Engineering Services Process Overview

-

EN-1-100 Revision 10 Page 105 of 153

ATTACHMENT 19, CALCULATION COVER SHEET

DCALC No	Doc Type - DCALC)		Page 1 of 5
Vendor Calculation	(Charleso) 6/	Revision No.:	0
ESP ES19801	(Check one):	Supp No.: O	Rev No.
Responsible Group:	NEY		NOV. NO 0
Responsible Enginee	F: Geral E. Gycela	- <i>ski</i>	
CALCULATION	E er recenten bestanden andere en	TRANSPORTER IN A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPT	
ENGINEERING DISCIPLINE:	 Civil Electrical Life Cycle Mngmt Other: NITAGEN 645 	 Instr & Controls Mechanical Reliability Engrg 	Diesel Gen Project
Unit Proprietary or Safegu Comments:	UNIT 1 UNIT 1 UNIT 1	0 UNIT 2 VES	A COMMON A NO
Vendor Calc No.: Vendor Name:	NA NA	REVISION NO .:	NA
Safety Class (Check of There are assumption walkdown: This calculation SUP)	ersedes:	D AQ uring AIT #	D NSR
EVIEW AND APPRO esponsible Engineer: 6 dependent Reviewer: 27 pproval:	VAL: Erned E. Grycolandi M.Gmmerville/ 19. D. A. MIHALCIK	Allalut	Date: 8/11/98 Date: 9/./98 Date: 30 Sant 1996

Page	Latest Rev								
001	0	002	0	003	0	004	0	005	0
006	0	007	0	008	0	009	0	010	0
011	0	012	0	013	0	014	0	015	0
016	0	017	0	018	0	019	0	020	0
021	0	022	0	023	0	024	0	025	0
026	0	027	0	028	0	029	0	030	0
031	0	032	0	033	0	034	0	035	0
036	0	037	0	038	0	039	0	040	0
041	0	042	0	043	0	044	0	045	0
046	0	047	0	048	0	049	0	0.50	0
051	0	052	0	053	0	054	0	055	0
056	0	057	0						

2. LIST OF EFFECTIVÉ PAGES

. .

3. REVIEWER COMMENTS

1 4

4. TABLE OF CONTENTS

01. COVER SHEET1
02. LIST OF EFFECTIVE PAGES
03. REVIEWER COMMENTS
04. TABLE OF CONTENTS
05. PURPOSE
06. INPUT DATA
07. TECHNICAL ASSUMPTIONS
08. REFERENCES
09. METHODS OF ANALYSIS
10. CALCULATIONS
11. DOCUMENTATION OF COMPUTER CODES
12. RESULTS
13. CONCLUSIONS
14. ATTACHMENTS
ATTACHMENT A: DATA FOR NITROGEN
ATTACHMENT B: ARCON96 RUNS FOR AUX BLDG ROOF INLET
ATTACHMENT C: ARCON96 RUNS FOR WEST ROAD INLET PLENUM
ATTACHMENT D: EXCEL SPREADSHEET NITROGEN - AUX BLDG ROOF INLET
ATTACHMENT E: EXCEL SPREADSHEET NITROGEN - WEST ROAD INLET
ATTACHMENT F: SYSTEM DESCRIPTION # 74
ATTACHMENT G: CROSS SECTIONAL AREAS
ATTACHMENT H: ATMOSPHERIC DENSITY VS ALTITUDE
LAST PAGE OF REPORT

5. PURPOSE

10CFR50 App.A GDC.19 (Ref.1) requires that a control room be provided, from which actions can be taken to operate the nuclear power plant safely under normal conditions and to maintain it in a safe condition under accident conditions. Release of hazardous chemicals can potentially result in the control room becoming uninhabitable. Thus the NRC requires each utility to assess the habitability of the control room during and after a postulated external release of hazardous chemicals based on the chemical toxicity limit, vaporization rate, and the relevant atmospheric dispersion coefficients (Ref.2). The explosion and flammability hazard of these chemicals must also be addressed (Ref.2).

CCNPP stores liquid nitrogen in the 11300 gal stainless steel storage tank located in the tank farm. The chemical habitability of the control room after a chemical release involving liquid nitrogen was determined based on in-house dispersion calculations and toxicity determinations for the current control room configuration with the inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the inleakage points at the west road inlet plenum (Refs.3-4). Results indicate that liquid nitrogen can be stored in the 11300 gal stainless steel storage tank located in the tank farm without constituting a toxicological or fire hazard to the control room following a worst case accident for both the current and modified control room configurations.

		Peak Concentration (% v/v)	7
		Tank Farm	1
Current Configuration	No Recirculation	0.48	1
Modified Configuration	With Recirculation	0.12	-
Toxicity Limit (Asphyx)		15.00	1

The results of the toxicity calculations for liquid nitrogen are as follows:

Note that under the current and modified configurations, the peak control room concentrations under worst case conditions are less than the asphyxiation toxicity limit, defined as the amount of asphyxiant required to reduce the oxygen level to that at one mile of altitude (the altitude of Denver, Colorado). Nitrogen will not pose a flammability or explosion hazard in the control room, since nitrogen gas is nonflammable per Refs.5 and 9.

The current calculation incorporates many assumptions which make these results conservative. (1) An asphyxiation toxicity limit was utilized, defined as the amount of asphyxiant required to reduce the oxygen level to that at one mile of altitude (the altitude of Denver, Colorado). The regulatory requirements of Ref.2 dictate a maximum concentration limit that could be tolerated for 2 minutes without physical incapacitation of an average human. (2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value (Refs.6-8). (3) The control room volume conservatively neglects dead spaces in the control room ceiling and the volume of room A512. (4) The most conservative methodology is utilized: instant flashing of the entire quantity of Nitrogen.

6. INPUT DATA

The following input data is incorporated into this work:

(01) Chemical data for Nitrogen:			
CAS number	7727-37-	.9	Refs.5.9
Chemical formula	N2		Refs.5.9
Toxicity Limit (% v/v)	15.		Assumed
Odor threshold (ppm)	None		Refs 5.9
Volume fraction	1.00		Assumed
Volume (gal)	11300		Ref.10
Specific gravity (gm/cc)	0.807@-	195.5°C	Refs.5.9
Boiling point (Degrees C) TB	-195.6		Ref.5
Molecular weight (gm/mole) MB	28.0		Refs.5.9
Lower flammable limit (Vol%)	Non-flan	nmable	Refs.5,9
(02) Physical properties of air per Refs.13,14:			
Molecular weight (gm/mole) MA		28.97	
Characteristic length in air (Angstroms) SIGA		3.711	
Molecular energy of attraction/Boltzmann constant ()	K) E/KA	78.6	
Mass density of air (gm/cc) RHOA		1.204E	2-03
Viscosity of Air (gm/cm-sec) MU		1.83E-	04
Universal Gas Constant (torr-cm3/gmole-K) R		6.24E+	-04

(03) The updated control room volume of 234157 ft³ was extracted from Ref.18.

(04) Control room damper inflow for the current configuration is extracted from Refs. 7-8 and is defined as 8300 cfm or twice the maximum flowrate.

(05) Control room inleakage for the modified configuration is extracted from Refs. 3-4 and is defined as 3000 cfm.

(06) The Tank Farm-Control Room ARCON96 X/Q inputs were derived as follows (Att.B):

(a) Number of meteorological data files:	3	Refs.B2,B10
(b) Meteorological data file names:	CC1991.MET CC1992.MET CC1993.MET	Refs.B2,B10 Refs.B2,B10 Refs.B2,B10
(c) Height of lower wind instrument (m):	10.	Ref.B3
(d) Height of upper wind instrument (m):	60.	Ref.B3
(e) Wind speed units type (1=m/s, 2=mph, 3=knots):	1	Refs.B2,B10
(f) Release type (1=ground, 2=vent, 3=elevated):	1	
(g) Release height (m):	0.	

(h) Building area (m^2) : The cross sectional area calculations are analyzed in Att.G. The calculation of containment cross sectional area yields 12435.63 ft² above the rooftop level of 91'6". The auxiliary building cross sectional area can be calculated to be 1938.93 ft². For a west-to-east wind direction, the total cross-sectional area of the auxiliary building and the two containments is 26810 ft². For an east-to-west wind direction, the total cross sectional area of the turbine building is 27167 ft². For a north-to-so^{1/2} and south-to-north wind direction, the total cross sectional area of the containment and the turbine building is 21016 ft². The cross-sectional area of a single containment of 12435.63 ft² or 1155 m² will conservatively be used.

(i) Effluent vertical velocity (m/s):	0	
(j) Stack or vent flow (m ³ /s):	0	
(k) Stack or vent radius (m): $r = SQRT(A/\pi) = SQRT[(11300gal)*(3785.422cc/$	36.89 /gal)/(1.cm)/π*(1.E-4m ²	(cm^2)] = 36.89m
(l) Direction to source (deg):	339	Refs.B12,B14
(m) Source window (deg):	90	Refs.B13-B14
(n) Distance from source to receptor (m):	141.1	Refs.B12,B14
 (o) Intake height (m): 91.5' + 4.75' - 45' = 51.25' = 15.62 m where 91.5' is the height of the Auxiliary Building exhaust height (Ref.B13), and 45' is ground level (15.62 ; roof (Ref.B6), 4.75' is (Ref.B8).	the control room
(p) Grade elevation difference (m):	0	R f.B1
(q) Primary output file name:	CHTF3CR.OUT	
(r) JFT file name:	CHTF3CR.JFD	
(s) Surface roughness length (m):	0.1	Ref.B1
(t) Minimum wind speed (m/s):	0.5	Ref.B1
(u) Sector averaging constant:	4	Ref.B1
(v) Hours in average: 1 2 4 8 12 24 96	168 360 720	Ref.B1
(w) Minimum number of hours: 1 2 4 8 11 22 87	152 324 648	Ref.B1
(x) Horizontal diffusion coefficient (m): $\sigma_y = r/2.15 = 36.89/2.15 = 17.16 \text{ m (Ref.B1)}$	17.16	
(y) Vertical diffusion coefficient (m)	0.	
(z) Flag for expanded output:	n	Ref.B1

(07) Atmospheric dispersion coefficients from the Tank Farm to the Control Room:

0- 2 hrs	2.65E-04 sec/m ²
2- 8 hrs	2.14E-04 sec/m ³
8-24 hrs	9.89E-05 sec/m ³
24-96 hrs	6.92E-05 sec/m ³
96-720 hrs	5.66E-05 sec/m ³
(Attachment B	, Refs.B1, B10, B15)

(08) The Tank Farm-West Road Inlet ARCON96 X/Q inputs were derived as follows (Att.C):

(a) Number of meteorological data files:	3	Refs.B2,B10
(b) Meteorological data file names:	CC1991.MET CC1992.MET CC1993.MET	Refs.B2,B10 Refs.B2,B10 Refs.B2,B10
(c) Height of lower wind instrument (m):	10.	Ref.B3
(d) Height of upper wind instrument (m):	60.	Ref.B3
(e) Wind speed units type (1=m/s, 2=mph, 3=knots):	1	Refs.B2,B10
(f) Release type (1=ground, 2=vent, 3=elevated):	1	
(g) Release height (m):	0.	
(h) Building area (m ²): The cross sectional area calculations are analyzed in	1155. Att.G. The calculation	Att.G of containment

cross sectional area vields 12435.63 ft² above the rooftop level of 91'6". The auxiliary building cross sectional area can be calculated to be 1938.93 ft². For a west-to-east wind direction, the total cross-sectional area of the auxiliary building and the two containments is 26810 ft². For an east-to-west wind direction, the total cross sectional area of the turbine building is 27167 ft². For a north-to-south and south-to-north wind direction, the total cross sectional area of the containment and the turbine building is 21016 ft². The cross-sectional area of a single containment of 12435.63 ft² or 1155 m² will conservatively be used.

(i) Effluent vertical velocity (m/s):	0	
(j) Stack or vent flow (m ³ /s):	0	
(k) Stack or vent radius (m): $r = SQRT(A/\pi) = SQRT[(11300gal)*(3785.)]$	36.89 422cc/gal)/(1.cm)/π*($(1.E-4m^2/cm^2)] = 36.89m$
(l) Direction to source (deg):	358	Refs.B12,B14
(m) Source window (deg):	90	Refs.B13-B14
(n) Distance from source to receptor (m):	182.2	Refs.B12,B14
(o) Intake height (m):	9.14	

The Auxiliary Building roof above the control room and above A512 will be sealed tight.

Most control room inleakage can then be assumed to originate at the Auxiliary Building inlet plenum on the west road side (ES199702144). Per Ref.B11, the inlet plenum is $54^{\circ}x10^{\circ}$ with a bottom elevation of 70°. Thus the intake height is $75^{\circ}-45^{\circ}=30^{\circ}=9.14$ m

(p) Grade elevation difference (n	n):							0			Ref.B1
(q) Primary output file name:								CHT	rf3v	VR.OUT	TB
(r) JFT file name:								CHI	rf3V	VR.JFD	TB
(s) Surface roughness length (m)	:							0.1			Ref.B1
(t) Minimum wind speed (m/s):								0.5			Ref.B1
(u) Sector averaging constant:								4			Ref.B1
(v) Hours in average:	1	2	4	8	12	24	96	168	360	720	Ref.B1
(w) Minimum number of hours:	1	2	4	8	11	22	87	152	324	648	Ref.B1
(x) Horizontal diffusion coefficients $\sigma_y = r/2.15 = 36.89/2.15 = 17.16$	ent m	t (1 (R	n): .ef.	В	1)			17.1	6		
(y) Vertical diffusion coefficient	(1	n)						0.			
(z) Flag for expanded output:								n			Ref.B1

(09) Atmospheric dispersion coefficients from the Tank Farm to the West Road Inlet:

 0- 2 hrs
 1.75E-04 sec/m³

 2- 8 hrs
 1.41E-04 sec/m³

 8- 24 hrs
 6.57E-05 sec/m³

 24- 96 hrs
 5.04E-05 sec/m³

 96-720 hrs
 3.90E-05 sec/m³

 (Attachment C, Refs.B1, B10, B15)

7. TECHNICAL ASSUMPTIONS

The following technical assumptions were utilized in this work:

(01) Per Refs.10 and 19, CCNPP stores liquid nitrogen in the 11300 gal stainless steel storage tank located in the tank farm.

(02) Per Ref.15 in a postulated accident, it is assumed that the entire container of the toxic substance ruptures.

(03) Based on the characteristics of nitrogen, all of the spilled material is assumed to immediately evaporate due to its low boiling point.

(04) An asphyxiation toxicity limit was utilized, defined as the amount of asphyxiant required to reduce the oxygen level to that at one mile of altitude (the altitude of Denver, Colorado). Per Ref.12 (Att.H), the air density at 0 km is 1.220 kg/m³, while the air density at 10 km is 0.425 kg/m³. Assuming a linear function between the logarithm of density and the altitude, the following algorithm can be generated:

 $Log_{10}(\rho) = -0.045797 * z(km) + 0.086360$ Thus for z=1 mile=5280 ft=1.609 km, $\rho = 1.029$ kg/m³.or 84.39% normal.

Thus at an altitude of 1 mile, the oxygen level is reduced by 15%. This is equivalent to replacing 15% of the air volume by nitrogen.

8. REFERENCES

(01) "Control Room", 10CFR50, Appendix A, General Design Criterion 19.

(02) "Assumptions for Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release", Regulatory Guide 1.78, 6/74.

(03) "Response to RAI: Accident Dose Analysis and Control Room Habitability Analysis for the MHA, FHA, and CEAEE", NRC-98-044.

(04) "Response to RAI: Control Room Habitability Analyses and MSLB Analyses", NRC-98-018.

(05) "Hazardous Chemicals Data Book", Second Edition, Edited by G.Weiss, Noyes Data Corporation.

(06) "Offsite and Control Room Doses Following a LOCA", Bechtel Calculation M-89-33 Rev.3, 7/9/91.

(07) "Fan Performance Curve", BGE DWG 12782-35, Rev.0.

(08) "Control Room Temperature During Normal and Emergency Recirculation Modes of Operation", Bechtel Calculation M-91-24, 11/9/92.

(09) "SAX's Dangerous Properties of Industrial Materials", Ninth Edition, Richard J. Lewis Sr.

(10) "Nitrogen System", System Description No. 74, Rev.0, 1/6/98.

(11) "The Merck Index", Eleventh Edition, 1989.

(12) "CRC Handbook of Physics and Chemistry", 66th Edition, 1985-1986.

(13) "Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds", W.Lyman, W.Reehl, and D.Rosenblatt, McGraw Hill 1982.

(14) "Flow of Fluids through Valves, Fittings, and Pipe", Crane Technical Paper No.410, 1988.

(15) "Toxic Vapor Concentrations in the Control Room Following a Postulated Accidental Release", NUREG-0570, 6/79.

(16) "CCNPP Control Room Habitability Evaluation Due to a Postulated Spill of Ethanolamine", Bechtel Calculation M-94-16 Rev.0, 11/10/94.

(17) "Heat Transfer", Seventh Edition, J.P.Holman.

(18) "Modeling of the Control Room/Cable Spreading Room HVAC System Using GOTHIC Software", CA02725, 1/8/97.

(19) "Onsite Accidental Release of N2 and H2", Bechtel Calculation M-80-37, 1/19/81.

(B1) "Atmospheric Relative Concentrations in Building Wakes", NUREG/CR-6331 Rev.1, 5/97.

(B2) CCMAIL from Mark Abrams at PLG to G.E.Gryczkowski, 3/5/97.

(B3) "Wind Flows and Dispersion Conditions at Calvert Cliffs", Maria Gavrilas and Melissa Wieland, BG&E-EP1, 9/85.

(B4) "Atmospheric Dispersion Coefficient Calculations from the MSG and ADV to the Control Room", CA03533, 1/17/97.

(B5) "Auxiliary Building and Containment Structures Exterior Elevations East & West", BGE Drawing 62-047-E, Rev.6

(B6) "Auxiliary Building Roof Plan", BGE Drawing 62-043-E, Rev.12.

(B7) "Containment Liner Plan, Elevation & Penetrations", BGE Drawing 61-740-E, Rev.19.

(B8) "General East and South Elevations", BGE Drawing 62-006-E, Rev.4.

(B9) "Equipment Location Turbine Building Unit 1 Plan Floor El 12'0"", BGE Drawing 60-207-E Rev.11.

(B10) "ARCON96: Atmospheric Relative Concentrations in Building Wakes", CA03940, 8/21/97.

(B11) "Heating and Ventilation System, Auxiliary Building, El. 69'0", Sections and Details", BGE Drawing 60-330-E, Rev.14.

(B12) "Wind Tunnel Modeling of CCNPP", CA00748 Rev.0, 10/25/95

(B13) "ARCON95 X/Q Analysis", Bechtel Calculation M-97-02 Rev.0, 5/8/97.

(B14) "ARCON95 X/Q Analysis", Bechtel Calculation M-97-03 Rev.0, 7/1/97.

(B15) "Analytical Software Installation Test of ARCON96", CA03941, 8/21/97.

9. METHOD OF ANALYSIS

This work utilizes the following methodology to calculate mass transfer from the spill site to the control room.

(01) This methodology is for liquids with boiling points less than the ambient temperature. For this case the entire inventory of toxic material is assumed to flash to a gaseous state in t seconds. The vapor density outside the control room is thus governed by the following equations.

 $VD = (M0/t)*ADC (gm/m^3)$ PPM = (24500/MB)*VD

where

M0 = Inital mass of liquid (gm).

t = Flash time (sec)

ADC = Atmospheric dispersion coefficient (sec/m3)

MB = Toxic gas molecular weight (gm/mole)

The maximum concentration inside the control room can be readily calculated via the following:

 $VDC = VD^*(1.-exp(-FCR/VCR^*t/60))$ (gm/m³)

where

FCR = Control room inflow (cfm) VCR = Control room volume (ft³) t = Flash time (sec)

Using a first order expansion of the equation for VDC as t goes to zero, the maximum concentration inside the control room can be readily obtained:

VDC = M0*ADC*FCR/VCR/60 (gm/m³)

The total mass of the liquid can be calculated as follows:

 $M0 = Q^*QF^*SG^*3785.422 \text{ gm}$

where

Q =Storage quantity (gal)

QF' = Volume fraction of liquid or weight fraction of solid

SG = Specific gravity (gm/cc)

(02) Explosion and Flammability Limits:

Comparison of the maximum concentration of the relevant toxic chemical concentration inside the control room should yield a limiting value with which to compare against the explosion and flammability limits.

10. CALCULATIONS

The chemical concentrations inside the control room for a chemical spill in the tank farm is calculated via EXCEL spreadsheets captured in the following attachments using the methodology of Section 9:

Attachment D: 100% Liquid Nitrogen for Current Control Room Configuration

Attachment E: 100% Liquid Nitrogen for Modified Control Room Configuration

11. DOCUMENTATION OF COMPUTER CODES

This work employed the ARCON96 computer code, which was verified, benchmarked, and documented in Ref.B10. The installation is documented in Ref.B15. ARCON96 implements a computational model for calculating atmospheric dispersion coefficients (X/Q's) in the vicinity of buildings.

12. RESULTS

CCNPP stores liquid nitrogen in the 11300 gal stainless steel storage tank located in the tank farm. The chemical habitability of the control room after a chemical release involving liquid nitrogen was determined based on in-house dispersion calculations and toxicity determinations for the current control room configuration with the inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the inleakage points at the vest road inlet plenum (Refs.3-4). Results indicate that liquid nitrogen can be stored in the 11300 gal stainless steel storage tank located in the tank farm without constituting a toxicological or fire hazard to the control room following a worst case accident for both the current and modified control room configurations.

The results of the toxicity calculations for liquid nitrogen are as follows:

		Peak Concentration (% v/v)
		Tank Farm
Current Configuration	No Recirculation	0.48
Modified Configuration	With Recirculation	0.12
Toxicity Limit (Asphyx)		15.00

13. CONCLUSIONS

Under the current and modified configurations, the peak control room concentrations under worst case conditions are less than the asphyxiation toxicity limit, defined as the amount of asphyxiant required to reduce the oxygen level to that at one mile of altitude (the altitude of Denver, Colorado). Nitrogen will not pose a flammability or explosion hazard in the control room, since nitrogen gas is nonflammable per Refs.5 and 9.

The current calculation incorporates many assumptions which make these results conservative. (1) An asphyxiation toxicity limit was utilized, defined as the amount of asphyxiant required to reduce the oxygen level to that at one mile of altitude (the altitude of Denver, Colorado). The regulatory requirements of Ref.2 dictate a maximum concentration limit that could be tolerated for 2 minutes without physical incapacitation of an average human.

(2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value (Refs.6-8).

(3) The control room volume conservatively neglects dead spaces in the control room ceiling and the volume of room A512.

(4) The most conservative methodology is utilized: instant flashing of the entire quantity of Nitrogen.

1

• •

14. ATTACHMENTS

ATTACHMENT A DATA FOR NITROGEN

CA04561 REV D PAGE /9

HR: 1

NGP500 CAS:7727-37-9 NITROGEN DOT: UN 1066/UN 1977

DOT: UN 1066/UN 1977 mf: N₂ mw: 28.02

PROP: Colorless, odorless, very stable, nonflammable gas; generally unreactive; colorless liquid or cubic crystals at low temp. Mp: -210.0°, d: 1.2506 g/L @ 0°, d (liquid): 0.808 g/cm³ @ -195.8°. Condenses to a liquid. Sltly sol in water; sol in liquid ammonia, alc.

SYNS: NITROGEN, compressed (UN 1066) (DOT)
NITROGEN, refrigerated liquid (cryogenic liquid) (UN 1977) (DOT)
NITROGEN GAS

CONSENSUS REPORTS: Reported in EPA TSCA Inventory.

DOT CLASSIFICATION: 2.2; Label: Nonflammable Gas

SAFETY PROFILE: Low toxicity. In high concentrations it is a simple asphyxiant. The release of nitrogen from solution in the blood, with formation of small bubbles, is the cause of most of the symptoms and changes found in compressed air illness (caisson disease). It is a narcotic at high concentration and high pressure. Both the narcotic effects and the bends are hazards of compressed air atmospheres such as found in underwater diving. Nonflammable gas. Can react violently with lithium, neodymium, titanium under the proper conditions. See also ARGON.

NGQ500 CAS:10025-85-1 HR: 3 NITROGEN CHLORIDE

mf: Cl₃N mw: 120.37

PROP: Very unstable, volatile, yellowish oil or rhombic crystals; pungent odor. Mp: <-40°, explodes above 60°, bp: <71°, d: 1.653, vap press: 150 mm @ 20°. Sol in CCl₄, CHCl₃.

SYNS: AGENE CHLORINE NI[®] NITE NITEOGEN TRICHLO-RIDE NITEOGEN TRICHLORIDE (DOT) CTRICHLORAMINE C TRICHLORINE NITERIDE

TOXICITY DATA WITH REFERENCE ihl-rat LC50: 112 ppm/1H AIHAAP 44,145,83

DOT CLASSIFICATION: Forbidden

SAFETY PROFILE: Moderately toxic by inhalation. An irritant to the eyes, skin, mucous membranes, and a systemic central nervous system irritant. An explosive sensitive to impact, light, and ultrasound. The solid explodes on melting. The liquid explodes above 60°C. Concentrated solutions are also explosive. Explosive decomposition is initiated by contact with: concentrated ammonia, arsenic, dinitrogen tetraoxide, hydrogen sulfide, hydrogen trisulfide, nitrogen oxide, organic matter, ozone, phosphine, phosphorus, potassium cyanide, potassium hydroxide solutions, selenium, hydrogen chloride, hydrogen fluoride, hydrogen bromide, hydrogen are potentially explosive. Upon decomposition it emits toxic fumes of Cl⁻ and NO. See also CHLORIDES.

HR: 3

NGR000

MITROGEN CHLORIDE DIFLUORIDE mf: CIF,N mw: 87.46

III. OII 214 IIIW: 07.40

SAFETY PROFILE: Very unstable. Use caution in handling.

NGR500 CAS:10102-44-0 HR: 3 NITROGEN DIOXIDE

mf: NO, mw: 46.01

PROP: Brown gas or colorless solid to yellow liquid; irritating odor. Reacts with H_2O giving $HNO_3 + NO$. Mp: -9.3° (yellow liquid), bp: 21° (red-brown gas with decomp), d: 1.491 @ 0°, vap press: 400 mm @ 80°. Liquid below 21.15°. Sol in concentrated sulfuric acid, nitric acid. Corrosive to steel when wet.

SYNS: AZOTE (FRENCH)
AZOTO (ITALIAN)
NITRITO
NI-TROGEN PEROXIDE
RCRA WASTE NUMBER P078
STICKSTOFF-DIOXID (GERMAN)
STIKSTOFDIOXYDE (DUTCH)

TOXICITY DATA WITH REFERENCE

mmo-sat 6 ppm MUREAV 136,119,84

sce-ham: Ing 5 ppm/10M-C MUREAV 89,303.81

ihl-mus TDLo: 22 ppm (female 7-18D post): REP NRTXDN 9,545,88

ihl-rat TCLo: 85 μg/m³/24H (female 1-22D post): TER GISAAA 42(12),22,77
ihl-hmn LCLo: 200 ppm/1M AOHYA3 17,159,74
ihl-man TCLo: 6200 ppb/10M: PUL KEKHA7 17,337,68
ihl-man TCLo: 90 ppm/40M: PUL JOCMA7 8,301,66
ihl-rat LC50: 88 ppm/4H AMIHBC 10,418,54
ihl-mus LC50: 1000 ppm/10M JCTODH 4,246,77
ihl-dog LCLo: 123 mg/m³ TXAPA9 9,160,66
ihl-mky LCLo: 123 mg/m³/8H TXAPA9 9,160,66
ihl-rbt LC50: 315 ppm/15M AIHAAP 23,457,62
ihl-gpg LC50: 30 ppm/1H AEHLAU 10,220,65

CONSENSUS REPORTS: Reported in EPA TSCA Inventory. EPA Genetic Toxicology Program.

OSHA PEL: STEL 1 ppm ACGIH TLV: TWA 3 ppm; STEL 5 ppm DFG MAK: 5 ppm (9 mg/m³) NIOSH REL: CL (Oxides of Nitrogen) 1 ppm/15M

SAFETY PROFILE: Experimental poison by inhalation. Moderately toxic to humans by inhalation. An experimental teratogen. Other experimental reproductive effects. Human systemic effects by inhalation: pulmonary vascular resistance changes, cough, dyspnea, and other pulmonary changes. Mutation data reported. Violent reaction with cyclohexane; F_{4} ; formaldehyde and alcohols; nitrobenzene; petroleum; toluene. When heated to decomposition it emits toxic fumes of NO₄. See also NITRIC OXIDE.

For occupational chemical analysis use OSHA: #ID-109 or NIOSH: Nitrogen Dioxide, 6700.

NGS500 CAS:13847-65-9 HR: 3 NITROGEN FLUORIDE OXIDE mf: F,NO mw: 87.01

PROP: Colorless gas. Strong oxidizing agent. Stable in glass. Resistant to hydrolysis. Mp: -160°, bp: -87°.

		NI	TROGEN CA0456	1 REV D NXX
	and all all and an	alaan ay cana maana a aanaan aha na badaa aha haanaa ahaanaa ah	PABE 2	>
Common Bynor Liquid nitrogen	ryme Gas Fioets and b	Coloriess Odoriess	FIRE HAZARDS Flash Point: Not parsnent (nonflemmablo compressed gas) 6.7 Flashmable Limits in Air: Not pertinent 6.3 Fire Extinguishing Agents: Not pertinent 6.4 Fire Extinguishing Agents: Not pertinent	10. HAZARD ASSESSMENT CODE (Bee Hazard Assessment Handbook) A-C-D-F-G
Avoid conta	ct with liqued. Not flammaable.		6.4 Pro Extinguisariag Agents Not to be User: Not pertinent 6.5 Special Hazards of Combustion Products: Not pertinent 6.8 Behavior in Fire: Containers may explode wrten hasted 6.7 Ignition Temperature: Not partinent 6.8 Electrical Hazard: Not partinent 6.9 Burning Rate: Not partinent 6.10 Adlabatic Plane Temperature: Date not available 6.11 Stotchiometric Ak to Fuel Rate: Date not available 6.12 Flame Temperature: Data not available	11. NAZARD CLASSIFICATIONS 11.1 Code of Federal Regulations: Nonfictimetable gas 11.2 NAS Hazard Reting for Bulk Water Transportation: Not lated 11.3 NFPA Hazard ClassPication: Category ClassPication: Health Hazard (Blue) 9 Filemmability (Red) 0 Pleactivity (Yellow) 0
s sure	CALL FOR MEDICAL AI VAPOR Not hermful In high concentrations in or lose droacous UGUID WE cause freetbils. Fluen affected areas with DO NOT RUB AFFECTE	EDICAL AID. Consciousness. C		12. PHYSICAL AND CHEMINAL PROPERTIES
Water Pollution 1. RESPOR Response Response	Not hermful to aquetic an ISE TO DISCHARGE Methode Hendbook) ee	2. LABEL 2.1 Cetegory: Norflammable gas 2.2 Clease 2	K WATER POLLUTION A.1 Aquatic Toxicity: None 6.2 WriteFront Toxicity: None	12.1 Physical State at 15°C and 1 atro: Gas 12.2 Molecular Weight: 20.0 12.3 Bolling Point at 1 atro: 320.1°F = -180.6°C = 77.6°K 12.4 Freezing Point: 354°F = -215°C = 56°K 12.5 Critical Temperature: 232.6°F =147.0°C - 126.2°K 12.6 Critical Temperature: 232.6°F =15°C = 56°K 12.6 Critical Temperature: 232.6°F =167.0°C - 126.2°K
1. CHEMIC 3.1 CG Competibility 3.2 Formula: No 3.5 RéO/UN Designer 3.4 DOT KD No.: 197 3.5 CAS Registry No	AL DESIGNATIONS y Clease: Not Retect refor: 2/1977 7 DL 7727-37-0	OBSERVABLE CHARACTERISTICS A.1 Physical Biate (as enlpped): Liquefied gas 4.2 Celer: Coloriess to faint yellow A.3 Odor: None	Biological Oxygen Demand (BOD): None R.4 Food Chain Concentration Potenties: None	12.7 Specific Gravity: 0.807 st 195.5°C (Roud) 12.8 Liquid Surface Tension: 6.3 dynes/cm = 0.083 N/m st 193° 12.8 Liquid Weier Interfacial Tension: Not pertinent 12.10 Vapor (Gas) Specific Gravity: 0.965 12.11 Ratio of Specific Hests of Vapor (Gas): 1.3962 12.12 Latient Hest of Vaportzation: 96 Btu/fb = 53 cal/g = 2.2 X 10 ³ J/kg
Pecsonal Prote trousers won breeting app app or syste cause and transmission or syste cause as treatment of E has stopped, frostbite, soal E4 Threatnet Lant E3 Biost Tarm Inh E4 Toxicity by Inge 57 Lete Taxicity by Inge 58 Lete Taxicity by Inge 59 Lete Taxicity by Inge 50 Lete Taxicity by I	 Hill christe Equipment: Sellery ga outside boots or over high aritise where insufficient an owing Exposure: inheateor in discretes, unconsciousne is hostbite burns. posure: Defuil, and the test posure: Defuil, and the test in bilavisim value. Value: Non-boots allots: Non-boots allots: Not partiment settor: Linkavisteriletice: Non- kmt Characteristice: Fin- Intern Characteristice: Fin- 	ALTH KAZARDS asses or face sheet; insudated gloves, long eleves; to shoe so the splited liquid; self-contained is present; can cause apphysistion, if stroaphere does not as, or even death can result. Contact of liquid with ak hove to thesh ar; spoty artificial respiration if breathing or froatbills burns caused by liquid. SKIN: thest for a	SHIPPING INFORMATION S.1 Grades of Purtly: 90.5 + % Bitorage Temperature:320'F S.3 linert Atmosphere: No requirement S.4 Venting: Open	12.14 Heat of Decomposition: Not pertinent 12.15 Heat of Bolution: Not pertinent 12.15 Heat of Polymerization: Not pertinent 12.25 Heat of Polymerization: Not pertinent 12.25 Heat of Fusion: 6.15 ca/g 12.26 Linhting Value: Data not evaluable 12.27 Reid Vapor Preseure: Data not evaluable
6.19 Odor Threehold 6.11 IDLH Velue: Det	e hoo persoent is not eveleble		NOT	5

4

۳.

.

1

• •

ATTACHMENT B ARCON96 RUNS FOR AUX BLDG ROOF INLET

1

Program Title: ARCON96.

.

Developed For:	U.S. Nuclear Regulatory Commission
	Office of Nuclear Reactor Regulation
	Division of Reactor Program Management

Date: June 25, 1997 11:00 a.m.

NRC	Contacts :	J.	¥.	Lee	Phone: (301) 415 1080
					e-mail: jyll@nrc.gov
		J.	J.	Hayes	Phone: (301) 415 3167
					e-mail: jjh@nrc.gov
		L.	A	Brown	Phone: (301) 415 1232
					e-mail: lab2@nrc.gov

Code	Developer:	J.	٧.	Ramsdell	Phone :	(509)	372	6316	
					e-mail:	j ran	msde]	10pn1	. gos

Code Documentation: NUREG/CR-6331 Rev. 1

The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such use, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run 8/26/1998 at 08:36:30

******* ARCON INPUT *********

. ...

Meteorological	Data	File	Names	-
CC1991.MET				
CC1992.MET				
CC1993.MET				

Height of lower wind instrument (m) = 10.0 Height of upper wind instrument (m) = 60.0 Wind speeds entered as meters/second

Ground-level release	
Release height (m)	.0
Building Area (m ²)	1155.0
Effluent vertical velocity (m/s)	.00
Vent or stack flow (m ³ /s)	.00
Vent or stack radius (m)	36.89
Direction intake to source (deg)	339
Wind direction sector width (deg)	 90
Wind direction window (deg)	294 - 02

Distance to intake (m)		141.1
Intake height (m)		15.6
Terrain elevation difference	(m)	 . 0

Output file names CHTF3CR.out CHTF3CR.jfd

Minimum Wind Speed (m/s)		. 5
Surface roughness length (m)		.10
Sector averaging constant	*	4.0
Initial value of sigma y		17.16
Initial value of sigma z	-	.00

Expanded output for code testing not selected

Total	number of hours of data processed	26307
Hours	of missing data	416
Hours	direction in window	7383
Hours	elevated plume w/ dir. in window	0
Hours	of calm winds	495
Hours	direction not in window or calm	18013

DISTRIBUTION SUMMARY DATA BY AVERAGING INTERVAL

AVFR.	PER.	1	2	4	8	12	24	96	1.68	360	720
UPPER	LIM.	1.00E-03									
LOW	LIM.	1.00E-07									

CA04561 REV 0 PAGE 22

ABOVE	RANGE	Ο.	0.	0.	Ο.	0.	0.	0	0		
IN	RANGE	7878.	9361.	11227.	13690.	15731.	19609	24938	25103	0.	0.
BELOW	RANGE	0.	0.	0.	0.	0.	0		25103.	25169.	24910.
	ZERO	18013.	16464.	14480.	11796.	9937	5075	267	0.	0.	0.
TOTAL	L X/Os	25891.	25825	25707	25486	25669	25572.	207.	1.	0.	0.
& NOT	N ZERO	30 43	36.25	43 67	E3 73	25000.	40064.	25205.	25104.	25169.	24910.
			30,23	40.07	53.74	61.29	70.65	98.94	100.00	100.00	100.00
95th	PERCENTILE	X/Q VA	LUES			:					
	2.1	65E-04	2.58E-04	2.47E-04	2.27E-04	1.87E-04	1.42E-04	8.72E-05	7.72E-05	6.73E-05	6.07E-05
0 to	2 hours	2.	65E-04								
0 t (2 hours	2.	65E-04								
2 t.	o 8 hours	2.	14E-04						4.7	01561	REVD
8 to	o 24 hours	9.	89E-05						U.L.	04001	ne i v
1 to	o 4 days	6.	92E-05						D A	EE 77	
4 to	o 30 days	5.	66E-05						FA	02 23	
			HOURLY	VALUE RANG	E						
			MAX X/O		MIN X/O						
	CENTERLINE		3.50E-04		3.10E-05						
	SECTOR - AVE	AGE	2 20E-04		1 945-05						
					1.246-05						

NORMAL PROGRAM COMPLETION

. .

1

.

.

ATTACHMENT C ARCON96 RUNS FOR WEST ROAD INLET PLENUM Program Title: ARCON96.

.

4

Developed For:	U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Division of Reactor Program Management
Date:	

	1				
NRC	Contacts:	J.	¥.	Lee	Phone: (301) 415 1080
					e-mail: jyll@nrc.gov
		J.	J.	Hayes	Phone: (301) 415 3167
					e-mail: jjh@nrc.gov
		L.	A	Brown	Phone: (301) 415 1232
					e-mail: lab2@prc gov

Code Developer: J. V. Ramsdell Phone: (509) 372 6316 e-mail: j_ramsdell@pnl.gov

Code Documentation: MUREG/CR-6331 Rev. 1

The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such use, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run 8/26/1998 at 08:37:00

******* ARCON INPUT *********

Number of Meteorological Data Files Meteorological Data File Names		3
CC1991.MET		
CC1992.MET		
CC1993.MET		
Height of lower wind instrument (m)		10.0
Height of upper wind instrument (m)		60.0
Wind speeds entered as meters/second		
Ground-level release		
Release height (m)		.0
Building Area (m ²)		155.0
Effluent vertical velocity (m/s)		.00
Vent or stack flow (m ³ /s)		00
Vent or stack radius (m)		" å . 89
Direction intake to source (deg)		358
Wind direction sector width (deg)		90
Wind direction window (deg)		313 - 043
Distance to intake (m)		182.2
Intake height (m)		9.1
Terrain elevation difference (m)		. 0
Output file names		
CHTF3WR.out		
CHTF3WR.jfd		
Minimum Wind Speed (m/s)		. 5
Surface roughness length (m)		.10
Sector averaging constant	*	4.0
Initial value of sigma y		17.16
Initial value of sigma z		.00
Expanded output for code testing not	sel	ected
Total number of hours of data process	ed	= 26307
Hours of missing data		= 416
Hours direction in window		= 7453
Hours elevated plume w/ dir. in windo	W	= 0
Hours of calm winds		= 495
Hours direction not in window or calm	1	= 17943
DISTRIBUTION SUMMARY DATA BY AVERAGIN	IG I	NTERVAL

AVER.	PER.	1	2	4	8	12	24	0.0			
TIDDED	T. T.M.	1 000 00	1 000 00				6.4	90	168	360	720
OF F DR.	Lifter.	1.006-03	1,005-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	1 008-03
LOW	LIM.	1.00E-07	1.00E-07	1 00E-07	1 008-07	1 005-07	1 000 00	1 000 00		1.000 00	4.000-03
				2.000 01	1.000.01	A. UVE-U/	1.005-07	1.00E-07	1.00E-07	1.00E-07	1.00E-07

CA04561 REV D PAGE 25

ABOVE IN BELOW TOTAL % NON	RANGE RANGE ZERO X/QS ZERO	0. 7948. 0. 17943. 25891. 30.70	0. 9433. 0. 16392. 25825. 36.53	0. 21303. 0. 14404. 25707. 43.97	0. 13804. 0. 11682. 25486. 54.16	0. 15889. 0. 9779. 25668. 61.90	0. 19671. 0. 5913 25584. 76.89	0. 25021. 0. 184. 25205. 99.27	0. 25101. 0. 3. 25104. 99.99	0. 25169. 0. 0. 25169. 100.00	0. 24910. 0. 0. 24910. 100.00	
95th	PERCENT	TILE X/Q VAL 1.75E-04	LUES 1.71E-04	1.63E-04	1.50E-04) 1.25E-04	9.37E-05	6.13E-05	5.29E-05	4.64E-05	4.19E-05	
95% 0 to 2 to 8 to 1 to 4 to	X/Q for 2 hours 8 hours 24 hour 4 days 30 days	standard av 1.7 1.4 25 6.5 5.0 3.9	veraging int 25E-04 11E-04 57E-05 04E-05 00E-05	ervals						CA045 PA6E	61 REV 26	0

	HOURLY	VALUE RAN	GE
	MAX X/Q		MIN X/O
CENTERLINE	2.36E-04		2.12E-05
SECTOR - AVERAGE	1.48E-04		1.33E-05

NORMAL PROGRAM COMPLETION

1

. .

.

ATTACHMENT D EXCEL SPREADSHEET NITROGEN - AUX BLDG ROOF INLET

NITROGEN-CR

CA04561 REVO PAGE 28

NITROGEN					a man of sharp or realised second	
CUENICAL						
CHEMICAL		N2				
TLV (PPM)	TLV					
ODOR THRESHOLD (PPM)	OT					
STORAGE QTY (GAL)	Q	11300		1		
STORAGE PURITY (FRACTION)	QF	1			and a set that says is the second stars	and the second se
SPECIFIC GRAVITY (GM/CC)	SG	0.807				
MOLECULAR WT (GM/MOLE)	MB	28				
VOL-CR (CF)	VCR	234157				
Q-CR (CFM)	FCR	8300				
MASS DENSITY AIR (GM/CC)	RHOA	1.21E-03				
INITIAL MASS (GM)	MO	Q*QF*SG*	(3785.422 0	C/GAL)		3 4520E+07
VOLUME (M3)	VO	Q*QF*(3.7)	85422E-3 M	3/GAL) =		4 2775E+01
SPILL RADIUS INITIAL (M)	RO	(V0/PI)^0.3	33333 =	,		2.3879E+00
SPILL AREA INITIAL (M2)	AO	PI*RO^2 =				1.7913E+01
SPILL AREA FINAL (M2)	AF	VO/0.01 =				4 2775E+03
DELTA SPILL AREA (M2/SEC)	DA	SQRT(4*P	*9.81*VO*(SG-RHOA)	SG))	7 2562E+01
TIME TO MAX AREA (SEC)	tA	(AF-AO)/DA =				5.8703E+01
		TF				
ADC (S/M3)	ADC	2.65E-04				
VAPOR DEN INSIDE CR(GM/M3)	VDC=	M0*ADC*F	CR/VCR/60			
	PPM=	(24500/MB)*VD			
CASES	ADC	VDC	PPM	%-v/v		
	2.65E-04	5.40E+00	4.73E+03	0.4729		

.

.

ATTACHMENT E EXCEL SPREADSHEET NITROGEN - WEST ROAD INLET

NITROGEN-WR

.

1

NITROGEN			1			T
		1			1	
CHEMICAL		N2				1
TLV (PPM)	TLV		1		1	
ODOR THRESHOLD (PPM)	OT					
STORAGE QTY (GAL)	Q	11300				
STORAGE PURITY (FRACTION)	QF	1				
SPECIFIC GRAVITY (GM/CC)	SG	0.807				
MOLECULAR WT (GM/MOLE)	MB	28		······································		
VOL-CR (CF)	VCR	234157				
Q-CR (CFM)	FCR	3000		n i Belalasi salarana sarangkara		
MASS DENSITY AIR (GM/CC)	RHOA	1.21E-03				
INITIAL MASS (GM)	MO	Q*QF*SG*	(3785.422 C	C/GAL)		3 4520E+07
VOLUME (M3)	VO	Q*QF*(3.7	85422E-3 M	3/GAL) =		4 2775E+01
SPILL RADIUS INITIAL (M)	RO	(V0/PI)^0.3	33333 =	/		2.3879E+00
SPILL AREA INITIAL (M2)	AO	PI*RO^2 =				1.7913E+01
SPILL AREA FINAL (M2)	AF	VO/0.01 =				4.2775E+03
DELTA SPILL AREA (M2/SEC)	DA	SQRT(4*P	*9.81*VO*(SG-RHOA)	(SG))	7.2562E+01
TIME TO MAX AREA (SEC)	tA	(AF-AO)/D	A =			5.8703E+01
		TF				
ADC (S/M3)	ADC	1.75E-04				
VAPOR DEN INSIDE CR(GM/M3)	VDC=	M0*ADC*F	CR/VCR/60			
	PPM=	(24500/MB)*VD			
CASES	ADC	VDC	PPM	%-v/v		
	1.75E-04	1.29E+00	1.13E+03	0.1129		

1

. .

ATTACHMENT/F SYSTEM DESCRIPTION # 74

THIS DOCUMENT IS FOR INSTRUCTION AND INFORMATION ONLY. IT IS NOT TO BE USED FOR PLANT OPERATIONS.

NITROGEN SYSTEM SYSTEM DESCRIPTION NO. 74 REVISION 0

Baltimore Electric and Gas Company Calvert Cliffs Nuclear Power Plant

Prepared By:

Date: 12/2 17

System Engineer

Reviewed By:

Date: 12/22/97

System Manager/Work Group Leader

Approved By:

10pmlx

Date: 1-6-18

Principal Engineer

PLEASE DIRECT TO THE SUPERVISOR-OPERATIONS TRAINING OR THE SYSTEM ENGINEER, ANY RECOMMENDATIONS FOR IMPROVEMENTS TO THIS SYSTEM DESCRIPTION.

TABLE OF CONTENTS

1.0	SYST	EM PU	RPOSE				
2.0	GENE	ERAL D	ESCRIPTIC	ON			
3.0	DETA	ILED I	DESCRIPTI	ION			
	3.1	Liquid	Nitrogen S	Storage Unit			
		3.1.1	Storage Ta	nk			
		3.1.2	Nitrogen V	aporization			
			3.1.2.1	Ambient Vaporizer			
			3.1.2.2	Electric Vaporizer			
	3.2	Altern	ate Nitroger	n Supply			
	3.3	Nitrog	en Distribution Header				
		3.3.1	Condensat	e Storage Sparging And Blanketing System			
		3.3.2	Turbine B	uilding Header			
			3.3.2.1	N2 To Instrument Air Back Up			
			3.3.2.2	Auxiliary Boilers			
			3.3.2.3	Nitrogen Generating System			
			3.3.2.4	Auxiliary Feed Water Air Accumulators			
			3.3.2.5.	High And Low Pressure Feed Water Heaters			
			3.3.2.6	Steam Generator Feed Pumps			
			3.3.2.7	Main Generator			
		3.3.3	Auxiliary	Building Header			
			3.3.3.1	Electrical Penetration Canisters			
			3.3.3.2	Main Steam Isolation Valve Actuator N ₂ Compressor			
			3.3.3.3	Safety Injection Tanks			
			3.3.3.4	Reactor Coolant Drain Tank			
			3.3.3.5	Steam Generators			
			3.3.3.6	Pressurizer Quench Tank			
			3.3.3.7	Volume Control Tank (VCT)7			
			3.3.3.8	Degassifier			
			3.3.3.9	Waste Gas Surge Tank			
			3.3.3.10 3.3.3.11	Ion Exchangers			
			3.3.3.12	Post Loci Sampling System			
		·	3.3.3.13	Rad Chem Gas Storage Lockers			

LIST OF TABLES

TABLE 5-1	SYSTEM CHARACTERISTICS
TABLE 5-2	COMPONENTS SUPPLIED BY NITROGEN
TABLE 5-3	PROBLEMS AND POSSIBLE CAUSES
TABLE 6-1	NITROGEN GAS SYSTEM REFERENCES

CALVERT CLIFFS NUCLEAR POWER PLANT SYSTEM DESCRIPTION #74 NITROGEN SYSTEM

1.0 SYSTEM PURPOSE

The purpose of the Nitrogen Gas System is to store and distribute nitrogen (N_2) gas to various plant components throughout the turbine building, auxiliary building and the tank farm.

2.0 GENERAL DESCRIPTION

The Nitrogen (N_2) system can be divided into two general subsystems, the storage system and the distribution header. The storage system consists of an insulated storage tank which is kept pressurized by an ambient vaporizer. An electric vaporizer is installed for use in the event the ambient vaporizer is out of service. The storage tank is kept under pressure to maintain the nitrogen in a liquid state.

The distribution header runs throughout the plant, going to a variety of components, ranging from the main steam isolation valves to the auxillary boilers, N₂ is used in virtually all storage tanks and water bearing vessels such as the volume control tank and the steam generators.

Nitrogen, like all cryogenic fluids, has a very low boiling point (-320° F) and in its liquid form can cause severe frostbite if it comes in contact with exposed parts of the human body. Additionally, while it makes up around 70% of the air we breath, NITROGEN CAN NOT SUSTAIN LIFE on its own (without OXYCEN). Therefore, care must be taken whenever working in an area (or component) where N_2 is present to ensure the air is constantly monitored for habitability.

1

3.0 DETAILED DESCRIPTION * All setpoints given in this description are approximate

3.1 LIQUID NITROGEN STORAGE UNIT

3.1.1 STORAGE TANK

The storage tank is an 11,30 ______lon stainless steel tank surrounded by perlite powder insulation and a protective outer carbon steel tank. The space between the inner and outer tank is at a vacuum of approximately 28" HG (similar to a "THERMOS" bottle), since heat transfer through a vacuum is much lower than through air. Liquid nitrogen is brought on site by a vendor's truck, and put directly into the storage tank via the fill connection . The fill line is protected from over pressure conditions by a relief valve, 0-RV-6354, set for ~450 PSI. Over pressure protection for the tank is provided by relief valves and rupture disks. The tank relief valves, located in the outlet piping of the pressure build-up coil are arranged so that either RV-6358 or RV-6359 can be selected on service by a three way valve. These relief valves are set at ~285 PSIG. The two rupture disks are mounted in the same piping run, and are designed to burst at ~315 PSIG. Local indication of pressure and level in the storage tank is provided. The level indicator, LI-6300, indicates in inches of water pressure (one inch of water equals ~55 gallons of liquid nitrogen.). LI-6300 covers a range of 0 to 400 inches, where any reading between 90 and 210 inches is normal. Tank pressure is indicated by PI-6367, with a range of 0 to 800 PSIG (normal tank pressure is about 240 PSIG).

Nitrogen pressure in the storage tank is maintained by a pressure build-up coil. Liquid nitrogen exits the storage tank through manual throttle valve $0-N_2-407$ to pressure control valves PCV-6343 or 6344. The nitrogen the enters the pressure build-up coils, where the nitrogen absorbs heat from the atmosphere, vaporizing and pressurizing the nitrogen in the coil. This gaseous nitrogen is then directed back to the top of the storage tank, through a pressure control valve (PCV-6342) thereby keeping the tank contents under pressure, and thus in a liquid state. PCV-6342 is provided with a small manual bypass valve.

3.1.2 NITROGEN VAPORIZATION

Nitrogen supply to the vaporizer is taken from the storage tank via a dip-tube at the bottom of the tank, ensuring only liquid is drawn out. This liquid nitrogen is routed to either the ambient or the electric vaporizer which keep the nitrogen header pressure at around 240 PSIG.

3.1.2.1 AMBIENT VAPORIZER

The Ambient Vaporizer (constructed of aluminum) absorbs heat from the atmosphere and transmits it to the nitrogen. The ambient vaporizer is of the fin and tube design, with a center tube radiating 8 fins outward for the entire 12 foot length of the tube. The vaporizer has 2 sections of tubes mounted vertically, with each section consisting of 64 tubes. The ambient vaporizer is rated at 33,000 SCFM at 500 PSIG. If the ambient vaporizer is isolated or its temperature gets too low (-100°F AT TS-6301), the electric vaporizer (if in automatic) will be energized.

3.1.2.2 ELECTRIC VAPORIZER

The Electric Vaporizer is a three stage electric in-line-heater whose purpose is to maintain nitrogen pressure at approximately 240 PSIG. The three sections of heaters cycle on the nitrogen outlet temperature (70 °F ON/ 90 °F OFF) with a high temperature cut-off at 300 °F. Each stage consists of 6 individual heaters. There is a low temperature switch that shuts the outlet solenoid valve if the temperature drops to 20 °F, so that liquid nitrogen is not released to the system. The electric vaporizer is powered from 480 VAC BUS 25. The vaporizer has a local control panel (located next to the N₂ storage tank) that contains a local breaker, hand switch, power availability light, heater on light, and system temperature controls.

3.2 ALTERNATE NITROGEN SUPPLY

The N₂ system is equipped with a truck supply connection located near the north intake stairwell 45' elevation, so that a truck can be lined up to the system to act as its supply, in the event the storage system is inoperable or depleted due to excessive use. A manual isolation valve (0- N₂-102) is situated just downstrean of the truck connection.

3.3 NITROGEN DISTRIBUTION HEADER

3.3.1 CONDENSATE STORAGE SPARGING AND BLANKETING SYSTEM

The nitrogen gas system supplies N2 to the three condensate storage tanks and to the demineralized water storage tank. This N2 is used for blanketing and/or sparging the water in the tanks. This is done to keep oxygen out of the tanks, thus reducing corrosion, both in the tanks themselves and in the systems they supply with water. All three condensate storage tanks and the demineralized water storage tank are blanketed with N2, while only 12 condensate storage and the demineralized water storage tanks have sparging tubes, which bubble N2 up from the bottom of the tank. The N2 to the sparging and blanketing system is supplied via pressure control valves, PCV-6300 or 6301, which tap off the distribution header just after the header leaves the N₂ storage tank and before it goes through the pipe tunnel into the turbine building. The PCVs lower the N₂ pressure to 25 PSIG. Downstream of the PCVs there is a pressure switch and a flow alarm which alerts the control room to any loss of N₂ to the sparging and blanketing systems. The N₂ pressure is further reduced at each of the water storage tanks by regulators that bring the N2 pressure to 1 1/2 " H2O, which is about .054 PSIG. The tank vents and overflows are sealed with rupture disks, preventing the escape of No. These rupture disks burst at "3 PSIG differential pressure. Condensate storage tanks 11 and 21, in addition to the demineralized water storage tank, have two overpressure-vacuum breaker relief valves for protection from damage caused by either a vacuum or an overpressure condition. 12 condensate storage tank has a six inch vacuum breaker and two glycol charged loop seals in conjunction with a vent valve for overpressure protection.

3.3.2 TURBINE BUILDING HEADER

The nitrogen header proceeds from the storage unit in the tank farm to the turbine building through the pipe tunnel at the north end of the turbine building. Nitrogen is supplied to the turbine building for placing the feed water heaters, auxilary boilers, main generators and the steam generator feed pumps in long term lay-up. N₂ is also used as an alternate way of charging the auxilary feed pump air accumulators and provisions have been made to have the N₂ System act as a back up to the instrument air system.

3.3.2.1 N2 TO INSTRUMENT AIR BACK UP (NOT CURRENTLY IN SERVICE)

 N_2 was planned as a backup to the Instrument Air System in the event of a loss of instrument air. This line taps off the N_2 header just after it enters the turbine building from the tank farm, through manual valve 0- N_2 -445, located on the 12' turbine building, northeast corner. In the event of a loss of instrument air, control valves 1 (2) -PCV-6301 were to open allowing N_2 to pressurize the header. This system is installed but is not in service.

4

3.3.2.2 AUXILIARY BOILERS

 N_2 for blanketing the Auxiliary Boilers is supplied through a pressure control valve (1-PCV-6298) at 5 PSIG. This valve is located in the auxiliary boiler room. The N_2 then must pass through a spool piece and the normal vent into the boilers.

3.3.2.3 NITROGEN GENERATING SYSTEM

The N₂ Generating System is retired in place.

3.3.2.4 AUXILIARY FEED WATER AIR ACCUMULATORS

Nitrogen serves as a back up way of charging the accumulators in the event of loss of motive air to the amplifier. Charging the accumulators with N_2 is accomplished manually with valves 0-N₂-104 (0-N₂-106) and 0-N₂-105 (0-N₂-107) located in the service water pump rooms.

3.3.2.5. HIGH AND LOW PRESSURE FEED WATER HEATERS

N₂ to the Feed Water Heaters is supplied through a pressure control valve, 1-PCV-6299 (2-PCV-6299), at a pressure of ~5 PSIG. The nitrogen to the individual feed water heaters is supplied through removable flexible hoses to both the shell and tube sides of 13 thru 16 (23 thru 26) feed water heaters, while it is only supplied to the tube sides of feed water heaters 11 and 12 (21 and 22). Unit-1's control valve is located north of the Unit-1 service water pump room door. Unit-2's control valve is located outside of the Unit-2 auxiliary feed pump room door. The connection for the steam generator feed pumps taps or downstream of the feed water heaters on both units.

3.3.2.6 STEAM GENERATOR FEED PUMPS

The nitrogen for use in the Steam Generator Feed Pumps is supplied from the same header that supplies the feed water heaters, through a flexible hose at each pump.

3.3.2.7 MAIN GENERATOR

 N_2 is used in the Main Generator for long term lay-up to keep air out and provide a clean and inert atmosphere. Since no permanent piping exists between the generator and the N_2 system, temporary hoses must be installed between the N_2 header and the generator gas system. On Unit 1 the temporary hose is connected at the N_2 low point drain (0- N_2 -258) next to the turbine building operators booth and runs to the generator gas system. On Unit 2 the temporary hose connects to one of the feed water heater connections and runs to the generator gas system.

5

3.3.3 AUXILIARY BUILDING HEADER

Nitrogen is used in the auxiliary building for a variety of reasons. Compressed, it is used as the driving force behind the safety injection tanks, as well as the force that shuts the main steam isolation valves. N₂ Is used as a vacuum break for the waste gas surge tank, and as an inert sealing media for the electrical penetration canisters The N₂ header in the auxiliary building is divided (by unit) by valve 0-N₂-255, which is located in the 5 foot elevation of the auxiliary building, near the elevator.

3.3.3.1 ELECTRICAL PENETRATION CANISTERS

 N_2 , at ~50 PSIG, is supplied to the canisters, first through pressure control valves 1-PCV-6326, 6328 and 2-PCV-6326, 6328 and then a flexible hose with a small compression fitting at the end of it. Individual canisters are charged with N_2 through their low pressure alarm switches. The nitrogen is used in these canisters as an inert sealing medium between the containment and the penetration room. The hoses, pressure control valves and pressure switches are located in each 45' electrical penetration room in the auxiliary building

3.3.3.2 MAIN STEAM ISOLATION VALVE ACTUATOR N2 COMPRESSOR

The Main Steam Isolation Valves are shut using nitrogen pressure. Since the N_2 header pressure is only around 240 PSIG, the N_2 compressor is used to compress the nitrogen to the pressure required (approximately 2800 PSI) to shut the valve. The N_2 does not shut the valve directly from the N_2 header, but is stored in an accumulator on the top of the valve, for use when necessary. The compressor is driven by plant air.

3.3.3.3 SAFETY INJECTION TANKS

The Safety Injection Tanks hold a borated water volume with a 200-250 PSI nitrogen cap on top, which is used to force the borated water into the RCS during accident conditions. The manual valve ($0-N_2-236$ on Unit-1 and $0-N_2-270$ on Unit-2) on this line is located in the 27' east penetration room.

EA04561 REVO

3.3.3.4 REACTOR COOLANT DRAIN TANK

Nitrogen is used in the Reactor Coolant Drain Tank to prevent hydrogen from coming out of solution and creating a potentially explosive condition. This N_2 is regulated by a pressure control valve (1(2)-PCV-6317), that maintains N_2 pressure to the drain tank at ~2 PSI. This pressure control valve is located in each unit's 27' east penetration room.

3.3.3.5 STEAM GENERATORS

Nitrogen is used in the Steam Generators for lay-up conditions, to prevent the entry of oxygen. The N₂ to the steam generators is regulated at " 3 PSI by control valve 1(2)-PCV-6318 (which is also the control valve for the N₂ to the pressurizer quench tank). There are flexible hoses in the line down stream of the control valves which connect the N₂ system to the steam generator piping in the containment.

3.3.3.6 PRESSURIZER OUENCH TANK

Nitrogen is used in the Quench Tank as a purge gas, to prevent the build-up of hydrogen gas to an explosive level. 1(2)-PCV-6318 controls N₂ pressure to the quench tank at ⁻³ PSI. 1(2)-PCV-6318 is located in the respective units 27' east penetration room.

3.3.3.7 VOLUME CONTROL TANK (VCT)

Nitrogen is used in the VCT for degassification (removal of H₂ and radioactive gases). The N₂ line leading into the VCT has a flow orifice installed upstream of a manual inlet valve $(0-N_2-250 \text{ on Unit-1} \text{ and } 0-N_2-256 \text{ on Unit-2})$ which is located in the respective unit's BAST room.

3.3.3.8 DEGASSIFIER

Nitrogen is used in the Degassifier as a purge gas (removal of H₂ gas, etc) and is supplied through 1(2)-PCV-6315 at a pressure of $\overline{}$ 30 PSIG. Unit-1's pressure control valve is located outside of 11 degassifier room on the 5'elevation of the auxiliary building, and Unit-2's is located in the 5' auxiliary building valve alley.

3.3.3.9 WASTE GAS SURGE TANK

N₂ is supplied to the Waste Gas Surge Tank as a purge gas, and also as a means of breaking vacuum in the tank. The N₂ going into the waste gas surge tank is first reduced to 5 PSI by a pressure control valve (0-PCV-6316) before going to either the vacuum breaker or the manual valve used in purging the tank. There is a relief valve in this line that relieves at 50 PSI. The vacuum breaker, 0-PCV-2182, is set to open at 0 PSIG, protecting the surge tank from damage. The control valves are both located in the 5 foot auxiliary building in the hallway across from the hot tool shop.

3.3.3.10 ION EXCHANGERS

 N_2 is used in the Ion Exchangers for fluffing the resin beds. The N_2 is supplied to the ion exchanger header through pressure control valve 0-PCV-6331 at a pressure of ~20 PSIG. This valve is located on the 27' of the auxiliary building outside the Unit-1 degassifier filter room. The manual isolations to the pressure control valve are 0- N_2 -584 and 585, located in the Unit-1 27' penetration room and out side the Unit-1 degassifier filter room, respectively.

3.3.3.11 COOLANT WASTE EVAPORATORS

 N_2 is used in the Evaporators to break vacuum during system shutdown and blanketing during long term lay-up. The N_2 is supplied to the evaporator concentrator through two control valves (0-CV-9462/9512 located in the evaporator room) which allow N_2 to break the vacuum in the concentrator but prevent the over-pressurization of the vessel by shutting at

⁻⁰ PSI. The evaporators are supplied by a common N_2 line that taps off the main auxiliary building header upstream of the unit cross-connect valve 0- N_2 -255. The manual isolation for this line is 0- N_2 -343, located outside of U-1's VCT room. This line also has a pressure control valve (0-PCV-6321) in it upstream of the evaporators, limiting N_2 pressure to the evaporators to ⁻¹⁰⁰ PSI. This valve is located in the evaporator room.

3.3.3.12 POST LOCI SAMPLING SYSTEM

 N_2 is used in the Post Loci Sampling System as a means of diluting radioactive gases in the sample line. The cutout valve for this is 0- N_2 -387, located in the Unit-2 45' west penetration room. This line taps off the Unit-2 side of the auxiliary building header only.

3.3.3.13 RAD CHEM STORAGE LOCKERS

N2. used as a purge gas and test standard .

TABLE 5-1

PERTINENT SYSTEM DESIGN CHARACTERISTICS

NITROGEN STORAGE TANK

CAPACITY	11,30
OPERATING PRESSURE	
OPERATING TEMPERATURE	
MATERIALS	
INSULATION	
INNER TANK	STAIN
OUTER TANK	

11,300 GALLONS 250-280 PSIG -250°F

PERLITE TAINLESS STEEL

TTE CALO LITE

ELECTRIC VAPORIZER

CARBON STEEL

MODEL	2X2TLE50X100KW
POWER RATING	100KW
MATERIALALUMINUM CAST	
OPERATING PRESSURE	300 PSIG
TEST PRESSURE	375 PSIG

AMBIENT VAPORIZER

MODEL	1F 0410 HF
DESIGN WORKING PRESSURE	500 PSIG
OPERATING PRESSURE	250-280 PSIG
CAPACITY	33,000 SCFM
HEAT TRANSFER AREA	2688 SQ FEET
MATERIAL	ALUMINUM
WEIGHT	2250 LBS

TABLE 5-2

COMPONENTS SUPPLIED WITH NITROGEN

CONDENSATE STORAGE TANKS DEMINERALIZED WATER STORAGE TANKS AUXILIARY BOILERS FEEDWATER HEATERS STEAM GENERATOR FEED PUMPS MAIN GENERATOR ELECTRICAL PENETRATION CANNISTERS MSIV N2 COMPRESSOR SAFETY INJECTION TANKS REACTOR COOLANT DRAIN TANK STEAM GENERATORS PRESSURIZER QUENCH TANK VOLUME CONTROL TANK DEGASSIFIER WASTE GAS SURGE TANK ION EXCHANGERS WASTE EVAPORATORS AFW ACCUMULATORS POST LOCI SAMPLE SYSTEM RAD CHEM GAS STORAGE LOCKERS

	ADLE 3-3				
PROBLEMS AND POSSIBLE CAUSES					
PROBLEM	POSSIBLE CAUSES				
INNER VESSEL SAFETY POPS	- Excessive tank pressure				
	- Faulty safety valve				
INNER VESSEL RUPTURE	- Faulty or corroded disc				
DISC BLOWS	- Excessive tank Pressure				
	- Faulty safety valve				
EXCESSIVE TANK PRESSURE	- Insufficient consumption				
	 Pressure Buildup regulator set too high. 				
	 Pressure Buildup regulator stuck open. 				
	- Economizer regulator set too high				
	- Economizer regulator stuck open				
	- Tank pressure gage wrong				
TANK PRESSURE TOO LOW	- Pressure buildup manual valve shut.				
	 Pressure buildup regulator set low 				
	 Pressure buildup regulator stuck closed. 				
	- Economizer regulator set low				
	 Economizer regulator stuck closed tank; pressure gage reading wrong. 				

1

.

11

	TAB	LE 5-3			
PROBLEMS	AND	POSSIBLE	CAUSES		

. . .

1		
1000	12 0 12 0 12	12000
1031		10.001
1000		a server y

PROBLEM	POSSIBLE CAUSES				
HEADER PRESSURE TOO LOW	- Line regulator set too low				
	- Line regulator faulty				
	- Tank pressure too low				
	- Line pressure gage faulty				
HEADER PRESSURE TOO HIGH	- Line regulator set too high				
	- Line regulator faulty				
	- Line pressure gage faulty				
GAS TEMPERATURE TOO LOW	- Vaporizer inadequate for flow rate				
CONTENTS GAGE READS	- Leak in gas side pipe				
TOO HIGH	- Calibration incorrect				
	- Faulty gage				
CONTENTS GAGE READS	- By-pass valve not closed				
TOO LOW	- Leak in liquid side piping				
	- Calibration incorrect				
	- Faulty gage				

TABLE 5-3 PROBLEMS AND POSSIBLE CAUSES

(continued)

PROBLEM

1 1 1

TANK PRESSURE GAGE

POSSIBLE CAUSES

- Shut-off valve closed

- Liquid or very cold gas

- trapped between closed valves

- Leak in gage piping
- Faulty gage

LINE SAFETY POPS

*(nothing wrong safety designed to protect pipe under these conditions) Faulty safety

* For additional Information see TECHNICAL MANUAL # 15-308-4 Section IV pages 1-6.

6.0 REFERENCES, DRAWINGS, AND SOURCES OF ADDITIONAL INFORMATION

.

This section lists in tabular format, references that are used in describing the system, operating.

Table 6-1

NITROGEN GAS SYSTEM REFERENCES

NORMAL OPERATING PROCEDURE	OI-4		
TECH. SPECS	None		
FSAR	Not Described		
TECHNICAL MANUALS	15308-004		
Operating and Maintenance Manual for Model 11300-400 Customer Station, MG INDUSTRIES PO. NO. 5224J			
TECHNICAL DRAWINGS			
	Bechtel	BG&E	
Piping and Instrument Diagram Nitrogen Gas System	OM 68	60-726-Е	
Piping and Instrument Diagram Well and Pretreated Water	OM 59	60-717-Е (SH-1)	
Piping and Instrument Diagram Instrument Air Unit-I	OM 53	60-712-E (SH-3)	
Piping and Instrument Diagram Instrument Air Unit-II	OM 454	62-712-E (SH-3)	
Piping and Instrument Diagram Safety Injection and Containment Spray	OM 74	60-731-E (SH-2 of 3)	
Piping and Instrument Diagram Safety Injection and Containment Spray	OM 462	62-731-E (SH-2 of 3)	
Piping and Instrument Diagram Reactor Coolant Waste Processing System	OM 77	60-734-E (SH-1, 2, 5, of 5)	
Piping and Instrument Diagram Chemical Volume and Control System Unit-I	OM 73	60-730-Е SH-1, 3 of 3)	

Table 6-1 NITROGEN GAS SYSTEM

	Bechtel	BG&E
Piping and Instrument Diagram Chemical Volume and Control System Unit-II	OM 461	62-730-E (SH-1 of 3)
Piping and Instrument Diagram Main Steam Unit-I	OM 35	60-700-E (SH-1 of 3)
Piping and Instrument Diagram Main Steam Unit-II	OM 36	62-700-E (SH-1 of 4)
Piping and Instrument Diagram Reactor Coolant System Unit-I	OM 72	60-729-E
Piping and Instrument Diagram Reactor coolant System Unit-II	OM 460	62-729-E
Piping and Instrument Diagram Nuclear Steam Sampling System	OM 66	60-724-E (SH-3 of 3)
Piping and Instrument Diagram MSIV Actuator Unit-I	OM 480	60-747-Е
Piping and Instrument Diagram MSIV Actuator Unit-II	OM 483	62-747-E

ADDITIONAL REFERENCES

Thermax Incorporated- ThermaFin Ambient Air Vaporizers

. . .

McGraw Hill, Dictionary of Science and Technical terms-Q. 123 M34, 1989

McGraw Hill, Encyclopedia of Science and Technology Q. 121 M3, 1982

1

1

. . .

ATTACHMENT G CROSS SECTIONAL AREAS

$$W = 2$$

$$W$$

Shew

1 1 4

the second second second second

. . .

ATTACHMENT H ATMOSPHERIC DENSITY VS ALTITUDE

STANDARD ATMOSPHERE (Continued)

CA04561 REV 0 PAGE 53

-200 \$00 m 200 n2 60 240 8220 200 60 140 20-126 100 00 -75 STA

0 -21

£ 60 ALTITUDE

H m'	Z m	°K m'-1	Tw °K	•K	М	P mb	kg m-1
-5,000	-4,996.070	0.0005	320.66	320.66	28.966	1.7776 × 10 ³	1.9312
0	0	-0.0005	288.16	288.16	28.966	1.01325 × 10 ³	1.2250
11,000	11,019.067	-0.0065	216.66	216.66	28.966	2.2632 × 10 ³	3.6391×10^{-1}
20,000	20,063.124	zero	216.66	216.66	28.966	5.4748 × 101	8.8034 × 10-1
25,000	25,098.710	zero ·	216.66	216.66	28.966	2.4886×10^{1}	4.0016×10^{-3}
32,000	32,161.906	+0.0030	237.66	237.66	28.966	8.6776 × 10°	1.2721 × 10-3
47,000	47,350.101	+0.0030	282.66	282.66	28.966	1.2044 × 10°	1.4845 × 10-3
53,000	53,445.620	zero	282.66	282.66	28.966	5.8320×10^{-1}	7.1881 × 10-4
75,000	75,895.488	-0.0039	196.86	196.86	28.966	2.452×10^{-1}	4.339 × 10-4
90,000	91,292.601	zero	196.86	196.86	28.966	1.815 × 10-3	3.213 × 10-4
126,000	128,548.193	+0.0035	322.86	273.6	24.54	1.451 × 10 ⁻⁶	1.566 × 10-
175,000	179,954.614	+0.0100	812.86	669.0	23.84	6.190 × 10 ⁻⁷	2.655 × 10-10
300,000	314,862.257	+0.0058	1,537.86	973.5	18.34	1.447 × 10-	3.279 × 10-1

Abbreviated Metric Table of the U. S. Extension to the ICAO Standard Atmosphere

Abbreviated English Table of the U. S. Extension to the ICAO Standard Atmosphere

H ív	Z ft	°R ft'-1	Tw °R	T oR		м	F Ib ft	-1	slugs	ft-1
-16,404.199	-16,391.307		577.18	8 577	188 2	8.966	3.7110	$\times 10^{3}$	3.7457	× 10-1
Ó	0	-0.003566160	518.68	518	688 2	8.966	2.1162	× 10ª	2.3769	× 10-3
36,089.239	36,151.798	-0.003300100	389.98	8 389.	988 2	8.966	4.7268	× 10 ²	7.0611	× 10-4
65,616.798	65,823.897	zero	389.98	389	988 2	8.966	1.1548	× 10 ¹	1.7251	× 10-4
82,020.997	82,344.849	zero	389.98	389.	988 2	8.965	3.1975	$\times 10^{1}$	7.7644	$\times 10^{-4}$
104,986.877	105,518.055	10.001010020	427.78	427	788 2	28.966	1.8124	$\times 10^{1}$	2.4682	× 10-*
154,199.475	155,348.103	+0.001645920	508.78	508	788 2	28.966	2.5155	× 10°	2.8803	× 10-6
173,884.514	175,346.523	2010	508.78	508	788	28.966	1.2180	× 10°	1.3947	× 10-4
246,062.992	249,000.945	-0.002139696	354.34	18 354	.348 2	28.966	5.121	× 10-1	8.420	× 10-8
295,275.591	299,516.408	atto	354.34	18 354	.348	28.966	3.792	× 10-1	6.234	× 10-*
413,385.827	421,746.041	+0.001920240 +0.005486400	581.14	492	.4 2	24.54	3.031	× 10-+	3.038	× 10-11
574,146.982	590,402.278	+0.000400400	1,463.14	18 1,204	.000	23.84	1.293	× 10-4	5.147	× 10-11
984,251.969	1,033,012.654	+0.003182112	2,768.14	18 1.752	.000	18.3	3.023	× 10-	6.362	× 10-10

ELEMENTS PRESENT IN SOLUTION IN SEA WATER EXCLUDING DISSOLVED GASES

Reprinted by permission of the publishers from "The Oceans" by Sverdrup, Johnson, and Fleming, Copyright, 1942, by Prentice-Hall, Inc. -

Element	Concentration (grams/metric ton) or parts per million		
Cl	18,980		
Na	10,561		
Mg	1,272		
S	884		
Ca	400		
K	380		
Br	65		
C (inorganic)	28		
Sr	13		
(SiO ₂)	0.01-7.0		
В	4.6		
Si	0.02-4.0		
C (organic)	1.2-3.0		
AI	0.16-1.9		
F	1.4		
N (as nitrate)	0.001-0.7		
N (as organic nitrogen)	0.03-0.2		
Rb	0.2		
Li	0.1		
P (as phosphate)	>0.001-0.10		
Ra	0.05		
1	0.05		
N (as nitrite)	0.0001-0.05		
N (as ammonia)	> 0.005-0.05		
As (as arsenite)	0.003-0.024		
Fe	0.002-0.02		
P (as organic phosphorus)	0-0.016		
Zo	0.005-0.014		
Cu	0.001-0.09		
Ma	0.001-0.01		
Ph	0.004-0.005		
FD	0.004		
Se	0.001		
Sn C:	0.002 (approximate)		
11	0.00015-0.0016		
Ma	0.0003-0.002		
G	0.0005		
Ni	0.0001-0.0005		
Th	<0.0005		
C.	0.0004		
V	0.0003		
i.	0.0003		
La V	0.0001		
1 No	0.00003		
ng	0.00015-0.0001		
AE	0.00013-0.0003		
Bi	0.0001		
Co E-	0.00004		
SC	0.000004_0.000008		
Au Es (in some exclusion)	-10-*		
Fe (in true solution)	210-11 210-16		
Ka	Dracant		
Ge	Present		
11	Present		
W	Present		
Co	Present in marine organisms		
Cr	Present in marine organisms		
11	Present in marine organisms		
50	Present in marine organisms		
2.1	Present in marine organisms		
PI	Present in marine organisms		

THE pH OF NATURAL MEDIA AND ITS RELATION TO THE PRECIPITATION OF HYDROXIDES

Reprinted from "Principles of Geochemistry" (1952) with the permission of Brian Mason, author, and John Wiley and Sons, publishers.

	Precipitation of hydroxides Natural media			
Magnesium	on an a cancer of an allocation of the line of the second s	11		
	Alkali soils	10		
Bivalent manganese		19		
	Seawater	18		
Bivalent iron	River water	7		
Zinc copper	Rain water	6		
Aluminum		5		
	Peat water	4		
Trivalent iron	Mine waters	3		
	Acid thermal springs	1 12		
	Magnesium Bivalent manganese Bivalent iron Zinc copper Aluminum Trivalent iron	Magnesium Alkali soils Bivalent manganese Scawater Bivalent iron River water Zinc copper Rain water Aluminum Peat water Trivalent iron Mine waters Acid thermal springs		

PROPERTIES OF THE EARTH'S ATMOSPHERE AT ELEVATIONS UP TO 160 KILOMETERS

The average atmosphere up to 160 km based on pressure and density data obtained on rocket flights above White Sands, New Mexico. Havens, Koll, and LaGow, Journal of Geophysical Research, March, 1952.

Alti- tude km above sea level	Pressure mm Hg	Density gm/meters ³	Temper- atures *K (N ₂ , O ₂) M = 29	Temper- atures $K^{(N_3, O)}$ M = 24	Velocity of Sound m. sec	Mcan Free Path cm (N ₂)
0	760	1220	290		345	6.5 × 10-4
10	210	425	230		310	1.9 × 10-5
20	42	92	210		295	8.6 × 10-5
30	9.5	19	235		315	4.2 × 10-4
40	2.4	4.3	260		325	1.8 × 10-3
50	7.5 × 10-1	1.3	270		330	6.1 × 10-3
60	2.1 × 10 "1	3.8 × 10 ⁻¹	260		325	2.1 × 10-2
70	5.4 × 10-1	1.2 × 10-1	210		295	6.6 × 10
80	1.0 × 10 2	2.5 × 10-1	190		280	3.2 × 10-1
90	1.9 × 10-3	4.0 × 10-3	210		295	2.0
100	4.2 × 10-4	8.0 × 10-4	240		315	10.0
110	1.2 × 10-4	2.0 × 10-4	270	220	330	40.0
120	3.5 × 10-5	5.0 × 10-1	330	270	370	1.5 × 10 ²
130	1.5 × 10-3	2.0 × 10-5	390	320	.400	4.0 × 10 ²
140	7 × 10-4	7.0 × 10-*	450	370	430	1.0 × 10'
150	3 × 10-4	3.0 × 10-*	510	420	460	2.5 × 10 ³
160	2 × 10-*	1.5 × 10-*	570	470	480	5.0 × 10°

VELOCITY OF SEISMIC WAVES

Longitudinal or condensational km/sec.	Transverse or distortional km/sec
5.4 -5.6	3.2
6.256.75	3.5
12.5	6.9
	Longitudinal or condensational km/sec. 5.4 -5.6 6.25-6.75 12.5 13.5

ATMOSPHERIC AND METEOROLOGICAL DATA

Total mass of the atmosphere, estimated by Ekholm, 5.2×10^{21} g, 11.4×10^{10} pounds, 5.70×10^{14} tons. Evidence of extent: twilight, 63 km, 39 mi.: meteors, 200 km, 124 mi.: aurora

44-360 km, 27-224 mi.

*Distance to Earth.

STANDARD ATMOSPHERE

**

U. S. Extension to International Civil Aviation Organization Standard

Atmosphere, 1958 The atmosphere was classified in 1958 into three altitude regions designated as

- Speculative 75 to 300 ..

Properties of the atmosphere were calculated as functions of geometric altitude as well as geopotential, the potential being established for the latitude where the acceleration of gravity has a sea-level value of 9.80665 meters per second per second. Symbols and abbreviations used in these should be followed second. Symbols and abbreviations used in these tables are as follows:

- H Altitude in geopotential measure
- L_w = Molecular-scale-temperature gradient M = Mean molecular weight of air
- Meter m . - Standard geopotential meter m
 - Pressure
- Mass density PT
- T = Temperature in absolute thermodynamic scales T_u = Molecular-scale temperature in absolute thermodynamic scales Z = Altitude in geometric measure

P

5 AO 5-5 07 -20

-

10-1

10-8

10-1

10-1

10-1

10-4

10-4

10 .

10-1

10-10

10-10

11-1

× 10-8

× 10-1

× 10-4

× 10-4

× 10-6

× 10-6

× 10-

× 10-

× 10-4

× 10-9

× 10-11

× 10-18

× 10-16

MEAN MOLECULAR WEIGHT VS ALTITUDE

F-211

SEA LEVEL ATMOSPHERIC COMPOSITION FOR A DRY ATMOSPHERE^a

	Molecular fraction,	Molecular weight
Constituent gas	%	(0 = 15.999 ₄)
Nitrogen (N,)	78.09	14.0067
Oxygen (O,)	20.95	31.998,
Argon (Ar)	0.93	39.94.
Carbon dioxide (CO,)	0.03	44.01
Neon (Ne)	1.8×10^{-3}	20.117,
Helium (He)	5.24×10^{-4}	4.00260
Krypton (Kr)	1.0×10^{-4}	83.80
Hydrogen (H.)	5.0×10^{-5}	2.016
Xer.on (Xe)	8.0 × 10 ^{-*}	131.30
Ozone (O,)	1.0 × 10 ⁻⁶	47.999,
Radon (Rn)	6.0 × 10 ⁻¹	222

^aThese values are taken as standard and do not necessarily indicate the exact condition of the atmosphere. Ozone and radon particularly are known to vary at sea level and above, but these variations would not appreciably affect the value of M_o .

SEA LEVEL VALUES OF ICAO ATMOSFHERE

Property

Metric units

2.5339053 × 10-2 J m -1 sec -1 (°K)-1

6.0532182 × 10⁻⁶ kcal m⁻¹ sec⁻¹ (°K)⁻¹

Collision frequency Conductivity, thermal Conductivity, thermal Conductivity, thermal Density, mass

Density, mass Gravitational acceleration Kinematic viscosity Mean free path Molar volume

Molar volume Molecular weight Number density Particle speed Pressure

Pressure Pressure Pressure Scale height Sound speed

Specific weight Specific weight Temperature Temperature, absolute Temperature, molecular scale

Viscosity, coefficient of Viscosity, coefficient of $2.5838643 \times 10^{-3} \text{ kg/}^{6} \text{ sec}^{-1} (^{\circ} \text{ K})^{-1}$ $1.2250140 \text{ kg m}^{-3}$ $0.12491666 \text{ kg/ sec}^{2} \text{ m}^{-4}$ $9.80665 \text{ m sec}^{-2}$ $1.4607413 \times 10^{-5} \text{ m}^{2} \text{ sec}^{-1}$

6.9204049 × 10° sec-1

1.4607413 × 10⁻⁵ m² sec⁻⁷ 6.6317223 × 10⁻⁸ m 23.645444 m³ (kg-mol)⁻¹

231.88259 m³ {(kgf sec² m⁻¹)-mol] 28.966 (dimensionless) 2.5475521 × 10^{2 s} m⁻³ 458.94204 m sec⁻¹ 0.760 m Hg

1,013.2500 mbar 101,325.00 nt m⁻³ 10,332.275 kgf m⁻³ 8,434.4134 m 340,29205 m sec⁻¹

12.013284 kg m⁻³ sec⁻³ 1.2250140 kgf m⁻³ 15.0°C 288.16 K 288.16 K

1.7894285 × 10⁻⁵ kg m⁻¹ sec⁻¹ 1.8247093 × 10⁻⁶ kgf sec m⁻³ STANDARD ATMOSPHERE

Nature of Ions in Unpolluted Air

CA04562

PAGE 3

VD

STANDARD ATMOSPHERE (Continued)

CA04561 REV 0 PAGE 57

MEAN FREE PATH OF GASES

 $t=20^{\circ}C$ for data at pressures below 760mm Hz $t=0^{\circ}C$ for data at 760mm Hz

13.32

3.63

9.4 4.5 4.82

2.62

Pressure 0.01 mm Ha

4.73 × 10-1 m

0.001 mm Hg

4.73 × 10" m

13.32 8.81 3.63 9.4

4.5 4.82 2.62 760 mm Hg

6.20 × 10⁻⁴ m 13.32

8.81 3.63 9.4

6.33

Coronae due to amail water drops. Small halo, due to 60° angles of ice crystals. Large halo, due to 60° angles of ice crystals.	1° to 10° 22°			t = 20°C for data a
Rainbow, primary. Rainbow, secondary.	41° 20' 52° 15'	Ges	i mm Hg	0.1 mm Hg
		Argon Helium Hydrogen Krypton	4.73 × 10 ⁻⁴ m 13.32 #.81	4.73 × 10 ⁻⁴ m (3.32 8.81

Solar Constant

Angular Radius of Halos and Rainbows

The energy falling on one eq. cm. area at normal incidence, outside the earth's atmosphere, at the mean distance of the earth from the sursequals 2.00 small calories per minute. This value varies ± 2 %.

.

3

incidence, outside earth from the sup raries ±2%.	Neon Nitrogen Okygen Xenon	9.4 4.3 4.82 2.62	9.4 4.3 4.82 2.62	

COMPONENTS OF ATMOSPHERIC AIR (Exclusive of water vapor)

Constituent	Content (per cent) by volume	Content (ppm) by volume	Collision		Mo	Molecular diameter, em		
Na Oa COa	$\begin{array}{c} 78.084 \pm 0.004 \\ 20.946 \pm 0.002 \\ 0.033 \pm 0.001 \end{array}$		Cw	frequency 20° C	From viscosity	From van der Waal's equation	From beat condustivity	
Ne He Kr Xe H: CH, N:0	0.934 ± 0.001	$18.18 \pm 0.04 \\ 5.24 \pm 0.004 \\ 1.14 \pm 0.01 \\ 0.087 \pm 0.001 \\ 0.5 \\ 2 \\ 0.5 \pm 0.1$	Ammoris Argos Carbon monovide Carbon diogide Helium Hydrogen Krypton Mercury Mitrogen Ouygen Xeeoo	9150×104 4000 8100 6120 4540 10060 8070 4430	2.97×10 ⁻⁶ 2.86 3.19 3.34 1.90 2.40 	3.06×10-9 2.94 3.12 3.23 2.65 2.34 3.00) 3.91 3.15 3.95 4.02	2.86×16-4 3.40 2.80 2.30 2.32 3.16 3.65	

0