860924

ORNL CONTAINMENT IODINE MODEL

E. C. BEAHM

C. F. WEBER

T. S. KRESS

R. J. ANDERMANN

8609300409 860924 PDR FOIA AFTERGO86-644 PDR

1. 1

TRENDS

(TRANSPORT AND RETENTION OF MUCLIDES IN DOMINANT SEQUENCES)

- . WHAT IT DOES
- . HOW IT WORKS
- . MODELS AND DATA
- · CALCULATIONS OF SPECIFIC SEQUENCES

ORNL WS 42178

ORNL IODINE MODEL

- DISTRIBUTES IODINE AS 12, HI, CH31, Csl, IT, AND Agi
- ALLOWS PHYSICAL TRANSFER BETWEEN PHASES OR LOCATIONS
- ALLOWS CHEMICAL TRANSFER BETWEEN IODINE CHEMICAL FORMS

SPECIE	PHASES CONSIDERED
12	GAS, AEROSOL, LIQUID, SURFACES (PAINT, STEEL, CONCRETE) DEPOSITED AEROSOL
CH3I	GAS, LIQUID, SURFACE (PAINT)
CsI or I-	GAS, AEROSOL, LIQUID, SURFACES, DEPOSITED AEROSOL
HI	GAS, AEROSOL, SURFACE (STEEL), DEPOSITED AEROSOL
AgI	PRECIPITATE

20 INVENTORY LOCATIONS ARE FOLLOWED WITHIN EACH CONTAINMENT VOLUME.

ORNL IODINE MODEL

TRANSFER BETWEEN PHASES AND CHEMICAL REACTIONS ARE EXPRESSED IN THE GENERAL FORM:

$$\frac{dN_{ix}}{dt} = a_{xy}^{i} N_{ix} - \beta_{xy}^{i} N_{iy}$$

WHERE

N = GRAM-ATOMS OF IODINE,

i = THE IODINE CHEMICAL FORM, I.E., I2, CH3I, ETC.,

x,y = THE PHASE LOCATION, I.E., GAS, AQUEOUS, OR SURFACES,

 a,β = RATE COEFFICIENTS FOR THE ADDITION OR REMOVAL OF THE SPECIES.

DEPOSITION/REVAPORIZATION STEEL, PAINT, CONCRETE, AEROSOL

RATE EQUATION:

$$\frac{dC_s}{dt} = vC_g - v^{\sim} C_s,$$

WHERE

 $C_g = GASEOUS IODINE CONCENTRATION, g-mol/cm³;$

C_s = SURFACE IODINE CONCENTRATION, g-mol/cm²;

v = DEPOSITION VELOCITY, cm/s;

 $v = REVAPORIZATION RATE CONSTANT, s^{-1}$

REMOVAL OF VAPOR SPECIES BY CONDENSING STEAM (DIFFUSIOPHORESIS)

$$\delta C_1 = -\left[\frac{\chi_S}{\chi_S + \chi_A \sqrt{M_A/M_S}}\right] \frac{Q_S C_1}{V}$$

WHERE

C1 = CONCENTRATION OF SPECIES 1,

Xs = MOLE FRACTION OF STEAM IN THE CONTAINMENT ATMOSPHERE,

X_A = MOLE FRACTION OF NONCONDENSABLES IN THE CONTAINMENT ATMOSPHERE,

Ms = MOLECULAR WEIGHT OF STEAM,

MA = AVERAGE MOLECULAR WEIGHT OF THE NONCONDENSABLES,

V = CONTAINMENT CELL VOLUME,

Q_S = VOLUMETRIC STEAM CONDENSATION RATE ONTO THE PARTICULAR SURFACES.

MASS TRANSPORT TO/FROM PARTICLE SURFACES

 $SH_{I} = \frac{H_{P}D}{\varpi_{I}} = 2$ (LIMIT FOR DIFFUSIONAL TRANSPORT)

WHERE

SHI = SHERWOOD NUMBER,

D = AEROSOL PARTICLE DIAMETER,

 Z_1 = DIFFUSION COEFFICIENT FOR SPECIES 1,

HP = MASS TRANSPORT COEFFICIENT.

TRANSPORT TO CONTAINMENT SURFACES

FOR LAMINAR FLOW CONDITIONS:

 $SH = 0.54 (ScGR)^{1/4}$

AND FOR TURBULENT CONDITIONS

 $SH = 0.14 (ScGR)^{1/3}$

WHERE

SHI (SHERWOOD NUMBER) = $\frac{H_1 L}{\omega_1}$

L = A CHARACTERISTIC LENGTH OF THE SURFACE,

 \mathcal{B}_{1}' = DIFFUSION COEFFICIENT FOR SPECIES 1,

 $Sc_1 = (SCHMIDT NUMBER) = \mu/\rho \mathcal{D}_1'$

μ = VISCOSITY OF CONTAINMENT ATMOSPHERE,

P = DENSITY OF CONTAINMENT ATMOSPHERE,

 $GR = (GRASHOF NUMBER) = \frac{G\Delta T L^3 \rho^2}{T_G \mu^2}$

G = GRAVITATIONAL ACCELERATION,

 $\Delta T = [T_G - T_W],$

TG = BULK ATMOSPHERE GAS TEMPERATURE,

Tw = WALL SURFACE TEMPERATURE.

CONVECTION BETWEEN VOLUMES OR LEAKAGE

$$\frac{\partial C_1}{\partial T} = -\sum_{J} \frac{Q_J C_1}{V}$$

WHERE \mathbf{Q}_J IS THE VOLUMETRIC FLOW OUT PATHWAY J AND V IS THE VOLUME OF THE CELL (CONTAINMENT OR SUBCOMPARTMENT), AND \mathbf{C}_1 IS GAS CONCENTRATION.

ENFORCED EQUILIBRIA

12 (AQUEOUS) # 12 (GAS)

CH31 (AQUEOUS) # CH31 (GAS)

12 ADSORPTION ONTO AEROSOLS - LANGMUIR

ISOTHERM

VOLATILITY

- · EVALUATION OF PH
- . VOLATILITY MEASUREMENTS FOR SPECIFIC ACCIDENT SEQUENCES
- · CALCULATION OF RADIATION DOSE RATES
- MODELING OF I⁻ TO I₂ CONVERSION (RADIATION EFFECT)

DETERMINATION OF PH

- . BORON OXIDES
- BASIC FISSION PRODUCT COMPOUNDS SUCH AS CESIUM HYDROXIDE
 OR CESIUM BORATES
- · IODINE AS HI
- · PH ADDITIVES
- ATMOSPHERIC SPECIES SUCH AS CARBON DIOXIDE, NITRIC ACID,
 OR AMMONIA
- ALKALI AND ALKALINE EARTH OXIDES FROM CORE-CONCRETE
 AEROSOL

ORNL DWG 86-564

EXPERIMENTAL APPARATUS

ANALYTICAL SCHEME

HI SENSITIVITY STUDY

- SURRY TMLB'ε LATE CONTAINMENT FAILURE
- SURRY TMLB'δ EARLY CONTAINMENT FAILURE
- · PEACH BOTTOM TC

. . . .

CONVERSION TO 12

РΗ	6.8	6.1	3.05
[1-]/M	1.1 × 10-4	8.6 × 10 ⁻⁴	8 × 10 ⁻⁴
RADIATION DOSE/MR		% CONVERSION TO	12
0			0.15
0.28			26.1
0.63		0.14	48.1
0.70	0.39		
2.0	0.30	0.33	72.0
3.5	0.22		
4.0		0.50	

EXPERIMENTAL CONDITIONS: 0.05 M BORIC ACID

92°C

0.62 MR/H

AIR PASSED OVER SOLUTION

RADIATION DOSE EFFECT: PH 4.4, 3 \times 10⁻⁵ G-AT. I⁻/L, 3.9 \times 10⁻⁴, MOLS CH4/L AT 92°C

RADIATION DOSE MRAD	% CONVERSION TO CH3I
0.31	1.3
0.62	2.0
1.90	3.7
3.10	8.4

CONVERSION OF IODIDE ION TO METHYL IODIDE FROM IRRADIATION OF SOLUTIONS CONTAINING ORGANIC MATERIALS:

INITIAL I CONCENTRATION, 5.4-7.6 × 10-4 M, PH 3.0-3.1, AT 92°C

ORGANIC MATERIAL	RADIATION DOSE IN MEGARAD	PERCENT OF INITIAL I CONVERTED TO CH31
ETHYLENE PROPYLENE RUBBER, 10.4 g IN 100 mL	0.5	0.15
ETHYLENE PROPYLENE RUBBER, 10.4 g IN 100 mL	1.0	0.27
ETHYLENE PROPYLENE RUBBER, 2.1 6 (CUT INTO SMALL PIECES) IN 100 mL	1.0	0.45
ETHYLENE PROPYLENE RUBBER, 11 g IN 100 mL	2.0	1.0
STAINLESS STEEL TURNINGS, IN 100 ML	2.0	0.15
DOWEX 50 CATION EXCHANGE RESIN	, 2.0	0.34

GAS-SURFACE CONVERSION TO CH3I: 2.4×10^{-4} MOL CH4/L GAS, 92°C

РH	6.1	3.05
[1-] (MOL/L)	1×10^{-4}	8 × 10 ⁻⁴
RADIATION DOSE (106 RADS)	PERCENT CONVER	SION TO CH3I
0.5	0.1	0.2
1.0	0.1	0.5
2.0		0.6

RADIATION LEVEL FOR WATER POOLS

SUMP DOSE FOR SURRY TMLB' SEQUENCE

	GROUP	(MRAD/G-H)
TE	1	1-112E-05
I	2	2.309E-04
Cs	3	3.187E-06
Ru	4	6.533E-06
CE	5	1.414E-06
LA	6	1.987E-05
SR	7	2.475E-05
ZR	8	1.208E-05
NB	9	6.035E-04
Mo	10	3.651E-06
Ва	11	8.457E-06
SB	12	2.699E-03
KR	13	7.846E-06
XE	14	1.745E-06

SUMP DOSE RATE FOR SURRY TMLB' SEQUENCES

THERMAL HYDRAULIC AND TRANSPORT DATA

(1) BMI-2104, volume 5

. . . .

- (2) NAUA-4 computer code runs supplied by Eattelle Columbus
- (3) TRAPMELT2 computer code runs supplied by Battelle Columbus Laboratory Laboratory
- (4) ORNL SASA program calculations

The following input data, parameters, and computer code generated results are used:

- (1) Control volume parameters
 - (a) containment volume
 - (b) containment surface area for aerosol sedimentary deposition
 - (c) containment surface area for aerosol diffusional deposition
- Aerosol source function versus time
 - (a) release rate
 - (b) cesium iodide fraction
- (3) Containment temperature versus time
- (4) Containment pressure versus time
- (5) Sumpwater temperature versus time
- Leakrate out of containment versus time (6)
- Steam condensed to the wall versus time (7)
- Aerosol data versus time (8)
 - (a) Airborne mass
 - (b) Accumulated sedimentary deposit
 - (c) Accumulated diffusional deposit
 - (d) Items a, b, and c for condensed water
 - (e) Items a, b, and c for "dry" particles
 - (f) Items a, b, and c for cesium iodide
 - (g) Particle concentrations
 - (h) Average particle radius
 - (i) Average particle density
 - (j) Particle radius frequency distribution
- (9) Cesium iodide total core release versus time
- (10) Cesium iodide reactor coolant system retention

MODEL FOR I- TO 12 CONVERSION WITH RADIOLYSIS

FOR A GIVEN PH:

$$X(D) = A(1 - E^{-BD})$$

WHERE

X(D) - MASS FRACTION OF 12 FORMED.

D = RADIATION DOSE,

A,B = CONSTANTS.

PRINCIPAL IODINE REPOSITORIES AT END OF SURRY TMLE'E SEQUENCE (PWR-Station Blackout with late containment failure)

	Iodine I	nventory (percen	nt of core invent	ory)
Location	BMI-2104	<u>ı</u> a	$-\Pi_p$	IIIº
Airborne in Containment		.02	.09	1.41
Dissolved in Containment Sump		16.43	99.40	23.04
Deposited on Contain_ r' surface	3	10-4	.02	69.46
Released to Atmosphere				/
Aerosol	.28	.31	. 47	(2.12)
Gaseous		10-6	10-4	4.07

Same conditions as BMI-2104: pH=6.8, No HI, total iodine release into containment of 2.1 kg.

ball iodine retained by the RCS in BMI-2104 is released as HI; total iodine release to containment of 12.7 kg; pH=6.1.

Call iodine released as HI, total iodine release to containment of 12.7 kg; pH=3.05.

FO WATE

Distribution of iodine in containment, Surry TMLB'E, low pH (3.05).

Surry TMLB'& (Station Blackout with early containment failure)
Principal iodine repositories at end of sequence

	Iodine inventory (percent of initial core inventory)			
	BMI-2104	1ª	113	IIIº
Airborne in containment Dissolved in containment sump Deposited on containment surfaces		0.01 15.5 0.01	0.03 72.9 0.1	0.53 17.0 51.2
Released to atmosphere Aerosol Gaseous	7.0	8.32 10 ⁻⁴	26.74	27.38 3.87

 a_{Same} conditions as BMI-2104: pH = 6.8, no HI, total iodine release into containment of 2.1 kg.

 $b_{\rm All}$ iodine retained by the RCS in BMI-2104 is released as HI; total iodine release to containment of 12.7 kg; pH = 6.1

CAll iodine released as HI, total iodine release to containment of 12.7 kg; pH = 3.05.

RESULTS OF SUMMRY TMLB'S SEQUENCE CORRECTED TO ELIMINATE WASHOUT

Principal iodine repositories for the Surry TMLB's sequence

	(perce	odine inve	intory inventory)	
Location	BMI-2104	ıb	IIc	IIId
Airborne in containment Dissolved in containment sump Deposited on containment surfac	es	0.1 2.4 10 ⁻⁵	0.2 46.6 0.05	0.6 12.4 35.96
Released to atmosphere Aerosol Gaseous		21.3 10 ⁻⁶	0.02	48.1

Corrected to eliminate massive condensation on and washout of aero-

bSame conditions as BMI-2104: pH = 6.8, no HI, total iodine release into containment of 2.1 kg.

Call iodine retained by the RCS in BMI-2104 is released as HI; total iodine release to containment of 12.7 kg; pH = 6.1

All iodine released as HI, total iodine release to containment of

RESULTS OF PEACH BOTTOM TC2 CALCULATIONS

Principal iodine repositories

	Principal	iodine re	positories (% c	of core inve	ntory)
Location	I	11	III	IV	BMI
Drywell					
Airborne	0.03	0.03	0.005	0.005	
Surfaces	4.5	4.5	0.3	0.3	
Wetwell					
Airborne	0.2	0.2	0.03	0.03	
Surfaces	18.4	18.4	1.4	1.4	
Water	51.3	51.3	87.5	87.5	
Reactor building					
Airborne	0.04	0.05	0.008	0.011	
Surfaces	10.1	13.3	2.1	2.9	
(Note: no wat	er pools)				
sgtsa					
Charcoal	1.4	0	0.02	0	
HEPA	3.5	0	1.4	0	
Atmosphere					
Gas	1.8	2.2	0.02	0.03	
Aerosol	2.9	3.9	1.2	1.8	1.3

I = low pH (4.4), SGTS operating Cases:

II = low pH (4.4), no SGTS
III = high pH (7.8), SGTS operating
IV = high pH (7.8), no SGTS

^aStandby Gas Treatment System.