ao changes to A ).t

2. Obtain random number with exponential distribution and rate (A + 8):0

1
V= In(U ) (3.7).

g

o

U -Uniform (0,1), i.e., U1 is an ordinary random number. V is thet
time until either a failure occurs or the emitter signals.

3. Obtain the identification of V: Let U2 be an independent (of U )3

random number, and identify time V or time to

A

Failure if 0 i U2 < A + a; then V = V ( 3. 8a )
F

o
f

A

(3.8b)Emitter Signal if .,fU2 < 1; then V = VE
o

4. If a failure is identified under (3), then the component is down from

time

V until NT (3.9),p

|
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where

N = {n:(n-1)T 1 V < nT}

Vy denotes a time V identified or ending with a f ailure.

5. If an Emitter Signal is identified, obtain an exponentially distributed
number

H= fin (U ' *3

where U -Uniform (0,1) and independent of U , U . This is the time3 1 2
to failure, measured f rom the moment of emitter signal beginning.

| 6. Now, if
.

Vg + H < NT (3.11)

then the component is down (failed) from time V +H until NT. Here
,

E
VE stands for the time V when the latter is identified as an emitter
(see Step (3)). Note that at time NT, start again from (2), following
a repair.

i

7. If

VE + H > NT (3.12)

there is no failure. the emitter is assumed to be noted, and a repaired
unit is put into effect before a failure can occur.

,

'

In this case, start again with (2).

Comments:

a) The above setup can be completely analyzed by Markov chain methods, so
that one can, for instance, find the long-run expected time that the system is
down, or the time until some independent Poissonian initiating event occurs dur-
ing a down period. This can also be done by simulation.

b) For this simple setup there is just one explanatory variable, zt, and,
if no replacements are made until a failure actually occurs (Policy: replace-
ment at failure in force) then if n represents the number of inspections after i

the installation of a new component (equivalent to complete repair) we have

z (n) = 0 for nT < V (3.13)g

z,(n) = 1 for V I"E E *

|

- _ - _ - - _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _
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Thus we could see the following state combinations

1) gg = (I =0,z(n)=0) if either
g g

{(n+1)T<V}or{nT<V I "+ E
" "

E

2) 4,g - (I =1,z(n)=0) if
g g

l

{(nT<Vi(n+1)T}and{V *
E

3) g = (I =0,z(n)=1) ifg g

{(n-1)T<Vg < nd and hg + H > (nH M .

4) g = (I = 1, z (n) = 1) if

{(n-1)T<V " "" " " *

E E

One could presumably setup a discrimination procedure to show that knowledge of
z, e.g., that z1(n)=1, is a strong predictor that In+1=1. Of course, In"I

may already have occurred; if the failure rate A1 associated with time H is too
high then failure may occur too soon after the emitter signals to be useful.
The only countermeasure is to attempt to reduce T or improve the sensitivity of
the emitter.

Situation 2: In order to generalize the above model in a realistic way,

one can proceed to introduce other S.E. factors. Let ai be the rate of occur-
rence of S.E. 1(i=1,2,... P). There are p > 1 emitters, all acting independent-
ly; the ith emitter signals a rate increase of 61 at an exponentially distrib-
uted time W (W ~exploi]). Thus, if no emitters have occurred the rate1 i

is A +6 ; if emitters 3is A ; if emitter 3 only has occurred then the rate o 3o
and 5 have occurred, the rate is A +6 +0 , etc.o 3 5

Let

l if the ith S.E. has occurred
g) ,{0 otherwise

1

Then the Cox proportional hazard model for survival to t is

-[A+ 6z (t)]t
"

P{T,>t}=e
,

! where Ts is the time to failure of the component.

|

;

_ ______________________
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In order to conveniently simulate this situation assume that 6 =6, so1that each emitter's appearance signals the same increase in the hazard. Also, 4

let at=a, so the rate of emitter occurrence is the same. Such assumptions can
be relaxed. The present simulation procedure depends on its relative simplicity
upon the above assumptions.

Simulation Procedures for Situation 2

1. Specify A , 6, p (the number of emitters), T,o a.

2. Obtain a random number with exponential distribution having rate
A +pa:o

V(1) = In(U )pa 3

U1 is an ordinary random number. I

3. Obtain the identification of V:
A

Failure if 0 1 U33 < ; then V(1) = V (1)
7

A

Emitter Signal if fU i 1; then V(1) = V (
E

Utt is an independent (of U ) random number.I

4. If a failure is identified under (3), then the component is down from

1 = {n:(n-1)T i V(1) < nT}V (l) until N1 , where: NF

(Note: The component is down for time {NT-V(l)}outofatotal !i F
exposure time of N T, presuming, as seems reasonable, that the process1

begins again after repair.)

5. If an Emitter S_ignal is identified, so z1(n)=1 for n > N , 22(n) = 0,1 )etc., obtain an exponentially distributed random number !

H(1) = z 3 In (U12) = In (Ug) ,

o I

where A -Ao+6, is the new failure rate, and Ul 2 is a random number,
(independent of U , U11).1

I

:1

_ . _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ . -



-__ _ _ _ _ _ _ _ _ - _ _ _ -

3-7

6. If

V (1) + H(1) f N T ,

E

then the component is down (failed or unavailable) from time

V (1) + H(1) until N T .

E

The process starts over (after a repair) at stage (2).
|

7. Otherwise, if

V (l) + M 1) > N Tg l

there is no failure, the emitter presence is noted, and the process
continues as follows.

8. Obtain an exponential random number

V(2) = in (U ) '
2

where A =Ao+6., and U2 is an independent random number.t

9. Obtain the identification of V(2):

A

Failure if 0 1 U21 < -1 M ; then V(2) = V (2)p

i
x

1 1; then V(2) = V (2)Emitter Signal if giU21 E

where U21 is an independent random number.

10. If a f ailure is identified, above (9), then the system is down f rom

V (2) until N T 'g 2

where

2 = {n:(n-1)T 1 V (1) + V(2) < nT}{
N E

11. If an Emitter Signal is identified

H(2) = In (U22)

where A *A0+26, and U22 is an independent random tiumber.2

..
-

.. .. . .. .. _. .. .
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12. If

V (l) + V (2) + H(2) f Ng g 2
'

then the component is down (failed) from time

V (l) + V (2) + H(2) untH Ng g 2
*

The process starts over (after repair) at stage (2).

13. Otherwise, if

V (1) + V (2) + H(2) > N,T
E E

there is no failure, the second emitter's presence is noted (z2(U)"I
for n > N ) and the process continues, now with p-2 emitters to signal,2 !

and with failure rate A "A +26.2 0

In general, suppose i emitters have signalled, and failure has not
occurred. Then the next simulation step proceeds as follows:

14. Obtain an exponential random number

V(1+1) =
_ in (U,) ,

where A =A +' *
0

15. Obtain the identification of V(1+1):

A

Failure if 0 f U ,y,g < ; V(1+1) = v (1+1)
'

_, p

A
i

Emitter Signal if fU q y f 1; V(1+1) = V ('+ *
E

116. If a failure is identified, above (9), then the system is down from '

V (1+1) until N T ,p

where

N +1 = {n:(n-1)T f V (I) + V (2) + .. . + V(1+1) < nT} .i E E

17. If an Emitter Signal is identified, obtain
,

H(1+1) = In (U ) ,gg

where A +g Ai+6t
<
1

-_ -- - i
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18. If

V (I) + Y (2) +. . .V (i+1) + H(i+1) < N ,gT ,

E E E 1

then the component is down (failed) from

V (1) + V (2) +...V (1+1) + H(1+1) until N ,yT.
E E E g

and the process starts over from stage (2).

19. Otherwise, if
i

V (I) * * * **Y (i+1) + H(i+1) > N ,yT
E E g

and the process continues by advancing i+1 to i+2 and starting at stage
Also, zi(n)=z 2(D)" * * * " Zi+1(n)=1, other emitter values = 0 for14.

nlN +1'i

Comments:

The above process, involving p(>1) emitters is relatively simple. Various
embellishments are possible: for instance, the observed emitter value may be
obtained by adding a normally distributed error value to zi(n); one could let22, varies; for large 0 it willthe mean be zero, while the variance of error, 0
be' impossible to tell the true emitter rate state, and hence the prevailing
failure rate.

3.4 Discussion
.

The setup described permits generation of synthetic data to be analyzed by
survival analysis with covariates or explanatory variable techniques, e.g. , by
use of the Cox analysis of a proportional hazards model. Of course it would not
be assumed in such a data analysis that p is known, and the variables might well
not be taken to be simple indicators. But such an analysis might well help pro-
vide an indication of a much increased failure rate.

It remains to specify a good, or possible optimum, decision rule to follow
concerning actions to be taken, given the values of z i, z 2,. . . ,z8 (where g=p
if the true mechanism is as described). That is, if

( [i i<3z

no action is necessary, but if

[i 13z
1

{ one might repair or replace in anticipation of f ailure, since f ailure is quite
} likely. Such a pre-f ailure repair is no doubt expensive both in time and money,

but it may help to forestall a failure between inspection periods.

!

- - __ .. . .

_
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4. DECISION FRAMEWORK FOR SYSTEM MAINTENANCE-REPAIR CONTROL
WITH " SYMPTOMATIC EMITTER" INFORMATION

In the previous sections a methodology is presented for using certain symp-
toms, such as oil leaks, vibrations, temperature rises, etc., that precede com-
ponent failures. These symptoms, when interpreted by appropriate statistical
methods, can be used to determine the appropriate action - remedial maintenance
or expensive repair or replacement, to forestall an impending failure. The
symptomatic emitter information is used by the statistical methodology to obtain
a failure rate, representing the degraded state based on the emitter informa-
tion. The important issue that remains is whether this information can be ef-
f ectively used to define a maintenance / repair policy to reduce the component un-
availability by reducing the outright failure frequency. In this section, a

quantitative formulation of the problem of operationally evaluating a
maintenance-repair based on existence of symptomatic emitters is presented.

4.1 A Three-State System Model

Consider a system or component that can be in one of three states at any
time t:

S(t) = 0: the system is up (operative) at time t, and possesses a fail-*

ure rate of Ao, and transfer rate v ; transfer refers to ao

change to state 1 or state 2.

S(t) = 1: the system is up at time t, emits symptoms, and posseses a*

failure rate At > Ao.

S(t) = 2: the system is down (inoperative) at t.*

Note that the system can cl.ange from State O to either State 2 (failure) or
State 1 (symptomatic).

The system is observed at regular intervals, T. In practice, the interval

T may be one month. Let Sn = S(nT) denote the true state of the system at the
ath inspection or observation.

A realistic feature of the inspection process is that it is error-prone:

if the system is in State 1, there is a probability d j that it is estimatedi

to be in State j#1. Call {di Ideally, of
ii=1 and d j=0, i?j,j) the diagnosis probabilities.

i
but this sharpness cannot always be achieved:course, d

the extent to which sharpness is achieved will depend upon the strength and
clarity of the indicetion that the system is particularly, in State 1, when
symptomatic emitter scores are expected to be noticeably different from their
values when the system is in State 0. Presumably d22=1, since it should be
quite evident that the component is actually inoperative. Multivariate statis-
tical analysis helps to furnish rules that imply values of {d j}. Details ofi

a completely statistical approach can be developed.

- - _ _ _ . _ _
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4.1.1 A Decision Rule

If the system is estimated to be in State j at inspection time, then action
is to be taken to transfer the state of the system to State 0, associated with
the lowest failure rate A . Any such action requires (" costs") time, even ifg

the action is unnecessary. Suppose that during the action time the system is as
totally unavailable as if it had failed. It follows that if knowledge of the
actual state is error-prone, then such unavailability is sometimes incurred un-
necessarily. Of course economic cost will also be associated with such trans-
fers, both directly (cost of replacements or parts) and indirectly (resources
used to examine and repair one system are diverted from another).

Here are some specific assumptions concerning the operation of such a deci-
sion rule. Let j be the observed state at the time of an inspection. Whatever
the j-value, the result of the corresponding action, Aj, is to place the sys-
tem in actual state O. Let Lj denote the time lost, or unavailability time
associated with Aj. Then,

j Aj Lj

0 Do nothing 0
1 Maintain Li
2 Repair / replace L2

It may be reasonable to assume 0<L <L <T. Also let Li and L2 be taken to bei 2
deterministic, not random. The action taken at the beginning of a period be-
tween inspections governs the exposure time of the item to unavailability. If a
period begins with a maintenance, then there is a time equal to T-Li until the
next inspection, during some part of which the system is subject to failure and
unavailability. Of course the system is totally unavailable during L . Thet
same situation holds when a period begins with repair / replacement, but now Li is
replaced by L , and the system is unavailable for at2 least T-L , perhaps reason-2ably at least equal to T-L .t

The use of the terms " maintain" and " repair / replace" are illustrative and
not to be taken too literally. Also, there may possibly be three or mcre
actions to choose from in practice.

4.2 Markov Chain Analysis of Decision Rules

The long-run availability of the system depends upon the failure and t rans-
fer rate A and A , upon inspection interval T, and upon the diagnosticV0e O, i
probabilities {d j} ; the latter will of ten implicitly depend upon the rela-i

tionship of Ao and A . If At is much greater than Aq, then the d j-values1 ishould become quite sha Note, however, that if A T is very higfi, so that thei
survival probability e is very small, then knowledge that the system
is in the emission state (State 1) can seldom be useful, for the item fails soon
after the change is made from " health" (State 0) to " sickness" (State 1), and
inspection cannot detect the new state in a time that is useful. The onlyremedy is to decrease the inspection interval.
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In what follows, various decision rules will be evaluated in terms of the
Markov chain {Sn, n=1,2,...}, where Sn=S(nT+), i.e., the state of the unit

just following an inspection. The use of the Markov model has been studied in
deciding the maintenance policies (Pau, 1975). Of particular use will be the

long-run properties of such chains, i.e., their behavior as n+=. Let these be
denoted by {wi(R), i=1,2,3}, where R denotes the decision rule that is in
effect; then

3

f(R)P (R) , j = 1,2,3, (4.1)x (R) = [ u ,

i=1

or, in matrix notation, w(R) being a row-vector,

w(R) = w(R)P(R) (4.2)
,

where the one-step matrix P(R) is implied by the decision rule R; examples are
presented shortly. Of course

3

[ w (R) = 1 .

j=1

Having Wy allows evaluation of the long-run expected point availability,
i.e., the expected fraction of time during which the unit is operative and can
respond to an instantaneous demand for response. There follow some useful
building-block expressions for evaluating the Markov chains and the conditional
expectations of availability over an inspection cycle.

4.3 Markov-Chain Probability Components

Markov chain methods can be used to analyze the implications of system con-
trol policies that depend upon knowledge of system states. In order to write
down the Markov transition probabilities economically, introduce the following
auxiliary conditional probabilities,

i = 0,1,2 ; j = 0,1,2; T>0} (4.3){ag (T),

where

(4.4a)
00(T ) = ca

T -(A ~

"O 1* ~("O O (4.4b)0 0 1
]("01(T)~]# d ~*"O ** v +A -A

*a
O 0 0 1

. - - - - __
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T -(A ~0 0

02(*) " O!*
0 0 1a

0**O #dx[1-e ]*
0

(4.4c)
-(A0 0 0 1* 0 0

[e= l-e )
- -cy 4 ,x

0 0 1

and

33(T) = c
a

(4.5a)

l2(T ) = l- ea
(4.5b)

These can be regarded as describing the transition probabilities in a pure death
process (S(t;d)} that passes through the same states as described, but never
experiences inspection or repair. Explanations are simple: for instance ag1(T)simply expresses the probability of a transfer from event rate Ao to Ag without
failure, while a02(T) refers to the probability of transition to the failed
state, either directly or in the intermediate, symptomatic emitter state.

Rule 0: Repair Only Upon Failure (State 2)

Suppose inspection is only capable of detecting failure (State 2), or non-
failure (States 0 or 1). In particular, no action is taken if the unit is inState 1. Here is the matrix of one-step Markov transition probabilities for the
Sn-process; denote this by P(R) = (Pij(R)). We have

if 0 1 2
-

0 a00(T) a01(T) a02(T)
._

,P_(0) = 1 0 all(T) al2(T) (4.6)2 aco(T-L ) ag1(T-L ) a02(T-L )2 2 2

An explanation of the P j entries is simply that if the system is seen to have2

failed (State 2) at the nth inspection, then repair occurs for an interval L
thereafter, after which the unit is returned to perfect condition (State 0), and2

the process acts like a pure death process until the time of the next inspec-tion. The Pgj entries reflect the fact that the symptomatic e'ilssion is
occurring (State 1) is unrecognized--unintentionally or intentionally.

Now the use of (4.6) in connection with either (4.1) or (4.2) yields
sj(0), which describes the situation prevailing at the start of an ine,pectioninterval in the long run. In order to obtain the long-run unavailability we
first calculate the expected time down during an interval, conditional upon
starting in State j. For convenience, define

_ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ . - _ _ _ _ _ _ - - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - _ _ _ _ _ _ _ _ _. _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ -
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E[Fractionoftimedownduringinterval System
in State j at the beginning of intervulj

= fj(T;R) .

Clearly, the above fraction depends upon the precise decision rrie fol-
lowed: For R=0 we see that

-y(A +vT -x(A +v ) T x
0

f (T;0) = [f(T-x)e Adx+/(T-x)(Ieg n -

0 0 o

-A (x-y)
g ,

*v dye )Adxj
g

AT AT v (A -A )T AT
0

= _ y
0+"0 01 6

~ ' *+ ~ +
0

and

-A T
g +A T-1-xA e=

I g
f (T;0) = [(T-x)e A dx = AT (4.8),

g AT I
0 1

where the approximations are effective if A T becomes small. Finally,
i

f (T;0) = [L2+(T-L)f -b ;0H M.O
2 2 0 2

for if the system is initially down, then it is subsequently down for repair for
starts in State 0; (T-L )f (T-L ;0) is recognized as thetime L , after which it 2 0 22

expected downtime for the remainder of the period.

In order to obtain the unconditional expected fraction of downtime, i.e.,

the desired long-run unavailability, simply evaluate

2

f(T;0) = [ w (0)f (T;0) (4.10).

j=0

Explicit formulas can be written down, but they are complicated and uninforma-
tive; numerical evaluations are simple and useful, and a small computer program

will furnish them. Note that since Rule 0 dictates action only upon failure,
the diagnosis probabilities play no roir.

I

_ _ _ _ _ _ _ _ _ _
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Turn next to a consideration of

Rule 1: Maintain When Symptoms are Emitted (State 1); Repair Upon Failure
(State 2),

By way of contrast to Rule 0, suppose that it is possible to ascertain sys-
tem state perfectly, and the rule is to maintain the system as soon as it is
found to be in State 1, i.e., to be emitting symptoms. In this case the system
may, sometimes at least, be returned to State 0 before f ailure at the cost of
incurring L , rather than L >0, units of downtime.1 2

First, evaluate the transition probabilities, as before.

Q 0 1 2

0 ago(T) aol(T) a02(T)
Pjl) = 1 a00(T-L ) ant (T-L ) al2(T-L ) (4.11) |1 1 1

2 ago(T-L ) ao1(T-L ) a02(T-L )2 2 2
_ _

One now combines the above transition probabilities (4.9) with (4.1) or (4.2) to

find the long-run probability distribution (Wj(1)) to find the long-run un-
availability. The conditional unavailabilities are expressed in terms of (4.7),
(4.8), and (4.9):

f (T;l) - f (T;0) (4.12a)g 0

f (T;l) = (1 3+(T-L)f ~ 1;0)] (4.12b)3 3 0

f (Til) " ['2+(T~'2)f(T~'2;0)] (4.12c)2 0

Once again the long-run availability is evaluated as:

2

f(T;l) = [ w (1)f (T;l) (4.13)
j=0

It is now possible to compare f(T;l) given by (4.13) to f(T;0) given by
(4.10):

If f(T;l) < f(T;0), there is potential benefit from utilizing symptoma-*

tic emitter information, i.e., from information that the component is
actually in State (1), a pre-f ailure state from which f ailures are like-
ly to occur.

If f(T;l) > f(T;0) there is no use in attempting to utilize symptomatic*

emitter information, unless conditions can be changed, e.g., unless L ,i
the maintenance time, can be decreased enough to make f(T;l) smaller i

than f(T;0). 1

- - _ _ - _ _ _ _ - _ _ - _ _ - _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ .__ __ _ __
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Note that the above is an extreme assessment: it pretends that the diagno-

sis probabilities are all indefinitely sharp, in particular d11 = 1. A more

realistic assessment is given by

Rule 2: Maintain When the System is Estimated to be in the Symptomatic
Emission State (State 1); Repair Upon Perceived Failure (State 2).

If statistical methods, e.g., multivariate analyses, are used to establish
that the componen'. is in the Symptomatic Emission State (State 1), then it is to -

be anticipated that errors will occur. The rates of these errors, given the

actual states, are summarize by the diagnosis probabilities:

d j = P(System Estimated in State j System Actually in State i}
i

Cf particular importance are doj and d j, for it seems probable that if thei
item is in State 2 (Failed), this will often be evident. Misdiagnosis can lead
to loss of time while unnecessary preventive maintenance is carried out (dO1
"high), or nissed opportunity to forestall a failure (d o "high"); in eitheri

case unavailability may well be substantially increased.

Evaluation can again be carried out in terms of an appropriate Markov
'

chain. Here are one-step transition probabilities for such a chain.

For ease of writing the one-step transitions are arranged in a table.

P00(2) = dooaco(T) + dotago(T-L ) + dO2a00(T-L )1 2

pol (2) = dO0a01(T) + dola01(T-L ) + dO2aol(T-L )1 2

p02(2) = dO0a02(T) + dola02(T-L ) + dO2a02(T-L )1 2
6

_____ ,

P10(2) = d o*0 + d11a00(T-L ) + d12a00(T-L )i 1 2

P11(2) = d oall(T) + d11aol(T-L ) + d12a02(T-L )i 1 2

p12(2) = d ga12(T) + d11a12(T-L ) + d12a02(T-L )i 1 2

_____

P20(2) = d20*0 + d21[m21alo(T-L )] + d22a00(T-L )1 2

P21(2) = d20*0 + d21[m21a11(T-L )] + d22ao1(T-L )1 2

P22 ( 2) = d20+1 + d21 [ 1-m21 ) + d22a02(T-L )2

Note that it has become desirable to introduce the new parameter m21 which is

m21 probability that if the maintenance action is taken when the item is=

failed, the system is returned to the pre-failure state (State 1).

>

_ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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This is, of course, a stopgap measure only; a conservative assumption would be
;

that m21=0 and certainly a great many other possibilities suggest themselves. l

The unique feature of the present model is that misperception of the system f
state induces possibly inappropriate action, which in turn influences the long-
run distribution of states, and hence long-run availability.

In order to evaluate the corresponding long-run availability it is only
necessary to utilize the conditional expected unavailabilities as given by
(4.12); the expected unavailability is then

2

f(T;2) = { w (2)f (T;1) .

3 3j=0

It is now sensible to compare Rules 0 and 2:

If f(T;2) < f(T;0), there is evidence of overall benefit from utilizing-

symptomatic emitter information, even though the latter is imperfect and
error-prone, as evidenced by dii<l. That is, there is evidence that a
" repair on warning" policy may be beneficial.

If f(T;2) > f(T;0) there appears to be no use in employing the currently |.

available symptomatic emitter information. If Either the sharpness of
the information were increased (dii made closer to unity), or the con-
sequences of maintenance made less severe (L1 shortened), or if mainte-
nance reduced A , then there is justification for following the policyi

based on symptomatic emitter evidence.

| '

|

|

|
|

|

|
|

|
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5. CONCLUSIONS AND RECOMMENDATIONS

In this report a methodology for detecting failure potential for standby
safety system components has been presented. The methodology uses proportional
hazard models and provides a framework for incorporating various measurables at
a surveillance test. The incorporation of these measurables with information on
the operability of the component in calculating the failure rate has a strong i

appeal. This allows a quantitative framework to develop a decision process, as -

presented in this report, for component repair / replacement policy in a more

structured manner rather than a policy based totally on engineering judgement.

The underlying assumption in the approach presented is that the inherent
failure rate of a component will show significant departure before a failure and i

such departures can be identified using the measurable parameters collected dur- ,

ing the test, called the symptomatic emitters. This assumption has not yet been
validated by actual data on component failures, but holds great promise in pre-
venting failure of risk important components in nuclear power plants.

The methodology discussed has found wide applications in medical survival
analysis over a number of years, typically in those cases where a large amount
of data was available. In the nuclear safety area, the number of failures ob-
served on a specific component is few, and the applicability of such a method- )ology has to be demonstrated for limited failure data.

Recognizing the potential utility of such an approach in analyzing the in-
formatica obtained in routine component testing, it is recommended that a study
be pursued on application both to simulated data and to actual data. In apply-
ing the methodology to actual data, a portion of the data should be kept back to
check if the analysis can, in reality, predict failures.

.
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APPENDIX A

INCORPORATION OF TIME DEPENDENT COVARIATES

In the main report, the proportional hazard model of D. Cox (1972). . .

*

A(t;z) = A (t)e ,

0

was analyzed, and the conditional likelihood approach of estimating S was pre-
sented. In this appendix, the consideration of time-dependent variables in
estimating S is discussed.

,

,

The question of time-dependent covariates or symptomatic emitters is impor-
! tant in analyzing the companent degradation in nuclear power plants. Typically

a component is being tested at a fixed test interval, and the value of the symp- |
tomatic emitter will vacy from one testing interval to another. The symptomatic
emitter information of interest to us is not only the value of the variable at
the interval it failed, but also the entire path of the variable.

The analysis of the component degradation and trends can be performed in-
corporating time-dependent covariates, and the Cox formulation of the propor-
tional hazard model takes the shape

Z(t)BA(t;Z_(t)) = A ~
* ^~

0

Here, Z,(t) signifies not only the value of the covariate at time t, but the en-
tire covariate path up to time t. That is, the failure rate depends upon the ;

historical value of the explanatory variable, i.e. values reading from the pre- '

sent value (t) to any previous time point, in this case, the time of first test-

ing. Mathematically speaking, Z(t) is really a functional.

Consider that a component is tested at regular intervals, and ti, t2 ***>-
tk,... denotes the times of test. At each of the test, one records the ex-
planatory variable vector z,and also observes any failure of the component. The
value of the explanatory variable or the symptomatic emitter is assumed to be
constant within a test interval, but can vary from one test interval to another.
If a demand occurs within a test interval and the component fails to perform its
required function, the failure is assumed to occur at the end of the interval.
Therefore, the actual failure time is known to the nearest test interval. The
explanatory variable vector for the nth component at the jth interval is

~ (* jl' *nj2'***' *njpZnj n

where the component is defined in terms of p variables considered to provide the
symptoms of failure.

_
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Let Z denote the entire covariate process, i.e., Zak denotes the covari-
ate process up to the kth interval for the nth component.

Z = {z u<k}.:
i-mk nu -

j

The failure titnes are grouped into intervals [0=to,ti), [tt,t2),..[tk-1,tk),
where Tk denote the interval [tk-1,tk), k = 1,2. . . .

l
Survivor Function '

Let T be the random variable representing the failure time, then the sur-
vivor function F(t) is the probability that T is at least as great as t and is
given by

F(t) = P(T > t), O < t < =
_

.

For the continuous random variable,

t

F(t)=exp(-fA(u)du) ,

o

where A(t) ic the hazard rate at T=t.

In the proportional hazard model, the survivor function of T given Z_ is
F(t;Z) and is given by

L

f(t)=exp(-[A(u)eXP(Z_1)du]=[F ^~'
'0 0

o

where Fo(t) den >tes the baseline survivor function for 2 = 0.

The hazard in the interval for a component with covariate z, is:

F(t _g;z_)-F(tg ; z_)g

P(T t[t _g , tg)/T > t _g) = F4 4g _

1-1 -

-
i

= 1 - exp[e * b f A(u)du) (A-3).

0
1-1

Using

i

= exp (- [ A(u)du) (A-4)a ,

0
1-1

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . __ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - _ _ _ _ -
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one obtains,

exp(Z_ 1)(t _g,tg)/T > t f_g)=1-a (A-5)P[T g _ g

Note that at is the conditional probability of an individual with covariate
z_ = 0 surviving the interval (tj_1, tj ) given that it has survived up to the
interval (tj-2, tj-1).
Maximum Likelihood Estimation of S for Time-Dependent Covariates

The probability of observing a failure time ti for a component with the
covariate path h i is:

P {T (tg ,t )/ g , T > t }_

= [ prob. that it fails in the interval T ] xi

[ prob. that it survived up to T _1]i

ial exp( 6)
=[1-a,exp( g 1)] H a (A-6)

j=1

where at is as defined earlier in Eq.(A-4) and denotes the conditional survi-
val probability in T1 for a component with zpi=0. Note that the hazard
function depends not only on the information about the covariates at the inter-
val it failed, but aise un its values at previous intervals.

Kalbfleisch and Prentice (1980) provides further discussion on the use of
time-dependent covariates. The reader is also referred to Prentice and
Gloeckler (1978) foi the maximum likelihood estimation process to develop compu-
tationally feasible estimations. At this point, one develops the likelihood
function to estimate af,..., ok, and S.

i
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probability based on the parameters measured at a routine surveillance test of
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ters. A decision framework for a repair / replacement policy based on such infor-
mation is presented.

The use of symptomatic emitter information in determining a component fail-
ure potential has gre A utility, particularly in highly reliable systems like
those in nuclear power plants. Further work on application of this methodology
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'is recommended. If actual data are not readily available, simulated data can be
developed using the simulation approach presented in this report.
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