Telephone (617) 872-8100 TWX 710-380-7619

YANKEE ATOMIC ELECTRIC COMPANY

1671 Worcester Road, Framingham, Massachusetts 01701

September 11, 1987 FYR 87-94

United States Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

References:

- (a) License No. DPR-3 (Docket No. 50-29)
- (b) NRC Bulletin No. 87-01: "Thinning of Pipe Walls in Nuclear Power Plants," dated July 9, 1987

Subject:

Response to USNRC Bulletin No. 87-01, "Thinning of Pipe Walls in Nuclear Power Plants"

Dear Sir:

Prior to issuance of NRC Bulletin No. 87-01, Yankee had developed and performed a Pipe Thinning Inspection Program during the Cycle 18 refueling outage. The results of the inspection program indicate that there appears to be no significant pipe wall thinning other than that attributable to normal wear in piping with single phase fluid. The Extraction Steam System was found to have, as expected, erosion due to two-phase flow. Findings were consistent with previous examination of piping with two-phase flow. As requested in 87-01, information concerning the inspection program and its results is provided in Attachment A.

Yankee's program has proven to be an effective and thorough inspection program for examining the thickness of the walls of piping for effects of erosion/corrosion. This program ensures Yankee that the functional capability of high energy piping systems within the plant is maintained by verifying that pipe wall thicknesses are within the allowable thickness values.

8709180392 870911 PDR ADOCK 05000029 Q PDR

We trust that you will find this submittal satisfactory; however, if you have any questions or require additional information, please contact us.

Very truly yours,

YANKEE ATOMIC ELECTRIC COMPANY

L. H. Heider

Vice President and Manager of Operations

GP/25.103

Attachment

cc: USNRC Region I

USNRC Resident Inspector, YNPS

COMMONWEALTH OF MASSACHUSETTS)

)ss

MIDDLESEX COUNTY

Then personally appeared before me, L. H. Heider, who, being duly sworn, did state that he is Vice President and Manager of Operations of Yankee Atomic Electric Company, that he is duly authorized to execute and file the foregoing document in the name and on the behalf of Yankee Atomic Electric Company and that the statements therein are true to the best of his knowledge and belief.

Robert H. Groce

My Commission Expires

Notary Public August 29, 1991

ATTACHMENT A

Information Requested for NRC Bulletin No. 87-01

Item No. 1.

Identify the codes or standards to which the piping was designed and fabricated.

Yankee Response

All piping, inspected under the Yankee Inspection Program, was designed, and fabricated per the 1955 issue of American Standard Code for Pressure Piping, ASA B31.1.

Item No. 2.

Describe the scope and extent of your programs for ensuring that pipe wall thicknesses are not reduced below the minimum allowable thickness. Include in the description the criteria that you have established for:

- a. Selecting points at which to make thickness measurements.
- b. Determining how frequently to make thickness measurements.
- c. Selecting the methods used to make thickness measurements.
- d. Making replacement/repair decisions.

Yankee Response

- a. The criteria utilized for selecting individual inspection locations was based on fluid velocity, fluid temperature, and piping geometry. Each location within a piping system was given a rating in regards to its erosion/corrosion (E/C) susceptibility, based on experience of other utilities, inspection results of Surry 2, and various single and two-phase flow test results. Piping geometry was selected as an overriding parameter and given a (two-times) heavier weight for selecting inspection locations.
- b. Although Yankee has performed random hand-held ultrasonic pipe wall thickness measurements since 1974, Yankee's most recent inspection during the Cycle 18 refueling constitutes an implementation of an inspection program which produces a detailed and accurate analysis of specific inspection locations which will serve as an overall base line condition of each system. Given the results of each of these inspections, a monitoring program will be established which requires future refueling Ultrasonic Testing (UT) inspections at locations that were found to experience the highest wall thinning. Data obtained from the next refueling inspection would then allow Yankee to establish a realistic wear rate which would then more accurately define frequency of monitoring for given locations.

- c. Yankee has selected and utilized UT from the pipe outside diameter as an inspection method. The UT program utilized is P-scan, which is an Automated Scanning and Data Acquisition System which was uniquely developed for E/C application. The P-Scan UT System, when supplemented with minimal manual scanning, provides 100% coverage of areas of inspection with computer enhanced data processing. Since this system provides 100% coverage, selection of specific areas for future monitoring has been significantly narrowed.
- d. The basis for development of an acceptance criteria is ANSI B31.1 1977 Edition, "Power Piping Code." The measured pipe ultrasonic wall readings resulted in the location being placed into one of the three basic categories: Accept, Evaluate, or Reject.

The initial screen criteria for a location being classified as Reject is the ANSI B31.G standard of the pipe wall being eroded to less than 20% of nominal wall.

Under the inspection program a Rejected component must be repaired or replaced. The evaluate category has several screening criteria. It is organized to account for wall loss in pipe through simple analytical methods. A component will be classified for erosion monitoring or repair after all analytical screening methods are exhausted.

In no case was an eroded inspection location allowed to violate the design code minimum wall thickness requirement.

Therefore, per the Yankee inspection program, any location which was found with a pipe wall area thinner than .2 ($T_{nominal}$) or code minimum wall required replacement or repair.

Item No. 3.

For liquid-phase systems, state specifically whether the following factors have been considered in establishing your criteria for selecting points at which to monitor piping thickness (Item 2a):

- a. Piping material (e.g., chromium content).
- b. Piping configuration (e.g., fittings less than ten pipe diameters apart).
- c. The pH of water in the system (e.g., pH less than ten).
- d. System temperature (e.g., between 190°F and 500°F).
- e. Fluid bulk velocity (e.g., greater than ten ft/sec).
- f. Oxygen content in the system (e.g., oxygen content less than 50 ppb).

Yankee Response

a. Piping material was considered as one of the criteria utilized for establishing inspection locations within the Yankee Inspection Program. Given that the Surry failure occurred in a carbon steel ASTM A-234

Grade B Piping System, and that even small percentages of chromium, copper, and Molybdenum will substantially improve the E/C resistance of carbon steels, Yankee's single-phase E/C Inspection Program included all secondary systems with carbon steel piping.

- b. Piping geometry was selected as an overriding parameter and given a (two-times) heavier weight than other plant parameters. This heavier weight was due to the review of various tests performed within the industry, information received from other utilities, and the belief that the piping configuration played a major role in establishing conditions which promoted E/C in the Surry failure.
- c. The pH level of water within the systems that were selected for E/C inspection was found to exist at levels approaching 9.2. While a pH level of 9.3 is desirable from a E/C standpoint, an upper limit of 9.2 has been implemented at Yankee due to the adverse effect the resultant ammonia has with copper within the secondary cycle. This operating pH level minimizes copper pickup and also guards against the E/C process. This pH level exists throughout the secondary plant and was not utilized as a criteria for selecting inspection locations but was evaluated extensively to ensure that the pH level did not adversely affect the piping systems at Yankee.
- d. Fluid temperature was utilized as a criteria for selection of inspection locations in the Yankee program. Given that test reports indicate that the E/C rate is strongly temperature dependent, location rating was computed utilizing temperature as one of three variables. A higher (more E/C susceptible) rating was placed on systems which operate between 245°F and 350°F.
- e. Fluid velocity calculations were performed for each piping size within the systems selected for E/C inspections at Yankee. A higher location rating was given for increased velocities over 5 ft/sec. Fluid velocities were found to exceed 20 ft/sec in selected areas of the plant and were subsequently given higher location ratings. Therefore, fluid velocity was utilized as a parameter in establishing criteria for selecting inspection locations.
- f. Although a high oxygen content is desirable for E/C concerns, dissolved oxygen within the feedwater downstream of the first stage feedwater heater results in copper oxides being transmitted to the steam generators which results in tube degradation. At Yankee, oxygen levels are maintained at approximately seven ppb within the condensate and main feedwater systems. Although the oxygen level maintained at the Yankee plant may contribute to a higher E/C wear rate, it has been recognized as a sound corrosion control policy for the secondary plant. Until a significant E/C phenomenon is identified, oxygen content will not be altered in the secondary plant. Therefore, oxygen content is not utilized in establishing inspection locations in the Yankee program at this time, but has been thoroughly evaluated for its operating effect on plant maintenance.

Item No. 4.

Chronologically list and summarize the results of all inspections that have been performed which were specifically conducted for the purpose of identifying pipe wall thinning whether or not pipe wall thinning was discovered, and any other inspections where pipe wall thinning was discovered even though that was not the purpose of that inspection.

- a. Briefly describe the inspection program and indicate whether it was specifically intended to measure wall thickness or whether wall thickness measurements were an incidental determination.
- b. Describe what piping was examined and how (e.g., describe the inspection instrument(s), test method, reference thickness, locations examined, and means for locating measurement point(s) in subsequent inspections).
- c. Report thickness measurement results and note those that were identified as unacceptable and why.
- d. Describe actions already taken or planned for piping that has been found to have a nonconforming wall thickness. If you have performed a failure analysis, include the results of that analysis. Indicate whether the actions involve repair or replacement, including any change of materials.

Yankee Response

In 1974, Yankee began inspecting secondary plant piping systems to specifically observe pipe wall thicknesses. The inspections consisted of a random selection process with a hand-held ultrasonic device. Plant records indicate that the first, second, and third point heater extraction steam lines and the main steam lines were the focus of the program which centered around two-phase E/C. Records also indicate that: 1) extraction steam piping had been replaced relatively routinely in the past with new carbon steel extraction steam lines, and 2) signs of E/C were found by visual examination in the turbine cross-under piping from the HP turbine to the moisture separator resulting in numerous weld repairs which were performed on both 42-inch cross-under pipes during past refueling outages. Maximum pressures in the 42-inch piping is 45 psig during full load operation.

In 1980, all but one straight length portion of the second-stage extraction steam piping was replaced due to E/C not only in the pipe fittings, but in the form of "striping" in straight runs of pipe. In 1985, Westinghouse, the turbine manufacturer, after previously weld repairing the cross-under piping, replaced the two 42-inch HP exhaust to moisture separator inlet pipes and a partial replacement of the second-point extraction piping off the turbine due to excessive two-phase E/C. During the 1987 refueling outage, the turbine cross-under piping from the moisture separator to the LP turbine was visually inspected and the only remaining original section of the second-stage extraction steam piping was replaced. As a result of the newly implemented Yankee Inspection Program, 60 feet of first stage extraction steam piping was replaced due to indications of pipe wall thinning.

In response to the December 9, 1986 accident at Surry Unit 2, Yankee, in April of 1987, developed a more in-depth inspection program to evaluate selected critical areas of plant piping systems to determine the effects of E/C. Forty areas were selected for inspection. These areas and the extent of examinations are identified in the attached Inspection Program Status Report. Each location inspection consisted of a determination of piping wall thickness using an automated ultrasonic testing system with computer data acquisitions/display capabilities. Other testing methods, such as remote visual or manual UT were also used to supplement the automated UT data. Examination data, reports, etc., for each location are maintained on plant file for future reference. Because the UT method utilized (P-scan) does not require gridding to locate measurement points and provides 100% surface coverage, relocation of selected inspection areas for future monitoring is possible without difficulty.

The attached Inspection Program Status Report indicates that the results of each location inspection determines whether that location is placed in a Category 1, 2, or 3 group for classification. The categories have been devised utilizing wall thicknesses as boundaries for category classification. Depending upon the results of each inspection, the location is categorized as an accept, evaluate, or rejection. Of the 51 locations (40 subdivided for reference), 25 were categorized as accept, 22 are to be evaluated, and 3 were rejected. Documentation of inspection results are contained in packages numbered with their respective locations. Each data package contains essentially the following documents:

- o Cover Sheet
- O UT Data Sheets (indicating maximum, minimum, and average thickness for each location)
- o Manual Data Sheet(s)
- o UT Calibration Record(s)
- o Detailed Sketch of Location (indicating location of scans, lengths of scans, orientation points, etc.)
- o UT Equipment Parameter Sheets
- o Hardcopy Printout of Scanned Areas set at Category 1/2 Level (i.e., prints out areas thinner than Category 1 limits)
- o Mechanical Acceptance Criteria Evaluation Sheet

The attached Inspection Program Status Report further provides information relative to each location's operating parameters, material, inspection results, and final status.

In the comments column of the report, a percentage is given for each component. This percentage indicates the remaining wall thickness in the thinnest area within the inspection relative to the minimum wall allowed by manufacturing tolerance (i.e., the Category 1/Category 2 cut-off thickness).

The three inspection locations (4, 6, and 35) which were classified as "reject" were located on the first point steam extraction line. Each of these locations were found with wall thicknesses below the acceptable minimum wall thickness. The required amount of piping sections were cut out and replaced with new carbon steel piping.

Item No. 5.

Describe any plans either for revising the present or for developing new or additional programs for monitoring pipe wall thickness.

Yankee Response

Yankee does not intend to change the recently implemented E/C Inspection Program. Based on this refueling's initial inspection results, a number of Category 2 areas will be reinspected on a refueling basis to establish a realistic wear rate, which would then more accurately define frequency of monitoring for given locations. Meanwhile, if industry findings warrant an expansion or increased frequency of inspections, Yankee will subsequently expand the scope of the inspection program.

INSPECTION PROGRAM STATUS REPORT ATTACHMENT B	REPORT ATTACHMENT	REPORT ATTACHMENT	REPORT ATTACHMENT	ATTACHMENT	NITACHKENT B	80 1	12 12 13 15 16	0 0 0 0 0	11 12 13 14 17 18 18 18 18 18 18 18 18 18 18 18 18 18	* 0	No assign	* No assigned priority	1996 1996 1996 1996 1996 1996 1996 1996	PAGE B1 of B9	1	REV. 1	# # # # # # # # # # # # # # # # # # #
SYSTEM SYSTEM PRESSURE TEMP.					SYSTEM TEMP.							SCREENING		he day			
SYSTEM PIPING SYSTEM APPROX. DANS. 8 GEOMETRY CLASS SCHEDULE OPER. GPER. FLOW VELGCITY	PIPINS SYSIEM DESIGN SYSIEM CLASS SCHEDULE OPER. OFER. FLOM	PIPINS SYSIEM DESIGN SYSIEM CLASS SCHEDULE OPER. OFER. FLOM	DESIGN DESIGN SYSIEM GPER. GPER. FLOW	N DESIGN SYSTEM GPER, FLOW	SYSTEM		APPRO	, 1	STEAM (S)	MATERIAL	INSP.	Cat 2 Cat 3	MEASURED ASSI MIN. ASSI " t" CATE	ASSIBNED CATEGORY RE	REPORT #	FINAL	COMMENTS
45 elbow 12* 130 paig to viv ds	45 elbow 12* 150 psig 356 F 213,980 to viv ds 151	12* 150 psig 356 F 213,980	150 psig 356 F 213,980	356 F 213,980	7 213,980 15s/hr		220 ft.) sec	Ø	A234 WFA		.328*075*	.250*	2	-	REPLACED	PLANT DECISION TO REPLACE 76 X
	45 mibow 151 12" 150 psig 356 F 213,980 1 dia us std 150 psig 356 F 185/hr	12" 150 psig 356 F 151 213,980 std 150 psig 356 F lbs/hr	150 psig 356 F 150 psig 356 F 213,980 150 psig 356 F lbs/hr	356 F 356 F 213,980 155 F 155/hr	213,980 15s/hr		220 44	/sec	(5)	A234 NPA		.328*075*	.170*	2	5	REPLACED	PLANT DECISION TO REPLACE \$2.1
1st straight 12" 150 psig 356 F 213,980 point pipe 151	straight 12" 150 psig 356 F 213,980 pipe 2 dia 151 150 psig 356 F std 150 psig 356 F	12* 150 psig 356 F 213,980 1bs/hr std 150 psig 356 F	150 psig 356 F 213,980 	356 F 213,980 1bs/hr 356 F	213,980 1bs/hr		220 ft/J	385	(S)	A53 ER A		.328*075*	.330*		173	ACCEPT	1001
1st 90 elbow point 1 dia us 12" 150 psig 356 F 213,980 extraction ds to valve 151	90 elbow 121 120 psig 356 F 213,980 ds to valve 151 std 150 psig 356 F	15: 150 psig 356 F 213,980 15: ibs/hr std 150 psig 356 F	150 psig 356 F 213,980 150 psig 356 F	356 F 213,980 18s/hr 356 F	213,980 1bs/hr		220 ft/,	Jan	(5)	A234 WPA	and and	.328*075*	-050-	M	-	REJECT REPLACE	H -0
1st	90 elbow 1 dia ds 151 12* 150 psig 356 F 213,980 151 150 psig 356 F	151 12° 150 psig 356 F 213,980 151 15s/hr std 150 psig 356 F	150 psig 356 F 213,980 hs/hr 150 psig 356 F	356 F 213,980 1bs/hr 356 F	213,980 1bs/hr		220 ftJ	Sec	(5)	A234 WPA		.328*	.060		vo.	REJECT REPLACE	PRE-EXAM SURVEY 27 Z
1st 90 elbow point flange 12° 150 psig 356 F 215,980 extraction to 151	90 elbow flange to 151 150 psig 356 F 213,980 to 151 150 psig 356 F	12" 150 psig 356 F 213,980 1bs/hr std 150 psig 356 F	150 psig 356 F 213,980 1bs/hr 150 psig 356 F	356 F 215,980 1bs/hr 356 F	213,980 1bs/hr			/sec	(5)	A216 WCB	. •	.328*075*	.070.	n		REJECT REPLACE	PRE-EXAM SURVEY 21 %
3rd 90 elbow point weld 24* 3 psig 223 F 110,226 extraction to 121 242 ft/sec steam weld 26 17 psia 223 F	90 elbow 24* 3 psiq 223 F 110,226 to 121 1bs/hr weld 20 17 psia 223 F	121 24* 3 psig 223 F 110,226 lbs/hr 20 17 psia 223 F	3 psig 223 F 110,226 1bs/hr 17 psia 223 F	223 F 110,226 1bs/hr 223 F	110,226 16s/hr			345	3	A.34 MPA		.328*075*	.240*	5		ACCEPT MONITOR	73.2
								-									

REV. 1

000

.

COMPENIS	79 %	78.1	24 20	100 %	7 4 7	7.17	100 1 +
FINAL STRIUS	ACCEPT MCN 170R	ACCEPT MONITOR	ACCEPT MUNITUR	ACCEPT	ACCEPT MONITOR	ACCEPT MONITOR	ACCEPT
REPORT .	æ	0	10A	901	301	=	128
MSSIGNED CATEGORY	7	~	2	-	4	2	-
MEASURED MIN.	.224*	.220*	.273*	*8+2.	.208*	.200*	.420*
SCREENING CRITERIA Cat 1 Cat 2	.282*064*	.282"064"	.328"075"	.328*075*	,282* ,282* - ,064*	.282*064*	.319*073*
INSP. PRIGRITY	œ		-	-			
MATERIAL	A53 5R A	A53 GR A A234 WPA	A53 GR A A234 MPA	A53 GR A A234 WPA	A53 SR A A234 MFA	A53 SR A A234 MPA	A234 MPA
STEAM (S)	9	8	8	9	9	8	9
APPROX.	7.8 ft/sec	7.8 ft/sec	11.4 ft/sec	11.4 ft/sec	7.7 ft/sec	5.0 ft/sec	5.0 ft/sec
SYSTEM	1,200 gp*	1,200 gpm	0,590 age	00 # dd	1,200 gpm	354,120 1bs/hr	1,230 gpm
SYSTEM TEMP. DESIGN OPER.	291 F	291 F	280 F	280 F	291 F	251 F	125 F 90 F
SYSTEM PRESSURE DESIGN OPER.	307 psig	367 psig	250 psig	250 psig	250 psig	\$5 ps.19	256 pssq
LINE SIZE	00 4	* 0 4	12" std	8 1 10 NP 444 NF 447	*	.	10*
P I P I NG CLASS	301	301	301	301	301	151	151 A
	(2) 90 elbows, from viv thru elbows to 2 dia ds	90 elbow 1 dia us 2 dia ds	TEE thru 2 90 us 2 dia ds	TEE thru 2 90 us 2 dia ds	thru 2 90 elbows. 1 di us 2 dia ds	90 elbow us from valve to 1 dia ds	96 90 90 90 90 90 90 90 90 90 90 90 90 90
* * *	htr. drain pump disch. FP -22C	htr. drain pump disch. FP -22C	htr. drain pump disch. FP -22C FP -3A	htr. drain pump disch. FP -22C FP -3A	htr. drain pump disch. FP -22C FP -3A	htr. drain pump suct. FP -22C	cond. pusp disch. FP -108
0.0EA710N	(5)	0-	10 (a)	10 (b)	10 (c)	=	12 (a)

Section Sect	18 18 18 18 18 18 18 18 18 18 18 18 18 1	20 20 20 20 20 20 20 20 20 20 20 20 20 2	H H H H H H H H H H H H H H H H H H H	排	R	ALTACHRENT B	12 14 14 15 16 17 18 18 18 18	# 11 # 15 # 15 # 15 # 15 # 15 # 15 # 15	# # # # # # # # # # # # # # # # # # #	15 10 10 10 10 10 10 10 10 10 10 10 10 10	1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	18 18 18 18 18 18 18 18 18 18 18	FAGE 83 of 89	96	REV. 1	***************************************
259 pirig 125 F 1,720 5.0 tither (4) 423 title (5) 435 title (6) 423 title (7)	LINE SIZE PIPINS SEDMETRY CLASS SCHEDULE		LINE	tar		SYSTEN TEMP. DESIGN	SYSTEM	APPROL.	STEAM (S)	# F83	INSP.	SCREENING CRITERIA Cat 1 Cat 2 Cat 3	MEASURED MIN.	ASSIGNED CATEGORY	REPORT .	FINAL STATUS	COMMENTS
250 psig 125 F 3,690 16.3 FUNEC 18.1 852 H W 1.039 1.0	Cond. pump reducer disch. 151 A FP -108	æ	73 #	12* std	250 psig	125 F	1,230 gp#	5.0 ft/sec	8	A234 MPA		.328*075*	.410*		128	ACCEPT.	1000
250 psig 210 F 3,690 10.5 ft/sec (W) A33 86 A 1.5580/2 1300* 2 14 RIGHTH 100 200 psig 280 F 3,690 10.5 ft/sec (W) A234 WPA 100 .128*0/3 .150* 1 15 ACCEPT 100 psig 280 F 4,690 11.4 ft/sec (W) A234 WPA 2 .130* 2 .150* 1 17A ACCEPT 100 psig 280 F 4,690 11.4 ft/sec (W) A234 WPA 2 .130* .130* 2 .150* 1 17A ACCEPT 100 psig 280 F 4,690 11.4 ft/sec (W) A234 WPA 2 .130* .130* 2 1 17A ACCEPT 100 psig 280 F 1,530 6.8 ft/sec (W) A234 WPA 2 .130* .280* 2 178* ACCEPT .100* .1	cond disch. 99 elbow hdr. 1 dia ds 15s A		- "	12* std	250 psig	90 9	3,690 99æ	10.5 ft/sec	9	A53 GR A A234 MPR		.328*075*	*162.	64	2	ACCEPT MONITOR	7. 68
250 psig 280 F 3,690 10.5 ft/sec (M) A234 MPA 10 .328* .350* 1 15 ACTEPT 200 psig 285 F 3,690 10.5 ft/sec (M) A234 MPA 2 .328* .075* .350* 2 15 ACTEPT 200 psig 280 F 4,690 11.4 ft/sec (M) R234 MPA 2 .319* .075* .350* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .075* .350* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .075* .380* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .075* .380* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .075* .380* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .200* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .200* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .200* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .200* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .200* 2 178 ACCEPT 200 psig 280 F 3,530 6.8 ft/sec (M) R234 MPA 2 .319* .200* 2 178 ACCEPT 200 psig 280 F 3 178 ACCEPT 200 Psig	TEE i die us to valve ds 151 A std	4 151	2 7	12*	250 psig	210 F 106 F	3,690	10.5 ft/sec	9	A23 GR A		.328075*	.360*	7	Ξ	ACCEPT MON 11GE	7 16
250 psig 290 F 3,690 10.5 ft/sec (M) R234 MPR 10 .728* .280* 2 16 ROLEPT	Cond. hdr. 90 elbow FF-3A FF-74A 501 std	301	12 12 st	. 0	250 psig	280 F	3,690	10.5 ft7sec	9	A234 WPB	•	.328*075*	.350*	-	52	ACCEPI	100 %
250 psig 290 F 4,890 11.4 ft/sec (M) A234 MPA 2 .328" .353" 1 17A ACCEPT 200 psig 288 F .319" A234 MPA 2 .319" ACCEPT 250 psig 288 F .319	cond. hdr. IEE & 90 Pbox 12* 12* FP - 14 2 dia ds std	361	22 16	4. 9	250 psig	290 F 287 F	3,690	10.5 ft/sec	3	A234 NPA	10	.128*075*	.280*	~	9	ACCEPT MONITOR	83
250 psig 290 F 1,630 6.8 ft/sec (W) A234 MPA 2 .319* .280° 2 178 HDN:IOR 200 psig 288 F	reed pump HSR / TEE to saction end cap ndr. I dis us 301	301	- "	14. 14.	250 psig	240 F	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	11.4 ft/sec	9	A234	e	.328*075*	ig	-	178	ACCEPT	1000 %
	feed pump 90 reducing section eloom hdr. I dia ds 301	301	- -	. 0 0	250 psig	290 F 288 F	1,630 gps	6.8 ft/sec	9	A2234	7	.319*073*	.280*	7	178	ACCEPT MONITOR	24 93 93

Street S						1	,	
State Stat	COMMENTS	100 %	100 1 +	100 %	80 60 60	* Z 001	+ z 001	100 % +
1 1 1 1 1 1 1 1 1 1	FINAL	ACCEPT	ACCEPT	ACCEPT	ACCEPT MONITOR	ACCEPT	ACCEP1	AECEP1
Section Sect	REPORT .	GCS	<u>o-</u>	20	218	218	22A	228
STEEP STEE	ASSIGNED CATEGORY	10 10 10 10 10 10 10 10 10 10 10 10 10 1	_	-	2	-	-	-
Fig. 2 STEAK STE	MEASURED MIN.	* 695	**	*969*	.640*	*024	.463*	.264.
Fig. 2 Fig. 3 F	Cat 1 Cat 2 Cat 3	.520*	.656150.	.656"150"	.656"150"	.437* .437*100*	.437*	.378*086*
STRICE S	INSP.		*		-	*		AN .
FFEGSURE 1806. SNSTER SNSTER		A234 MPB A106 GR B	A234 MPB A106 GR B	A234 WPB A106 GR B	A234 MPE A106 GR B	A234 MFB A166 GR B	A234 MPB A106 GR B	A234 MPB A106 GR B
FF-56 to 2 dia ds 601	STEAM (S)	(8)	8	8		(8)	8	8
FFGSSME HWG. 8 GEOMETRY CLASS SCHEDULE OFFR. DESIGN STREET FROM CLASS SCHEDULE OFFR. DESIGN STREET FROM CLASS SCHEDULE OFFR. DFF. GLOST GL	APFEOX.	9.041/sec	13.5 ft/sec	13.5 ft/sec	13.5 ft/sec	9.1 ft/sec	16 ft/sec	16 ft/sec
Fred purp 90 elbow Gisch. HTME SIZE GESIGN 9 Gisch. From valve CLASS SCHECOME 0FER. Gisch. From valve Cisch. From valve Cisch. From valve Cisch. From valve Cisch. Mor. From valve Cisch. Mor. From valve Cisch. Mor. I dia us to From Cisch. Mor. I dia us to Cisch. Mor. I d	SYSTEM	2,166	5, 46 6, 50 8, 60 8, 60	5,165 9Pm	75. 1.65. 1.65.	1,290 9pm	1,290	1,290
FP-90 to 2 dia ds 601 freed pump 90 el to ice pump 90 el to ice us boli freed pump 90 el to ice pump 90 el to ice boli freed pump 90 el to ice pump 90 el t	TEMP. DESIGN	280 F	280 F	155 155 17 17	255 257 27 28 28 28 28 28 28 28 28 28 28 28 28 28	25 25	355 F	155 155
feed pump from value FP -9E feed pump from value FP -9E for dia ds 601 from value FP -9E for dia ds 601 from value from pump from value from from value from from value from from from value from from from from from from from from	PRESSURE BESIGN OPER.	1,106 psig	1,100 psig	1,100 psig	1,100 psig	1,100 psig	1,100 prig	1,100 psig
feed pump	LINE SIZE	0 00	14 B	* 08	# 00 # 00	4 G G	*G	89 × 99
FP -9E FP -9E	PIPINS	109	501	109		109	109	100
	GEOMETRY	90 elbow from valve to 2 dia ds	00 m m m m m m m m m m m m m m m m m m	90 elbow I dia us to viv ds	90 el to icE 1 dia us to feedline cut outs .col + dia ds on (co	straight aging	8" x 6" reducer tlange to	in a de la contra contr
20 20 21 (a) 21 (b) 22 (b) 22 (b)	SYSTEM	11	feed pump 61 sch. hdr. FP -99	feed pump disch. hdr. FP -90 FP -9E	feed pump disch. hdr. FP -90 FP -9E	feed pump disch. hdr. FP -90 FP -90	FP -92 FP -92 FP -95	D
	LOCATION :	0 0 1 1 1 1 0 0 0 1 1 1 1	9.	50	21 (a)	21 (b)	22 (a)	22 (b)

0 0 0 0 0

SCREENING

SYSTEM SYSTEM

	is:
	ii.
	1
	18
	#
	18
	11
16	1
	19
ú	10
	1
	10
	1
	B
	n.
	8
	à
	19
	18
	11
ñ	R
	15
5	14.
m	H
in	16
25	18
2	15
-	18
	1
	13
	ü
	15
	18
	1
	8
	15
	18
	1
	8
	12
	18
	1
	15
	1
	10.00
	15
	18
	16
	15
	18
	15
	16
	15
	19
	1
	18
	18
	15
	- 14
	1
	19
	19
	15
	1
	13
	- 8
	1
	18
	- 1
	- !!
	- 11
	- 18
	11
	- 11
	1
	- 11
	11
	- 11
	-ii
	11
	11
	- 1
-15	- 1
-	ij
22	- 1
23	- 1
題	- 1
5	
14	- 1
- 2	- 1
	1
	-
	1
	1
	1
	1
	1
	ø
	ø
	ø
	ø
20.4 %	1 150
	1 150
20.4 %	1 150
20.4 %	1 150
20.4 %	1 150

COMPENTS	100 X *	* 1 001	100 1 +	100 1 +	100 %	100 %	100 1 + 1
FINAL	ACCEPT	ACCEPT	ACCEPT	ACCEPT	ACCEPT	ACCEPT	ACCEPT
REFORT .	234	238	24	K	49	27	28
ASSIGNED CATEGORY		-	-	-	and I	-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MEASURED TIN.	.500.	.480*	. 463*	. 200	.480	.420*	.290*
SCREENING CRITERIA Cat I Cat Z Cat Z	.437* 100*	.378086*	.437*160*	.437*100*	.437*100*	.378*	.262*060*
INSP.	רע	W7					
# 15 15 15 15 15 15 15 15 15 15 15 15 15	A2334 MP9	A234 MPB A106 GR B	A234 MPB A106 GR B	A234 WFB A106 GR B	A234 MPB A106 ER B	A234 MPB A106 SR 8	A234 MPB A106 GR B
5 EBA EBA EBA EBA EBA EBA EBA EBA EBA EBA		99	9	8	8	(5)	(S)
APPROT. VELOCITY	74/2ec	44	9.1 tt/sec	9.1 ft/sec	9.1 ft/sec	21 ft/sec	21 ft/sec
SYSTER FLEW	0.52°1	1,290	1,290 gpe	1,290	1,290 9Pm	14,500 165/hr	14,500 1657hr
SYSTEM TEMF. DESIGN	355 F 351 F	355 F	755 F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	355 F	\$50 F	550 F 464 F
SYSTEM PRESSURE DESIGN	1,100 psig	750 psig	750 psig	1,106 psig	756 psiq	1,035 psia	1,035 psia
LINE STRE	* 8	8 × × 80	* 8	* 09	* 0	9 08	in 98
PIPING	501	601	109	601	109	109	0901
GEONETRY	8* x 6* reducer viv to 3 dia ds red.	6* x 6* reducer viv to 3 cia ds red.	90 elbow 2 dia ds	straight pipe 2 ft. section	(2) 45 elbows only	90 elbow	sp stp g
SYSTEM DWG	p	FP -9B	05 44 44 44 44 44 44 44 44 44 44 44 44 44	61 97 99 99 99		11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	and
LOCATION .	23 (4)	23 (6)	24	30	8	23	8 8

COMMENTS	B7	F4	78 1	M C1	1 001	ed Gr	24 65
F1442.	ACCEPT MON:10R	ACCEPT MONITOR	ACCEPT MONITOR	ACCEPT MCN1TGR	ACEEPT	ACCEPT MONITOR	ACCEPT MONITOR
REFORT .	95	308	308	Ħ	Ħ	Sign Page 1	13
ASSIGNED	64 64 64 64 64 64 64 64 64 64 64 64 64 6	C4	cu	~	-	7	a
MEASURED HIN.	.924*	*099 *	.640*	.230•	.380	.300*	.253
SCREENING CRITERIA Cat 1 Cat 2 Cat 3	1.066"244"	1.066"244"	.821* .188*	.282.	.319*013*	.326*	.319*073*
INSP.	III					m	ю
MA:ER19L	A234 #FP 8	A234 MP9 A106 GR B	A234 MPB A106 GR B	A53 SR A A234 MPR	A215 WCB	A234 WPA	A234 WPA
STEAM (S)	(5)	(3)	(5)	9	3	3	8
APPROX.	253 ft/sec	253 ft/sec	222 ft/sec	4.0 ft/sec	6.8 ft/sec	11.4 ft/sec	6.8 ft/sec
SYSTEM FLOW	2,384,350 1bs/hr	2,384,350 253 ft/sec lbs/hr	1,190,000 222 ft/sec 1bs/hr	609 609	1,630 9pm	068°*	1,630
SYSTEM IEMP.	550 F 464 F	550 F #6# F	550 F 464 F	291 F	290 F 288 F	296 F 268 F	290 F 288 F
SYSTEM PRESSURE DESIGN OFER.	1,035 psia	1,035 psia	1,035 0.55 0.51 0.51 0.51 0.51	367 psig	250 psig	250 psig	250 psig
LINE SEZE	24*	24*	*B 89	± 0 €	10*	7 3	10*
P IP ING	109	109	109	301	301	301	361
WEIRY WEIRY	weld to	lateral	45 elbow only	90 elbom check viv to 1 dia ds	90 elbow flange to flange	HDR./IEE I dia us I dia ds	90 reducing elbow I dia ds
SYSTEM	FP -2D	sain steam	main steam	htr. drain pump disch. FP -22C	FP - 13A	suction FP -3A	suction FP -3A
1.0CATION •	g,	30 (a)	30 (b)	Z,	Ω.	33 (a)	13 9

.

Page 7					NE.	ATTACHMENT B	SID		9	1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	14 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	11 13 22 15 15 16 16 16 16 18 18 18 18 18	PASE 87 of 89	68	REV. 1	***************************************
H H H H H H H H H H H H H H H H H H H					SYSTEM	SYSTEM TEMP.						SCREENING					
LOCATION	SYSTEM DWS. •	SED WETEN	PIPING	LINE SIZE	DESTEN OPER.	DESTON DPER.	SYSTEM	APPROX. VELOCITY	STEAM (S)	MATERIAL	INSP. PRIGEITY	Cat 1 Cat 2 Cat 3	NEASURED NIN.	RSSIGNED	REPORT #	FINAL	COMMENTS
5	#313 + 66 81 81 81 81 81 81 81 81 81 81 81 81 81	4 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10		* œ	1,106 psig	355 F	1,299	9.1 ft/sec	(8)	A 106 SP 8		.437*	*011		7	4	100 7
	44 44		109	98	750 psig	151	a			A234 MPB		.190*	191.		5	L L L L L L L L L L L L L L L L L L L	
R	extraction	90 elbom		12*	150 psig	356 F	213,986	220 ft/sec	(5)	A53 6R A		.328*				REPLACED STRAIGHT RUN	PLANT DECISION TO REPLACE
	Ist point FF -48		151	std	150 psig	355 F	105/65			A234 WPA		.328*075*	. 688	64	g	CLEDW ACCEPTED	273
36 (2)	main steam	45 laterals		24*	0.35 96:10	550 F	2.384.350	253 ft/sec	(5)	A106 SR 5		.1066*				ACCEPT	
	FP-20		100	80	584	464 F	16s/hr	lbs/hr		8234 WPB		.1066"244"	.949*	7	368	MONITOR	24 66 87
33	61 72 73 75 62 75 75 75	1 4								7		355.					
			109	14.	1,035 psig	550 F	596,000 10s.fhr	185 ft/sec	(5)	A106 5R B		.656*150*	.632*	-	368	ACCEPT	100 1 +
				80	584 psia	464 F						.150*	1 1 1 1 1 1				1 2 2 3 3 4 5 5 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
37 (4)	steam	90 eltos			36.4	2 033			197	9 92 79 8		.378*					
	ರ್ಷವಾ	o dia c. A	109		1,035 psig	330 1	100,000 155/hr	3.0 11/36	i de	0 NO OUT WAY		.378"086"	.400*	-	37.8	ACCEPT	100 %
	65 - 44	hdr. penet.		80	584 psia	464 F				RZ34 MFB		.980.					
37 (5)	main steam	straight			94.0	2 7 22	2 TB4 750	757 (4) 776	9	90.00		1.066*				ACCEPT	
	FP - 2D	te ch ch ch	601	47	Bisd cco.	2000	lbs/hr	Ibs/hr	ò	and arca		1.066*244*	.920.	2	378	HONETOR	89.7
				80	584 psia	454 F				D 18 1070		.244*					
異	823.0 Stead	flow orifice		*	1,035 psig	550 F	596,000	185 ft/sec	(\$)	A106 SR 8		. 656	****	·	ō,	ACCEPT	* Y
	FP -20	2 dia ds	000	80	584 psia	464 6	105/07					.150*	F70.	,	p 2	MONITOR	2
	日本 日本 日本 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日				日本日本日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日				日本日本日本日本日日日日日日日日日日日日日日日日日日日日日日日日日日日日日								

FINDL STATUS COMPENTS	PLANT DECISION TO REPLACE PIZ		100 %	
FINAL	REPLACED		ACCEPT	1
## ## ## ## ## ## ## ## ## ## ## ## ##	85		9	6 to 10 to 1
ASSISNED CATEGORY	2			
MEASURED MIN.	.300.		.099	
SECRETARY. DESIGN SESSION STEAM (S) OFER. FLON VELOCITY WATER (N) MATERIAL PRIORITY CAL 3 * t* CATEGORY	.328*075*	.075*	.656*	.150*
INSP.			2	
INSP.	A53 68 A A234 MPA		A216 MPB	
STERM (S)	(5)		8	
APPROX.	213,980 220 ft/sec lbs/hr		5,165 13.5 ft/sec	
575TE# FLOR	213,980 16s/hr		5,165	
SYSTEM LEMP. DESIGN OPER.	356 F	356 F	356 F	351 F
PRESSURE DESTEN	150 psig	130 psig	1,100 psig 356 F	750 psig 351 F
LINE SIZE	12*	Sto	**	98
PIPING	121		107	200
SEDMETRY	90 elbow 1 dia ds		90 eibow 2 dia ds	
SYSTEM PRODUCTION & PAGE & SECHETRY CLASS	steam steam 1st point rP-48		sain feedwater	36- 43 66- 63
SYSIEM LOCATION PMG.	39		2	