This slide intentionally left blank.

Westinghouse Nuclear Safety Culture

Cobalt-60 Production in Westinghouse PWRs

NRC-Westinghouse Technical Exchange Meeting July 15, 2020

]a,c

Agenda

- Background & Objective
- Licensing approach
- Co-60 Production Process
- [
- Safety Analyses, Dose Rates, & SFP Criticality
- Harvesting
- Schedule
- Summary & Closing Statements

Background: Cobalt-60 Global Production

FEBRUARY 26, 2020

Westinghouse and Nordion (Canada) Inc. announce that they have signed a Letter of Intent to develop innovative isotope production technology that will allow Cobalt-60 to be produced in Pressurized Water Reactors (PWRs).

Objective

- Initial dialogue with NRC Staff to provide clarity
 - Licensing approach
 - Production process
 - Component structure & design
 - Applicability of NRC-approved codes and methods
 - Production schedule

Licensing Approach

- Plant-specific Operating License will need to be amended for the inclusion of a 10 CFR Part 30 license, "Rules of General Applicability to Domestic Licensing of Byproduct Material"
- Westinghouse will prepare a technical report to supplement the License Amendment Request (LAR)
- Changes to the Technical Specifications will be made if required
- UFSAR updates will be required

Westinghouse

Licensing Approach (contd.)

 Current NRC-approved codes and methods remain applicable for core design and reload safety evaluations

Cobalt-60 Production

a,c

Key Design Considerations

Preclude cobalt, reactor coolant interaction
– [

]a,c

- Reducing foreign material in harvesting area as low as reasonably practical
 - Design to allow easier harvesting
- Crediting existing licensed designs
 - Use pre-licensed containers / casks without modifications that would require relicensing

Nuclear Design & Safety Analyses

- Areas of focused analysis
 - Nuclear Design impacts
 - Doses
 - SFP criticality
- Anticipate no impact to the Analysis Of Record
 - Loss of Coolant Accident
 - Fuel Rod Design
 - Thermal-Hydraulic Design
 - Transient Analysis
 - Reload safety analyses

Current NRC-approved codes and methods remain applicable for modeling []^{a,c}

Modeling of [

a,c

- Fairly simple Cobalt depletion chain to model :
 - 59 Co + 1 n → 60 Co
 - ${}^{60}\text{Co} \rightarrow {}^{60}\text{Ni} + \beta + \gamma$
 - ${}^{60}Co + {}^{1}n \rightarrow {}^{61}Ni$
- Depletion chain added to existing NEXUS / PARAGON / ANC code system
 - No changes to basic neutronic solution methods already reviewed / approved by U.S. NRC

Expect accurate prediction of Co depletion with current code system

a.c

Modeling of [

]^{a,c} (contd.)

Modeling of [

]^{a,c} (contd.)

Westinghouse Non-Proprietary Class 3

© 2020 Westinghouse Electric Company LLC. All Rights Reserved. LTR-NRC-20-45, Enclosure 3, Page 16 of 36

Typical 18-Month Loading Patterns No []^{a,c}

Example 18-Month Loading Patterns With []^{a,c}

a,c

]^{a,c} Impacts on Core Design

]^{a,c} Impacts on Safety Analyses

Spent Fuel Pool Building Dose Rate

- Typical NPP Fuel Building Radiation Zoning above spent fuel pool (SFP) < 2.5 mRem/hr (i.e., Zone III)
- Dose Rate Contributed from
 - SFP Water Source Terms
 - Elevated Irradiated Fuel Assembly in Movement (at least 10 feet underneath the SFP water surface)
- Co-60 is a major gamma source (5.271 years half-life)
 - Emits 1.173 MeV and 1.332 MeV gamma rays
 - Cascade decav with almost 100% branching ratio
 - About []^{a,c} Co-60 produced each unit per campaign

Spent Fuel Pool Building Dose Rate (contd.)

• SFP Water Source Terms (Typical)

Spent Fuel Pool Building Dose Rate (contd.)

 Elevated Irradiated Fuel Assembly in Movement (10 feet underneath the SFP water surface)

a,c	
estingnouse	

Spent Fuel Pool Building Dose Rate (contd.)

Spent Fuel Pool Dose Rate Summary

- Co-60 bearing assemblies are expected to yield higher dose rates than a standard assembly during movement
- Westinghouse will be performing detailed evaluations to assess dose rate above the water surface while moving irradiated [

]a,c

Site-specific radiation zone mapping will be updated if necessary

Spent Fuel Pool Criticality

• SFP criticality will be performed on a plant specific basis.

Harvesting

Harvesting (contd.)

Harvesting (contd.)

Harvesting (contd.)

Harvesting (contd.)

a,c

Co-60 Activity Measurements

- Platinum Self Powered Detector (SPD) has established Co-60 gamma sensitivity⁽¹⁾
 - Generates current from both Compton and photoelectric effects

(1) International Electrotechnical Commission (IEC) 61468 standard: Nuclear Power Plants – Instrumentation Systems Important to Safety – In-Core Instrumentation: Characteristics and Test Methods of Self-Powered Neutron Detectors

Transportation of Co-60

a,c

Westinghouse Non-Proprietary Class 3

© 2020 Westinghouse Electric Company LLC. All Rights Reserved. LTR-NRC-20-45, Enclosure 3, Page 33 of 36

]a,c

a,c

Transportation of Co-60 [(contd.)

Schedule

Summary

- Changes anticipated to the operating license, but not to the Technical Specifications
- Previously licensed process in the U.S. (Hope Creek, Clinton)
- Leveraging the existing processes/procedures for Westinghouse PWRs that can be extended to Co-60 production

Utility Interest

a,c

