Niagara Mohawk Power Corporation

May 1987

Nine Mile Point Nuclear Station 1986
 SPDES Annual Biological Monitoring Report

Nine mile point nuclear station

1986 SPDES ANNUAL
BIOLOGICAL MONITORING REPORT
SPDES PERMIT NO. NY 0001015 SBCTION IV.C

Prepared for
Niagara Mohawk Power Corporation
Nine Mile Point Nuclear Station
P.0. Box 32

Lycoming, New York 13093

Prepared by
EA Science and Technology
R.D. 2, Goshen Turnpike

Middletown, New York 10940
A Division of EA Engineering, Scjence, and Technology, Inc.

CONTENTS

Page 1-1

1. INTRODUCTION

1-12. METHODS AND MATERIALS 2-1
2.1 Schedule (Permit Section IV.B.1) 2-1
2.2 Sampling Procedure (Permit Section IV.B. 2, 3, 4,5) 2-1
2.3 Laboratory Processing (Permit Section IV.B.4) 2-4
2.4 Water Quality Determinations (Permit Section IV.B.5) 2-4
2.5 Data Presentation (Permit Section IV.C) 2-4
3. RESULTS 3-1
3.1 Impingement Abundance and Composition (Permit Section IV.C.3) 3-1
3.2 Length Distributions (Permit Section IV.B.4) 3-8
3.3 Biomass (Permit Section IV.B.4) 3-8
3.4 Water Quality (Permit Section IV.B.5) 3-16
REFERENCES
APPENDIX A - EXCEPTIONS TO STANDARD OPERATING PROCEDURES
APPENDIX B - STATION OPERATING CONDITIONS (PERMIT SECTION IV.C.9) APPENDIX C - SCIENTIFIC AND COMMON NAMES OF ALL TAXA COLLECTED IN 1986 APPENDIX D - COLLECTION EFFICIENCY AT NINE MILE POINT NUCLEAR STATION UNIT 1, 1984

Number	Title
2-1	Impingement Sampling Intensity as Required by the SPDES Permit for Nine Mile Point Nuclear Station Unit 1, 1986.
2-2	Impingement Sampling Dates for Nine Mile Point Nuclear Station Unit 1, 1986.
3-1	Actual Monthly Impingement Collections, Nine Mile Point Nuclear Station Unit 1, 1986.
3-2	Mean Daily Impingement Rate by Species at Nine Mile Point Nuclear Station Unit 1, 1986.
3-3	Monthly Impingement Rate Based on Flow at Nine Mile Point Nuclear Station Unit 1, 1986.
3-4	Estimated Monthly Impingement Based on Daily Average Rate at Nine Mile Point Nuclear Station Unit 1, 1986.
3-5	Estimated Monthly Impingement Based on Flow at Nine Mile Point Nuclear Station Unit 1, 1986.
3-6	Length Distribution of Select Represent tive Important Species Impinged at Nine Mile Point Nuclear Ste ion Unit 1, 1986.
3-7	Total Biomass of Impinged Organisms Colsected at Nine Mile Point Nuclear Station Unit 1, 1986.
3-8	Estimated Monthly Biomass of Collected Taxa at Nine file Point Nuclear Station Unit 1, 1986.

1. INTRODUCTION

The Nine Mile Point (NMP) Nuclear Station Unit 1 is solely owned and operated by Niagara Mohavk Power Corporation. The station is located on a 900 -acre site in Osvego County, Nev York, and is approximately 6.8 miles north-northeast of the City of Oswego. The power conversion system utilizes a 1,850 -megavatt thermal boiling vater reactor (BUR) designed and manufactured by the General Electric Corporation, and a $610,000-\mathrm{kilowatt}$ (net) turbine-generator. NMP Unit 1 has been operational since December 1969. The station is a critical, integral part of the New York State Master Energy Plan and, with the exception of installed hydroelectric capacity, the station is one of the most cost efficient sources of electrical energy within Niagara Mohawk's service area.

NMP Unit 1 utilizes a once-through, non-contact cooling vater system to dissipate thermal energy from the main condensers and auxiliary cooling systems. Cooling water is drawn from Lake Ontario by means of two main circulating water pumps rated at $946.25 \mathrm{~m}^{3}$ (250,000 gallons) pȩr minute and two service water pumps which operate at approximately $68.13 \mathrm{~m}^{3}(18,000$ gallons) per minute (total). Usually, one service water pump is operating except during the mid-summer months.

The lake intake structure is an open-sided hexagonal concrete structure located in approximately 5.5 meters (18 feet) of water and approximately 259 meters (850 feet) from the existing shoreline. The lake discharge structure is of a design that is similar to the intake structure. This structure is hexagonal with open-sided ports and is located approximately 102 meters (335 feet) from the shoreline and 2.6 meters (8.5 feet) belov the surface (lowest expected lake level).

Aquatic organisms, detritus, and other debris enter with the vater pumped from the vicinity of the submerged intake structure. Organisms, detritus, and debris flow through trash racks, which are used for removing large items, such as logs, and are impinged on traveling screens, which are used for screening out smaller materials. Periodically, the traveling screens are rotated and washed to remove any accumulation of impinged organisms or other material into a sluiceway which empties into an impingement collection basket. The aquatic organisms impinged at NMP Unit 1 have been monitored yearly since 1972 in order to estimate species abundance and composition.

This report presents the results of aquatic ecological studies conducted by EA Science and Technology, a Division of EA Engineering, Science, and Technology, Inc. during 1986 as required by the State Pollutant Discharge Elimination System (SPDES) Permit No. NY 000 1015, Section IV (dated 1 July 1983) covering Niagara Mohawk Power Corporation's NMP Unit 1.

Impingement catches (as required by Section IV.B of the permit) were monitored on a frequency of $4-9$ samples per month from January through December 1986 (a total of 51 samples in 1986).

Impingement sampling at NMP Unit 1 in 1986 resulted in the collection and identification of 31 fish taxa. One was identified to the family level and 1 was identified to the genus level; the remaining 29 were identified to the species level. Two invertebrates (crayfish and clam) were also represented in the 1986 collections. Alewife was the most numerous $(16,075)$ comprising 66 percent of the total catch. Alewife, rainbow smelt, white bass, and sculpins accounted for 95 percent $(23,125)$ of all fish collected $(24,264)$.

As required by correspondence from Niagara Mohawk Power Corporation to the Nuclear Regulatory Commission, all fish impingement samples are checked for the presence of the Asiatic clam (Corbicula sp.). No Corbicula sp. molluscs were found in the 1986 impingement collections.

2. METHODS AND MATERIALS

2.1 SCHEDULE (PERMIT SECTION IV.B.1)

In accordance with permit requirements, 78 impingement collections vere scheduled br tween 1 January and 31 December 1986 (Table 2-1). Samples were collected over a 24 -hour period on randomly selected days. Randomly selected sample dates were scheduled such that no more than ten (10) days occurred betveen samples. Table 2-2 lists the scheduled sampling dates.

In 1986, 51 of the 78 scheduled samples were successfully completed (Appendix A). From 9 March 1986 to 19 June 1986, NMP Unit 1 was shutdown for refueling and maintenance. During the outage, the main circulating water pumps and the traveling screens vere shut down for extended periods of time. Whenever the screens were operating, attempts vere made to collect impingement samples regardless of whether the main circulating water pumps were operating, although the SPDES permit (No, 0001015 Section IV.B.1) does not require sampling when the pumps are shut down. Maintenance on the traveling screens, coupled with the shutdown of the main circulating water pumps, prevented sample collections in April 1986. A total of 9 of 20 scheduled samples were collected in May 1986. During May, scheduled sample dates vere often changed to conform with circulating vater pump and traveling screen operating conditions at the station. In June, one sample was rescheduled due to additional maintenance associated with the outage. This sample was rescheduled and successfully collected on another date in June (Appendix A).

2.2 SAMPLING PROCEDURE (PERMIT SECTION IV.B. $2,3,4,5$)

Samples vere initiated around 1300 hours of the sampling day. At the beginning of the sample collection period, the traveling screens were rotated and washed for five minutes. The collection basket, with a $9.5-\mathrm{mm}$ ($3 / 8-\mathrm{in}$.) stretch mesh liner, was then positioned at the end of the sluiceway. The collection basket remained in place for the duration of the sample, unless high impingement or debris loads required that it be emptied, in which case it was removed, emptied, and repositioned.

At the end of the 24 -hour period, the traveling screens were rotated and washed for five minutes. The impinged organisms were washed into the collection basket; the basket was removed and emptied.

Plant operational data were obtained from station records for each sample date to document cooling vater flow rates, intake and discharge temperatures, and power production (Appendix B).

A subsampling routine was utilized for occasions when high impingement rates or high debris loade vere encountered. The subsampling technique was based on volume, and the total 24 -hour catch was estimated using the formula:

Estimated No. of Fish $=\frac{\text { Volume of Total Sample } \times \text { No. of Fish in Aliquot }}{\text { in Total Sample }}$

TABLE 2-1 IMPINGEMENT SAMPLING INTENSITY AS REQUIRED BY THE SPDES PERMIT FOR NINE MILE POINT NUCLEAR STATION UNIT 1, 1986

Number of Sampling Days Scheduled per Month ${ }^{\text {(a) }}$

January	4
February	4
March	4
April	16 (b)
May	20
June	4
July	4
August	6
September	4
October	4
November	4
December	$\frac{4}{78}$

a. Days assigned within each month were selected randomly using random numbers tables (Rand Corporation 1955).
b. None of the 16 scheduled samples vere successfully completed (Appendix A).
c. Nine of the 20 scheduled samples were successfully completed (Appendix A).

The volume of the total sample was determined by repeatedly filling a volumetrically graduated container, recording the values, and adding them. The total volume was thoroughly mixed by hand or with a shovel and spread out evenly over a flat surface. An aliquot(s) of the total sample vas randomly selected and this portion of the sample was removed and measured to determine its volume.

During 1986, subsamples constituted at least 25 percent by volume of the total sample. The fish in the subsample vere then processed according to regular laboratory procedures (Section 2.3).

2.3 LABORATORY PROCESSING (PERMIT SECTION IV.B.4)

After the impingement sample was collected, it was returned to the laboratory and all organisms vere sorted, identified, and enumerated. Identification vas made to the lovest possible taxonomic level, which was usually species. For the convenience of the reader, common names are used in the text; however, a list of common and their associated scientific names are included in Appendix C.

Specimens (to a maximum of 25 individuals) of the following species were analyzed for length and weight: white perch, alevife, rainbow smelt, smallmouth bass, yellow perch, and each species of salmonid. Any other species present in the collections vere enumerated and veighed to obtain a total count and total veight for each species (or lovest taxonomic level).

Total lengths were measured to the nearest millimeter. For the purposes of this report, 100 millimeters were used as a determinant of size class differentiation between young of the year and adults based on size range information in Scott and Crossman (1973). Weights were measured to the nearest 0.1 gram for specimens less than 10 grams, to the nearest 1.0 gram for specimens between 10 and 2,000 grams, and to the nearest 25 grams for specimens over 2,000 grams based on the precision of the scales used for measurement. Any unusual conditions, abnormalities, or presence of fish tags were noted on the data sheets.

2.4 WATER QUALITY DETERMINATIONS (PERMIT SECTION IV.B.5)

Intake and discharge temperatures vere recorded from the station operating conditions listed in Appendix B.

i. 5 DATA PRESENTATION (PERMIT SECTION IV.C)

In ake and discharge water temperatures were recorded from the plant operating corditions listed in Appendix B.

Moithly "mean" is equal to the total number of fish impinged by species on all sampling days in a given month divided by the total number of sampling days.

Anaual "mean" is equal to the total number of fish impinged by species on all sampling days in the year divided by the total number of sampling days in the year.

Total estimated impingement for each month was calculated using the formula: $D=\frac{c}{v}(x)$
where
$D=$ total estimated impingement
$c=$ the number of fish collected during the sampling period
$v=$ the volume of cooling water used during the sampling period
$x=$ the total monthly volume of cooling water used.
The annual impingement estimate was then calculated by adding the 12 monthly impingement estimates.

3. RESULTS

3.1 IMPINGEMENT ABUNDANCE AND COMPOSITION (PERMIT SECTION IV.C.3)

Impingement sampling at NMP Unit 1 during 1986 resulted in the collection of 31 fish taxa; 1 was identified to the family level, 1 vas identified to the genus level, and 29 vere identified to the species level. Two invertebrates (crayfish and clam) vere also represented in the 1986 collections (Table 3-1).
Alewife vas the most numerous species, comprising 66 percent of the total catch. Alevife, together with rainbow smelt, white bass, and sculpins, comprised 95 percent of the total catch for 1986.

In 1986, due to station outage conditions, temporal distributions of species collected were observed for only 11 months of the year (no samples were collected in April). Rainbov smelt vere found in the collections from all 11 months. Alewife vere collected in 9 months, absent only during the winter (February and March) collections. The other representative important species (RIS), white perch, yellow perch, and smallmouth bass, were collected during 8,6 , and 5 months, respectively. White perch, yellow perch, and smallmouth bass vere generally collected during the fall and winter months (January March; October - December). Four species of salmonids (brown trout, lake trout, rainbov trout, and chinook salmon) were collected in January. Brown trout vere also collected in June and December, lake trout in October, and chinook salmon in May. Tvo species (spottail shiner and sculpin) were found in 10 of the 11 months sampled.

Sticies diversity in 1986 was highest in the fall (October, November, and Dicember) and winter (January). The highest species diversity occurred in January when 30 taxa vere collected. The lovest diversity occurred in September vhen 4 taxa vere collected.

Generally, greater impingement collections occur during the spring and early summer months as adult fish (particularly alewife and rainbov smelt) migrate inshore to spavn. Impingement abundance then decreases through the summer as the adults finish spawning and move offshore into deeper, cooler vater. Impingement rates increase again in the fall and winter as young-of-the-year (YOY) become susceptible to impingement. The predominance of YOY at this time can be associated with the movement of large schools of YOY from their inshore nursery areas to overvintering grounds in the deeper vaters of Lake ontario.

Previous samples in the vicinity of NMP (EA 1982, 1983, 1984, 1985, and 1986) have indicated that the rates of impingement can also be affected by specific meteorological conditions such as high winds from the west or northwest, and resulting vave action. These conditions seem particularly influential to YoY, At NMP Unit 1, the above stated meteorological conditions occurred in October (sample of 16-17 October) and November (2-3 November). On 16-17 October, vest vinds of $10-20$ knots and $2-$ to $4-\mathrm{ft}$ waves resulted in the collection of YoY alewife. In November, 15- to 25 -knot winds from the southvest, which changed

	Jas	FEB	Mas	APR	MAT	Jus	JUL	AUG	SEP	OCT	Nov	DEC	$\begin{array}{r} \text { Anmual } \\ \text { Total } \\ \hline \end{array}$
No. of Samples	4	*	4	0	9	*	*	6	4	f	4	4	51
Species													
Alewife	1	-	---	ssc	717	246	298	3.852	1,762	5.081	3. 564	554	16.075
Raimbow smelt	992	218	33	ssc	88	44	3	3,363	23	60	416	1.106	6,346
White bass	263	21	57	mse	--*	--3	--	4	--	-	41	11	397
Sculpins	157	27	12	nsc	45	16	1	4	---	6	15	24	307
Tessellated derter	1	-	---	ssc	91	91	1	6	---	2	1	5	193
Gitrard shad	15	3	---	ssc	---	\cdots	--7	--	\cdots	34	116	15	183
spottail shiner	6	4	9	Tsc	11	27	17	50	--	10	44	5	183
White perch	61	5	7	nsc	-	---	1	4	---	10	12	35	135
Threespin* sticklebsck	90	10	---	nse	1	---	---	---	---	--7	1	--7	102
tewrald shimar	50	11	9	nse	---	---	---	---	---	6	1	15	80
Craytish	12	1	3	mse	17	---	---	1	---	---	14	15	63
smallmouth bass	37	1	5	nsc	---	---	---	-7	---	4	--	1	48
Rock bass	18	--	-	NSC	---	--	---	17	--78	---	5		40 28
minnow family (dnmaged)	-	---	--	NsC	--	--	---	5	28	4			28 25
Tellow perch	3	-	---	nse	8	7	4	5	--	---	7	--8	24 24
Trout perch	2	1	-	NsC sse	8	1	4	${ }_{11}^{2}$	---	---	1	1	21
Stonecat	3	---	--	ssc	---	1	---	18	---	---	1	2	13
Aaerican eel Lake chub	3	2	2	NSC	--	1	---	6	--	--	2	1	10
Whate sucker	3	---	---	sडc	1	---	--	5	---	---	--	---	9
Burbot	7	---	---	ssc	---	-	---	5	---	--	--		5
Pumpkinseed	--	---	---	sse	--	--	---	5	---	---	-	1	6
Brown trout	2	---	--	mse	---	1	---	--	---	---	---	2	5
Chinook salmon	1	---	--.	ssc	+		---	---	---	\cdots	---	-	5
Lake trout	2	---	---	NsC	--	--	---	+	--	4	---	--	5
Walley*	--	--	--	NsC	--.	---	---	4	--		--	1	5
Bluegitl	1	---	---	nse	-..	---	---	-	--	2	1	---	\%
Freshwater drum	1	---	---	wsc	---	---	---	---	---	---	1	--	2
Sea lamprey	--	---	--	nsc	---	---	--	---	--	2		---	2
clan	2	---	---	nse	---	---	---	---	---	--	---	---	1
carp	$\stackrel{1}{2}$	---	---	nse	---	---	---	---	---	--	---	---	1
Contral mudminnow	1	---	---	NsC	---	---	---	--	---	---	---	---	1
Eainbou trout	1	---	---	NsC	---	---	---	---	---	---	--	---	1
alewife (dasaged)	1	-	-	NSC	---	-	---	---	---	---	-	-	1
Totals	1.743	304	137	-	983	435	325	7.339	1, 816	5,225	4,212	1.750	24.329

WOTE: Dashes $(-\cdots)=$ no catches ande.
NSC $=$ no samples collected
to the northvest during the sample period (vave height was 5-8 feet), resulted in the collection of 81 percent of Yoy alevife for the month. Lifton and Storr (1977) found statistically significant correlations between environmental factors (vave height, water temperature, and vind action) and impingement at pover plants on Lake Erie and Lake Ontario. Wave height was correlated at a higher level than either of the other factors. They hypothesized that vaveinduced turbulence and possibly turbidity interfere with a fish's normal ability to detect and avoid an intake structure, resulting in a higher impingement.

In 1986, a station outage occurred from 8 March - 20 June at NMP Unit 1. The main circulating water pumps vere shut down for extended periods, consequently reducing impingement rates at a time when abundances would have been high. The greatest impingement collections occurred in August, October, and November when YOY (Section 3.2) dominated the collections.

Rainbov smelt dominated impingement samples in January (57 percent), February (72 percent), and December (62 percent). White bass dominated the samples in March (42 percent). Alewife dominated the samples from May through November, ranging from 52 percent (August) to 97 percent (September and October) of the total monthly collections.

The mean daily impingement rate (Table 3-2) was highest during the late summer (August) and fall (October and November) which corresponded with the actual impingenent abundances reportec for 1986 in Table 3-1.

Impingement rates based on flow (Table 3-3) vere slightly lower than the mean daily impingement rates expressed in Table 3-2. The exception is the data for March where the impingement rate based on flov is higher than the mean daily impingement rate. Differences are primarily due to the differences in the manner of data expression. The impingement rate based on flow is expressed by volume (number of fish per million cubic meters) of circulating water pumped. Outage conditions when little or no water is pumped and changes in the volume of water pumped during day-to-day station operations would influence the impingement rate expressed by this method. In March 1986, NMP Unit 1 began an outage for refueling and maintenance. A relatively small volume of vater vas pumped during the month which increased the rate of impingement based on flow for March.

The estimated number of aquatic organisms impinged at NMP Unit 1 (based on daily average rate) was 163,522 (Table 3-4). The estimate of impinged organfsms based on flow was 160,861 (Table $3-5$). The differences in the two estimates may be attributed to the two bases from which the estimations vere made and the influence of station operating conditions and weather on data collected. Overall, the estimates on Tables 3-4 and 3-5 are significantly lover due to the scheduling of an extended outage during the spring (April, May, and June) when impingement is highest for species such as alevife and rainbow smelt. Estimated annual impingement of alewife for 1986 vas 110,152 and 108,309 , respectively, for both methods (estimate by daily average rate precedes estimate by flow). These values represented 67 percent of the total estimated anaual impingements (for both methods) in 1986. Estimated

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	Nov	DEC	$\begin{array}{r} \text { Annual } \\ \text { Total } \\ \hline \end{array}$
No. of Samples	4	4	4	0	9	4	4	6	4	4	4	4	51

Alewife	0.25			NsC	79.67	61.50	74.50	642.00	440.50				
Rainbow smelt	248.00	54.50	B. 25	nse	9.78	11.00	0.75	560.50	+5.75	$1,270.25$ 15.00		$\begin{aligned} & 138.50 \\ & 276.50 \end{aligned}$	
White bass	65.75	5.25	14.25	NSC				0.67				276.50 2.75	124.43 7.78
Sculpins	39.25	6.75	3.00	NSC	5.00	4.00	0.25	0.67			10.25	2.75	7. 78
Tessellated darter	0.25	---	---	NSC	10.11	22.75	0.25	1.00	--	1.50	3.75 0.25	6.00	6.02 3.78
Gizzard shad	3.75	0.75	---	nsc	---	---			---	8.50		3.75	3.78 3.59
Spottail shiner	1.50	1.00	2.25	NSC	1.22	6.75	4. 25	8.33	---	2.50	11.00	3.75 1.25	3.59 3.59
White perch	15.25	1.25	1.75	NSC		---	0.25	0.67	---	2.50	12.00	8.75	3.59 2.65
Threespine stickleback	22.50	2.50	-.-	nsc	0.11	---	---	---			0.25	8.75	2.65 2.00
Emerald shiner	12.50	2.75	2.25	NSC		---	--			1.50	0.25		2.00 1.57
Craytish	3.00	0.25	0.75	nsc	1.89	---	---	0.17	-	1.50	3. 50	3.75	1.57 1.24
Smallmouth bass	9.25	0.25	1.25	NsC	.	---	---	0.	-	1.00	3.	3.75 0.25	1.24 0.94
Rock bass	4.50	---	---	NSC	---	---	---	2.83	---	1.00	1.25	-.	1.24 0.98 0.78
Minnow family (damaged)	---	---	---	NSC	---	---	---		7.00	---	1.25	---	0.78 0.55
Yellow perch	0.75	---	---	NSC	---	0.25	---	0.83	---	1.00	1.75	1.25	0.78 0.49
Trout perch	0.50	0.25	---	NSC	0.89	1.75	1.00	0.33	---				0.47
Stonecat	1.75	---	---	NSC	---	0.25	---	1.83	---	---	0.25	0.25	0.41
American eel	0.75	50	- -5.	NSC	---	0.25	---	1.00	0.75	--	0.25	-.-	0.25
White sucker	0.75	0.50	0.50	NSC	0.11	--	---	0.83	---	---	0.50	0.25	0.20
Burbot	1.75	---	---	NSC	0.12	-	---	0.83		---	---	---	0.18
Pumpkinseed		---	---	NSC	---	---	---	0.83	---	-			0.14
Brown trout	0.50	---	---	NSC	---	0.25	--	---	---	---		0.25 0.50	0.12
Chinook salmon	0.25	---		nsc	0.44			---				0.50	0.10
Lake trout	0.25	---	---	NSC	---	-	--	---	---	1.00			0.10
Walleye	---	---	---	nsc	---	---	---	0.67	--			0.25	0.10 0.10
Bluegill	0.25	---	---	nsc	---	---	---	0.67	--	0.50		0.25	0.10 0.08
Freshwater drum	0.25	---		nsc	---	---					0.25	-	0.08
Sea lamprey	---	---	---	nsc	---	-	-	--	--	0.50			0.04 0.04
clam	0.50	---	---	nsc	-	-	---	---	---			---	0.04
Carp	0.25	-	---	nsc	---	---	---	---					0.04
Central mudminnow	0.25	---	--	NSC				--					0.02
Rainbow trout	0.25	---		NsC								---	0.02
Alewife (damaged)	0.25	---	---	NSC	-	---	---	---	---	---		---	$\begin{aligned} & 0.02 \\ & 0.02 \end{aligned}$
Totals	435.75	76.00	34.25	0	109.22	108.75	81.25	1,223.17	454.00	1,306.25	1,060.50	445.00	477.04

	JAN	FEB	MAR	APR	MAY	Jus	JUL	AUG	SEP	OCT	nov	DEC	$\begin{array}{r} \text { Annusal } \\ \text { Total } \\ \hline \end{array}$
No. of Samples	4	4	4	0	9	4	4	6	4	4	4	4	51
Flow Samplei (MCM)	4.915	4.878	1.718	0.00	12.249	5.779	5.725	9.071	5.972	5.825	5.790	5.802	67.724

Species													
Alewife	0.203	--7	---	NSC	58.535	42.568	52.052	424.650	295.044	812.275	615.554	95.484	NA
Rainbow smelt	201.831	44.690	19.208	nsc	7.184	7.614	0.524	370.742	3.851	10.300	71.848	190.624	NA
white bass	53.510	4. 305	33.178	NSC	---	----	--	0.441	---	--70	7.081	1.896	NA
sculpins	31.943	5.535	6.985	Nsc	3.674	2.769	0.175	0.441	---	1.030	2. 591	4.137	Na
Tessellated darter	0.203	---	---	NSC	7.429	15.747	0.175	0.661	---	0.343	0.173	--7	81
Gizzard shad	3.052	0.615	---	NSC	---	---	---	---	---	5.837	20.035	2.585	NA
spottail shiner	1. 221	0.820	5.239	NSC	0.898	4.672	2.969	5.512	---	1.717	7.599	0.862	NA
White perch	12.411	1.025	4.074	NSC	- ---	---	0.175	0.441	---	1.717	2.073	6.032	NA
Threespine stickleback	18.311	2.050	-	NSC	0.082	---	---	---	---	---	0.173	-587	NA
Emerald shiner	10.173	2. 255	5.239	NSC	---	---	---	---	---	1.030	0.173	0.517	NA
crayfish	2.442	0.205	1.746	nsc	1.388	---	---	0.110	-..		2.418	2. 385	Na
Smallmouth bass	7.528	0.205	2.910	NSC	---	---	---		---	0.687		0.172	NA
Rock bass	3.662	-	---	NSC	---	---	---	1.874	---	---	0.864	---	KA
Minnow family (damaged)	-	---	---	NSC	--				4.689			862	NA
Tellow perch	0.610	---		NSC	653	0.173		0.551		0.687	1.209	0.862	NA
Trout perch	0.407	0.205	---	NSC	0.653	1.211	0.699	0.220 1.213	---	---	0.173	0.172	NA
Stonecat	1.424 0.610	---	---	NSC WSC	----	0.173 0.173	----	1.213 0.661	0.502	---	0.173	0.172	NA
American eal Lake chub	0.610 0.610	0.4120	1.164	NSC NSC	----	0.173	---	0.661	0.502	---	0.345	0.172	NA
Burbot	1.424	---	---	NSC	---	---	---	-	---	---	---		NA
Pumpkinseed	---		---	NSC	---	-	---	0.551	--	---	---	0.172	NA
Brown trout	0.407			NSC	. 327	0.173	---	---	---	---	---	0.345	NA
Chinook salmon	0.203			NSC	0.327	---	---	---	---		---		NA
Lake trout	0.203	---	---	NSC	---	---	---	0.-	---	0.687	---		NA
Walleye	----	---	---	NSC	---	---	---	0.441	---	- 343	0.173	0.172	NA
Bluegill	0.203	---	---	NSC	---	---	---	---	---	0.343	0.173	---	NA
Freshwater drum	0.203	---		NSC	---	---	--	---	---		0.173	---	NA
Sea lamprey	--70	---	---	NSC	---	---	---	---	---	0.343	---	---	NA
Clam	0.407	---	---	NSC	---	---	---	---	---	---	---	---	NA
carp	0.203	---	--	NSC	---	---	---	---	---	---	---	---	Na
Central mudminnow	0.203	---	---	nsc	---	---	---	---	--	---	--	---	NA
Rairbow trout	0.203	---	---	NSC	---	---	---	---	---	---	---	---	NA
Alewife (damaged)	0.203	---	---	NSC	---	---	---	---	--	---	---	---	NA
Totals	354.629	62.321	79.744	0	80.251	75.273	56.769	809.062	304.086	896.996	732.642	306.791	N1

NOTE: Dashes $(--)=$ no catches made.
NSC $=$ no samples collected.
NSC $=$ no samples collected. million cubic meters (MCM).
Units expressed as fish per mill

TABLE $3-4$ ESTIMATED MONTHLY IMPINGEMENT BASED ON DAILY AVERAGE RATE AT NINE MILE POINT NUCLEAR STATION UNIT 1 , 1986

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	$\begin{array}{r} \text { Annusel } \\ \text { Total } \\ \hline \end{array}$
No. of Samples	4	4	4	0	9	4	4	6	4	4	4	4	51

Species													
Alewife	8	--	--	NSC	2,470	1,845	2,310	19,902	13,215	39,378	26,730	4.294	110,152
Rainbow smelt	7.688	1,526	256	NSC	303	330	23	17,376	172	465	3,120	8,572	39.831
White bass	2,038	147	442	NSC	-		--	21	---		308	85	3,041
Sculpins	1,217	189	93	NSC	155	120	8	21	---	46	112	186	2.147
Tessellated darter	8	---	--	NSC	313	682	8	31	---	16 264	870	116	1,066 1,387
Gizzard shad	116	21	70	NSC	38	202	132		--	264 78	330	116 39	1,221
Spottail shiner	46	28	70	NSC	38	202	132	258 21	---	78	330 90	271	1,030
white perch	473	35	54	NSC	-	---	8	21	--	-	8	---	. 779
Threespine stickleback	698	70	-	NSC	3	---			-	46	8	23	612
Emerald shiner	388	77	70	NSC	59	---	---	5	----	46	105	116	408
Crayfish	93	7	23	NSC	59	---	-	5	---	31	105	116	372
Smallmouth bass	287	7	39	NSC	--		---	88	---	3	38	---	266
Rock bass	140	---	--	NSC	-		-	8	210	--	---	---	210
Minnow family (damaged)	---	---	--	NSC	-	8	---	26	21.0.	21	52	39	179
Yellow perch	23	--7	--	NSC	28	52	31	10	---	---	---	---	144
Trout perch	16	7	--	NSC NSC	28	52	31	57		---	8	8	135
stonecat	54	---	-	NSC	--	8	---	31	22	---		---	84
American eel	23	--1	-	NSC		8				---	15	8	76
Lake chub	23	14	16	NTC	--	---	--	26	---	--	---	---	52
White sucker	23	---	---	NSC	3		---		---	---	---	---	54
Burbot	54	---	----	NSC	-		-	26	---	---	---	8	34
Pumpkinseed	-			NSC	--	8	---	---	---	---	---	16	40
Brown trout	16	---		NSC	14		-	-	---	---	---	---	22
Chinook salmon	8	---		NSSC				-	---	31	---	---	39
Lake trout	8	---		NSC NSC				21	---			8	29
Walleye		---	---	NSC					---	16	8		32
Bluegill	8	---	---	NSC	-						8	---	16
Freshwater drum	8	---	-	NSC	---	-				6			16
Sea lamprey	-	---		NSC								---	16
clam	16	---	---	NSC	---		---					---	8
Carp	8	---		NSC									8
Central mudminnow	8	---	---	NSC	-								8
Rainbow trout	8	----		NSC NSC	---					---	---	---	8
Alewife (damaged)	8	---		NSC									
Totals	13,512	2,128	1,063	0	3,386	3,263	2,520	37,920	13.619	40,496	31,818	13,797	163,522

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AVG	SEP	OCT	Nov	DEC	Annual Total
No. of Samples	4	4	4	0	9	4	4	6	4	4	4	4	51
Flow Sampled (MCM)	4. 915	4.878	1.718	0.00	12.249	5.779	5.725	9.071	5.972	5.825	5.790	5.802	67.724
Tota: Monthly Flow (MCM)	37.619	34.262	13.754	2.039	14.413	41.508	43.557	46.815	44.771	45.036	43.468	44.962	412.204

species

Alewife
Rainbow smelt
White bass
Sculpins
Tessellated darter
Gizzard shad
Spottail shiner
White perch
Threespine sticklebeck
Emerald shiner
Crayfish
Smallmouth bass
Rock bass
Minnow family (damaged)
Yellow perch
Trout perch
Stonecat
American eel
Lake chub
White sucker
Burbot
Pumpkinseed
Brown trout
Chinook salmon
Lake trout
Walleye
Bluegill
Freshwater drum
Sea lamprey
Clam
Carp
Central mudminnow
Rainbow trout
Alewife (damaged)

Alewife (damaged)
Totals

8
7,593
2,013
1,202
8
115
46
467
689
383
92
283
138
-7
23
15
54
23
23
23
54
-7
15
8
8
8
8
8
8
15
8

13,346

$2,267$	$19,880$
-	21
8	21
8	31
129	258
8	21
-	5
---	---
-	88
-	26
30	10
---	57
-	31
--	26
-	---
-	-
-	-
-	21
---	-
-	-
---	---
-	-
---	-
---	-
2,473	37.878

13,209

11111111110111011111111100

108,309
39,517
39,517
3,030
\qquad
\qquad
1.836
1,38

1,186
1,185
1.025
768
\qquad
369
369
264
210
179
83
76
50
54
54
34
37
39
29
31
$\begin{array}{r}8 \\ 8 \\ \hline\end{array}$
160,861

NOTE: Dashes $(---)=$ no catches made.
NSC \quad no samples collected.
impingement of rainbow smelt vas 39,837 and 39,517 (24 and 25 percent), respectively, for the two methods of determination. Estimated impingement for the other RIS collected in 1986 are as follows: yellow perch (179; 179), white perch (1,$030 ; 1,025$), and smallmouth bass $(372 ; 369)$. Annual impingement of the salmonid species was estimated as follows: brown trout ($40 ; 37$), lake trout ($39 ; 39$), chinook salmon $(22 ; 13)$, and rainbow trout $(8 ; 8)$. Both methods of calculation arrived at identical estimates for some of the species (yellow perch, lake trout, rainbow trout). The small numbers of individuals impinged were probably a factor in the resulting equivalent estimations.

3.2 LENGTH DISTRIBUTIONS (PERMIT SECTION IV.B.4)

Length frequency distributions are given for nine representative important species (RIS): alewife, rainbow smelt, smallmouth bass, white perch, yellow perch, and salmonid species (brown trout, rainbow trout, lake trout, and chinook salmon) in Tables 3-6a through 3-6f. Alewife collections were dominated by adults and subadults from May through August. YOY alewife dominated impingement samples from October through December. Collections of alewife in January and September were limited to only a few individuals, all of which were adults. No samples were collected during a station outage in April.

Adult and subadult rainbow smelt dominated the smelt collections in the winter (January, February, and March) and late fall (November and December). Collections of rainbow smelt from May through August vere dominated by YOY. In some months, particularly August, September, and October, the YOY rainbow smelt were damaged and the required number of individual length measurements (25) could not be obtained accurately. In September, 23 rainbow smelt were collected, hovever, none were measurable.

In 1986, 89 percent of the white perch collected were Yoy. Collections of white perch in January and December were 89 and 91 percent YOY, respectively.

Yellow perch were generally collected as adults and subadults. Five YOY were collected in December impingement samples.

Smallmouth bass were collected as adults with the exception of 3 YOY collected in January, March, and December.

The salmonid family was represented by brown trout, rainbow trout, lake trout, and chinook salmon at NMP Unit 1 in 1986. All brown trout collected were collected as adults. One lake trout collected was a parr-marked YoY, the other was an adult. One parr rainbow trout was collected. In May, chinook salmon were collected as parrs. One adult chinook salmon was collected in January.

3.3 BIOMASS (PERMIT SECTION IV.B.4)

Total biomass collected in the 1986 impingement samples at NMP Unit 1 was 211,013 grams (211 kilograms). Alewife (66,473 grams, 66 kilograms) comprised 32 percent of the total biomass for 1986. Smallmouth bass (28 kilograms,

NOTE: NSC $=$ No samples collected.

RAINBOW SMELT

Length Intervals Centimeters (cm)	JAN	PEB	MAR	APR	MAY	JUN	JUL	$\underline{A \cup G}$	SEP	OCT	Nov	DEC	Interval Total
$3.0-4.9$	0	0	0	Nse	0	0	0	11	0	0	0	0	11
$5.0-6.9$	3	1	3	NSC	13	11	1	4	0	0	11	14	61
$7.0-8.9$	7	5	2	NSC	36	23	1	4	0	2	14	11	105
$9.0-10.9$	7	9	1	NSC	9	2	1	7	0	3	2	14	55
$11.0-12.9$	60	56	15	NSC	22	3	0	0	0	5	19	24	214
$13.0-14.9$	18	18	4	NSC	5	2	0	0	0	4	11	26	88
$15.0-16.9$	1	0	0	NSC	1	0	0	0	0	1	3	10	16
$17.0-18.9$	0	0	0	NSC	0	0	0	0	0	0	0	1	1
$19.0-20.9$	1	0	0	NSC	0	0	0	0	0	0	0	0	1
$21.0-22.9$	0	1	0	NSC	0	0	0	0	0	0	1	0	2
$23.0-24.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$25.9-26.9$	0	0	0	NsC	0	0	0	0	0	0	0	0	0
$27.0-28.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$29.0-30.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$31.0-32.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$33.0-34.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
Total Measured		100		NSC	86	41	3	26	0	15	61	100	554
Mean Length	11.8	12.0	11.1	NSC	9.3	8.0	7.9	6.5	0	11.7	10.5	11.4	10.6
Minimum Length	5.9	6.1	6.0	NSC	5.2	5.6	6.9	4.0	0	7.2	5.0	5.3	4.0
Maximum Length	20.7	22.1	14.5	NSC	15.5	14.0	9.9	9.9	0	15.1	22.7	17.0	22.7

NOTE: NSC $=$ No samples collected.

Length Intervals Centimeters (cm)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Interval Total
$3.0-4.9$	1	0	0	NsC	0	0	0	1	0	1	2	4	9
$5.0-6.9$	38	2	2	ssc	0	0	0	0	0	1	2	3	48
$7.0-8.9$	10	1	1	nsc	0	0	0	0	0	1	3	8	24
$9.0-10.9$	1	0	2	nsc	0	0	0	0	0	0	2	16	21
$11.0-12.9$	0	1	2	ssc	0	0	0	0	0	0	0	0	3
$13.0-14.9$	0	0	0	nse	0	0	0	0	0	0	0	0	0
$15.0-16.9$	0	0	0	nsc	0	0	0	0	0	0	0	0	0
$17.0-19.9$	0	0	0	ssc	0	0	0	0	0	0	0	0	0
$19.0-20.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$21.0-22.9$	0	0	0	nsc	0	0	0	0	0	0	0	1	1
$23.0-24.9$	0	0	0	NSC	0	0	0	0	0	0	0	1	1
$25.0-26.9$	2	0	0	WsC	0	0	1	0	0	0	0	1	4
$27.0-28.9$	2	0	0	NSC	0	0	0	0	0	0	0	0	2
$29.0-30.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$31.0-32.9$	0	0	0	wsc	0	0	0	0	0	0	0	0	0
$33.0-34.9$	2	0	0	ssc	0	0	0	0	0	0	0	0	2
Total Measured	56	4	7	NsC	0	0	1	1	0	3	9	34	115
Mean Length	8.9	7.6	9.0	nsc	0	0	26.0	3.9	0	6.1	7.4	9.7	9.0
Minimum Length	4.8	5.2	5.2	nsc	0	0	26.0	3.9	0	3.3	4.6	4.4	3.3
Maximum Length	33.3	11.6	11.7	nsc	0	0	26.0	3.9	0	8. 2	10.4	26.7	33.3

NOTE: NSC $=$ No samples collected.

Length Intervals Centimeters (cm)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	$\begin{gathered} \text { Interval } \\ \text { Total } \\ \hline \end{gathered}$
$3.0-4.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$5.0-6.9$	0	0	0	Nsc	0	0	0	0	0	0	0	0	0
$7.0-8.9$	0	0	0	Nsc	0	0	0	0	0	0	0	2	2
$9.0-10.9$	0	0	0	NSC	0	0	0	0	0	0	0	3	3
$11.0-12.9$	0	0	0	nsc	0	0	0	0	0	0	0	0	0
$13.0-14.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$15.0-16.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
17.0-18.9	0	0	0	NsC	0	0	0	0	0	0	1	0	1
$19.0-20.9$	1	0	0	Nsc	0	0	0	0	0	0	1	0	2
$21.0-22.9$	0	0	0	NSC	0	1	0	0	0	1	1	0	3
$23.0-24.9$	0	0	0	NSC	0	0	0	0	0	1	0	0	1
$25.0-26.9$	1	0	0	NSC	0	0	0	1	0	0	0	0	2
$27.0-28.9$	0	0	0	NSC	0	0	0	0	0	0	1	0	1
$29.0-30.9$	1	0	0	NSC	0	0	0	1	0	0	0	0	2
$31.0-32.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$33.0-34.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
Total Measured	3	0	0	NSC	0	1	0	2	0	2	4	5	17
Mean Length	25.2	0	0	NSC	0	22.2	0	27.7	0	23.4	21.8	9.0	19.5
Minimum Length	19.6	0	0	NSC	0	22.2	0	25.5	0	22.0	17.0	7.1	7.1
Maximum Length	29.9	0	0	NSC	0	22.2	0	30.0	0	24.7	27.2	10.4	30.0

NOTE: NSC $=$ No samples collected.

SMALLMOUTH BASS

Length Intervals Contimeters (cm)	SAN	PEB	MAR	APR	MAY	Juv	JuL	${ }^{\text {AUG }}$	SEP	OCT	nov	DEC	$\begin{gathered} \text { Interval } \\ \text { Total } \\ \hline \end{gathered}$
$5.0-6.9$	0	0	0	nsc	0	0	0	0	0	0	0	1	1
1.0-8.9	1	0	0	msc	0	0	0	0	-	0	0	0	1
$9.0-10.9$	0	0	1	sse	0	0	0	0	0	0	0	0	1
$11.0-12.9$	0	0	0	nse	0	0	0	0	0	0	0	0	0
$13.0-14.9$	0	0	0	nse	0	0	0	0	0	0	0	0	0
$15.0-16.9$	0	0	0	sse	0	0	0	0	0	0	0	0	0
$17.0-18.9$	0	0	0	sse	0	0	0	0	0	0	0	0	0
$19.0-20.9$	1	0	0	sse	0	0	0	0	0	0	0	0	1
$21.0-22.9$	1	0	0	nse	0	0	0	0	0	0	0	0	1
$23.0-24.9$	1	0	0	nse	0	0	0	0	0	0	0	0	1
$25.0-26.9$	3	0	2	nsc	0	0	0	0	0	0	0	0	5
$27.0-28.9$	5	0	1	ssc	0	0	0	0	0	0	0	0	6
$29.0-30.9$	4	0	0	sse	0	0	0	0	0	0	0	0	4
$31.0-32.9$	3	-	0	wsc	0	0	0	0	0	1	0	0	4
$33.0-34.9$	3	0	0	ssc	0	0	0	0	0	0	0	0	3
$35.0-36.9$	4	0	0	sse	0	0	0	0	0	0	0	0	4
$37.0-38.9$	3	0	0	ssc	0	0	0	0	0	0	0	0	3
$39.0-40.9$	5	1	1	sse	0	0	0	0	0	0	0	0	7
$41.0-42.9$	1	0	0	wsc	0	0	0	0	0	0	0	0	1
$43.0-44.9$	1	0	0	sse	0	0	0	0	0	0	0	0	1
45.0-46.9	1	0	0	sse	0	0	0	0	0	0	0	0	1
Total Measured Mean Length	37 32.4	39. ${ }^{1}$	5 25.4	sse nsc	0	0	:	0	0	32.5	0	5. 1	45 31.2
Minimum Length	8.4	39.5	9.2	ssc	0	0	0	0	0	32.5	0	5.6	5.6
Maximum Length	45.3	39.5	40.0	ssc	0	0	0	0	0	32.5	0	5.6	45.3

NOTE: NSC $=$ No samples collected.

BROWN TROUT

Length Intervals Centimeters (Cm)	JAN	FEB	MAR	APR	MAY	Jus	JUL	AUG	SEP	OCT	Nov	DEC	$\begin{gathered} \text { Interval } \\ \text { Total } \end{gathered}$
$47.0-48.9$	0	0	0	NSC	0	0	0	0	0	0	0	1	1
$49.0-50.9$	1	0	0	NSC	0	0	0	0	0	0	0	0	1
$51.0-52.9$	0	0	0	NSC	0	1	0	0	0	0	0	0	1
$53.0-54.9$	0	0	0	Nsc	0	0	0	0	0	0	0	0	0
$55.0-56.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$57.0-58.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$59.0-60.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$61.0-52.9$	1	0	0	NSC	0	0	0	0	0	0	0	0	1
$63.0-64.9$	0	0	0	NSC	3	0	0	0	0	0	0	1	1
Total Measured	2	0	0	asc	0	1	0	0	0	0	0	2	5
Mean Length	55.6	0	0	nsc	0	52.0	0	0	0	0	0	55.3	54.8
Minimum Length	50	0	0	H5C	0	52.0	0	0	0	0	0	47.0	47.0
Maximum Length	61.2	0	0	NSC	0	52.0	0	0	0	0	0	63.6	63.6
						Ral	W TR						
Length Intervals Centimeters (cm)	Jan	FEB	MAR	APR	MAY	30\%	JUL	AUG	SEP	OCT	NOV	DEC	$\begin{gathered} \text { Interval } \\ \text { Total } \end{gathered}$
$3.0-4.9$	1	0	0	\#sc	0	0	0	0	0	0	0	0	1
$5.0-6.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
7.0-8.9	0	0	0	nse	0	0	0	0	0	0	0	0	0
$9.0-10.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$11.0-12.9$	0	0	0	N5C	0	0	0	0	0	0	0	0	0
$13.0-14.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$15.0-16.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$17.0-18.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$19.0-20.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$21.0-22.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$23.0-24.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$25.0-26.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$27.0-28.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$29.0-30.9$	0	0	0	NSC	0	0	0	0	0		0	0	0
$31.0-32.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
$33.0-34.9$	0	0	0	NSC	0	0	0	0	0	0	0	0	0
Total Measured	1	0	0	nsc	0	0	0	0	0	0	0	0	1
Nean Length	4.8	0	0	NSC	0	0	0	0	0	0	0	0	4.8
Minimum Length	4.8	0	0	NSC	0	0	0	0	0	0	0	0	4.8
Maximus Length	4.8	0	0	NSC	0	0	0	0	0	0	0	0	4.8

						Lak	Rout						
Length Intervals Centiseters (cm)	JAN	PEB	MAR	APR	MAY	Jus	JUL	${ }_{\text {AUG }}$	SEP	OCT	nov	DEC	Interval Total
$9.0-10.9$	0	0	0	sse	0	0	0	0	0	0	0	0	0
$11.0-12.9$	1	0	0	wsc	0	0	0	0	0	0	0	0	1
$13.0-14.9$	0	0	-	ssc	0	0	0	0	0	0	0	0	0
$65.0-66.9$	0	0	0	sse	0	0	0	,	0	0	0	0	0
$67.0-68.9$			-	nsc	0	0	,	0	0	1	0	0	1
$69.0-70.9$	0	0	0	nse	0	0	0	-	0	0	0	0	0
Total Measured	1	0	,	nse	0	0	0	-	0	1	0	0	2
Mean Length	11.3	0	0	ssc	0	0	0	0	0	68.3	0	0	39.8
Minimum Length	11.3		0	sse	0	0	.	0	0	68.3	0	0	11.3
Maximum Length	11.3	0	0	sse	0	0	0	0	0	68.3	0	0	68.3
	CHINOOK SALMON												
Length Intervals Centimeters (cm)	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	nov	DEC	Interval total
$3.0-4.9$	-	0	0	wse	0	0	0	0	0	0	0	0	I
$5.0-6.9$	0	0	0	nsc	1	0	0	0	0	0	0	0	1
$7.0-8.9$	0	0	0	ssc	3	0	0	0	0	0	0	0	3
$33.0-34.9$,	0	0	wse	0	0	0	0	0	0	-	0	0
$35.0-36.9$	1	0	0	nsc	0	0	0	0	0	0	0	0	1
$37.0-38.9$	0	0	0	wse	0	0	0	-	0	0	0	0	
Total measured	1	0	0	wsc	4	0	0	0	0	0	,	0	5
Mean Length	36.0	0	0	nsc	7.3	0	0	0	0	0	0	0	13.1
Minimum Length	36.0	0	0	nsc	6.4	0	0	0	0	0	0	0	6.4
Maximum Length	36.0	0	0	sse	7.9	0	0	0	0	0	0	0	36.0

13 percent), rainbow smelt (17 kilograms, 8 percent), gizzard shad (16 kilograms, 7 percent), and burbot (14 kilograms, 7 percent) were second through fifth in rank, respectively, by veight (Table 3-7).

The estimated biomass (based on flow) was 1,411,953 grams (1, 412 kilograms) of which 353,205 grams (353 kilograms, 25 percent) was estimated as the weight of alewife (Table 3-8). The biomass of smallmouth bass was estimated at 212,688 grams (213 kilograms, 15 percent). Estimated biomass for rainbow smelt was 121,940 (9 percent); for gizzard shad the estimated biomass was 119,378 grams (8 percent); and burbot was 108,502 grams (8 percent) of the total estimated biomass. Biomass is generally more widely distributed among the species collected since a few heavy-bodied fish (basses and perches) can weigh more than larger numbers of the more fragile-bodied alewife and rainbow smelt.

3.4 WATER QUALITY (PERMIT SECTION IV.B.5)

Intake and discharge temperatures were recorded in the station operating conditions and are listed in Appendix B. The intake temperatures ranged from 0.0 C on 1 January 1987 to a maximum of 23.1 C on 5 August 1987. The discharge temperatures ranged from a minimum of 0.2 C on 24 January 1987 to a maximum of 39.6 C on 9 August 1986. These temperatures may have occurred on additional days, however, the dates given are the first date of occurrence for minimum and maximum temperatures in the intake and discharge at NMP Unit 1.

	JAN	PES	MAR	APR	May	Jun	JUL	AUG	SEP	OCT	NOV	DEC	Annual Grand Total
No. of Samples	4	4	4	0	9	4	4	6	4	,	,	4	51

Alewife	23	---	---	NSC	17,303	5.491	6,378	15,801	845	6,200	12,204	2,228	66,473
Rainbow smelt	7.907	1,935	243	NSC	405	133	7	1,360	7	518	1,342	3,000	16,857
White bass	3,257	305	813	NSC	---	---	---	352	---	---	1,346	121	6,194
Sculpins	554	94	37	NSC	113	40	2	4	---	29	55	97	1,025
Tessellated darter	<1	---	---	NSC	204	138	<1	7	---	<1	3	---	355
Gizzard shad	8,517	1,305	---	NSC	---	---	---	---	---	196	976	4,669	15,663
Spottail shiner	88	19	65	NSC	98	265	164	376	---	41	400	31	1,547
White perch	3,122	30	67	Nsc	-	---	237	3	---	25	44	898	4,426
Threespine stickleback	105	13	---	wsc	1	---	---	---	---	---	1	---	120
Emerald shiner	216	45	34	NSC	---	---	---	---	---	32	<1	12	340
Craytish	48	3	6	NSC	72	---	---	6	---	---	109	45	289
Smallmouth bass	23,139	806	1,812	ssc	---	---	---	---	---	1.992	---	2	27,751
Rock bass	5,592	---	---	ssc	---	---	---	1.450	---	---	557	---	7,599
Minnow family (damaged)	-7-	---	---	NsC	---	--	---	---	12	-	---	-	12
Tellow perch	744	-	---	NSC	--	123	---	1. 250	---	582	713	34	3.446
Trout perch	24	3	---	NSC	104	87	35	18	---	---	---	---	271
Stonecat	508	---	---	NSC	---	26	---	693	---	---	26	55	1,308
American eel	1,460	\square	---	NSC	---	136	---	5.297	560	---	-	--	7,453
Lake chub	96	7	4	NSC	-	---	---		---	---	36	12	155
White sucker	2.342	---	---	NSC	508	---	---	3,142	---	---	---	---	5,992
Burbot	14,176	---	---	NSC	---	---	---	---	---	---	---	---	14,176
Pumpkinseed	---	---	---	NSC	---	---	---	567	---	---	---	190	757
Brown tront	4,800	---	---	NSC	---	2,000	---	---	---	---	---	5,023	11,823
Chinook salmon	487	---	---	nsc	13	---	---	---	---	--	---	-	500
Lake trout	10	---	---	NSC	---	---	---	-	--	13,200	---	--	13,210
Walleye	-	---	---	NSC	---	---	---	52	---	---	---	725	777
Bluegill	22	---	---	NSC	---	---	---	---	---	2	2	-	26
Freshwater drum	24	---	---	NSC	---	---	---	---	---	---	15	---	39
Sen lamprey	--	---	--	NSC	---	---	---	---	---	366	---	---	366
Clam	4	---	---	NSC	---	---	---	---	---	---	---	---	4
Carp	2,050	---	---	NSC	---	---	---	---	---	---	---	---	2,050
Central mudminnow	4	-	---	NSC	---	---	---	---	---	---	---	---	4
Rainbow trout	1	--	--	NSC	---	---	---	---	---	---	---	---	1
Alewife (damaged)	4	---	---	NSC	---	---	---	---	---	\cdots	---	---	4
Totals	79.325	4, 565	3,081	0	18,821	8.439	6,824	30,378	424	23,184	17,830	7,142	211,013

NOTE: Dashes $(---)=$ no catches made
NSC = no samples collected
Units expressed in grams

	JAN	FEB	MAR	APR	MAY	Jun	JuL	AUG	SEP	OCT	NOV	DEC	Annual Totsl
No. of Samples	4	4	4	0	9	4	4	6	4	4	4	4	51
Flow Samplod (MCM)	4. 915	4.878	1.718	0.00	12.249	5.779	5.725	9.071	5.972	5.825	5.790	5.802	67.724
Total Monthly Flow (MCM)	37.619	34.262	13.754	2.039	14.413	41.508	43.557	46.815	44.771	45.036	43.468	44.962	412.204
species													
Alewife	176	--7-	-7-	Nse	20,360	39.439	48,525	81.548	6,335	47.935	91.621	17.266	353,205
Rainbow smelt	60.520	13,591	1,945	nsc	477	955	53	7,019	52	4,005	10,075	23,248	121,940
White bass	24,929	2,142	6,509	nse	---	---	-3	1,817	---	,	10,105	938	46,440
sculpins	4, 240	660	296	ssc	133	287	15	21	---	224	413	752	7,041
Tessellated darter	8	-	-	NsC	240	991	8	36	---	8	23	82	1,314
Gizzard shad	65,188	9. 166	-720	nsc				1.941	---	1,515	7.327	36,182	119,378 10,094
Spottail shiner	674	133	520	nsc	115	1,903	1,248	1,941	---	317	3,003	240	10,094
white perch	23,896	211	536	nsc	---	---	1,803	15	---	193	330	6,959	33,943
Threespine stickleback	804	91	--7	NSC	1	---	---	-..-	---	-74	8	\cdots	904 2
Emerald shiner	1,653	316	272	nsc	--7	---	---	--7	---	247	8	93	2,589
Crayfish	367	21	48	NsC	85	---	---	31	---	15.401	818	349	1,719
Smallmouth bass	177,104	5, 661	14,507	nsc	---	---	---		--	15,401	4.-182	15	212,688
Rock bass	42,801	---	---	nsc	---	--	---	7,483	---	---	4,182	---	54,466
```Minnow family (damaged)```	5, 695	---	---	NSC	---	--	---	6. 451	90	4. 500	5,3	263	90
Yellow perch	5.695	-	---	NSC	122	883	266	6, 451	---	4.500	5,353	263	23,145 1,311
Trout perch	184	21	---	NSC	122	625 187	266	$\begin{array}{r}6 \\ 3 \\ \hline\end{array}$	-	-			1,311
Stonecat	3,888 11.175	---	--	wse	---	187 977	----	3,577 27.338	4,198	---	195	426	8,273 43,688
American eel Lake chub	11,175 735	49	32	NSC NSC	---	977	---	27.338	4,198	---	270	93	43,688 1,179
White sucker	1 17.925	49	32	NSC	598	---	---	16,216	---	---	---	---	34,739
Burbot	108,502	---	---	nse	---	---	---	6,	---	---	---	--7	108,502
Pumpkinseed	--	---	---	NSC	---	14, 365	---	2,926	---	---	---	1,472	4, 398
Brown trout	36.739	---	---	nsc	-	14,365	---	---	---	---	---	38,925	90,033
Chinook salmon	3.727	---	---	NSC	15	---	---	---	---	--7	---	--	3,742
Lake trout	77	---	---	nsc	---	---	---	---	---	102,056	---	--7	102,133
Walleye	$\cdots$	---	---	NSC	---	---	---	268	---	---15	- 15	5,618	5,886
Bluegill	168	---	---	NsC	---	---	---	---	---	15	15	---	198
Freshwater drum	184	---	---	NSC	--	---	---	---	---	--130	113	--	297
Sea lamprey	---	---	---	NSC	---	--	---	---	---	2,830	---	---	2,830
clam	31	---	---	wsc	---	---	--	---	---	---	---	---	$\begin{array}{r}31 \\ \hline 1591\end{array}$
Carp	15.691	--	---	wsc	---	---	---	---	---	---	---	--	15,691
Central mudminnow	31	---	---	nsc	---	---	---	---	---	---	---	---	31
Rainbow trout	8	--	-	NSC	---	---	---	---	---	-	--	---	8
alewife (damaged)	31	-	---	NSC	---	---	---	---	-	--	---	---	31
Totals	607,151	32,062	24,665	0	22,146	60,612	51,918	156,780	10,675	179,246	133,859	132,839	1,411,953

## REFERENCES

EA Science and Technology, a Division of EA Engineering, Science, and Technology, Inc. (formerly Ecological Analysts, Inc.). 1982. 1981 Nine Mile Point Aquatic Ecology Studies. Prepared for Niagara Mohawk Power Corporation and Power Authority of the State of New York.

EA. 1983. Nine Mile Point 1982 Aquatic Ecology Studies. Prepared for Niagara Mohawk Pover Corporation and Power Authority of the State of New York.

EA. 1984. Nine Mile Point Nuclear Station 1983 SPDES Annual Biological Monitoring Report. SPDES Permit No. NY 0001015 Section IV.C.

EA. 1985. Nine Mile Point Nuclear Station 1984 SPDES Annual Biological Monitoring Report. SPDES Permit No. NY 0001015 Section IV.C.

EA. 1986. Nine Mile Point Nuclear Station 1985 SPDES Annual Biological Monitoring Report. SPDES Permit No. NY 0001015 Section IV.C.

Lifton and Storr. 1977. The Effect of Environmental Variables on Fish Impingement, in Fourth National Workshop on Entrainment and Impingement (L.D. Jensen, ed.), pp. 299-311.

Rand Corporation. 1955. A Million Random Digits with 100,000 Normal Deviates. Free Press, Glencoe, Illinois.

## APPENDIX A

EXCEPTIONS TO STANDARD OPERATING PROCEDURES

## APPENDIX A

EXCEPTIONS TO STANDARD OPERATING PROCEDURES

01 APR - 23 MAY
Void Impingement Samples - In 1986, 51 of the 78 scheduled samples vere successfully completed. From 1 April to 23 May, the traveling screens vere inoperable (due to required maintenance during an outage) and no samples could be collected. During this time, the main circulating vater pumps vere shut down and, according to SPDES Permit No. 0001015 Section IV.B.1, sampling vas not required. Samples were rescheduled as soon as the traveling screens vere operable, regardless of whether the main circulating vater pumps vere operating. Rescheduled samples vere collected on every available date from 23 May to the end of the month. Nine of the 20 scheduled samples vere collected in May. None of the scheduled samples for April were collected.

11 JUN

Void Impingement Sample - At the time of collection on 11 June, the impingement sample vas declared void as a result of work conducted on valves and the shutdown of the main circulating vater pumps. The traveling screens vere unable to be vashed. The sample vas rescheduled and successfully collected on 17 June.

APPENDIX B
STATION OPERATING CONDITIONS (PERMIT SECTION IV.C.9)

Date	No. of Circulating Water Pumps	So. of Service Water Pumps	Total Voluse ( $\mathbf{m a n}^{3}$ ) of Water Pumped	Mean Electrical Output (MWe)	Temperatures (C)	
					Intake	Discharge
1	2	1	1, 148, 399.3	529	0.0	19.0
2	2	1	$1,150,034.4$	525	0.4	19.7
3	2	1	$1,193,637.6$	523	0.7	19.2
4	2	1	$1,178,921.5$	522	1.0	19.9
5	2	1	$1,336,983.1$	321	1.7	18.4
6	2	1	$1,236,695.8$	520	0.0	19.6
7	2	1	1,221,979.7	512	$0=$	21.9
8	2	1	$1,193,637.6$	515	0.0	18.4
9	2	1	$1,135,863.4$	513	0.0	17.4
10	2	1	1,078,089.1	511	6.0	17.4
11	2	1	1,221,979.7	508	0.9	17.8
12	2	1	1,221,979.7	510	e. 0	17.4
13	2	1	1,221,979.7	505	0.0	17.3
14	2	1	1,221,979.7	501	0.9	17.4
15	2	1	1,226,885.0	498	0.6	18.1
16	2	1	1, 226,885.0	498	1.0	18.5
17	2	1	$1,226,885.0$	499	0.3	17.9
18	2	1	1,226, 885.0	351	0.1	12.6
19	2	1	1,226,885,0	0	0.4	0.6
20	2	1	$1,226,885,0$	0	0.5	0.6
21	2	1	$1,226,885.0$	0	0.3	0.4
22	2	1	$1,226,885,0$	0	0.3	0.3
23	2	2	1, 226, 885.0	0	0.3	0.3
24	2	1	$1,226,885,0$	0	0.1	0.2
25	2	1	$1,226,885,0$	117	0.9	10.2
26	2	1	1,226,885,0	338	1.6	15.6
27	2	1	$1,226,885.0$	461	0.4	16.6
28	2	1	$1,226,885.0$	518	0.0	16.9
29	2	1	$1,226,885.0$	484	0.0	16.4
30	2	1	$1,226,885.0$	483	0.3	17.0
31	2	1	$1,226,885.0$	483	0.0	16.2



Date	No. of Circulating Water Pumps	No. of Service Water Pumps	Total Voluse ( $\mathbf{m a}^{3}$ ) of water Pumped	Man Electrical output (MWe)	Temperatures ( C )	
					Intake	Discharge
1	2	1	1,217,074.3	419	0.0	14.2
2	2	1	$1,217,074.3$	417	0.0	14.2
3	2	1	1,217,074.3	415	0.1	14.8
4	2	1	1,248,686.6	414	0.3	15.3
5	2	1	1,262,857.7	411	0.3	15.5
6	2	1	1,262,857.7	409	0.4	15.4
7	2	1	1,261,222.6	396	0.1	11.1
${ }^{\text {a }}$	2	1	1,261,222.6	63	0.0	3.6
9	2	1	1,261,222.6	0	0.1	0.6
10	2/1	1	658,953.4	0	0.4	0.8
11	1	1	$654,593.0$	0	0.6	3.4*
12	$1 / 0$	1	$63,769.7$	0	0.7	5.1
13	0	1	63,769.7	0	0.9	5.8
14	0	1	63,769.7	0	1.0	6.2
15	0	1	$63,769.7$	0	1.1	5.9
16	0	1	63,769.7	0	1. 2	6.0 5.3
17	0	1	59,954.4	,	1.2	5.3
18	0	1	59,954.4	0	1.2	5. 3
19	0	1	59,954.4	0	2.2	6. ${ }^{5}$
20	0	1	59,954.4	0	2.1	5.7
21	0	1	59,954.4	0	1.2	4.3
22	0	1	59,954.4	0	1.4	4.8
23	0	1	59,954.4	0	1.6	4.9
24	0	1	61,589.5	-	1.7	5.5
25	0	1	$61,589.5$	-	1.5	5.4
26	0	1	61.589 .5	0	2.8	5.5
27	0	1	$61,589.5$	0	2.3	6.5
28	0	1	$61,589.5$	0	2.8	5.9
29	0	1	61.589 .5	0	3.4	7.0
30	0	1	$61,589.5$	0	3.2	6.3
31	0	1	61,589.5	0	4.1	6.4

[^0]STATION: Nine Mile Point, Unit 1 MONTH: April 1986

Date	Water Puaps	Water Pumps	Water Pumped	output (MWe)	Intake	Discharge
1	0	1	61,589.5	0	3.8	6.6 *
2	0	1	$61,589.5$		5.7	7.6
3	0	1	61,589.5	0	4.1	7.2
4	0	1	61,589.5	0	3.6	6.5
5	0	1	61,589.5	0	3.6	7.3
6	0	1	$61,589.5$	0	4.3	7.2
7	0	1	61,589.5	0	3.9	7.3
8	0	1	51,589.5	0	5.3	7.8
9	0	1	$61,589.5$	0	5.8	9.3
10	0	1	61,589.5	0	5.5	9.0
11	0	1	61,589.5	0	5.7	9.1
12	0	1	61,589.5	0	3.8	7.3
13	0	1	61,589.5	0	5.6	8.1
14	0	1	61,589.5	0	4.8	8.2
15	0	1	61,589.5	0	3.9	7.3
16	0	1	$61,589.5$	0	3.4	7.0
17	0	1	61,589.5	0	3.9	7.2
18	0	1	65,404.8	0	4. 5	7.9
19	0	1	65,404.8	0	3.7	7.2
20	0	1	65,404.8	0	3.2	6.2
21	0	1	79,575.8	0	5.1	7.2
22	0	1	79,575.8	0	5.1	7.9
23	0	1	79,575.8	0	4.1	6.5
24	0	1	79,575.8	0	6.2	8.3
25	0	1	79,575.8	0	6.7	8.9
26	0	1	79,575.8	0	7.4	9.5
27	0	1	79,575.8	0	7.7	9.8
28	0	1	79.575 .8	0	7.6	10.1
29	0	1	79,575.8	0	8.1	9.8
30	0	1	79,575.8	0	7.9	10.4

[^1]| Station: Nine Mile Point, Unit |  |  |  | MONTH: May 1986 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | No. of Circulating Water Puaps | No. of service Water Pumps | Total Volume (m3) of$\qquad$ | Mean Electrical output (MWe) | Temperatures (C) |  |
|  |  | Water Pumps |  |  | Intake | Discharge |
| 1 | 0 | 1 | 79,575.8 | 0 | 6.7 | $9.3 *$ |
| 2 | 0 | 1 | 79,575.8 | 0 | 8.0 | 10.6 |
| 3 | 0 | 1 | 79,575.8 | 0 | 7.4 | 9.6 |
| 4 | 0 | 1 | 77,575.8 | 0 | 7.2 | 9.3 |
| 5 | 0 | 1 | 79, 575.8 | 0 | 7.1 | 9.2 |
| 6 | 0 | 1 | 79.575.8 | 0 | 7.8 | 9.8 |
| 7 | 0 | 1 | 79,575, | 0 | 7.9 | 10.6 |
| 8 | 0 | 1 | 79,575. | 0 | 7.5 | 10.0 |
| 9 | 0 | 1 | 79, 575.8 | 0 | 7.3 | 9.9 |
| 10 | 0 | 1 | 79,575.8 | 0 | 6.7 | 9.3 |
| 11 | 0 | 2 | 79,575.8 | 0 | 7.8 | 10.4 |
| 12 | 0 | 1 | 79, 575. | 0 | 7.7 | 9.8 |
| 13 | 0 | 1 | 79,575.8 | 0 | 6.1 | 8.3 |
| 14 | 0 | 1 | 79,575.8 | 0 | 5.8 | 8.4 |
| 15 | 0 | 1 | 79, 575.8 | 0 | 5.4 | 7.7 |
| 16 | 0 | 1 | 79, 575.8 | 0 | 6.2 | 8.4 |
| 17 | 0 | 1 | 29,575.8 | 0 | 6.4 | 8.9 |
| 18 | 0 | 1 | 79,575.8 | 0 | 8.6 | 10.8 |
| 19 | 0 | 1 | 79,575.8 | 0 | 8.4 | 10.7 |
| 20 | 0 | 1 | 79,575.8 | 0 | 6.8 | 9.4 |
| 21 | 0 | 1 | 79,575.8 | 0 | 7.5 | 9.5 |
| 22 | 0 | 1 | 79,575.8 | 0 | 9.0 | 10.9 |
| 23 | $0 / 2$ | 1 | 719.997.8 | 0 | 8. 5 | 9.6 |
| 24 | 2 | 1 | $1.257,952.3$ | 0 | 8.6 | 8.8 |
| 25 | 2 | 1 | 1,257,952.3 | 0 | 9.4 | 9.7 |
| 26 | 2 | 1 | 1,445,991.1 | 0 | 9.7 | 9.8 |
| 27 | 2 | 1 | 1,439,995.7 | 0 | 10.3 | 10.5 |
| 28 29 | 2 | 1 | 1,439,995.7 | 0 | 10.8 | 11.2 |
| 29 | 2 | 1 | 1,439.995.7 | 0 | 11.2 | 11.6 |
| 30 | 2 | 1 | 1.439.995.7 | 0 | 11.1 | 11.4 |
| 31 | 2 | 1 | 1.439 .995 .7 | * | 11.5 | 11.8 |

[^2]temperatures as a result of the effect of the position of the temperature probe and
the sinimal flow from 1 to 23 May 1986.



Bate	So. of circulatimg Water Fanps		So of Service	Total Wolume (a3) of Water Pawped	Wean Electrical Oatpot (MWe)	Teaperatares (C)	
			Water Puaps			Intake	Discharge
1		2	1	1,451,986.6	602	16.2	33.1
2		2	1	1,451,986.6	601	15.9	33.1
3		2	1	1.451 .986 .6	601	16.9	34.1
4		2	1	1, 451,956 , 5	604	16.6	33.9
5		2	1	1,451,986.6	602	17.4	34.9
6		2	1	1,451,986.6	602	17.5	35.1
7		$z$	1	$1.451,986.6$	576	18.3	31.5
8		2	1	1,451,986.6	3	18.4	22.3
9		2	1	1,451,986.6	0	19.1	19.3
10		1	1	336,923.8	0	18.9	18.9
11		I	1	1.431.275.8	0	18.3	18.3
12		12	1	1, $278,634.2$	$\theta$	16.8	16.8
13		2	1	1.431 .275 .0	0	15.9	16.1
14		2	1	1.431.275.0	120	17.7	23.3
15		1	1	1.176.741.4	377	17.8	31.1
16		1	1	2, 451,986.6	220	18.1	32.3
17		1	2	1.451 .986 .6	227	18.5	33.1
18	1.2:	1	1	745,069.7	232	18.5	30-1
15		-2	1	1, 244, 326, 3	455	18.1	30.2
20		2	1	1.450 .896 .5	542	20.0	34.6
21		2	$1 / 2$	1,496.679.8	593	16.0	32.4
22		2	2	1.496.679.8	594	16.1	32.5
23		\%	2	1,506,490.6	582	19.6	35.8
24		2	2	1,506,490.6	590	20.7	37.1
25		2	2	1,521, 751.7	546	21.9	38-1
26		2	2	1,521, 751,	585	21.9	38.5
27		2	2	1,521,751.7	593	19.2	35.7
21		2	2	1,521,751-7	591	19.9	36. 4
29		2	2	1,521, 751, 7	588	22.7	39.2
30		2	2	1. 521.751 .7	587	20.9	37.5
11		2	2	1,521, 751.7	593	19.5	36.1


statros:	\% Sine Mile Point, Unit 1			mosty: Augast 1986		
	No. of Circulatimg Water Paups	5o. of Service	Total Tolane (a3) of Water Puaped	Mean Electrical Output (MWe)	Tewperatures (C)	
Date		Water Puaps			Intake	Discharge
1	2	2	1. 521.751 .7	332	21.0	30.7
2	2	2	1,503,765.4	0	22.1	22.2
3	2	2	1,503,765.4	0	22.3	22.2
4	2	2	1, 503,765.	*	22.5	22.5
5	2	2	1,503, 765.4	*	23.1	22.9
6	2	2	1,503,765.4	231	23.1	29.4
7	$z$	2	1,503,765.4	474	22.8	37.6
8	2	2	1,321.731.7	512	22.7	38.3
9	2	2	1,521,751.7	580	23.0	39.6
10	2	2	1,521.751.7	582	22.9	39.6
11	2	2	1,521, 751.7	584	22.7	39.3
12	2	2	1,521, 751.7	$58 \%$	22.3	39.2
13	2	2	1,521,751.7	586	22.3	38.8
14	2	2	1,503,765.4	587	22.0	38.7
15	$z$	2	1,503,765.4	586	22.4	38.9
16	2	2	2,503,765,4	566	22.9	38.8
17	2	2	1,503, 765.4	570	22.9	39.3
18	2	2	1,521,751.7	580	22.9	39.4
19	$z$	2	1,521,751.7	594	17.3	34.0
20	2	2	2.521.751.7	599	14.3	30.8
21	2	2	1.521,751.7	596	14.7	31.3
22	2	2	1,503,765.4	317	14.7	23.0
23	2	2	1.503, 765.4	0	12.6	12.4
24	2	2	1,503,765.	0	18.7	18.7
25	2	2	1.503.765.4	0	18.9	18.7
26	2	2	1,503,765.4	320	19.2	26.6
27	2	2	1,503,765.4	526	19.8	34.5
28	2	2	1,503,765.4	558	19.8	35.5
23	2	2	1,503,765.4	582	19.1	35.4
30	2	2	1.503,765.4	593	19.4	36.0
31	$z$	2	$1,503,765.4$	595	19.4	35.9



Date	So. of Circulating Water Pumps	So. of Service Weter Pumps	Water Pumped	Mean Electrical Output (MWe)	Temperatures (C)	
					Tntak*	Discharge
1	2	1	1,453,076.6	601	14.2	30.6
2	2	1	$1,453,076.6$	601	14.8	31.4
3	2	1	1,454,711.8	595	15.0	31.8
4	2	1	1, 454,711.	538	15.6	31.0
5	2	1	$1,454,711.8$	598	13.3	30.3
6	2	1	1,455, 801.8	600	14.1	30.9
7	2	1	$1,450,896.5$	601	13.7	30.7
8	2	1	1,453,076,6	601	14.3	31.2
9	2	1	$1,453,076.6$	601	14.3	31.2
10	2	1	$1,453,076.6$	600	13.7	30.5
11	2	1	$1,453,076.6$	600	13.5	30.4
12	2	1	1, 453,076,6	603	13.7	30.7
13	2	1	$1,450,896.5$	599	13.8	30.9
14	2	1	1,453,076.6	602	13.5	30.6
15	2	1	1,453,076,6	601	12.9	29.9
16	2	1	1,450, 896.5	602	13.2	30.2
17	2	1	$1,450,896.5$	609	13.8	30.7
13	2	1	$1,450,896.5$	601	13.5	30.5
19	2	1	$1,450,896.5$	604	13.3	30.3
20	2	1	1,450, 896.5	603	13.3	30.3
21	2	1	$1,450,896.5$	603	13.4	30.4
22	2	1	$1,448,716.3$	604	13.3	30.3
23	2	1	$1,448,716,3$	603	13.5	30.5
24	2	1	$1,454,711.8$	602	13.8	30.8
25	2	1	$1,454,711.8$	601	13.3	30.3
26	2	1	$1,454,711.8$	603	13.2	30.2
27	2	2	$1,454,711.8$	602	13.0	30.0
28	2	1	$1,454,711.8$	604	12.9	29.9
29	2	1	1, 454, 711.8	604	12.8	29.8
30	2	1	$1,454,711.8$	601	12.8	29.7
31	2	1	$1.450,896.5$	595	12.9	29.6


Date	No. of Circulating Water Pumps	No. of service Water Pumps	Total Volume ( $\mathbf{n 3}$ ) of Wator Pumped	Mean Electrical output (MWe)	Temperatures (C)	
					Intake	Discharge
1	2	1	1,450,896.5	504	12.6	29.6
2	2	1	$1,450,896.5$	603	12.4	29.4
3	2	1	$1,445,446.1$	606	12.1	29.1
4	2	1	$1,445,446.1$	604	11.7	28.7
5	2	1	$1,445,446.1$	605	12.1	29.1
6	2	1	1,445,446.1	603	12.0	29.0
7	2	1	$1,450,896.5$	599	11.9	28.8
8	2	1	$1,450,896.5$	605	11.7	28.7
9	2	1	$1,450,896.5$	605	11.5	28.6
10	2	1	$1,450,895.5$	607	10.3	27.3
11	2	1	$1.445,446.1$	606	11.3	28.4
12	2	1	$1,450,896.5$	603	10.9	27.9
13	2	1	$1,445,446.1$	606	8.7	25.7
14	2	1	$1,445,446.1$	605	8.3	25.2
15	2	1	$1,445,446.1$	607	9.3	26.4
16	2	1	$1,445,446.1$	608	9.4	26.5
17	2	1	$1,445,446.1$	601	8.8	26.1
18	2	1	$1,445,446.1$	607	9.3	26.3
19	2	1	$1,445,446.1$	608	9.2	26.2
20	2	1	$1,449,806.4$	604	8.9	25.9
21	2	1	$1,450,896.5$	598	8.3	25.2
22	2	1	$1,450,896.5$	607	8.4	25.4
23	2	1	$1,450,896.5$	607	8.7	25.7
24	2	1	$1,450,896.5$	608	7.8	24.8
25	2	1	1,447,626.2	608	7.4	24.7
26	2	1	$1.453,076.6$	607	8.7	25.8
27	2	1	$1,453,076.6$	608	8.8	26.0
28	2	1	$1.453,076.6$	606	8.2	25.3
29	2	1	$1,453,076.6$	609	7.7	24.8
30	2	1	$1,453,076.6$	604	8.4	25.6



## APPENDIX C

SCIENTIFIC AND COMMON NAMES
OF ALL TAXA COLLECTED IN 1986


Alosa pseudoharengus Ambloplites rupestris Anguilla rostrata Aplodinotus grunniens aridae Cottus spp. Couesius plumbeus Cyprinidae
Cyprinus carpio Dorosoma cepedianum Gasterosteus aculeatus Lepomis gibbosus epomis macrochirus lota
Micropterus dolomieui
Mollusca
Morone americana
Morone chrysops
Notropis atherinoides
Notrodis hudsonius
Noturus flavus
Onchorhynchus tschawytscha
0smerus mordax
Perca flavescens
Percopsis omiscomaycus
Petromyzon marinus
Salmo gairdneri
Salmo trutta
Salvelinus namaycush
Umbra limi
$\qquad$
Alewife
Rock bass
American eel
Freshwater drum
Crayfish
White sucker
Sculpins
Lake chub
Minnow family
Carp
Gizzard shad
Tessellated darter
Threespine stickleback
Pumpkinseed
Bluegill
Burbot
Smallmouth bass
Clam
White perch
White bass
Emerald shiner
Spottail shiner
Stonecat
Chinook salmon
Rainbow smelt
Yellow perch
Trout perch
Sea lamprey
Rainbow trout
Brown trout
Lake trout
Walleye
Central mudminnow

APPENDIX D
COLLECTION BFFICIENCY AT
NINE MILE POINT NUCLEAR STATION UNIT 1, 1984

## APPENDIX D COLLECTION EFFICIENCY (PERMIT SECTION IV.B.6)

To assess the efficiency of the traveling screens in removing impinged organisms from the circulating water intake system at NMP Unit 1, a collection efficiency study was conducted on 7-8 November 1984. Since collection efficiency is a function of species and their respective sizes, and at no one time during the year are all species and size classes available to the impingement process, representative fish of each of the selected species and size classes to be tested vere saved and frozen following routine impingement analysis. Species tested vere alewife, rainbow smelt, white perch, yellow perch, and smallmouth bass (Table D-1).

The fish to be tested were thaved and marked using a visible dye (Rose Bengal) and a fin clip, then sorted into size classes according to the foliowing ranges:

Size Class I: less than 10.0 cm
II: $10.1-15.0 \mathrm{~cm}$
III: $15.1-20.0 \mathrm{~cm}$
IV: greater than 20.1 cm
The marked fish were released in the intake canal prior to the traveling screens and at a point below the surface of the water. The release was made at the beginning of a regularly scheduled impingement sample immediately following the pre-wash. The results of the efficiency test are presented by species and size class in Table D-1.

The percent efficiency ranged from 67 percent to 100 percent. Size Class I fish (all species combined) had a mean collection efficiency of 94 percent (range: $88-100$ percent). Size Class II fish had a mean collection efficiency of 89 percent (range: $67-100$ percent). Size Class III fish had a mean collection efficiency of 88 percent (range: $80-92$ percent). Size Class IV white perch vere recovered at an efficiency of 93 percent. Overall collection efficiency for all species and size classes combined was 91 percent.
table d-1 collection efficiency data nine mile point nuclear station UNIT 1, 1984

Date   Released	Species Tested	$\begin{array}{r} \text { Size } \\ \text { Class } \end{array}$	Number   Released	Number Recovered	Percent
7 NOV 84	Alevife	I	12	12	100
		II	24	24	100
		III	25	23	92
7 NOV 84	Rainbow smelt	I	25	24	96
		II	26	23	88
		III	28	25	89
7 NOV 84	Smallmouth bass	I	8	7	88
		II	13	13	100
		III	10	8	80
7 NOV 84	Yellow perch	I	0	0	0
		II	29	26	90
7 NOV 84	White perch	I	30	28	93
		II	6	4	67
		III	10	9	90
		IV	27	25	93


[^0]:    Minimal flow in the discharge canal resulted in a data record of higher (than actual)
    cemperatures as a result of the effect of the position of the temperature probe and the minimal flow from 11 to 31 March 1986.

[^1]:    * Minimal flow in the discharge canal resulted in a data record of higher (than actual) temperatures as a result of the effect of the position of the temperature probe and the minimal flow frow to 30 April 1986.

[^2]:    Minimal flow in the discharge canal resulted in a date record of higher (than actual)

