Georgia Power Company 333 Piedmont Avenue Atlanta. Georgia 30308 Telephone 404 526-7020

Mailing Address: Post Office Box 4545 Atlanta Georgia 30302



J. T. Beckham, Jr. Vice President and General Manager Nuclear Generation

> SL-1325 07630

October 2, 1986

U. S. Nuclear Regulatory Commission Office of Inspection and Enforcement Region II - Suite 2900 101 Marietta Street, NW Atlanta, Georgia 30323 REFERENCE: RII: JNG 50-321/50-366 I&E Bulletin 85-03

ATTENTION: Dr. J. Nelson Grace

Gentlemen:

Georgia Power Company (GPC) in previous conversations with NRC Region II personnel obtained NRC permission to submit this report after the original October 1, 1986, due date. As of the date of this report, GPC has completed the initial actions required by NRC Inspection and Enforcement Bulletin 85-03, "Motor-Operated Valve Common Mode Failure During Plant Transients Due to Improper Switch Settings", for Plant Hatch Units 1 and 2. The bulletin requires GPC to develop and implement programs for Plant Hatch to ensure that certain valve operator switches in the High Pressure Coolant Injection (HPCI) and Rector Core Isolation Cooling (RCIC) systems are properly selected, set, and maintained.

# The bulletin further requires:

- Review and document the design basis for the operation of each valve. This documentation should include the maximum differential pressure expected during both opening and closing the valve for both normal and abnormal events to the extent that these valve operations and events are included in the existing approved design basis.
- 2. Using the results from the above, establish the correct switch settings. This shall include a program to review and revise, as necessary, the methods for selecting and setting all switches for each valve operation.





U. S. Nuclear Regulatory Commission Office of Inspection and Enforcement Region II - Suite 2900 October 2, 1986 Page Two

- Individual valve settings shall be changed, as appropriate, to 3. those established above. Whether the valve setting is changed or not, the valve will be demonstrated to be operable by testing the valve at the maximum differential pressure determined in item 1 above with the exception that testing motor operated valves under conditions simulating a break in the line containing the valve is not required. Otherwise, justification should be be provided for any cases where testing with the maximum differential pressure cannot practicably be performed. This justification should include the alternative to maximum differential pressure testing which will be used to verify the correct settings. Each valve shall be stroke tested, to the extent practical, to verify that the settings defined in item 2 have been properly implemented even if testing with differential pressure cannot be performed.
- 4. Prepare or revise procedures to ensure that correct switch settings are determined and maintained throughout the life of the plant. Ensure that applicable industry recommendations are considered in the preparation of these procedures.
- 5. Submit a written report to the NRC that: 1) reports the results of item 1, and 2) contains the program to accomplish items 2 through 4 including a schedule for completion of these items.

Georgia Power Company participated in the Boiling Water Reactor Owners Group (BWROG) subcommittee that addressed the subject bulletin. The BWROG subcommittee obtained the assistance of the General Electric Company (GE), who provided and developed data and methodology to support plant-specific calculations of the maximum differential pressures requested by action item (a) of the bulletin. The actions included the following specific items:

- Identify the BWR system valves that are generically subject to the I.E. Bulletin requirements.
- Identify the conditions within the approved design basis, under which each of the affected valves is subject to the maximum differential pressure.



U. S. Nuclear Regulatory Commission Office of Inspection and Enforcement Region II - Suite 2900 October 2, 1986 Page Three

- Develop a generic methodology in determining the maximum fluid differential pressure across the affected valves.
- 4. Recommend generic guidelines for valve testing.

The results of the GE research is documented in GE report NEDC 31322 "BWR Owners Group Report on the Operational Design Basis of Selected Safety Related Motor Operated Valves", dated September 1986. A copy of this report was forwarded to the NRC on September 2, 1986. This report was used to address item (a) of I.E. Bulletin 85-03.

The technical information in NEDC 31322, and additional information provided by GE, were used by Georgia Power Company's Architect/Engineer (AE), Southern Company Services, to calculate the maximum expected differential pressures across the identified valves. Enclosures 1 and 2 provide the results of these calculations for the Plant Hatch Unit 1 HPCI and RCIC systems, respectively. Similarly, Enclosures 3 and 4 pertain to Plant Hatch Unit 2. These enclosures contain the following information:

1. Drawings which show the valves analyzed as part of the I.E. Bulletin 85-03 effort.

The valves were chosen based on the previously referenced GE document. The drawings show:

- Plant specific Master Parts List (MPL) numbers for valves and pumps.
- b. A table that relates the MPL to the part description.
- c. Process fluid flow direction.
- d. That all listed valves on the drawings are subject to full differential pressure test requirements unless otherwise designated.
- Documentation packages for the HPCI and RCIC systems of both Unit 1 and Unit 2. There is a total of four packages (Enclosures 1-4).



U. S. Nuclear Regulatory Commission Office of Inspection and Enforcement Region II - Suite 2900 October 2, 1986 Page Four

Each package generally includes: 1) introduction, 2) criteria and assumptions, 3) summary of conclusions, 4) listed references, 5) definition of terms, 6) derivation of values, 7) body of calculations, and 8) computer printouts.

The documentation packages have summary tables of the results of the calculations for each valve addressed by the bulletin. The summary tables provide a quick overview, for each system of each unit, of the valves that are subject to the bulletin's requirements. The tables contain the following information:

- a. Valve MPL number.
- b. Valve description.
- c. Valve function.
- d. Indication if the valve has a safety related function on opening or closing.
- e. The governing formula used to calculate the differential pressure for the valve.
- f. An indication of when the maximum pressure occurs, either upon opening or closing of the valve.
- g. An indication of where the maximum pressure occurs, either upstream or downstream of the valve.
- h. The maximum anticipated differential pressure.
- An indication if the valve has a safety related function.

The information in the tables is supported by the additional information in the body of the design packages.

A schedule for responding to the remaining I.E. Bulletin 85-03 requirements is also provided as Enclosure 5.

Based on the above information, Georgia Power Company believes it has satisfied the requirements to provide a written report showing the results of item 1 of the Bulletin and to provide a program to accomplish the remaining bulletin requirements including time frames.



U. S. Nuclear Regulatory Commission Office of Inspection and Enforcement Region II - Suite 2900 October 2, 1986 Page Five

J. T. Beckham, Jr. states that he is Vice President of Georgia Power Company and is authorized to execute this oath on behalf of Georgia Power Company, and that to the best of his knowledge and belief the facts set forth in this letter are true.

GEORGIA POWER COMPANY

By: J. T. Beckham, Jr.

Sworn to and subscribed before me this 2nd day of October, 1986.

Frida R Clority
Notary Public, Clayton County, Georges
Notary Public

LGB/1C Expires Dec 12. 1999

Enclosure

c: Georgia Power Company Mr. J. P. O'Reilly Mr. H. C. Nix, Jr. GO-NORMS

U. S. Nuclear Regulatory Commission Dr. J. N. Grace, Regional Administrator Mr. P. Holmes-Ray, Sr. Resident Inspector - Hatch Document Control Desk

ENCLOSURE 1



-



Notes

|                      |                          |              |                        |                   | on Number    |            |
|----------------------|--------------------------|--------------|------------------------|-------------------|--------------|------------|
|                      |                          |              |                        |                   | -86-015      |            |
| Project E.           | .I. HATCH NUCLEAR PLANT  | UNIT 1       |                        |                   | hanical      |            |
| Objective<br>Ca      | alculate DP for HPCI Mot | tor Operated | Valves                 | SDS Nun           | nber         |            |
| Subject/Ti           |                          |              |                        | e Calculation     | 1            |            |
| Design Foo           | gineer's Signature       |              |                        | Date              | I ast Pa     | age Number |
| Design Eng           | gineer's Signature       | Inkins       |                        | 9.20-86           | 5 6          | 1          |
| Contents             |                          |              |                        |                   |              |            |
| Topics I             | ntroduction              | Page<br>1    | Topics<br>Definition o | f Terms           |              | Page 7     |
| Summary              | of Conclusions           | 3            | Definition o           | f Valves          |              | 9          |
| Criteria an          | d Assumptions            | 2            |                        |                   |              |            |
| Listed References    |                          | 5            |                        |                   |              |            |
| Body of Calculations |                          | 9            |                        |                   |              |            |
| (Computer            | r Printout)              | 55           |                        |                   |              |            |
| Record o             | f Revisions              |              |                        |                   |              |            |
| Rev. No.             | Description              |              |                        | Originator Date R | eviewer Date | Proj.Engr. |
| 0                    | APPROVED                 |              |                        | \$13 st 4-20-86 \ | WM 9/21/06   | A 9/2/0    |
|                      |                          |              |                        |                   |              |            |
|                      |                          |              |                        |                   |              |            |
|                      |                          |              |                        |                   |              |            |
|                      |                          |              |                        |                   |              |            |
|                      |                          |              |                        |                   | /            |            |
| -                    |                          |              |                        |                   |              |            |



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Wilson               | Date 09/19/86  |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By W. T. Barr           | 9/20/86        |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet / of (a) |

### INTRODUCTION

The Nuclear Regulatory Commission (NRC) IE Bulletin 85-03 (Motor Operated Valve Common Mode Failure) requested that owners of light water reactors develop and implement a program to ensure that torque switch settings on safety related motor-operated valves on high pressure systems are selected, set and maintained correctly to accomodate the maximum differential pressures expected on these valves during both normal and abnormal events within the design basis. The objective of this calculation is to determine the maximum Differential Pressure across each of the affected Unit ! HPCI Motor Operated Valves.

# Design Calculations

Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By                      | 9-20-96        |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By DM Stal              | Date 9/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 2 of Col |

### CRITERIA

1) The criteria, assumptions and formulas given in the General Electric "BWR Owner's Group Report on the Operational Design Basis of Selected Safety-Related Motor-Operated Valves," DRF-E12-00100-75, are assumed to be correct.

### **ASSUMPTIONS**

- 1) PC is assumed to equal PLOC. The terms are defined as follows:
  - \* PLOC is the maximum wet well LOCA pressure.
  - \* PC is the maximum wetwell LOCA pressure which the valve is required to operate against.
- 2) In the PVEL carculation, it is assumed that the time required for a sound wave to travel to and return from an atmospheric vessel is infinity. Thus, the related term in the PVEL equation is equal to zero.
- Disc and Port diameters are assumed to be equal. Equal diameters for disc and port yield higher rate of change therefore higher DV and is therefore more conservative.
- 4) The Formula for calculating area of the gate valve available for flow is approximated from a known geometric relationship and is off by a small percentage, however, the overall effect is negligible.
- 5) In the PVEL calculation, it is assumed that where a small line tees into a much larger line (i.e. Larger being two times or greater in diameter) the boundary for the small line ends at the line intersection.

00431

# Design Calculations

Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By                      | Date 9/20/86     |
|------------------------------------------------|----------------------------------|------------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By W. T. Barn           | 9/20/86          |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet<br>3 of 61 |

### SUMMARY OF CONCLUSIONS

The following page is a summary table of the results for each HPCI Motor Operated Valve in the Scope of NRC IEB 85-03.

The first column titled "MPL Number" gives the MPL number of the valve.

The second column titled "Valve Description" is the description of the valve given in the equipment location index (ELI).

The third column titled "Valve Function" is the function of the valve as stated in the General Electric "BWR Owners' Group Report on the Operational Design Basis of Selected Safety-Related Motor-Operated Valves."

The fourth column titled "Safety" indicates if the valve has any safety-related action.

The fifth column titled "DP Calculation Formula" gives the formula used to calculate the maximum differential pressure.

The sixth column titled "Maximum DP" indicates whether the maximum DP occurs upstream or downstream of the valve.

The seventh column titled " Max DP ON " indicates whether the maximum DP is calculated for opening or closing.

The eighth column titled "DP (PSID)" gives the calculated maximum DP in psid.

The ninth column titled "Safety On" gives the safety action of the valve.

| E.I. HATCH NUCLEAR UNIT I HPCI MOTOR O | E.I. HATCH MUCLEAR PLANT UNIT I UNIT I HPCI MOTOR OPERATED VALVE | REVIEWED BY: 43 56.                                  | 3 thishus        |                                   |                        |           | DATE 09/2//86 DATE 09/2//86 | DATE 09/24/86 DATE 09/24/86 |
|----------------------------------------|------------------------------------------------------------------|------------------------------------------------------|------------------|-----------------------------------|------------------------|-----------|-----------------------------|-----------------------------|
|                                        |                                                                  |                                                      | SUMMARY TABLE    | 09/21/86                          |                        |           | our.                        |                             |
| MPL NUMBER                             | VALVE DESCRIPTION<br>TURBINE STEAM SUPPLY VALVE                  | VALVE FUNCTION<br>HPCI TURBINE STEAM ADMISSION VALVE | SAFETY<br>VE YES | DP CALCULATION FORMULA<br>DP=PRSS | MAXIMUM DP<br>UPSTREAM | MAX DP ON | DP (PSID)<br>1080           | SAFETY ON                   |
| 1E41-F002                              | STEAM SUPPLY INBOARD ISOL VALVE                                  | HPCI STEAM LINE ISOLATION VALVE                      | YES              | DP = PRSS                         | UPSTREAM               | 35073     | 1080                        | CLOSE                       |
| IE41-F003                              | STEAM SUPPLY OUTBD ISOL VALVE                                    | HPC1 STEAM LINE ISOLATION VALVE                      | YES              | DP=PRSS                           | UPSTREAM               | 35073     | 1080                        | CLOSE                       |
| 1E41-F004                              | PUMP SUCT FRM COND STOR TANK                                     | HPCI CST SUCTION VALVE                               | YES              | DP=PELD+PV+PVEL1                  | UPSTREAM               | CLOSE     | 29.594                      | CLOSE                       |
| 1E41-F006                              | HPCI PUMP INBD DISCH VALVE                                       | HPCI INJECTION/ISOLATION VALVE                       | YES              | DP=PSOH-PISO-PEL                  | UPSTREAM               | OPEN      | 1403.81                     | OPEN/CLOSE                  |
| 1E41-F006                              | HPCI PUMP INBD DISCH VALVE                                       | HPCI INJECTION/ISOLATION VALVE                       | YES              | DP=PSOH-PISO-PEL+PVEL2            | UPSTREAM               | 35070     | 1411.886                    | OPEN/CLOSE                  |
| 1E41-F007                              | HPCI PUMP OUTBD DISCH VALVE                                      | HPCI INJECTION VALVE TEST VALVE                      | ON               | NO SAFETY ACTION                  | N/A                    | N/A       | N/A                         | NONE                        |
| 1E41-F008                              | TEST BYPASS VALVE TO COND STOR                                   | HPCI CST TEST RETURN VALVE                           | ON               | NO SAFETY ACTION                  | N/A                    | N/A       | A/N                         | NONE                        |
| 1E41-F011                              | REDUNDANT SHUTDFF W/FOOB                                         | HPCI CST TEST RETURN VALVE                           | ON               | NO SAFETY ACTION                  | N/A                    | N/A       | N/A                         | NONE                        |
| 1E41-F012                              | PMP MIN FLO BYP TO SUPP POOL                                     | HPCI PUMP MIN FLO BYP ISOL VALVE                     | YES              | DP=PSQH+PELM                      | UPSTREAM               | OPEN      | 2289.37                     | OPEN/CLOSE                  |
| 1E41-F012                              | PMP MIN FLO BYP TO SUPP POUL                                     | HPCI PUMP MIN FLO BYP ISOL VALVE                     | YES              | DP=PMF+PELM+PVEL3                 | UPSTREAM               | CLOSE     | 2289.911                    | OPEN/CLOSE                  |
| 1E41-F041                              | PMP SUCT FROM SUPP POOL                                          | HPCI SUPP POOL SUCT ISOL VALVE                       | YES              | DP=PRV-PELS                       | DOWNSTREAM             | DPEN      | 95.72                       | OPEN/CLOSE                  |
| 1E41-F041                              | PMP SUCT FROM SUPP POOL                                          | MPCI SUPP POOL SUCT ISOL VALVE                       | YES              | DP=PLOC+PLOM1                     | UPSTREAM               | 35073     | 35.93                       | OPEN/CLOSE                  |
| 1E41-F042                              | PMP SUCT FROM SUPP POOL                                          | HPCI SUPP POOL SUCT ISOL VALVE                       | YES              | DP=PRV-PELS                       | DOWNSTREAM             | OPEN      | 95.72                       | OPEN/CLOSE                  |
| 1541-5042                              | PMP SUCT FROM SUPP POOL                                          | MPCI SUPP POOL SUCT ISOL VALVE                       | YES              | DP=PLOC+PLOM1                     | UPSTREAM               | 35073     | 35.93                       | OPEN/CLOSE                  |
| 1E41-F059                              | COOLING MATER SUPPLY VALVE                                       | HPCI TURBINE ACCES COOLING WTR Y                     | VLV YES          | DP=PC+PLOM2                       | UPSTREAM               | DPEN      | 36.94                       | OPEN/CLOSE                  |
| 1E41-F059                              | COOLING MATER SUPPLY VALVE                                       | MPCI TURBINE ACCES COOLING WTR VI                    | NLV YES          | DP=PC+PLOM2+PVEL4                 | UPSTREAM               | CLOSE     | 37.857                      | OPEN/CLOSE                  |
| 1E41-F104                              | BATE VALVE 2 IN MO                                               | HPCI VAC BREAKER LINE ISOL VALVE                     | YES              | DP=PC+PATM                        | UPSTREAM               | CLOSE     | 30.5                        | SCLOSE                      |
| IE41-F111                              | SATE VALVE 2 IN MD                                               | HPCI VAC BREAKER LINE ISOL VALVE                     | YES              | DP=PC+PATM                        | UPSTREAM               | CLOSE     | 30.5                        | CLOSE                       |
|                                        |                                                                  |                                                      |                  |                                   |                        |           |                             |                             |

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By 4B Hankler           | 9-20-86      |
|------------------------------------------------|----------------------------------|--------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By W. T. Ban            | 9/20/8C      |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet of (a) |

# UNIT 1 HPCI MOV CALCULATIONS REFERENCES

- 1. A-11000 REV. N/A UNIT 1 PIPE SPECIFICATION
- 2. A-16360 REV. N/A SHT 2 & SHT 25 MOV DATA SHEETS
- A-16368 REV. N/A SHT 1 MOV DATA SHEETS
- 4. A-16397 REV. 12 INSTRUMENT SETPOINT INDEX
- 5. H-11038 REV. 15 P & ID DEMINERALIZED WATER
- 6. H-16081 REV. 4 FEEDWATER PIPING INSIDE DRYWELL ELEVATION 130'-0" & ABOVE
- 7. H-16134 REV. 19 HPCI STEAM TURBINE DRAINAGE PIPING
- 8. H-16332 REV. 19 HPCI SYSTEM P & ID SHEET 1
- 9. H-16333 REV. 17 HPCI SYSTEM P & ID SHEET 2
- 10. S-00010 REV. O KELLOGG ISOMETRIC DWG. B21-11
- 11. S-00079 REV. O KELLOGG ISOMETRIC DWG. E41-1
- 12. S-00081 REV. O KELLOGG ISOMETRIC DWG. E41-3
- 13. S-00086 REV. O KELLOGG ISOMETRIC DWG. E41-8
- 14. S-01388 REV. O KELLOGG ISOMETRIC DWG. E41-F6
- 15. S-01390 REV. O KELLOGG ISOMETRIC DWG. E41-F6B
- 16. S-01441 REV. O KELLOGG ISOMETRIC DWG. E41-F61
- 17. S-11417 REV. B. 18" L 900 WE MANUAL OPERATED 900 LB GATE VALVE
- 18. S-11423 REV. F 14" L 900 WEOS PRESSURE SEAL GATE, CRANE
- 19. S-14482 REV. A 16" L 150 WEOS GATE VALVE WITH FLEX DISC. CRANE
- 20. S-15290 REV. H GENERAL PLAN DRYWELL AND TORUS LAYOUT
- 21. S-16122 REV. O PROCESS DIAGRAM HPCI SYSTEM

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By                      | Q-20-86      |
|------------------------------------------------|----------------------------------|--------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By U. T. Barn           | Date 9/20/86 |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet of Cal |

# UNIT 1 HPCI MOV CALCULATIONS REFERENCES CONT'D

- 22. S-16788 REV. C BYRON JACKSON PUMP MANUAL, PUMP CURVE T-31749
- 23. S-17514 REV. O 4" PRESSURE SEAL GLOBE VALVE, VELAN
- 24. S-18471 REV. C 4" PRESSURE SEAL GLOBE VALVE, VELAN
- 25. S-18627 REV. D 2" 1500 LB MOTOR OPERATED GLOBE VALVE, VELAN
- 26. S-18835 REV. C MODEL LCT-20 SERIES RELIEF VALVE
- 27. SX-11471 REV. O 16" L-150 WEOS GATE VALVE, CRANE
- 28. SX-14320 REV. O BOM FOR CRANE VALVE MPL NO. E41-F004
- 29. -14482 REV. A 16" L-150 WEOS GATE VALVE, CRANE
- 30. UNIT NO. 1 TECHNICAL SPECIFICATIONS AMENDMENT 128
- 31. UNIT NO. 2 FSAR TABLE 6.2-5 SHT. 2 NOTE 7
- 32. SCS MECHANICAL ENGINEERING STANDARDS REV. 1
- 33. BWR OWNERS GROUP REPORT ON THE OPERATIONAL DESIGN BASIS OF SELECTED SAFETY RELATED MOTOR OPERATED VALVES, DRF-E12-00100-75, AUGUST 1986.
- 34. NEDO DOCUMENT 24570 REV. 2 FIGURE H1 4.1.2-1
- 35. CRANE TECHNICAL PAPER NO. 410, 18TH PRINTING
- 36. ENGINEERS COMPANION 1966 PAGE 13
  - HORASOWICH
- 37. TELECOPY FROM DAN HORASONYCH OF YARWAY TO JACK ROBYN ON 9-11-86
- 38. TELECOPY FROM PAUL COUTINHO OF VELAN TO JACK ROBYN ON 9-18-86
- 39. ENGINEERING FORMULAS 4TH EDITION, PAGE B3

| DESIGN CALCULATIONS          |          | SOUTHERN       | COMPANY | SERVICES  |
|------------------------------|----------|----------------|---------|-----------|
| E.I. HATCH NUCLEAR PLANT U 1 | Prepared | By: Coun Cilli | DATE    | 09/19/86  |
| UNIT 1 HPCI MOTOR OPER VALVE | Reviewed | By: W.T. Barr  |         | 09/20/86  |
| DIFFERENTIAL PRESSURE CALC   | CALC No. | SNH-86-015     | SHEET   | 7 OF 61 . |
| DEFINITION                   | OF TERMS | 09/18/86       |         |           |

TERM DEFINITION OF TERM DP VALVE MAXIMUM EXPECTED OPERATING DIFFERENTIAL PRESSURE PSOH DIFFERENTIAL PRESSURE DEVELOPED BY SYSTEM MAIN PUMPS AT ZERO FLOW RATE. FOR STEAM TURBINE DRIVEN PUMPS, USE MAXIMUM NORMAL TURBINE SPEED PEL MINIMUM HYDROSTATIC PRESSURE DIFFERENCE BETWEEN SUCTION AND DISCHARGE DUE TO ELEVATION. (DISCHARGE ELEVATION IS HIGHER THAN SUCTION) PISO LOW REACTOR PRESSURE AT WHICH STEAM SUPPLY LINES AUTOMATICALLY ISOLATE MAXIMUM HYDROSTATIC PRESSURE DIFFERENCE BETWEEN PELM SUCTION AND DISCHARGE SOURCE DUE TO ELEVATION PRSS REACTOR PRESSURE CORRESPONDING TO THE SPRING SETPOINT OF THE REACTOR SAFETY RELIEF VALVE WITH THE LOWEST NOMINAL SPRING SETPOINT PELD HYDROSTATIC PRESSURE DIFFERENCE BETWEEN CST AND SUPPRESSION POOL ASSUMING THE CST TO BE FULL AND THE SUPPRESSION POOL WATER LEVEL AT ITS MAXIMUM ALLOWABLE NORMAL LEVEL PMF DIFFERENTIAL PRESSURE DEVELOPED BY THE SYSTEM MAIN PUMPS AT A FLOW RATE EQUAL TO THE REQUIRED MINIMUM BYPASS FLOW RATE. FOR STEAM DRIVEN PUMPS USE MAXIMUM NORMAL TURBINE SPEED

| DESIGN CALCULATIONS          |          | SOUTHER        | N COMPANY | SERVICES  |
|------------------------------|----------|----------------|-----------|-----------|
| E.I. HATCH NUCLEAR PLANT U 1 | Prepared | By: Law ( Way) | DATE      | 09/17/86  |
| UNIT 1 HPCI MOTOR OPER VALVE | Reviewed | By: W.T. Barr  | DATE      | 09/20/86  |
| DIFFERENTIAL PRESSURE CALC   | CALC No. | SNH-86-Ø15     | SHEET     | 8 OF 61 . |
| DEFINITION                   | OF TERMS | 09/18/86       |           |           |

В-

| TERM<br>PV | DEFINITION OF TERM<br>VELOCITY HEAD IN THE SUPPRESSION POOL SUCTION LINE |
|------------|--------------------------------------------------------------------------|
|            | AT THE LOCATION WHERE THE CST LINE CONNECTS TO IT                        |
| PRV        | SYSTEM SUCTION RELIEF VALVE ACTUATION SET PRESSURE                       |
| PELS       | HYDROSTATIC PRESSURE DIFFERENCE BETWEEN THE                              |
|            | MINIMUM SUPPRESSION POOL WATER LEVEL AND THE                             |
|            | LOCATION OF THE RELIEF VALVE ON THE PUMP SUCTION                         |
|            | LINE                                                                     |
| PLOC       | LOCA WETWELL PRESSURE WHEN THE SYSTEM IS ISOLATED                        |
| PLOM       | HYDROSTATIC PRESSURE UPSTREAM OF THE VALVE DUE                           |
|            | TO MAXIMUM LOCA SUPPRESSION POOL WATER LEVEL                             |
| PC         | MAXIMUM LOCA WETWELL PRESSURE WHEN SYSTEM IS                             |
|            | REQUIRED TO OPERATE                                                      |
| PATM       | ATMOSPHERIC PRESSURE                                                     |
| PVEL       | DIFFERENTIAL PRESSURE ASSOCIATED WITH VALVE                              |
|            | CLOSURE DUE TO FLUID VELOCITY CHANGES (I.E., WATER                       |
|            | HAMMER TYPE PRESSURE INCREASE) INSIDE THE PIPE                           |

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: DATE 09/19/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: 0.7. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 9 OF 61.

DERIVATION OF VALUES 09/19/86

PRESSURE (PSIG) DERIVATION OF TERM TERM PSOH 2260 FROM S-16788 REV.C, BYRON JACKSON PUMP MANUAL, PUMP CURVE T-31749 @ A TURBINE SPEED OF 4000 RPM. 6.19 THE ELEVATION OF THE FEEDWATER PIPING PEL NOZZLE AT THE REACTOR IS GIVEN AS 183' 9 1/2" IN H-16081 REV.4. THE MAXIMUM WATER LEVEL IN THE CST IS GIVEN AS 169' 6" IN H-11038 REV.15. THUS THE DIFFERENCE IN ELEVATION IS: 183' 9 1/2" - 169' 6" = 14' 3 1/2"  $= 14.29 \text{ FT } H2\emptyset.$ 

AND THE HYDROSTATIC PRESSURE IS

14.29 FT.H20 X 0.432781 PSIG/FT.H20=6.19 PSIG

PISO 850 FROM A-16397 REV. 12. INSTRUMENT SETPOINT INDEX. USE THE MSL ISOLATION SET POINT AS GIVEN FOR INSTRUMENTS B21-NØ15 A-D.

PELM 29.37 THE CST IS AT ITS MAXIMUM

WATER LEVEL AND THE SUPPRESSION POOL

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 1

Prepared By:

DATE 09/19/86

UNIT 1 HPCI MOTOR OPER VALVE

CALC No. SNH-86-015

DATE 09/20/86 SHEET 10 OF 61 .

DERIVATION OF VALUES

09/19/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PELM

IS AT ITS MINIMUM WATER LEVEL WHEN
THE MINIMUM FLOW BYPASS VALVE IS
REQUIRED TO OPERATE.

THE MAXIMUM WATER LEVEL IN THE CST
IS GIVEN AS 169' 6" IN H-11038 REV. 15.

THE MINIMUM WATER LEVEL IN THE

SUPPRESSION POOL IS GIVEN AS 12' 2"

IN THE UNIT 1 TECHNICAL SPECIFICATION

SECTION 3.7. AMENDMENT NO. 128.

THE INSIDE BOTTOM ELEVATION OF THE

SUPPRESSION POOL IS GIVEN AS 89' 5 3/4",

DERIVED FROM 103' 6 1/4" - 14' 0 1/2",

IN S-15290 REV.H.

THE ELEVATION OF THE SUPPRESSION POOL

ELEVATION PLUS THE MINIMUM WATER LEVEL:

AT MINIMUM WATER LEVEL IS THE INSIDE BOTTOM

89' 5 3/4" + 12' 2" = 101' 7 3/4"

THE HEAD DIFFERENCE IS THEN:

169' 6" - 101' 7 3/4" = 67' 10 1/4"

= 67.85 FT H20

THUS THE HYDROSTATIC PRESSURE IS:

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: UNIT 1 HPCI MOTOR OPER VALVE Reviewed By:

7. Ban DATE 09/19/86

DIFFERENTIAL PRESSURE CALC

Reviewed By: W.T. Ban CALC No. SNH-86-015

SHEET II OF LOI .

DERIVATION OF VALUES

09/19/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PELM 67.85 FT H20 x 0.432781 PSIG/FT H20

= 29.37 PSIG

PRSS 1080 FROM UNIT 1 TECHNICAL SPECIFICATION

SECTION 2.2 AMENDMENT NO. 128.

PELD 29.22 THE MAXIMUM WATER LEVEL IN THE CST

IS GIVEN AS 169' 6" IN H-11038 REV. 15.

THE MAXIMUM WATER LEVEL IN THE

SUPPRESSION POOL IS 12' 6" FROM

UNIT 1 TECHNICAL SPECIFICATION SECTION

3.7 AMENDMENT NO. 128.

THE INSIDE BOTTOM ELEVATION OF THE

SUPPRESSION POOL IS 89' 5 3/4", DERIVED

FROM 103' 6 1/4" - 14' 0 1/2", IN

S-1529Ø REV. H.

THE ELEVATION OF THE SUPPRESSION POOL

MAXIMUM WATER LEVEL IS THE INSIDE BOTTOM

ELEVATION PLUS THE MAXIMUM WATER LEVEL:

 $89' \ 5 \ 3/4" + 12' \ 6" = 101' \ 11 \ 3/4"$ 

THE HEAD DIFFERENCE IS THEN:

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 1 UNIT 1 HPCI MOTOR OPER VALVE Prepared By: Reviewed By: W.

DATE 09/19/86 DATE 09/20/86

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-015

SHEET 12 OF 61 .

DERIVATION OF VALUES

09/19/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PELD

169' 6" - 101' 11 3/4" = 67' 6 1/4"

= 67.52 FT. H20

THUS THE HYDROSTATIC PRESSURE IS:

67.52 FT H20 x Ø.432781 PSIG/FT H2Ø

= 29.22 PSIG

PMF 2255

FROM S-16788 REV. C., BYRON JACKSON PUMP
MANUAL, PUMP CURVE T-31749 AT A MINIMUM FLOW
BYPASS RATE OF 450 GPM, S-16122 REV. 0
PROCESS DIAGRAM HPCI SYSTEM, AND 4000 RPM
TURBINE SPEED.

PV Ø.374

THE HPCI SYSTEM RATED FLOW IS GIVEN

AS 4250 GPM IN THE UNIT 1 TECHNICAL

SPECIFICATION SECTION 4.5.D.1.b AMENDMENT

NO. 128.

THE INSIDE DIAMETER OF THE SUPPRESSION POOL SUCTION LINE IS 15.250" GIVEN IN H-16332

REV. 19, A-11000 UNIT 1 PIPE SPECIFICATION

AND THE CRANE TECHNICAL PAPER NO. 410,

18TH PRINTING.

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 7/3 Warkin DATE 09/20/86
UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: 0.7. Ban DATE 09/21/86
DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 13 OF 61.

DERIVATION OF VALUES 09

09/20/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PV THE VELOCITY HEAD IS EQUAL TO:

(V)\*\* 2/ 2(gc) WHERE:

gc IS GRAVITATIONAL CONSTANT

= 32.2 FT/(SEC)\*\*2

PI = 3.1416 (dimensionless)

V = Q/A

 $V = (4250 \times 0.13368) \times (144/60) /$ 

. [PI x ((15.250)\*\*2)/4]

= 7.46 FT/SEC

THUS VELOCITY HEAD IS:

 $(7.46)**2/2(32.2) = \emptyset.865$  FT H20

AND VELOCITY HEAD PRESSURE IS:

Ø.865 FT H2Ø x Ø.432781 PSIG/FT H2Ø

= Ø.374 PSIG

PRV 100 FROM S-18835 REV. C MODEL LCT-20 SERIES

RELIEF VALVE.

PELS 4.28 THE MINIMUM SUPPRESSION POOL ELEVATION

WAS DETERMINED TO BE 101' 7 3/4"

IN THE CALCULATION FOR PELM ABOVE.

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 1 UNIT 1 HPCI MOTOR OPER VALVE Prepared By: Reviewed By: J.B. Ban

DATE 09/20/86 DATE 09/21/86

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-015

SHEET 14 OFCOI .

DERIVATION OF VALUES

09/20/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PELS

THE ELEVATION FOR THE SUCTION RELIEF VALVE E41-F020 IS GIVEN AS 91' 9" ON S-01441 REV. 0.

THUS THE HYDROSTATIC HEAD IS:

101' 7 3/4" - 91' 9" = 9' 10 3/4"

= 9.90 FT H20

AND THE HYDROSTATIC PRESSURE IS:

9.90 FT. X 0.432781 PSIG/FT H20 = 4.28 PSIG

PLOC 30.5

PLOC=PC. THE ECCS OPERATION MAY REQUIRE
THE CLOSURE OF THE SUPPRESSION POOL
ISOLATION VALVES TO PROVIDE PRIMARY
CONTAINMENT ISOLATION FOR EXTREME LOCA
CONDITIONS FOLLOWING UTILIZATION OF THE
WETWELL INVENTORY.

PLOM1 5.43

THE MAXIMUM LOCA SUPPRESSION POOL WATER LEVEL IS 102' 7 1/2" GIVEN IN S-15290 REV. H.

THE CENTERLINE ELEVATION OF VALUES E41-F041

AND E41-F042 IS 90' 1" FROM S-00081

REV. 0.

PC

30.5

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 7. Ban

DATE 09/19/86 DATE 09/20/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: W. T. Ban DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015

SHEET 15 OF 61 .

DERIVATION OF VALUES

09/19/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PLOM1 THE HEAD DIFFERENCE IS:

102' 7 1/2" - 90' 1" = 12' 6 1/2"

= 12.54 FT H2Ø.

THUS THE HYDROSTATIC PRESSURE IS:

12.54 FT H2Ø X Ø.432781 PSIG/FT H2Ø

= 5.43 PSIG

PLOM2 6.44 THE MAXIMUM LOCA SUPPRESSION POOL WATER

LEVEL IS 102' 7 1/2" GIVEN IN S-15290 REV. H.

THE CENTERLINE ELEVATION OF VALVE E51-FØ59

IS 87' 9" FROM H-16134 REV. 19.

THE HEAD DIFFERENCE IS:

102' 7 1/2" - 87' 9" = 14' 10 1/2"

= 14.88 FT H20

THUS THE HYDROSTATIC PRESSURE IS:

14.88 FT H2Ø X Ø.432781 PSIG/FT H2Ø=6.44 PSIG

FROM NEDO DOCUMENT 24570 REV. 2 FIGURE

H1 4.1.2-1

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By:

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By:

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-Ø15 SHEET 16 OF 61.

DERIVATION OF VALUES Ø9/19/86

PATM Ø PRESSURE (PSIG) DERIVATION OF TERM

NORMAL ATMOSPHERIC PRESSURE = 14.696 PSIA

PSIG = PSIA - 14.696 = Ø

PVEL1 Ø KELLOGG ISOMETRIC DRAWINGS S-ØØØ86 REV. Ø,

AND S-ØØØ81 REV. Ø SHOW THAT THE UPSTREAM

PIPING IS CONNECTED TO THE CONDENSATE

STORAGE TANK.

IT IS ASSUMED THAT ANY WATER HAMMER EFFECTS

IN THE UPSTREAM PIPING WOULD BE DISSIPATED WITHIN
THE CST VOLUME AND PRODUCE NO RESULTANT
PRESSURE RISE ON THE VALVE.

THE REFERENCED DRAWINGS ALSO SHOW THAT THE
DOWNSTREAM PIPING IS INTERCONNECTED WITH THE
SUPPRESSION POOL SUCTION LINE. IT IS ASSUMED
THE HPCI PUMP IS OPERATING TO DRAW A SUCTION
FROM THE SUPPRESSION POOL WHEN 1E41-FØØ4 BEGINS
TO CLOSE. THEREFORE NO DOWNSTREAM FLUID
DECELERATION WILL RESULT. IT MAY BE
CONCLUDED THAT NO INCREASE IN PRESSURE RESULTS
BECAUSE OF WATER HAMMER.

CONSIDERING THE ABOVE FACTS VALVE 1E41-F004

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 1 DATE 09/21/86 Prepared By: Dollar DATE 09/21 /86 UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-Ø SHEET 17 OF 61 . 09/21/86 DERIVATION OF VALUES

TERM PRESSURE (PSIG) DERIVATION OF TERM

PVEL1 CAN BE CONSIDERED TO HAVE NO WATER HAMMER

PRESSURE INCREASE.

PVEL2 8.076

DIFFERENTIAL PRESSURE ACROSS THE VALVE DUE

TO WATER HAMMER FOR 1E41-FØØ6;

THE VALUE FOR PVEL2 IS CALCULATED BY COMPUTER. A

DERIVATION FOR PVEL AND THE GATE VALVE

AREA VS PERCENT OPEN CURVE USED IN THE CALCULATION

ARE FOUND ATTACHED. THE FOLLOWING DATA IS USED IN

THE CALCULATION TO DERIVE PVEL2:

SYSTEM VELOCITY UPSTREAM (Vsu) AND SYSTEM VELOCITY DOWNSTREAM (Vsd), WHERE:

- . FLOWRATE = 4250 GPM FROM S-16122 REV. 0.
- . AREA OF 14" SCH 80 PIPE = 122.72 IN SO
- . AREA OF 14" SCH 100 PIPE = 115.49 IN SO
- FROM CRANE TECHNICAL PAPER NO. 410

THEN:

- . Vsu=(4250 GPM x 0.321) / 122.72 IN SQ
- = 11.12 FT/SEC

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 25 Jahran DATE 09/21/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: DATE 09/21/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 18 OF 61.

DERIVATION OF VALUES 09/21/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PVEL2 . Vsd=(4250 GPM x 0.321) / 115.49 IN SQ

= 11.81 FT/SEC

CLOSURE TIME = 20 SEC FROM A-16360 SH 2
VALVE THROAT DIAMETER

. DIAM VALVE = 12.25" FROM S-11423 REV. F
LENGTH UPSTREAM (LU) AND DOWNSTREAM (LD)

. LU = 244.14 FT FROM S-00079 REV. A

. LD = 155.95 FT FROM S-00079 REV. A

S-00010 REV. 0, H-16081 REV. 4,

S-11417 REV. B AND SCS MECHANICAL ENG

STANDARDS REV. 1.

PVEL2 = 8.076 FROM COMPUTER PRINTOUT

PVEL3 5.541

DIFFERENTIAL PRESSURE ACROSS THE VALVE DUE TO WATER HAMMER FOR 1E41-FØ12;

THE VALUE FOR PVEL3 IS CALCULATED BY COMPUTER.

A DERIVATION FOR PVEL AND THE GLOBE VALVE

CV VS PERCENT OPEN CURVE USED IN THE CALCULATION
ARE FOUND ATTACHED. THE FOLLOWING DATA IS USED
IN THE CALCULATION TO DERIVE PVEL3:

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By:

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By:

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 19 OF 61.

DERIVATION OF VALUES 09/21/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PVEL3

SYSTEM VELOCITY UPSTREAM (Vsu) AND SYSTEM VELOCITY DOWNSTREAM (Vsd) WHERE:

- . FLOWRATE = 450 GPM FROM S-16122 REV. 0
- . AREA OF 4" SCH 80 PIPE = 11.5 IN SQ
- . AREA OF 4" SCH 40 PIPE = 12.73 IN SQ
- . FROM CRANE TECHNICAL PAPER No. 410

#### THEN:

- . Vsu=(450 GPM x 0.321) / 11.5 IN SQ
- = 12.561 FT/SEC
- . Vsd=(450 GPM x 0.321) / 12.73 IN SQ
- = 11.347 FT/SEC

CLOSURE TIME = 10 SEC FROM A-16360 SH 25
VALVE THROAT DIAMETER

- . DIAM VALVE = 2.5" PER
- . TELECOPY TO JACK ROBYN OF SCS
- FROM PAUL COUTINHO OF VELAN ON 9/18/86.

LENGTH UPSTREAM (LU) AND LENGTH DOWNSTREAM (LD)

- . LU = 61.05 FT FROM S-00079 REV. A
- . LD = 38.958 FT FROM S-00079 REV. A
- . FOR LD IT IS ASSUMED THAT THE WATER HAMMER

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1

UNIT 1 HPCI MOTOR OPER VALVE

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-015

SOUTHERN COMPANY SERVICES

DATE 09/21/86

SHEET 200F 61.

DERIVATION OF VALUES

09/21/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PVEL3

BOUNDARY ENDS AT THE TIE IN TO THE

. RHR TEST LINE.

PVEL3 = 5.541 FROM COMPUTER PRINTOUT

PVEL4 0.917

DIFFERENTIAL PRESSURE ACROSS THE VALVE DUE TO WATER HAMMER FOR 1E41-FØ59.

THE VALUE FOR PVEL4 IS CALCULATED BY COMPUTER.

A DERIVATION FOR PVEL AND THE GLOBE VALVE

CV VS PERCENT OPEN CURVE USED IN THE CALCULATION

ARE FOUND ATTACHED. THE FOLLOWING DATA IS USED

IN THE CALCULATION TO DERIVE PVEL4:

SYSTEM VELOCITY UPSTREAM (Vsu) AND SYSTEM VELOCITY DOWNSTREAM (Vsd) WHERE:

- . FLOWRATE = 70 GPM FROM S-16122 REV. 0
- . AREA OF 2" SCH 80 PIPE = 2.953 IN SQ
- . FROM CRANE TECHNICAL PAPER No. 410

THEN:

- Vsu=(70 GPM x 0.321) / 2.953 IN SQ
- = 7.601 FT/SEC

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: James Date 09/2/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: Company Services

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 21 OF 61.

DERIVATION OF VALUES 09/21/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PVEL4

· Vsd=Vsu

CLOSURE TIME = 10 SEC FROM A-16368 SH 1

. PER STD. STROKE TIME HNP2

. FSAR TABLE 6.2-5 SH 2 NOTE 7

VALVE THROAT DIAMETER

. DIAM VALVE = 1 3/4" FROM S-18627 REV. C

LENGTH UPSTREAM (LU) AND LENGTH DOWNSTREAM (LD)

. LU = 25.0 FT FROM S-01388 REV. 0

LD = 31.42 FT FROM S-01388 REV.0 AND S-01390

REV. Ø

PVEL4 = 0.917 FROM COMPUTER PRINTOUT



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Sankin               | 9-19-86         |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By  A. 8. Kink          | Date 9-20-86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 22 of (01 |

### DETERMINE THE PRESSURE INCREASE DUE TO THE RAPID DECELERATION OF FLUID CAUSED BY THE MOVEMENT OF A PROCESS GATE OR GLOBE VALVE

#### ASSUMPTIONS

- 1) Valve openings result in no waterhammer effects. The differential pressure across a valve during opening is decreased by an increase in fluid velocity. The maximum actuator loading takes place before the valve lift occurs.
- 2) Steam valve closure results in only minor or no waterhammer effect. The compressible nature of the fluid medium coupled with maximum anticipated velocity changes make the pressure addition insignificant.
- 3) Area of flow through a gate valve is a direct and linear relation to system velocity.
- 4) The percentage of valve opening is a direct relation to opening time.
- 5) It is assumed that flowing pressure does not drop below the fluids vapor pressure.

The pressure increase due to sudden deceleration of fluid may be expressed as:

$$PVEL = P1 + P2$$

Where P1 is the upstream pressure change, and P2 is the downstream pressure change.

The respective valves for P1 and P2 may be calculated as follows:

$$P_1, P_2 = \frac{f_C \Delta v_{MAX}}{144 \text{ g}}$$



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By                      | Date 9-19-96       |
|------------------------------------------------|----------------------------------|--------------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By  A. S. Kink          | Date 9-20-86       |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet<br>23 of (a) |

Where: f is the fluid density

C is the speed of sound through the fluid

△ VMAX is the maximum system fluid differential velocity

144 is a conversion factor

and g is the Gravatational Constant

The fluid  $\Delta V$  is assumed to be a direct relation to flow area, as shown in the gate valve area - percent open curves, and is a direct relation to Cv, as shown on the globe valve Cv - percent open curves.

The valve  $\Delta t$  is a direct relation to  $\Delta$  percentage open.

Therefore:

$$\frac{\Delta}{\Delta \text{ A}} \approx \frac{\Delta \text{ CV}}{\Delta \text{ A} \text{ Open}} \approx \frac{\Delta \text{ V}}{\Delta \text{ t}}$$

Having plotted a velocity relation against a time relation the region of highest differential velocity is examined.





# Design Calculations

Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By                      | 9-19-96         |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By                      | Date 9-20-86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 24 of (Q1 |

Incremental time is Defined As:

$$\Delta t = t2 - t1 = \frac{2L}{c}$$

Where the term 2L/C is the time require for a pressure wave to travel down a pipe's flow length and rebound to it's source valve.

Knowing the equation of the curve, the maximum  $\Delta V$  for  $\Delta t$  ( ie; greatest slope) is calculated and entered into the pressure equations.

The procedure is once again performed for the down stream side of the valve and added as follows to produce PVEL

PVEL = P1 + P2

Reference: BWROG REPORT APP. B

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Sorona               | 9.19.86        |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By Michael              | Date 9/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 25 of GI |

# PERCENTAGE OPENING OF A TYPICAL GATE VALVE

It is assumed that the diameter of the gate is equal to the port diameter of the valve since the difference in diameters is insignificantly small.

THE FLOW AREA OF THE VALVE MAY BE DETERMINED BY SUBTRACTING THE AREA OF THE GATE OCCLUDING THE TOTAL PORT AREA.



A = Area

AFlow = APort - AGate

THE AREA OF THE PORT IS CALCULATED USING THE CIRCULAR SEGMENT CALCULATION



 $ASEG = h/6s (3h^2 + 4s^2)$ 

WITH h = RISE = RADIUS AND s = CHORD = DIAMETER

THE AREA OF THE PORT IS EQUAL TO TWICE ASEG



APORT = 2ASEG = R/6D (3R\*\*2 + 4D\*\*2)

| E.I. Hatch Nuclear Plant Unit 1                | Prepared By                      | Date                       |
|------------------------------------------------|----------------------------------|----------------------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By McH                  | 9.19.86<br>Date<br>6/2./9/ |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 26 of Col            |

THE OCCLUDING AREA OF THE GATE IS FOUND BY USING THE AREA OF A CIRCULAR SEGMENT CALCULATION.



ASEG = 
$$h/6s (3h^2 + 4s^2)$$
  
r =  $h/2 + s^2/8h$ 

TRANSFORMING THE LATER EQUATION

$$s = (8h (r-(h/2)))^{1/2}$$

WHICH COMBINED WITH THE ASEG CALCULATION MAY BE READILY SOLVED.

THE AREA OCCLUDED IS EQUAL TO TWICE ASEG.



THUS THE AREA OF FLOW THROUGH THE VALVE IS CALCULATED AS:

AFlow = APORT - AGATE



|     | • |
|-----|---|
| ar  | - |
| 6.1 |   |

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Corenon              | 9.19.8 C        |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By Migh                 | Date 9/21/86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 27 of (a) |

A GRAPHIC PRESENTATION OF THE TYPICAL FLOW AREA VS. PERCENT VALVE OPENING IS GIVEN AS FOLLOWS.



REFERENCE: ENGINEERING FORMULAS 4th EDITION, PAGE B3.



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Screnon              | Date 9.19.8/9   |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By . A & Kink           | Date 9-19-86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 28 of Col |

#### NUMERICAL RELATIONSHIP BETWEEN A GRAPHICAL PRESENTATION OF MANUFACTURER'S 2" GLOBE VALVE OPENING VS. MANUFACTURER'S CV DATA

Given a curve of 0-100 % opening (see attached). It is Desired to numerically relate the first 60% of opening to CV.

The First 60% of opening is a linear function thus, the curve may be equated using linear regression of the point-slope form.

$$y - y1 = m(x-x1)$$

Using the points (0,0) and (50,40)

$$40-0 = m(50-0)$$

Solving for m

$$m = 40/50 = 0.8$$

The equation of a line is given as:

$$y = mx$$

Hence, the equation relating cv with percent opening is:

CV = 0.8 (percentage opening)

FOR ALL OPENINGS LESS THAN 60%.

Reference: THE ENGINEER'S COMPANION 1966 PG. 13.

| -   | 1::    |        |          |     | - 4  |          |            |          |                 |             | -=           |          |
|-----|--------|--------|----------|-----|------|----------|------------|----------|-----------------|-------------|--------------|----------|
|     |        |        |          |     | k    | 4        | 1          |          |                 |             |              | :=::     |
| = = |        |        |          |     | N    |          | = \        |          |                 |             |              |          |
|     |        |        |          |     |      | -3 K     | 1/-        |          | ===             |             |              |          |
|     |        |        |          | 10  |      | 00       | -4-        |          |                 |             |              |          |
|     |        |        |          | - 4 | -V-W | 7-7      | *          |          |                 |             |              | -        |
| === |        |        |          | - 0 | 0, 3 | - A - 8  | 4          |          |                 |             |              |          |
| 1   |        |        |          |     | 5    | 36       | .4         |          |                 |             |              |          |
| 7   |        |        |          | 2   | 100  | . 2      | -0-        |          |                 |             | 3 .1 1       |          |
|     | 1      |        |          | 3   | 4 0  | 14 7     | 6          |          |                 |             |              | -==-     |
|     |        |        |          |     | 0 8  |          |            |          | =====           |             |              |          |
|     |        |        |          | 4   | -1 K | J-1      | -/         |          |                 |             |              |          |
|     | .:==:- |        |          |     | :: = |          |            |          |                 |             |              | =        |
|     |        |        | =        |     |      |          |            |          |                 |             |              |          |
|     |        | ====   |          |     |      |          |            |          |                 |             |              |          |
|     | \ :::: |        | - #-::   |     |      |          |            |          | ::-::- <u>-</u> |             |              |          |
|     | /==:   |        |          |     |      |          |            |          | = :             | -           |              |          |
|     | _\     |        |          |     |      |          |            |          |                 |             |              |          |
|     | /•     |        | T        |     |      |          |            |          | 1               |             |              | -        |
|     |        | 122-22 |          |     |      |          |            |          |                 | 1           | 1            |          |
|     |        | \      |          |     |      |          |            |          |                 |             |              |          |
|     |        | /=     |          |     | =    |          |            |          |                 | 1           |              |          |
|     | 1      | 1      | <u> </u> |     |      |          |            |          |                 | <u> </u>    |              |          |
| 1   |        | 1 111  | _        |     |      | . 1      | 1.: 1      | <u> </u> | 11.             | 1           | <u> </u>     |          |
|     |        |        |          |     |      |          |            |          |                 |             |              | 1: _:::: |
|     |        |        |          |     |      | . == :   |            |          |                 |             |              |          |
|     |        | -      |          | 11. |      |          | 1::: 1 ::: | 1 :      | 1 1.1           | 11.11       | 1: ::: .     | 1:       |
|     |        |        |          |     |      |          |            | 1 1 1 1  | 1               |             | 1            |          |
| -   |        | 1      |          |     |      |          |            |          |                 | -           |              |          |
|     |        |        |          |     |      | Y        |            |          |                 |             | <del> </del> |          |
|     |        |        |          |     |      | 1        | \          |          | 1               | · · · · · · |              |          |
|     |        |        |          |     |      | 1        | \          |          | 1               |             |              |          |
|     |        |        |          |     |      | \<br>    |            |          | 1               |             |              |          |
|     |        |        |          |     |      | <b>\</b> |            | \        | 1               |             |              |          |
|     |        |        |          |     |      | \        | \          | \        | 1               |             |              |          |
|     |        |        |          |     |      |          | \          | \        | _               |             |              |          |
|     |        |        |          |     |      | -        | \          |          |                 |             |              |          |
|     |        |        |          |     |      |          |            |          |                 |             |              |          |
|     |        |        |          |     |      |          |            |          |                 |             |              |          |
|     |        |        |          | \$  |      |          |            |          |                 |             |              |          |
| 9   |        |        | 3        |     |      |          |            |          |                 |             |              |          |
| 97  |        |        | <b>3</b> | 3   |      |          |            |          |                 |             |              |          |
| 97  |        |        | <b>3</b> | \$  |      |          |            |          |                 |             |              |          |
| 97  |        |        | <b>3</b> | 3   |      |          |            |          |                 |             |              |          |

|   | •   |
|---|-----|
|   | -   |
|   | A A |
| , | -   |

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By & B Harking          | Date 9-19-84    |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By  a. S. Kink          | Date 9-19-86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 30 of (9) |

# OF MANUFACTURER'S 4" GLOBE VALVE OPENING VS. MANUFACTURER'S CV DATA

Given a curve of 0-100 % opening (see attached), It is Desired to numerically relate the first 45% of opening to CV.

The First 45% of opening is a linear function thus, the curve may be equated using linear regression of the point-slope form.

$$y - y1 = m(x-x1)$$

Using the points (10,15) and (30,49)

$$49-15 = m(30-10)$$

Solving for m

$$m = 34/20 = 1.7$$

The equation of a line is given as:

y = mx

Hence, the equation relating cv with percent opening is:

CV = 1.7 (percentage opening)

FOR ALL OPENINGS LESS THAN 49%.

Reference: THE ENGINEER'S COMPANION 1966 PG. 13.



DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1&2 Prepared By: 75 factor DATE 09/21/86

MOTOR OPERATED VALVE Reviewed By: DATE 09/21/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 32 OF 61.

GATE VALVE PVEL CALCULATION

| MPL NUMBER VALVE DIAMETER (INCHES) CLOSING TIME (SECONDS) UPSTREAM PIPE LENGTH (FT) DOWNSTREAM PIPE LENGTH (FT) UPSTREAM SYSTEM VEL (FT/SEC) DOWNSTREAM SYSTEM VEL (FT/SEC) | 1E41-F006<br>12.25<br>20<br>244.14<br>155.95<br>11.12<br>11.81 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| delta TIME UPSTREAM (SECONDS)  delta TIME DWNSTREAM (SECONDS)  TIME UPSTREAM 1 (SECONDS)  TIME UPSTREAM 2 (SECONDS)  TIME DOWNSTREAM 1 (SECONDS)                            | 0.12207<br>0.077975<br>19.87793<br>20<br>19.922025             |
| RISE UPSTREAM 2 (SECONDS) RISE UPSTREAM 1 RISE UPSTREAM 2 RISE DOWNSTREAM 1 RISE DOWNSTREAM 2 CHORD UPSTREAM 1                                                              | 20<br>6.0876161<br>6.125<br>6.1011202<br>6.125<br>12.249772    |
| CHORD UPSTREAM 2 CHORD DOWNSTREAM 1 CHORD DOWNSTREAM 2 MAX AREA (IN SQ) AREA FLOW UPSTREAM 1                                                                                | 12.25<br>12.249907<br>12.25<br>118.79948<br>0.9534862          |
| AREA FLOW UPSTREAM 2 AREA FLOW DOWNSTREAM 1 AREA FLOW DOWNSTREAM 2 a/Au1 a/Au2                                                                                              | Ø<br>Ø.6091957<br>Ø<br>Ø.0080901<br>Ø                          |
| a/Adl<br>a/Ad2<br>VELOCITY UPSTREAM 1 (FT/SEC)<br>VELOCITY UPSTREAM 2 (FT/SEC)<br>VELOCITY DOWNSTREAM 1 (FT/SEC)                                                            | Ø.Ø051689<br>Ø.Ø899616<br>Ø.Ø61Ø442                            |
| VELOCITY DOWNSTREAM 2 (FT/SEC) delta VEL UPSTREAM (FT/SEC) delta VEL DOWNSTREAM (FT/SEC) Pvu UPSTREAM PRESSURE (PSIG) Pvd DOWNSTREAM PRESSURE (PSIG)                        | Ø.0899616<br>Ø.0610442<br>4.8112999<br>3.2647504               |

Pvel (PSIG)

| DESIGN CALCULATIONS            | SOUTHER                   | N COMPANY SERVICES |
|--------------------------------|---------------------------|--------------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Prepared By: 7/3 Handle   | DATE 09/19/86      |
| MOTOR OPERATED VALVE           | Reviewed By: O. Wilson    | DATE 09/20/86      |
| DIFFERENTIAL PRESSURE CALC     | CALC No. SNH-86-015       | SHEET 33 OF 61 .   |
| FOUR INCH GLOBE                | E VALVE PVEL CALCULATIONS |                    |

| MPL NUMBER                     | 1E41-FØ12 |
|--------------------------------|-----------|
| VALVE DIAMETER (INCHES)        | 2.5       |
| CLOSING TIME (SECONDS)         | 10        |
| UPSTREAM PIPE LENGTH (FT)      | 61.05     |
| DOWNSTREAM PIPE LENGTH (FT)    | 38.958    |
| UPSTREAM SYSTEM VEL (FT/SEC)   | 12.561    |
| DOWNSTREAM SYSTEM VEL (FT/SEC) | 11.347    |
| dalla mime unempeam (ceconne)  | 0.030525  |
| delta TIME UPSTREAM (SECONDS)  |           |
| delta TIME DWNSTREAM (SECONDS) | 0.019479  |
| TIME UPSTREAM 1 (SECONDS)      | 5         |
| TIME UPSTREAM 2 (SECONDS)      | 5.030525  |
| TIME DOWNSTREAM 1 (SECONDS)    | 5         |
| TIME DOWNSTREAM 2 (SECONDS)    | 5.019479  |
| % OPEN UPSTREAM 1              | 5Ø        |
| % OPEN UPSTREAM 2              | 50.30525  |
| % OPEN DOWNSTREAM 1            | 5Ø        |
| % OPEN DOWNSTREAM 2            | 50.19479  |
| % CV UPSTREAM 1                | 85.7      |
| % CV UPSTREAM 2                | 86.223198 |
| % CV DOWNSTREAM 1              | 85.7      |
| % CV DOWNSTREAM 2              | 86.03387  |
| delta VEL UPSTREAM (FT/SEC)    | 0.065719  |
| delta VEL DOWNSTREAM (FT/SEC)  | 0.0378842 |
| Pvu UPSTREAM (PSIG)            | 3.5147627 |
| Pvd DOWNSTREAM (PSIG)          | 2.0261138 |
|                                |           |

Pvel3(PSIG) 5.5428764

| DESIGN CALCULATIONS            | SOUTHERN                 | COMPANY SERVICES |
|--------------------------------|--------------------------|------------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Prepared By: 7 B Harby   | DATE 09/19/86    |
| MOTOR OPERATED VALVE           | Reviewed By: Wilson      | DATE 09/30/86    |
| DIFFERENTIAL PRESSURE CALC     | CALC No. SNH-86-015      | SHEET 34 OF 61 . |
| TWO INCH CLOPE                 | UNITED DUEL CALCULATIONS |                  |

MPL NUMBER 1E41-FØ59 VALVE DIAMETER (INCHES) 1.75 10 CLOSING TIME (SECONDS) 25 UPSTREAM PIPE LENGTH (FT) DOWNSTREAM PIPE LENGTH (FT) 31.42 UPSTREAM SYSTEM VEL (FT/SEC) 7.601 DOWNSTREAM SYSTEM VEL (FT/SEC) 7.601 0.0125 delta TIME UPSTREAM (SECONDS) delta TIME DWNSTREAM (SECONDS) 0.01571 TIME UPSTREAM 1 (SECONDS) TIME UPSTREAM 2 (SECONDS) 5.0125 TIME DOWNSTREAM 1 (SECONDS) 5 TIME DOWNSTREAM 2 (SECONDS) 5.01571 % OPEN UPSTREAM 1 50 % OPEN UPSTREAM 2 50.125 % OPEN DOWNSTREAM 1 50 % OPEN DOWNSTREAM 2 50.1571 % CV UPSTREAM 1 40 % CV UPSTREAM 2 40.1 % CV DOWNSTREAM 1 40 % CV DOWNSTREAM 2 40.12568 delta VEL UPSTREAM (FT/SEC) 0.007601 delta VEL DOWNSTREAM (FT/SEC) 0.0095529 Pvu UPSTREAM (PSIG) 0.4065145 Pvd DOWNSTREAM (PSIG) 0.5109074

Pvel4(PSIG)

DESIGN CALCULATIONS

E.I HATCH NUCLEAR PLANT U 1 Prepared By: A Hark DATE 09/26/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: A DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 35 OF (91.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-F001

VALVE DESCRIPTION TURBINE STEAM SUPPLY VALVE

VALVE FUNCTION HPCI TURBINE STEAM ADMISSION VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PRSS

MAXIMUM DP ON OPEN OR CLOSE OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE OPEN

VALUES USED:

PRSS = 1080

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 1 DATE 09/20/86 Prepared By: DATE 09/20/86 Reviewed By: (1) UNIT 1 HPCI MOTOR OPER VALVE ESSURE CALC CALC No. SNH-86-015
DIFFERENTIAL PRESSURE CALCULATION DIFFERENTIAL PRESSURE CALC SHEET36 OF 61 . 09/19/86

MPL NUMBER

1E41-FØØ2

VALVE DESCRIPTION

STEAM SUPPLY INBOARD ISOL VALVE

VALVE FUNCTION

HPCI STEAM LINE ISOLATION VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRSS

MAXIMUM DP ON OPEN OR CLOSE

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE

CLOSE

VALUES USED:

PRSS = 1080

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 75 Harry DATE 09/20/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: 77. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 37 OF 61.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-F003

VALVE DESCRIPTION STEAM SUPPLY OUTBD ISOL VALVE

VALVE FUNCTION HPCI STEAM LINE ISOLATION VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PRSS

MAXIMUM DP ON OPEN OR CLOSE CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE CLOSE

VALUES USED:

PRSS = 1080

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 15 Jan DATE 09/10/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: 17 Day DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 38 OF 61.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-FØØ4

VALVE DESCRIPTION PUMP SUCT FRM COND STOR TANK

VALVE FUNCTION HPCI CST SUCTION VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PELD+PV+PVEL1

MAXIMUM DP ON OPEN OR CLOSE CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE CLOSE

VALUES USED:

PELD = 29.22 PV = Ø.374 PVEL1 = Ø

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS 13 Horking DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 1 Prepared By: Reviewed By: W. 7 UNIT 1 HPCI MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC DATE 09/20/86 CALC No. SNH-86-015 SHEET 37 OF 61 . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

1E41-FØØ6

VALVE DESCRIPTION

HPCI PUMP INBD DISCH VALVE

VALVE FUNCTION

HPCI INJECTION/ISOLATION VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PSOH-PISO-PEL

MAXIMUM DP ON OPEN OR CLOSE

OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE

OPEN/CLOSE

VALUES USED:

= 2260 PSOH = 850 PISO = 6.19 PEL

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 3 phr. DATE 09/21/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: DATE 09/21/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 4-0F 61.

DIFFERENTIAL PRESSURE CALCULATION 09/21/86

MPL NUMBER 1E41-FØØ6

VALVE DESCRIPTION HPCI PUMP INBD DISCH VALVE

VALVE FUNCTION HPCI INJECTION/ISOLATION VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PSOH-PISO-PEL+PVEL2

MAXIMUM DP ON OPEN OR CLOSE CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE OPEN/CLOSE

VALUES USED:

PSOH = 2260 PISO = 850 PEL = 6.19 PVEL2 = 8.076

100

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: // B faul DATE 09/20/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: // T. Day DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET4: OF 61.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-F006

VALVE DESCRIPTION HPCI PUMP INBD DISCH VALVE

VALVE FUNCTION HPCI INJECTION/ISOLATION VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PSOH-PISO-PEL+PVEL2

MAXIMUM DP ON OPEN OR CLOSE CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE OPEN/CLOSE

VALUES USED:

PSOH = 2260 PISO = 850 PEL = 6.19 PVEL2 = 8.377

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 7.5 Harden DATE 09/20/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: 40.7 Bare DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET42 OF 61.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-F007

VALVE DESCRIPTION HPCI PUMP OUTBD DISCH VALVE

VALVE FUNCTION HPCI INJECTION VALVE TEST VALVE

SAFETY ACTION (YES/NO) NO

DP CALCULATION FORMULA NO SAFETY ACTION

MAXIMUM DP ON OPEN OR CLOSE N/A

MAXIMUM DP UPSTREAM/DOWNSTREAM N/A

SAFETY ACTION ON OPEN/CLOSE NONE

VALUES USED:

DP (PSID)

N/A

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 73 Factor DATE 09/20/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: 77 Band DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 43 OF 61.

MPL NUMBER 1E41-FØØ8

VALVE DESCRIPTION TEST BYPASS VALVE TO COND STOR

VALVE FUNCTION HPCI CST TEST RETURN VALVE

SAFETY ACTION (YES/NO) NO

DP CALCULATION FORMULA NO SAFETY ACTION

MAXIMUM DP ON OPEN OR CLOSE N/A

MAXIMUM DP UPSTREAM/DOWNSTREAM N/A

SAFETY ACTION ON OPEN/CLOSE NONE

VALUES USED:

DP (PSID)

N/A

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: A Marian DATE 09/20/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: U.T. Barn DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 44 OF 61.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-FØ11

VALVE DESCRIPTION REDUNDANT SHUTOFF W/FØØ8

VALVE FUNCTION HPCI CST TEST RETURN VALVE

SAFETY ACTION (YES/NO) NO

DP CALCULATION FORMULA NO SAFETY ACTION

MAXIMUM DP ON OPEN OR CLOSE N/A

MAXIMUM DP UPSTREAM/DOWNSTREAM N/A

SAFETY ACTION ON OPEN/CLOSE NONE

VALUES USED:

DP (PSID)

N/A

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 
UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: 
DATE 09/26/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET45 OF 61.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-FØ12

VALVE DESCRIPTION PMP MIN FLO BYP TO SUPP POOL

VALVE FUNCTION HPCI PUMP MIN FLO BYP ISOL VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PSOH+PELM

MAXIMUM DP ON OPEN OR CLOSE OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE OPEN/CLOSE

VALUES USED:

PSOH =  $226\emptyset$ PELM = 29.37

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 75 Harbin Reviewed By: W.T. Bars CALC No. SNH-86-015 DATE 09/20/86 DATE 09/20/86 UNIT 1 HPCI MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC SHEET 46 OF (01 . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

1E41-FØ12

VALVE DESCRIPTION

PMP MIN FLO BYP TO SUPP POOL

VALVE FUNCTION

HPCI PUMP MIN FLO BYP ISOL VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PMF+PELM+PVEL3

MAXIMUM DP ON OPEN OR CLOSE

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE

OPEN/CLOSE

VALUES USED:

PMF = 2255 PELM = 29.37 PVEL3 = 5.541

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: J. J. Humber DATE 09/20/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: J. T. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 47 OF 61.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-FØ41

VALVE DESCRIPTION PMP SUCT FROM SUPP POOL

VALVE FUNCTION HPCI SUPP POOL SUCT ISOL VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PRV-PELS

MAXIMUM DP ON OPEN OR CLOSE OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM DOWNSTREAM

SAFETY ACTION ON OPEN/CLOSE OPEN/CLOSE

VALUES USED:

PRV = 100PELS = 4.28

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: J. B. Humber DATE 09/20/86

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: W.T. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 48 OF 601.

MPL NUMBER 1E41-FØ41

VALVE DESCRIPTION PMP SUCT FROM SUPP POOL

VALVE FUNCTION HPCI SUPP POOL SUCT ISOL VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PLOC+PLOM1

MAXIMUM DP ON OPEN OR CLOSE CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE OPEN/CLOSE

VALUES USED:

PLOC = 30.5 PLOM1 = 5.43

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 1 Prepared By: DATE 09/20/86 UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET49 OF (ol . 09/19/86 DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER

1E41-FØ42

VALVE DESCRIPTION

PMP SUCT FROM SUPP POOL

VALVE FUNCTION

HPCI SUPP POOL SUCT ISOL VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRV-PELS

MAXIMUM DP ON OPEN OR CLOSE

OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM DOWNSTREAM

SAFETY ACTION ON OPEN/CLOSE

OPEN/CLOSE

VALUES USED:

= 100 PRV PELS = 4.28

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 1 Prepared By: Reviewed By: W. UNIT 1 HPCI MOTOR OPER VALVE DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 50 OF(e1 . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

1E41-FØ42

VALVE DESCRIPTION

PMP SUCT FROM SUPP POOL

VALVE FUNCTION

HPCI SUPP POOL SUCT ISOL VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PLOC+PLOM1

MAXIMUM DP ON OPEN OR CLOSE

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE

OPEN/CLOSE

VALUES USED:

= 30.5PLOC PLOM1 = 5.43

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES DATE 09/20/86 DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 1 Prepared By: 3 Harbler UNIT 1 HPCI MOTOR OPER VALVE Reviewed By: CALC No. SNH-86-015 DIFFERENTIAL PRESSURE CALC SHEETSI OF COI . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

1E41-FØ59

VALVE DESCRIPTION

COOLING WATER SUPPLY VALVE

VALVE FUNCTION

HPCI TURBINE ACCES COOLING WTR VLV

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PC+PLOM2

MAXIMUM DP ON OPEN OR CLOSE

OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE

OPEN/CLOSE

VALUES USED:

PC = 30.5PI.OM2 = 6.44

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 Prepared By: DATE 09/20/86 Reviewed By: W.T. Ban CALC No. SNH-86-015 DATE 09/20/86 UNIT 1 HPCI MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC SHEET 57 OF 61 . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

1E41-FØ59

VALVE DESCRIPTION

COOLING WATER SUPPLY VALVE

VALVE FUNCTION

HPCI TURBINE ACCES COOLING WTR VLV

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PC+PLOM2+PVEL4

MAXIMUM DP ON OPEN OR CLOSE

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE

OPEN/CLOSE

VALUES USED:

PC = 30.5PLOM2 = 6.44 PVEL4 = 0.917

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By:

UNIT 1 HPCI MOTOR OPER VALVE Reviewed By:

DATE 09/26/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-015 SHEET 53 OF 61.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER 1E41-F111

VALVE DESCRIPTION GATE VALVE 2 IN MO

VALVE FUNCTION HPCI VAC BREAKER LINE ISOL VALVE

SAFETY ACTION (YES/NO) YES

DP CALCULATION FORMULA DP=PC+PATM

MAXIMUM DP ON OPEN OR CLOSE CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE CLOSE

VALUES USED:

PC = 30.5PATM = 0

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 DATE 09/20/86 Prepared By: OR OPER VALVE Reviewed By: (1). 7. Ban RESSURE CALC CALC No. SNH-86-015 DIFFERENTIAL PRESSURE CALCULATION 09/ UNIT 1 HPCI MOTOR OPER VALVE DATE 09/20/86 DIFFERENTIAL PRESSURE CALC SHEET54 OF 61 . 09/19/86

MPL NUMBER

1E41-F1Ø4

VALVE DESCRIPTION

GATE VALVE 2 IN MO

VALVE FUNCTION

HPCI VAC BREAKER LINE ISOL VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PC+PATM

MAXIMUM DP ON OPEN OR CLOSE CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ACTION ON OPEN/CLOSE

CLOSE

VALUES USED:

PC = 30.5

PATM

= 0

DP (PSID)

# Design Calculations

# Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By C. Wilson            | Date 09/19/86   |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By Month                | Date 9/21/86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 55 of (2) |

GATE VALVE PVEL CALCULATIONS

PAGE 1 OF 3

A3: [W11] ^MPL B3: ^VALVE C3: ^CLOSING D3: ^UPSTR E3: DNSTR F3: 'UPSTRSYS G3: 'DNSTRSYS I3: ^dT UP J3: ^dTDN K3: ^TIMEul L3: ^TIMEu2 M3: ^TIMEd1 N3: ^TIMEd2 O3: ^RISEul P3: ^RISEu2 Q3: RISEd1 R3: ^RISEd2 S3: ^CHORDul T3: ^CHORDu2 U3: ^CHORDdl V3: ^CHORDd2 W3: 'MAX AREA X3: ^Aflul Y3: ^Aflu2 Z3: ^Afldl AA3: ^Afld2 AB3: ^a/Aul AC3: ^a/Au2 AD3: ^a/Ad1 AE3: ~a/Ad2 AF3: 'Vul AG3: ^Vu2 AH3: ^Vd1 AI3: 'Vd2 AJ3: ^dVu AK3: ^dVd AL3: Pvu AM3: Pvd AN3: Pvel A4: [W11] ^NUMBER B4: ^DIA, "

C4: ^T, SECS D4: ^PIPE L' E4: ^PIPE L' F4: ^VEL FPS G4: ^VEL FPS W4: 'FLOW A5: [W11] \-



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Chilson              | Date 09/19/86   |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By MAL                  | Date 9/21/86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 54 of Cel |

GATE VALVE PVEL CALCULATIONS

PAGE 2 OF 3

```
B5: \-
 C5: \-
 D5: \-
 E5: \-
 F5: \-
 G5: \-
 H5: [W2] \-
I5: \-
 J5: \-
K5: \-
L5: \-
M5: \-
N5: \-
05: \-
P5: \-
Q5: \-
R5: \-
S5: \-
T5: \-
U5: \-
V5: \-
W5: \-
X5: \-
Y5: \-
Z5: \-
AA5: \-
AB5: \-
AC5: \-
AD5: \-
AE5: \-
AF5: \-
AG5: \-
AH5: \-
AI5: \-
AJ5: \-
AK5: \-
AL5: \-
AM5: \-
AN5: \-
A6: [W11] '1E51-FØ13
B6: 3+5/16
C6: 15
D6: 99.9
E6: 16.6
F6: 11.62
G6: 12.46
H6: [W2] '
I6: (2*D6)/$D$29
```

|   | • |
|---|---|
| , |   |

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By                      | Date 09 19 18 6 |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By Myale                | Date 9/21/86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 57 of COI |

#### GATE VALVE PVEL CALCULATIONS

PAGE 3 OF 3

```
J6: (2*E6)/$D$29
K6: ($D$3Ø*$C6)-I6
L6: +$D$3Ø*$C6
M6: ($D$30*$C6)-J6
No: +$D$30*$C6
O6: (K6/$C6)*($B6/2)
P6: (L6/$C6)*($B6/2)
Q6: (M6/$C6)*($B6/2)
R6: (N6/$C6)*($B6/2)
S6: @SQRT(8*06*(($B6/2)-(06/2)))
T6: @SQRT(8*P6*(($B6/2)~(P6/2)))
U6: @SQRT(8*Q6*(($B6/2)-(Q6/2)))
V6: @SQRT(8*R6*(($B6/2)-(R6/2)))
W6: 2*((1/12)*(((3*B6*B6)/4)+(4*B6*B6)))
X6: (F6) (W6)-(2*((O6/(6*S6))*((3*O6*O6)+(4*S6*S6))))
Y6: (F6) (W6)-(2*((P6/(6*T6))*((3*P6*P6)+(4*T6*T6))))
Z6: (F6) ($W6)-2*((Q6/(6*U6))*((3*Q6*Q6)+(4*U6*U6)))
AA6: (F6) ($W6)-2*((R6/(6*V6))*((3*R6*R6)+(4*V6*V6)))
AB6: (F6) +X6/((@PI*$B6*$B6)/4)
AC6: (F6) +Y6/((@PI*$B6*$B6)/4)
AD6: (F6) + Z6/((@PI*$B6*$B6)/4)
AE6: (F6) +AA6/((@PI*$B6*$B6)/4)
AF6: (F6) +AB6*$F6
AG6: (F6) +AC6*$F6
AH6: (F6) +AD6*$G6
AI6: (F6) +AE6*$G6
AJ6: (F6) +AF6-AG6
AK6: (F6) +AH6-AI6
AL6: (F6) (AJ6*$D$28*$D$29)/(144*32.2)
AM6: (F6) (AK6*$D$28*$D$29)/(144*32.2)
AN6: (F6) +AL6+AM6
C28: 'DENSITY
D28: 61.996
E28: 'LB/FT3
C29: 'C
D29: 4000
E29: 'FT/SEC
C30: 'FUDGE FAC
D3Ø: 1
E30: 'DIMLESS
```

# **Design Calculations**

Southern Company Services 2

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Repared By C. Wilson             | Date 09 19 86    |
|------------------------------------------------|----------------------------------|------------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By Stall                | Date 9/21/86     |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Street 58 of Col |

### FOUR INCH GLOBE VALVE PVEL CALCULATIONS PAGE 1 OF 2

```
A3: [W11] ^MPL
B3: ^VALVE
C3: ^CLOSING
D3: ^UPSTR
E3: ^DNSTR
F3: 'UPSTRSYS
G3: 'DNSTRSYS
I3: ^dT UP
J3: ^dTDN
K3: ^TIMEul
L3: ^TIMEu2
M3: ^TIMEd1
N3: ^TIMEd2
03: ** OPEN
P3: ^% OPEN
Q3: * OPEN
R3: * OPEN
S3: ^% CV
T3: ^% CV
U3: * CV
V3: ~% CV
W3: ^dVu
X3: ^dVd
Y3: Pvu
Z3: ^Pvd
AA3: ^Pvel
A4: [W11] ^NUMBER
B4: ^DIA, "
C4: T, SECS
D4: "PIPE L'
E4: "PIPE L'
F4: 'VEL FPS
G4: ^VEL FPS
O4: ^UPSTR1
P4: ^UPSTR2
Q4: DNSTR1
R4: ^DNSTR2
S4: ^UPSTR1
T4: ^UPSTR2
U4: ^DNSTR1
V4: ^DNSTR2
A5: [W11]
B5: \-
C5: \-
D5: \-
E5: \-
F5: \-
```

G5: \-



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By                      | Date 09/19/86   |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By Mill                 | Date 9/21/86    |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 59 of (91 |

## FOUR INCH GLOBE VALVE PVEL CALCULATIONS

C24: 'C

D24: 4000

C23: 'DENSITY

D23: 61.996

E23: 'LB/FT3

E24: 'FT/SEC

PAGE 2 OF 2

```
H5: [W2] \-
15: \-
J5: \-
K5: \-
L5: \-
M5: \-
N5: \-
05: \-
P5: \-
Q5: \-
R5: \-
S5: \-
T5: \-
U5: \-
V5: \-
W5: \-
X5: \-
Y5: \-
Z5: \-
AA5: \-
A6: [W11] '1E41-FØ12
B6: 2.5
C6: 10
D6: 61.05
E6: 38.958
F6: 12.561
G6: 11.347
H6: [W2] '|
16: (2*D6)/$D$24
J6: (2*E6)/$D$24
K6: +$C6*Ø.5
L6: +$C6*Ø.5+I6
M6: +$C6*0.5
N6: +$C6*Ø.5+J6
06: (+K6*100)/$C6
P6: (+L6*100)/$C6
Q6: (+M6*100)/$C6
R6: (+N6*100)/$C6
S6: +06*1.714
T6: +P6*1.714
U6: +Q6*1.714
V6: +R6*1.714
W6: (+F6*(T6-S6))/100
X6: (+G6*(V6~U6))/100
Y6: (W6*$D$23*$D$24)/(144*32.2)
Z6: (X6*$D$23*$D$24)/(144*32.2)
AA6: +Y6+Z6
```

. .. .



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By C. Wilson            | Date 09/19/86  |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By Mc Sal               | Date 9/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet 60 of 61 |

#### TWO INCH GLOBE VALVE PVEL CALCULATIONS

PAGE 1 OF 2

```
A3: [W11] ^MPL
B3:
    ^VALVE
C3: ^CLOSING
D3: ^UPSTR
E3: ^DNSTR
F3: 'UPSTRSYS
G3: 'DNSTRSYS
I3: ^dT UP
J3: ^dTDN
K3: ^TIMEul
L3: ^TIMEu2
M3: ^TIMEd1
N3: ^TIMEd2
03: ** OPEN
P3: ^% OPEN
Q3: ^% OPEN
R3: ^% OPEN
S3: * CV
T3: ^% CV
U3: ^% CV
V3: * CV
W3: ^dVu
x3: ^dVd
Y3: Pvu
Z3: ^Pvd
AA3: 'Pvel
A4: [W11] ^NUMBER
B4: ^DIA, "
C4: ^T, SECS
D4: 'PIPE L'
E4: PIPE L'
F4: "VEL FPS
G4: "VEL FPS
O4: ^UPSTR1
P4: ^UPSTR2
Q4: ^DNSTR1
R4: ^DNSTR2
S4: ^UPSTR1
T4: ^UPSTR2
U4: ^DNSTR1
V4: ^DNSTR2
A5: [W11] \-
B5: \-
C5: \-
D5: \-
E5: \-
F5: \-
```

G5: \-

. .. .



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Wilson               | Date 09/19/96 |
|------------------------------------------------|----------------------------------|---------------|
| Subject/Title Unit 1 HPCI Motor Operated Valve | Reviewed By MCX                  | Date 9/21/86  |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-015 | Sheet/        |

#### TWO INCH GLOBE VALVE PVEL CALCULATIONS

C27: 'DENSITY

D27: 61.996

C28: 'C

D28: 4000 E28: 'FT/SEC

E27: 'LB/FT3

PAGE 2 OF 2

```
H5: [W2] \-
15: \-
J5: \-
K5: \-
L5: \-
M5: \-
N5: \-
05: \-
P5: \-
Q5: \-
R5: \-
S5: \-
T5: \-
U5: \-
V5: \-
W5: \-
X5: \-
Y5: \-
Z5: \-
AA5: \-
A6: [W11] '1E41-FØ59
B6: 1.75
C6: 10
D6: 25
E6: 31.42
F6: 7.601
G6: 7.601
H6: [W2] '|
I6: (2*D6)/$D$28
J6: (2*E6)/$D$28
K6: +$C6*Ø.5
L6: +$C6*Ø.5+I6
M6: +$C6*Ø.5
N6: +$C6*Ø.5+J6
06: (+K6*100)/$C6
P6: (+L6*100)/$C6
Q6: (+M6*100)/$C6
R6: (+N6*100)/$C6
S6: +06*Ø.8
T6: +P6*0.8
U6: +Q6*Ø.8
V6: +R6*0.8
W6: (+F6*(T6-S6))/100
X6: (+G6*(V6-U6))/100
Y6: (W6*$D$27*$D$28)/(144*32.2)
Z6: (X6*$D$27*$D$28)/(144*32.2)
AA6: +Y6+Z6
```

ENCLOSURE 2

MÓ FOG7 RPY LINE THE RMAL SLEEVE #0 F105 M0 -000-HPL NUMBER VALVE DESCRIPTION RCIC STEAM IMBOARD ISOL VALVE
RCIC STEAM OUTBOARD ISOL VLV
PUMP SUCT FRM COMD STG TMK
RCIC PUMP OUTBOARD DISCE VLV
RCIC PUMP IMBOARD DISCE VLV
RCIC PUMP IMBOARD DISCE VLV
TEST SYPASS TO COMD STG TANK
TEST SYPASS TO COMD STG TANK
RCIC PMP SUCT VLV FRM SUP POOL
BCIC PMP SUCT VLV FRM SUP POOL
TURBINE STEAM SUPPLY VALVE
COOLING MATER SUPPLY VALVE
GATE VALVE 2 IN MO
GATE VALVE 2 IN MO 1E51-P007 1E51-P010 1E51-P010 41E51-P012 1E51-P013 1E51-P019 41E51-P022 1E51-P029 1E51-P045 1E51-P046 1E51-P104 SUPPIESSION POOL

-



8610090442-02

|              |                          |           |                      | Calculation        | Number -86-016   |
|--------------|--------------------------|-----------|----------------------|--------------------|------------------|
| Project<br>E | .I. HATCH NUCLEAR PLANT  | UNIT 1    |                      | Discipline<br>Mech | nanical          |
| Objective    | alculate DP for RCIC Mot |           | Valves               | SDS Numb           | per              |
| Subject/Ti   |                          |           |                      | ure Calculation    |                  |
| Design Eng   | pineer's Signature Chris | Loren     |                      | 9.19.80            | Last Page Number |
| Contents     |                          |           |                      |                    |                  |
| Topics       | RODUCTION                | Page<br>1 | Topics DEFINITION    | N OF TERMS         | Page 7           |
| Summary      | of Conclusions           | 3         | DERIVATION OF VALUES |                    | 9                |
| Criteria an  | d Assumptions            | 2         |                      |                    |                  |
| Listed Refe  | erences                  | 5         |                      |                    |                  |
| Body of Ca   | alculations              | 9         |                      |                    |                  |
| (Computer    | Printout)                | 49        |                      |                    |                  |
| Record o     | f Revisions              |           |                      |                    |                  |
| Rev. No.     | Description              |           |                      |                    | Date Proj. Engr. |
| 0            | APPROVED                 |           |                      | C23.1900 (1)       | 9/2/86 4 9/2/8   |
|              |                          |           |                      |                    |                  |
|              |                          |           |                      |                    |                  |
|              |                          |           |                      |                    | ///              |
|              |                          |           |                      |                    |                  |
|              |                          |           |                      |                    |                  |
|              |                          |           |                      |                    |                  |

Notes

Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By C. Wilson            | 09/19/86    |
|------------------------------------------------|----------------------------------|-------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By Bars                 | 9/20/86     |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet of 53 |

#### INTRODUCTION

The Nuclear Regulatory Commission (NRC) IE Bulletin 85-03 (Motor Operated Valve Common Mode Failure) requested that owners of light water reactors develop and implement a program to ensure that torque switch settings on safety related motor-operated valves on high pressure systems are selected, set and maintained correctly to accommodate the maximum differential pressures expected on these valves during both normal and abnormal events within the design basis. The objective of this calculation is to determine the maximum Differential Pressure across each of the affected Unit 1 RCIC Motor Operated Valves.

Southern Company Services 2

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Chones               | 9.19.8C       |
|------------------------------------------------|----------------------------------|---------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By Micha                | Date 9/21/86  |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 2 of 53 |

#### CRITERIA

1) The criteria, assumptions and formulas given in the General Electric "BWR Owner's Group Report on the Operational Design Basis of Selected Safety-Related Motor-Operated Valves," DRF-E12-00100-75, are assumed to be correct.

#### ASSUMPTIONS

- 1) PC is assumed to equal PLOC. The terms are defined as follows:
  - \* PLOC is the maximum wet well LOCA pressure.
  - \* PC is the maximum wetwell LOCA pressure which the valve is required to operate against.
- 2) In the PVEL calculation, it is assumed that the time required for a sound wave to travel to and return from an atmospheric vessel is infinity. Thus, the related term in the PVEL equation is equal to zero.
- 3) In the PVEL calculation, downstream velocities for lines of equal sizes with differing wall thicknesses are assumed to be equal. The impact upon the downstream pressure increase is small.
- 4) Disc and Port diameters are assumed to be equal. Equal diameters for disc and port yield higher rate of change therefore higher DV and is therefore more conservative.
- 5) The Formula for calculating area of the gate valve available for flow is approximated from a known geometric relationship and is off by a small percentage, however, the overall effect is negligible.
- 6) In the PVEL calculation, it is assumed that where a small line tees into a much larger line ( i.e. Larger being two times or greater in diameter) the boundary for the small line ends at the line intersection.

Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Corona               | 9.19.86       |
|------------------------------------------------|----------------------------------|---------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By 11. T. Barn          | 9/20/3G       |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet / of 53 |

#### SUMMARY OF CONCLUSIONS

The following page is a summary table of the results for each RCIC motor operated valve in the scope of NRC IEB 85-03.

The first column titled "MPL Number" gives the mpl number of the valve.

The second column titled "Valve Description" is the Description of the Valve given in the Equipment Location Index (ELI).

The third column titled "Valve Function" is the function of the valve as stated in the General Electric "BWR Owners' Group Report on the Operational Design Basis of Selected Safety-Related Motor-Operated Valves."

The fourth column titled "Safety Act" gives the safety action of the valve.

The fifth column titled "DP Calculation Formula" gives the formula used to calculate the maximum differential pressure.

The sixth column titled "Maximum DP" gives the safety action for which the maximum DP was calculated. If the formula is the same for both opening and closing, then both are listed.

The seventh column titled " MAX DP " is where the maximum differential pressure occurs, either upstream or downstream.

The eighth column titled "DP (PSID)" is the calculated maximum Differential Pressure in PSID against which the valve must either open or close.

The ninth column indicates if the valve was any safety function.

| DESIGN CALCULATIONS E.I. HATCH NUCLEAR | SN CALCULATIONS HATCH NUCLEAR PLANT UNIT 1         | PREPARED BY:                                      | or of the       | Oran                              |                 | Sou                    | SOUTHERN COMPANY SERVICES DATE 09/286 | SERVICES -         |
|----------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------|-----------------------------------|-----------------|------------------------|---------------------------------------|--------------------|
| DIFFERENTI                             | DIFFERENTIAL PRESSURE CALCULATION                  | CALC No. SWH-86-016                               | 6-016           | Con                               |                 |                        | SHEET 4                               | 09/2//86<br>0F 53. |
|                                        |                                                    | SUMMER                                            | SUMMARY TABLE 0 | 09/21/86                          |                 |                        |                                       |                    |
| MPL NUMBER<br>1E51-F007                | VALVE DESCRIPTION<br>RCIC STEAM INBOARD ISOL VALVE | VALVE FUNCTION<br>RCIC STEAM LINE ISOLATION VALVE | SAFETY ACT      | DP CALCULATION FORMULA<br>DP=PRSS | MAX DP ON CLOSE | MAXIMUM DP<br>UPSTREAM | DP (PSID)<br>1080                     | SAFETY             |
| 1E51-F008                              | RCIC STEAM OUTBOARD ISOL VLV                       | RCIC STEAM LINE ISOLATION VALVE                   | CLOSE           | DP=PRSS                           | CLOSE           | UPSTREAM               | 1080                                  | YES                |
| 1E51-F010                              | PUMP SUCT FRM COND STB TNK                         | RCIC CST SUCTION ISOLATION VALVE                  | CLOSE           | DP=PELD+PV+PVEL1                  | SCLOSE          | UPSTREAM               | 29.406                                | YES                |
| 1E51-F012                              | RCIC PUMP OUTBOARD DISCH VLV                       | RCIC INJECTION VALVE TEST VALVE                   | NONE            | NO SAFETY ACTION                  | N/A             | A/M                    | N/A                                   | ON                 |
| 1E51-F013                              | RCIC PUMP INBOARD DISCH VLV                        | RCIC INJECTION VALVE                              | OPEN/CLOSE      | DP=PRSS+PEL                       | OPEN/CLOSE      | DOWNSTREAM             | 1115.612                              | YES                |
| 1E51-F019                              | TEST BYPASS TO COND STE TANK                       | SCIC MINIMUM FLOW BYPASS ISOL VALVE               | OPEN/CLOSE      | DP=PSQH+PELM                      | DPEN            | UPSTREAM               | 1305,687                              | YES                |
| 1E51-F019                              | TEST BYPASS TO COND STG TANK                       | RCIC MINIMUM FLOW BYPASS ISOL VALVE               | OPEN/CLOSE      | DP=PMF+PELM+PVEL3                 | 35073           | UPSTREAM               | 1307.1232                             | YES                |
| 1E51-F022                              | TEST BYPASS TO COND STB TANK                       | RCIC CST TEST RETURN VALVE                        | NONE            | NO SAFETY ACTION                  | N/A             | M/M                    | A/A                                   | ON                 |
| 1E51-F029                              | RCIC PMP SUCT VLV FRM SUP POOL                     | RCIC SUPP POOL SUCTION ISOL WALVE                 | OPEN/CLOSE      | ST34-NEd-dQ                       | DPEN            | DOWNSTREAM             | 95.367                                | YES                |
| 1E51-F029                              | RCIC PMP SUCT VLV FRM SUP POOL                     | RCIC SUPP POOL SUCTION ISOL VALVE                 | OPEN/CLOSE      | DP=PLOC+PLOM1                     | CLOSE           | UPSTREAM               | 36.1                                  | YES                |
| 1E51-F031                              | RCIC PMP SUCT VLV FRM SUP POOL                     | RCIC SUPP POOL SUCTION ISOL VALVE                 | OPEN/CLOSE      | DP=PRY-PELS                       | OPEN            | DOWNSTREAM             | 95.367                                | YES                |
| 1E51-F031                              | RCIC PMP SUCT VLV FRM SUP POOL                     | RCIC SUPP POOL SUCTION ISOL VALVE                 | OPEN/CLOSE      | DP=PLGC+PLOM1                     | CLOSE           | UPSTREAM               | 36.1                                  | YES                |
| 1E51-F045                              | TURBINE STEAM SUPPLY VALVE                         | RCIC STEAM ADMISSION VALVE                        | OPEN/CLOSE      | DPuPRSS                           | OPEN/CLOSE      | UPSTREAM               | 1080                                  | YES                |
| 1E51-F046                              | COOLING MATER SUPPLY VALVE                         | RCIC TURBINE ACCESSORY COOL MTR VALVE             | OPEN/CLOSE      | DP=PSOI+PELC                      | DPEN            | UPSTREAM               | 288.179                               | YES                |
| 1E51-F046                              | COOLING MATER SUPPLY VALVE                         | RCIC TURBINE ACCESSORY COOL WTR VALVE             | OPEN/CLOSE      | DP=PLOC+PLOM2+PVEL4               | CLOSE           | UPSTREAM               | 37.065                                | YES                |
| 1E51-F104                              | SATE VALVE 1.5 IN MO                               | RCIC VACUUM BREAKER LINE ISOL VALVE               | CLOSE           | DP=PC+PATM                        | CLOSE           | UPSTREAM               | 30.5                                  | YES                |
| 1E51-F105                              | BATE VALVE 2 IN MO                                 | RCIC VACUUM BREAKER LINE ISOL VALVE               | CLOSE           | DP=PC+PATM                        | SULUSE          | UPSTREAM               | 30.5                                  | YES                |

| Southern Comp. | any Services 🔼 |
|----------------|----------------|
| Sorem          | Date 9.19.86   |
|                | Date           |

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Corem                | Date 9.19.8C     |
|------------------------------------------------|----------------------------------|------------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By W. T. Ban            | 9-19-86          |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet<br>5 of 53 |

#### UNIT 1 RCIC MOV CALCULATIONS REFERENCES

- H-11038 REV. 15 P & I DIAGRAM DEMINERALIZED WATER 1).
- H-16081 REV. 4 FEEDWATER PIPING REACTOR BLDG. 2). E1. 130'-0" & ABOVE
- S-00090 REV. O KELLOGG ISOMETRIC 3).
- S-01467 REV. 5 KELLOGG ISOMETRIC 4).
- S-01469 REV. O KELLOGG ISOMETRIC 5).
- S-15290 REV. H GENERAL PLAN CONTAINMENT 6).
- C-11020 REV. 1 COMPOSITE DRAWING OF MODEL LC RELIEF VALVE 7).
- TECHNICAL SPECIFICATIONS REV. 08-15-86 8). UNIT NO. 1
- A-16237 REV. 12 SETPOINT INDEX 9).
- 10. G.E. NEDO 24570 REV.2
- H-16334 REV. 15 RCIC SYSTEM P & ID SHEET 1 11.
- H-16335 REV. 11 RCIC SYSTEM P & ID SHEET 2 12.
- CRC HANDBOOK OF CHEMISTRY & PHYSICS 13. SECTION F 57TH EDITION. CONVERSION FACTORS
- CRANE "FLOW OF FLUIDS" TECHNICAL PAPER 14. SECTION B No. 410. PIPE DATA & FLOW EQUATIONS
- BECHTEL RCIC SYSTEM CALCULATIONS IBM VOL. 1 BINDER 1 0045 15. DATED 11/11/71
- BWR OWNERS GROUP REPORT ON THE OPERATIONAL DESIGN BASIS OF 16. SELECTED SAFETY RELATED MOTOR OPERATED VALVES, DRF-E12-00100-75, AUGUST 1986.



| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By Conounce             | 9.19.8 Ce    |
|------------------------------------------------|----------------------------------|--------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By W. T. Barn           | Date 9/20/86 |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet of 53  |

#### UNIT 1 RCIC MOV CALCULATIONS REFERENCES (Cont'd)

- TELEPHONE CONFIRMATION 09-05-86 BETWEEN CHRIS SORENSEN OF SCS 17. AND GORDON PARKS OF BINGHAM PUMP.
- S-11551 REV. D 900 1b CAST STEEL GATE VALVE CRANE 18.
- S-18627 REV. C 2" 1500 1b CS MOTOR OPERATED GLOBE VELAN 19.
- 20. S-00089 REV. 27 KELLOGG ISOMETRIC
- 21. S-01469 REV. O KELLOGG ISOMETRIC
- 22. S-01451 REV. O KELLOGG ISOMETRIC
- 23. S-01452 REV. O KELLOGG ISOMETRIC
- 24. S-00096 REV. 11 KELLOGG ISOMETRIC
- 25. S-00092 REV. O KELLOGG ISOMETRIC
- 26. S-15066 REV. B RCIC SYSTEM FLOW DIAGRAM
- 27. HNP-2 FSAR - TABLE 6.2-5 SHEET 2 NOTE 7
- TELEPHONE CONFIRMATION R. KUBISCK OF VELAN VALVE CO. WITH JACK 28. ROBYN OF SCS ON 9/11/86
- 29. BWROG ALTERNATIVE METHOD FOR CALCULATION OF PVEL SEPTEMBER 4, 1986.
- 30. A-16360 DATA SHEETS
- ENGINEERING FORMULAS 4TH ED. SEGMENT OF CIRCLE AREA EQUATION. 31.

0071d

| DESIGN CLACULATIONS          |          | SOUTHERN                   | COMPANY | SERVICES  |
|------------------------------|----------|----------------------------|---------|-----------|
| E.I. HATCH NUCLEAR PLANT U 1 | Prepared | By: Dawn Chilse            | DATE    | 09/19/86  |
|                              |          | By: 4.7. Ban<br>SNH-86-016 |         | 09/20/86  |
| DIFFERENTIAL PRESSURE CALC   | CALC No. | SNH-86-016                 | SHEET   | 7 OF 53 . |
| DEFINITION                   | OF TERMS | 09/18/86                   |         |           |

TERM DEFINITION OF TERM DP VALVE MAXIMUM EXPECTED OPERATING DIFFERENTIAL PRESSURE DIFFERENTIAL PRESSURE DEVELOPED BY SYSTEM MAIN PSOH PUMPS AT ZERO FLOW RATE. (MAXIMUM NORMAL TURBINE SPEED) PEL MINIMUM HYDROSTATIC PRESSURE DIFFERENCE BETWEEN SUCTION AND DISCHARGE DUE TO ELEVATION. (DISCHARGE ELEVATION IS HIGHER THAN SUCTION) LOW REACTOR PRESSURE AT WHICH STEAM SUPPLY LINES PISO AUTOMATICALLY ISOLATE FLOW PELM MAXIMUM HYDROSTATIC PRESSURE DIFFERENCE BETWEEN SUCTION AND DISCHARGE SOURCE DUE TO ELEVATION REACTOR PRESSURE CORRESPONDING TO THE SPRING PRSS SETPOINT OF THE REACTOR SAFETY RELIEF VALVE WITH THE LOWEST NOMINAL SPRING SETPOINT PELD HYDROSTATIC PRESSURE DIFFERENCE BETWEEN CST AND SUPPRESSION POOL ASSUMING THE CST TO BE FULL AND THE SUPPRESSION POOL WATER LEVEL AT ITS MAXIMUM ALLOWABLE NORMAL LEVEL DIFFERENTIAL PRESSURE DEVELOPED BY THE SYSTEM MAIN PMF PUMPS AT A FLOW RATE EQUAL TO THE REQUIRED MINIMUM BYPASS FLOW RATE. (MAXIMUM NORMAL TURBINE SPEED) PV VELOCITY HEAD IN THE SUPPRESSION POOL SUCTION LINE

| DESIGN CLACULATIONS          |          |      | SOUTHERN       | COMPANY | SERVICES  |
|------------------------------|----------|------|----------------|---------|-----------|
| E.I. HATCH NUCLEAR PLANT U 1 | Prepared | By:  | Dawn C. Wilson | DATE    | 09/19/86  |
| UNIT 1 RCIC MOTOR OPER VALVE | Reviewed | By:  | W.T. Barr      | DATE    | 09/20/86  |
| DIFFERENTIAL PRESSURE CALC   | CALC No. | SNH- | 86-016         | SHEET   | 8 OF 53 . |
| DEFINITION                   | OF TERMS |      | 09/18/86       |         |           |

| TERM | DEFINITION OF TERM                                 |
|------|----------------------------------------------------|
|      | AT THE LOCATION WHERE THE CST LINE CONNECTS TO IT  |
| PRV  | SYSTEM SUCTION RELIEF VALVE ACTUATION SET PRESSURE |
| PELS | HYDROSTATIC PRESSURE DIFFERENCE BETWEEN THE        |
|      | MINIMUM SUPPRESSION POOL WATER LEVEL AND THE       |
|      | LOCATION OF THE RELIEF VALVE ON THE PUMP SUCTION   |
|      | LINE                                               |
| PLOC | LOCA WETWELL PRESSURE WHEN THE SYSTEM IS ISOLATED  |
| PLOM | HYDROSTATIC PRESSURE UPSTREAM OF THE VALVE DUE     |
|      | TO MAXIMUM LOCA SUPPRESSION POOL WATER LEVEL       |
| PC   | MAXIMUM LOCA WETWELL PRESSURE WHEN SYSTEM IS       |
|      | REQUIRED TO OPERATE (PC IS CONSERVATIVELY TAKEN    |
|      | TO EQUAL PLOC)                                     |
| PELC | HYDROSTATIC PRESSURE DIFFERENCE BETWEEN CST AND    |
|      | LOCATION OF VALVE WHEN THE CST IS FULL             |
| PSOI | RCIC PUMP DISCHARGE PRESSURE AT ZERO FLOW AND A    |
|      | TURBINE SPEED OF 2000 RPM                          |
| PATM | NORMAL ATMOSPHERIC PRESSURE                        |
| PVEL | DIFFERENTIAL PRESSURE ASSOCIATED WITH VALVE        |
|      | CLOSURE DUE TO FLUID VELOCITY CHANGES (I.E., WATER |
|      | HAMMER TYPE PRESSURE INCREASE) INSIDE THE PIPE     |
|      |                                                    |

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: Company Services

UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: U.T. Bara DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 9 OF 53.

DERIVATION OF VALUES 09/19/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PSOH 1276.271 TELEPHONE CONFIRMATION - C. SORENSEN OF SCS WITH

G. PARKS OF BINGHAM PUMP ON SEPTEMBER 5, 1986.

PEL 35.612 THE ELEVATION FOR THE INJECTION POINT OF

DISCHARGE IS GIVEN AS 183' 9 1/2" ON DRAWING

H-16081 REV. 4.

THE CENTERLINE OF THE SUPPRESSION POOL IS

GIVEN AS 103' 6 1/4" AND THE INSIDE DIAMETER

IS GIVEN AS 28' 1" ON DRAWING S-15290 REV. H.

THE INSIDE BOTTOM ELEVATION OF THE

SUPPRESSION POOL IS THE CENTERLINE

MINUS 1/2 THE DIAMETER:

103' 6 1/4" - (28' 1")/2 = 89' 5 3/4"

THE MINIMUM SUPPRESSION POOL LEVEL IS GIVEN

AS 12' 2" IN THE TECHNICAL SPECIFICATIONS

SECTION 3.7.

THE MINIMUM SUPPRESSION POOL ELEVATION IS

THE BOTTOM ELEVATION PLUS THE MINIMUM LEVEL:

89' 5 3/4" + 12' 2" = 101' 7 3/4"

THE HYDROSTATIC DIFFERENCE IS THUS:

183' 9 1/2" - 101' 7 3/4" = 82' 1 3/4"

= 985.75" H2O

AND HYDROSTATIC PRESSURE IS:

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PEL 985.75" H2O / 27.68Ø7"H2O/PSIG

= 35.612 PSIG

PISO 850 A-16237 UNIT 1 REV 12 INSTRUMENT SETPOINT INDEX

FOR INSTRUMENTS 1B21-NØ15 A-D

PELM 29.416 THE MAXIMUM CST LEVEL IS GIVEN AS 169' 6"

FOR THE SETPOINT OF 1P21-R200 ON DRAWING

H-11038 REV. 15.

THE MINIMUM SUPPRESSION POOL LEVEL WAS

CALCULATED AS 101' 7 3/4" IN THE CALCULATION

FOR PEL ABOVE.

THUS THE HYDROSTATIC DIFFERENCE IS:

169' 6" - 101' 7 3/4" = 67' 10 1/4"

= 814.25 "H20

HYDROSTATIC PRESSURE IS:

814.25"H2O / 27.68Ø7 "H2O/PSIG = 29.416

PRSS 1080 UNIT 1 TECHNICAL SPECIFICATIONS SECTION 2.2

PELD 29.272 THE MAXIMUM CST LEVEL IS GIVEN AS 169' 6"

FOR THE SETPOINT OF 1P21-R200 ON DRAWING

H-11038 REV. 15.

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C. DATE 09/19/86

UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: W. 7 Barn DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET // OF 53.

DERIVATION OF VALUES 09/19/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PELD

THE INSIDE BOTTOM ELEVATION OF THE

SUPPRESSION POOL WAS CALCULATED AS

89' 5 3/4" IN THE CALCULATION FOR PEL.

THE MAXIMUM SUPPRESSION POOL LEVEL IS GIVEN

AS 12' 6" IN THE UNIT 1 TECHNICAL

SPECIFICATIONS SECTION 3.7

THE MAXIMUM ELEVATION LEVEL OF THE

SUPPRESSION POOL IS:

89' 5 3/4" + 12' 6" = 101' 11 3/4"

THUS THE HYDROSTATIC DIFFERENCE IS:

169' 6" - 101' 11 3/4" = 67' 6 1/4"

= 810.25 "H20

HYDROSTATIC PRESSURE EQUALS:

810.25 "H20 / 27.6807 "H20/PSIG = 29.272

PMF 1276.271

TELEPHONE CONFIRMATION - CHRIS SORENSEN OF SCS WITH G. PARKS OF BINGHAM PUMP ON SEPTEMBER 5, 1986.

PV Ø.134

THE RCIC SYSTEM RATED FLOW IS GIVEN AS 198,930

1bm/hr IN BECHTEL CALCULATION 1BM VOL 01

BINDER 01 0045. THE SIZE OF THE SUCTION LINE

IS GIVEN AS 6" SCH 40 ON DWG. S-00090 REV. 0. THE

DIFFERENTIAL PRESSURE CALC

SOUTHERN COMPANY SERVICES

Prepared By: Corena E.I. HATCH NUCLEAR PLANT U 1 Reviewed By: W.T. Barn CALC No. SNH-86-016 UNIT 1 RCIC MOTOR OPER VALVE

DATE 09/19 /86 DATE 09/20/86

SHEET /2 OF 53 .

DERIVATION OF VALUES

09/19/86

#### TERM PRESSURE (PSIG) DERIVATION OF VALUE

PV

INTERNAL DIAMETER IS GIVEN IN CRANE AS 6.065". 6.065 INCHES / 12 INCHES/FOOT = 0.5054 FEET THE VELOCITY HEAD IS EQUAL TO:

- $[\{V\}^{**2}]$  / 2 x gc, FROM (CRANE 410 EQ NO. 2-1)
- WHERE GC IS THE GRAVITATIONAL CONSTANT
- ' qc = 32.2 ft/(sec\*\*2)
- ' and V = Q/A, FROM (CRANE 410 EQ NO. 3-2)

PI = 3.1416

 $V = (198,930 \text{ lbm/hr}) \times (0.01613 \text{ ft**3/lbm}) /$ 

- [PI x ({0.5054\*\*2}/4)] x 3600
- ' = 4.46 ft/sec

VELOCITY HEAD IS:

'  $[4.46**2] / 2 \times 32.2 = \emptyset.309$  ft H20

VELOCITY HEAD PRESSURE IS:

- 0.309 FT H2O x 0.432781 PSIG/FT H2O
- $' = \emptyset.134 \text{ PSIG}$

100 PRV

DWG C-11020 REV. 1 VALVE COMPOSITE DRAWING FOR E51-F018 GIVES THE RELIEF SETTING OF 100 PSIG

PELS 4.633

THE MINIMUM SUPPRESSION POOL ELEVATION WAS DETERMINED TO BE 101' 7 3/4" IN THE CALCULATION FOR PEL.

DIFFERENTIAL PRESSURE CALC

E.I. HATCH NUCLEAR PLANT U 1 UNIT 1 RCIC MOTOR OPER VALVE

Prepared By: Corena Reviewed By: W.T. Ban CALC No. SNH-86-016

DATE 09/19 /86 DATE 09/20 /86 SHEET /3 OF 53 .

DERIVATION OF VALUES

09/19/86

PRESSURE (PSIG) DERIVATION OF VALUE TERM

PELS

THE ELEVATION FOR THE SUCTION RELIEF VALVE 1E51-FØ17 IS GIVEN AS 90'-11 1/2" ON DRAWING S-Ø1467 REV. 5.

THUS THE HYDROSTATIC DIFFERENCE IS:

101' 7 3/4" - 90' -11 1/2 " = 10 -8' 1/4"

= 128.25 "H20

HYDROSTATIC PRESSURE IS:

128.25 "H2O / 27.6807 "H2O/PSIG = 4.633

PLOC 30.5

NEDO-24570-2 FIG H1 4.1.2-1 PG 12

PLOM1 5.6

THE ACCIDENT SUPPRESSION POOL LEVEL IS GIVEN AS 102' 7 1/2" ON DRAWING S-15290 REV. H. THE ELEVATION FOR THE SUPPRESSION POOL ISOLATION VALVES 1E51-FØ29 AND FØ31 ARE GIVEN AS 89' 8 7/8" ON DRAWING S-00090 REV. 0. THUS THE HYDROSTATIC DIFFERENCE IS: 102' 7 1/2" - 89' 8 7/8" = 12' 10 5/8" = 154.625 "H20 THE HYDROSTATIC PRESSURE IS:

154.625 "H2O / 27.6087 "H2O/PSIG = 5.60

PLOM2 6.449

THE ACCIDENT SUPPRESSION POOL LEVEL IS GIVEN

DERIVATION OF VALUES 09/19/86

#### TERM PRESSURE (PSIG) DERIVATION OF VALUE

PLOM2

AS 102' 7 1/2" ON DRAWING S-15290 REV. H.

THE ELEVATION FOR THE TURBINE ACCESSORIES

VALVE 1E51-F046 IS GIVEN AS 87' 9" ON

DRAWING S-01469 REV. 0.

THUS THE HYDROSTATIC DIFFERENCE IS:

102' 7 1/2" - 87' 9" = 14' 10 1/2"

= 178.5" H2Ø

THE HYDROSTATIC PRESSURE IS:

178.5 "H20 / 27.6807 "H20/PSIG = 6.449

PC 30.5 PC=PLOC

PELC 35.44

THE MAXIMUM CST LEVEL IS GIVEN AS 169' 6"

PER SETPOINT FOR 1P21-R200 ON DRAWING H-11038

REV. 15.

THE ELEVATION FOR THE RCIC TURBINE

ACCESSORIES COOLING WATER VALVE 1E51-FØ46 IS

GIVEN AS 87' 9" ON DRAWING S-Ø1469 REV. Ø.

THUS THE HYDROSTATIC DIFFERENCE IS:

169' 6" - 87' 9" = 81' 9"

= 981 "H20

THE HYDROSTATIC PRESSURE IS:

DERIVATION OF VALUES 09/20/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PELC 981 "H20 / 27.6807 "H20/PSIG = 35.440

PSOI 252.739 TELEPHONE CONFIRMATION -C. SORENSEN OF SCS AND

G. PARKS OF BINGHAM PUMP ON SEPTEMBER 5, 1986.

HEAD AT 2000 RPM AND ZERO FLOW = 583 ft = 6996 in

6996 "H2O/27.6807 "H2O/PSIG = 252.739 PSIG

PATM Ø NORMAL ATMOSPHERIC PRESSURE = 14.696 PSIA.

 $PSIG = PSIA - 14.696 = \emptyset$ 

PVEL1 Ø KELLOGG ISOMETRIC DRAWINGS S-ØØ096 REV. Ø,

S-00092 REV. 0, AND S-00090 REV. 0 SHOW THAT

THE UPSTREAM PIPING IS CONNECTED TO

THE CONDENSATE STORAGE TANK.

IT IS ASSUMED THAT ANY WATER HAMMER EFFECTS

IN THE UPSTREAM PIPING WOULD BE DISSIPATED WITHIN

THE CST VOLUME, AND PRODUCE NO RESULTANT

PRESSURE RISE UPON THE VALVE.

THE REFERENCED DRAWINGS ALSO SHOW THAT THE

DOWNSTREAM PIPING IS INTERCONNECTED WITH THE

SUPPRESSION POOL SUCTION LINE. IT IS ASSUMED

THAT THE RCIC PUMP IS OPERATING TO DRAW

A SUCTION FROM THE SUPPRESSION POOL WHEN E51-FØ10

BEGINS TO CLOSE. THEREFORE, NO DOWNSTREAM FLUID

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: Community of the Prepare

DATE 09/21/86 DATE 09/2//86 SHEET /6 OF 53.

DERIVATION OF VALUES

09/21/86

### TERM PRESSURE (PSIG) DERIVATION OF VALUE

PVEL1

DECELERATION WILL RESULT. IT MAY BE

CONCLUDED THAT NO INCREASE IN PRESSURE

BECAUSE OF WATER HAMMER WILL RESULT.

CONSIDERING THE ABOVE FACTS, VALVE 1E51-F010

CAN BE CONSIDERED TO HAVE NO WATER HAMMER

PRESSURE INCREASE. THEREFORE PVEL1 = 0.

PVEL2 3.194

SYSTEM VELOCITY FOR 1E51-F013

FLOW RATE = 400 GPM FROM S-15066 REV. B

. RCIC FLOW DIAGRAM

AREA OF 4" SCH 80 PIPE = 11.50 IN SQ AREA OF 4" SCH 120 PIPE = 10.31 IN SQ

CRANE 410

VELOCITY UPSTREAM = [400 GPM X 0.321]/11.50 IN SQ

=11.17 FT/SEC

VELOCITY DOWNSTRM = [400 GPM X 0.321]/10.31 IN SQ

=12.45 FT/SEC

CLOSURE TIME

. TC = 15 SEC FROM DATA SHEET A-16360 VALVE THROAT DIAMETER

- . VALVE DIAMETER = 3 5/16"
- . 900 L CAST STEEL GATE VALVE S-11551 REV. D
  LENGTH UPSTREAM (LU) AND DOWNSTREAM (LD)

PRESSURE (PSIG) DERIVATION OF VALUE

. LU = 102.44 FTPVEL2

KELLOGG ISOMETRIC DWE S-00089 REV. 0.

LD = 16.6 FT

KELLOGG ISOMETRIC DWG S-00089 REV. 0.

PVEL2=3.194 FROM COMPUTER PRINTOUT

PVEL3 1.4362 SYSTEM VELOCITY FOR 1E51-FØ19

. FLOW RATE = 50 GPM FROM S-15066 REV. B

RCIC SYSTEM FLOW DIAGRAM

AREA OF 2" SCH 80 PIPE = 2.953 IN\*\*2

. CRANE 410

VELOCITY = [50 GPM X 0.321]/2.953 IN\*\*2

=5.435 FT/SEC

CLOSURE TIME

TC = 10 SEC FROM A-16368 SHT 1

PER STD STROKE TIME FROM HNP-2

FSAR TABLE 6.2-5 SHT 2 NOTE 7

VALVE THROAT DIAMETER

VALVE DIAMETER = 1 3/4"

1500# CS MOTOR OPERATED GLOBE VALVE

S-18627 REV. C.

LENGTH UPSTREAM (LU) AND DOWNSTREAM (LD)

. LU = 53.3487 FT

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PVEL3 . KELLOGG ISOMETRIC DWG S-00089 REV. 0.

. KELLOGG ISOMETRIC DWG S-01451 REV 0.

. KELLOGG ISOMETRIC DRAWING S-01452 REV 0

. LD = 70.1889 FT

. KELLOGG ISOMETRIC DWG S-01451 REV 0.

. KELLOGG ISOMETRIC DRAWING S-01452 REV 0.

PVEL3 = 1.4362 FROM COMPUTER PRINTOUT

PVEL4 Ø.116

SYSTEM VELOCITY FOR 1E51-FØ46

. FLOW RATE = 16 GPM FROM S-15066 REV. 13

RCIC SYSTEM FLOW DIAGRAM

AREA OF 2" SCH 80 PIPE = 2.953 IN\*\*2

CRANE 410

VELOCITY =  $[16GPM \times \emptyset.321]/2.953 IN**2$ 

= 1.739 FT/SEC

CLOSURE TIME

. TC = 10 SEC FROM A-16368 SHT 1

PER STD STROKE TIME HNP-2

. FSAR TABLE 6.2-5 SHT2 NOTE 7

VALVE THROAT DIAMETER

. VALVE DIAMETER = 1 3/4"

. 1500# CS MOTOR OPERATED GLOBE VALVE

FROM S-18627 REV. C

LENGTH UPSTREAM (LU) AND DOWNSTREAM (LD)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19/86

UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: 4/1/1/1/1/1/1/1/1/2/1/2/1/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET /9 OF 53.

DERIVATION OF VALUES 09/19/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PVEL4 . LU = 7 FT

KELLOGG ISOMETRIC DWG S-01469 REV 0.

LD = 24.218 FT

KELLOGG ISOMETRIC DWG S-01469 REV 0.

PVEL4 = 0.116136 FROM COMPUTER PRINTOUT

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Coresan              | 9.19.86        |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By Might                | Date 9/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 20 of 53 |

# PERCENTAGE OPENING OF A TYPICAL GATE VALVE

It is assumed that the diameter of the gate is equal to the port diameter of the valve since the difference in diameters is insignificantly small.

THE FLOW AREA OF THE VALVE MAY BE DETERMINED BY SUBTRACTING THE AREA OF THE GATE OCCLUDING THE TOTAL PORT AREA.



A = Area

AFlow = APort - AGate

THE AREA OF THE PORT IS CALCULATED USING THE CIRCULAR SEGMENT CALCULATION



 $ASEG = h/6s (3h^2 + 4s^2)$ 

WITH h = RISE = RADIUS AND s = CHORD = DIAMETER

THE AREA OF THE PORT IS EQUAL TO TWICE ASEG



APORT = 2ASEG = R/6D (3R\*\*2 + 4D\*\*2)



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Conons               | 9.19.86        |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By McAL                 | Date 4/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 2/ of 53 |

THE OCCLUDING AREA OF THE GATE IS FOUND BY USING THE AREA OF A CIRCULAR SEGMENT CALCULATION.



ASEG = 
$$h/6s (3h^2 + 4s^2)$$
  
r =  $h/2 + s^2/8h$ 

TRANSFORMING THE LATER EQUATION

$$s = (8h (r-(h/2)))^{1/2}$$

WHICH COMBINED WITH THE ASEG CALCULATION MAY BE READILY SOLVED. THE AREA OCCLUDED IS EQUAL TO TWICE ASEG.



THUS THE AREA OF FLOW THROUGH THE VALVE IS CALCULATED AS:

AFlow = APORT - AGATE





| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Conone               | 9.19.86        |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By M. H.L.              | Date 9/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 22 of 53 |

A GRAPHIC PRESENTATION OF THE TYPICAL FLOW AREA VS. PERCENT VALVE OPENING IS GIVEN AS FOLLOWS.



REFERENCE: ENGINEERING FORMULAS 4th EDITION, PAGE B3.

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Cononce              | Date 9 49 86 |
|------------------------------------------------|----------------------------------|--------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By A. S. Kink           | Date 9-19-86 |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | 23 of 53     |

# NUMERICAL RELATIONSHIP BETWEEN A GRAPHICAL PRESENTATION OF MANUFACTURER'S 2" GLOBE VALVE OPENING VS. MANUFACTURER'S CV DATA

Given a curve of 0-100 % opening (see attached), It is Desired to numerically relate the first 60% of opening to CV.

The First 60% of opening is a linear function thus, the curve may be equated using linear regression of the point-slope form.

$$y - y1 = m(x-x1)$$

Using the points (0,0) and (50,40)

$$40-0 = m(50-0)$$

Solving for m

$$m = 40/50 = 0.8$$

The equation of a line is given as:

$$y = mx$$

Hence, the equation relating cv with percent opening is:

CV = 0.8 (percentage opening)

FOR ALL OPENINGS LESS THAN 60%.

Reference: THE ENGINEER'S COMPANION 1966 PG. 13.

ES 1 77 13345

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Corero               | 9.19.8Ce       |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By                      | Date 9-20-86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 25 of 53 |

# DETERMINE THE PRESSURE INCREASE DUE TO THE RAPID DECELERATION OF FLUID CAUSED BY THE MOVEMENT OF A PROCESS GATE OR GLOBE VALVE

#### ASSUMPTIONS

- Valve openings result in no waterhammer effects. The differential pressure across a valve during opening is decreased by an increase in fluid velocity. The maximum actuator loading takes place before the valve lift occurs.
- 2) Steam valve closure results in only minor or no waterhammer effect. The compressible nature of the fluid medium coupled with maximum anticipated velocity changes make the pressure addition insignificant.
- Area of flow through a gate valve is a direct and linear relation to system velocity.
- 4) The percentage of valve opening is a direct relation to opening time.
- 5) It is assumed that flowing pressure does not drop below the fluids vapor pressure.

The pressure increase due to sudden deceleration of fluid may be expressed as:

Where P1 is the upstream pressure change, and P2 is the downstream pressure change.

The respective valves for P1 and P2 may be calculated as follows:

$$P_1, P_2 = \frac{f_C \Delta V MAX}{144 \text{ g}}$$

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Poren                | 9.19.86         |
|------------------------------------------------|----------------------------------|-----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By A. S. Kink           | Date<br>9-20-86 |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 26 of 53  |

Incremental time is Defined As:

$$\Delta t = t2 - t1 = \frac{2L}{c}$$

Where the term 2L/C is the time require for a pressure wave to travel down a pipe's flow length and rebound to it's source valve.

Knowing the equation of the curve, the maximum  $\Delta V$  for (ie; greatest slope) is calculated and entered into the pressure equations.

The procedure is once again performed for the down stream side of the valve and added as follows to produce PVEL.

PVEL = P1 + P2

Reference: BWROG REPORT APP. B

0082d

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Corona               | Date 9.19.86   |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By  a. 8. Kirk          | Date 9-20-86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 27 of 53 |

Where: Pis the fluid density

C is the speed of sound through the fluid

△ VMAX is the maximum system fluid differential velocity

144 is a conversion factor

and g is the Gravatational Constant

The fluid  $\Delta V$  is assumed to be a direct relation to flow area, as shown in the gate valve area — percent open curves, and is a direct relation to Cv, as shown on the globe valve Cv — percent open curves.

The valve  $\Delta t$  is a direct relation to  $\Delta$  percentage open.

Therefore:

$$\frac{\Delta}{\Delta \%} \stackrel{A}{\text{Open}} \approx \frac{\Delta}{\Delta \%} \stackrel{CV}{\text{Open}} \approx \frac{\Delta V}{\Delta t}$$

Having plotted a velocity relation against a time relation the region of highest differential velocity is examined.





| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Corena               | Date 9.19.86   |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By  A. Keik             | P-20-86        |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 28 of 53 |

Incremental time is Defined As:

$$\Delta t = t2 - t1 = \frac{2L}{c}$$

Where the term 2L/C is the time require for a pressure wave to travel down a pipe's flow length and rebound to it's source valve.

Knowing the equation of the curve, the maximum  $\Delta V$  for  $\Delta t$  (ie; greatest slope) is calculated and entered into the pressure equations.

The procedure is once again performed for the down stream side of the valve and added as follows to produce PVEL

PVEL = P1 + P2

Reference: BWROG REPORT APP. B

0082d

| DESIGN CALCULATIONS            |          | SOUTHERN                      | COMPANY | SERVICES   |
|--------------------------------|----------|-------------------------------|---------|------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Prepared | By: Corena                    | DATE    | 09/21/86   |
| MOTOR OPERATED VALVE           | Reviewed | By: 7 B Hanking<br>SNH-86-016 | DATE    | 09/21/86   |
| DIFFERENTIAL PRESSURE CALC     | CALC No. | SNH-86-016                    | SHEET . | 29 OF 53 · |

# GATE VALVE PVEL CALCULATION

| MPL NUMBER                     | 1E51-FØ13 |
|--------------------------------|-----------|
| VALVE DIAMETER (INCHES)        | 3.3125    |
| CLOSING TIME (SECONDS)         | 15        |
| UPSTREAM PIPE LENGTH (FT)      | 102.44    |
| DOWNSTREAM PIPE LENGTH (FT)    | 16.6      |
| UPSTREAM SYSTEM VEL (FT/SEC)   | 11.17     |
| DOWNSTREAM SYSTEM VEL (FT/SEC) | 12.46     |
| delta TIME UPSTREAM (SECONDS)  | Ø.Ø5122   |
| delta TIME DWNSTREAM (SECONDS) | 0.0083    |
| TIME UPSTREAM 1 (SECONDS)      | 14.94878  |
| TIME UPSTREAM 2 (SECONDS)      | 15        |
| TIME DOWNSTREAM 1 (SECONDS)    | 14.9917   |
| TIME DOWNSTREAM 2 (SECONDS)    | 15        |
| RISE UPSTREAM 1                | 1.6505945 |
| RISE UPSTREAM 2                | 1.65625   |
| RISE DOWNSTREAM 1              | 1.6553335 |
| RISE DOWNSTREAM 2              | 1.65625   |
| CHORD UPSTREAM 1               | 3.3124807 |
| CHORD UPSTREAM 2               | 3.3125    |
| CHORD DOWNSTREAM 1             | 3.3124995 |
| CHORD DOWNSTREAM 2             | 3.3125    |
| MAX AREA (IN SQ)               | 8.6866862 |
| AREA FLOW UPSTREAM 1           | 0.0390158 |
| AREA FLOW UPSTREAM 2           | Ø         |
| AREA FLOW DOWNSTREAM 1         | 0.0063242 |
| AREA FLOW DOWNSTREAM 2         | Ø         |
| a/Aul                          | 0.0045273 |
| a/Au2                          | Ø         |
| a/Adl                          | 0.0007338 |
| a/Ad2                          | Ø         |
| VELOCITY UPSTREAM 1 (FT/SEC)   | 0.0505699 |
| VELOCITY UPSTREAM 2 (FT/SEC)   | Ø         |
| VELOCITY DOWNSTREAM 1 (FT/SEC) | 0.0091437 |
| VELOCITY DOWNSTREAM 2 (FT/SEC) | Ø         |
| delta VEL UPSTREAM (FT/SEC)    | 0.0505699 |
| delta VEL DOWNSTREAM (FT/SEC)  | 0.0091437 |
| Pvu UPSTREAM PRESSURE (PSIG)   | 2.7045639 |
| Pvd DOWNSTREAM PRESSURE (PSIG) | 0.4890182 |
|                                |           |

Pvel (PSIG)

3.1935821

| DESIGN CALCULATIONS            |                                          | COMPANY SERVICES |
|--------------------------------|------------------------------------------|------------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Reviewed By: Charles CALC No. SNH-86-016 | DATE 09/21/86    |
| MOTOR OPERATED VALVE           | Reviewed By: 18 Holling                  | DATE 09/2//86    |
| DIFFERENTIAL PRESSURE CALC     | CALC No. SNH-86-016                      | SHEET 30 OF 53 . |
| mile Tildi at obt              | TINTUE DUET ON OUT AMTONIC               |                  |

TWO INCH GLOBE VALVE PVEL CALCULATIONS

| MPL NUMBER                     | 1E51-FØ19 |
|--------------------------------|-----------|
| VALVE DIAMETER (INCHES)        | 1.75      |
| CLOSING TIME (SECONDS)         | 10        |
| UPSTREAM PIPE LENGTH (FT)      | 53.349    |
| DOWNSTREAM PIPE LENGTH (FT)    | 70.1889   |
| UPSTREAM SYSTEM VEL (FT/SEC)   | 5.435     |
| DOWNSTREAM SYSTEM VEL (FT/SEC) | 5.435     |
|                                |           |
|                                | 0.0266745 |
| delta TIME DWNSTREAM (SECONDS) | 0.0350944 |
| TIME UPSTREAM 1 (SECONDS)      | 5         |
| TIME UPSTREAM 2 (SECONDS)      | 5.0266745 |
| TIME DOWNSTREAM 1 (SECONDS)    | 5         |
| TIME DOWNSTREAM 2 (SECONDS)    | 5.0350944 |
| % OPEN UPSTREAM 1              | 50        |
| % OPEN UPSTREAM 2              | 50.266745 |
| % OPEN DOWNSTREAM 1            | 50        |
| % OPEN DOWNSTREAM 2            | 50.350944 |
| % CV UPSTREAM 1                | 40        |
| % CV UPSTREAM 2                | 40.213396 |
| % CV DOWNSTREAM 1              | 40        |
| % CV DOWNSTREAM 2              | 40.280756 |
| delta VEL UPSTREAM (FT/SEC)    | 0.0115981 |
| delta VEL DOWNSTREAM (FT/SEC)  | 0.0152591 |
| Pvu UPSTREAM (PSIG)            | 0.6202848 |
| Pvd DOWNSTREAM (PSIG)          | 0.816081  |
|                                |           |

Pvel (PSIG)

1.4363658

| DESIGN CALCULATIONS            |                            | COMPANY SERVICES |
|--------------------------------|----------------------------|------------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Reviewed By: 40 Handlin    | DATE 09/19 /86   |
| MOTOR OPERATED VALVE           | Reviewed By: 70 Halin      | DATE 09/2//86    |
| DIFFERENTIAL PRESSURE CALC     | CALC No. SNH-86-016        | SHEET 3/ OF 53 . |
| TWO INCH CLOPE                 | UNITED DUEL CALCIII ATTONS |                  |

MPL NUMBER 1E51-FØ46 VALVE DIAMETER (INCHES) 1.75

10 CLOSING TIME (SECONDS) 7 UPSTREAM PIPE LENGTH (FT) 24.218 DOWNSTREAM PIPE LENGTH (FT) 1.739 UPSTREAM SYSTEM VEL (FT/SEC) DOWNSTREAM SYSTEM VEL (FT/SEC) 1.739

0.0035 delta TIME UPSTREAM (SECONDS) delta TIME DWNSTREAM (SECONDS) 0.012109 5 TIME UPSTREAM 1 (SECONDS) TIME UPSTREAM 2 (SECONDS)
TIME DOWNSTREAM 1 (SECONDS) 5.0035 TIME DOWNSTREAM 2 (SECONDS) 5.012109

% OPEN UPSTREAM 1 50 % OPEN UPSTREAM 2 50.035 % OPEN DOWNSTREAM 1 50 % OPEN DOWNSTREAM 2 50.12109 % CV UPSTREAM 1 40 % CV UPSTREAM 2 40.028 % CV DOWNSTREAM 1 40

% CV DOWNSTREAM 2 40.096872 delta VEL UPSTREAM (FT/SEC) 0.0004869 delta VEL DOWNSTREAM (FT/SEC) 0.0016846 Pvu UPSTREAM (PSIG) 0.0260413 0.0900955

Pvd DOWNSTREAM (PSIG)

Ø.1161368

Pvel (PSIG)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19 /86 UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: U DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 72 OF 53 . DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-FØØ7

VALVE DESCRIPTION

RCIC STEAM INBOARD ISOL VALVE

VALVE FUNCTION

RCIC STEAM LINE ISOLATION VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRSS

MAX DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ON OPEN/CLOSE

CLOSE

MAXIMUM DP ON OPEN/CLOSE

CLOSE

VALUES USED: (PSIG)

PRSS

= 1080

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS Prepared By: C E.I. HATCH NUCLEAR PLANT U 1 DATE 09/19/86 Reviewed By: W.T. Ban UNIT 1 RCIC MOTOR OPER VALVE DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 13 OF 53 . DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-FØØ8

VALVE DESCRIPTION

RCIC STEAM OUTBOARD ISOL VLV

VALVE FUNCTION

RCIC STEAM LINE ISOLATION VALVE

SAFETY FUNCTION (YES/NO) YES

DP CALCULATION FORMULA

DP=PRSS

MAX DP UPSTREAM/DOWNSTREAM

UPSTREAM

SAFETY ON OPEN/CLOSE

CLOSE

MAXIMUM DP ON OPEN/CLOSE

CLOSE

VALUES USED: (PSIG)

PRSS = 1080

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19/86 Reviewed By: W.T. Ban CALC No. SNH-86-016 UNIT 1 RCIC MOTOR OPER VALVE DATE 09/20/86 SHEET 34 OF 53 . DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-F010

VALVE DESCRIPTION

PUMP SUCT FRM COND STG TNK

VALVE FUNCTION

RCIC CST SUCTION ISOLATION VALVE

SAFETY FUNCTION (YES/NO) YES

DP CALCULATION FORMULA

DP=PELD+PV+PVEL1

MAX DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ON OPEN/CLOSE

CLOSE

MAXIMUM DP ON OPEN/CLOSE CLOSE

VALUES USED: (PSIG)

PELD = 29.272

PV = 0.134

= 0 PVEL1

DP (PSID)

29.406

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19/86

UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: W.T. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 35 OF 53.

DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER 1E51-FØ12

VALVE DESCRIPTION RCIC PUMP OUTBOARD DISCH VLV

VALVE FUNCTION RCIC INJECTION VALVE TEST VALVE

SAFETY FUNCTION (YES/NO) NO

DP CALCULATION FORMULA NO SAFETY ACTION

MAX DP UPSTREAM/DOWNSTREAM N/A

SAFETY ON OPEN/CLOSE NONE

MAXIMUM DP ON OPEN/CLOSE N/A

VALUES USED: (PSIG)

DP (PSID)

N/A

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C. DATE @9/19/86

UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: W.T. Ban DATE @9/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 76 OF 53.

DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-FØ13

VALVE DESCRIPTION

RCIC PUMP INBOARD DISCH VLV

VALVE FUNCTION

RCIC INJECTION VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRSS+PEL (b)

MAX DP UPSTREAM/DOWNSTREAM

DOWNSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE

OPEN/CLOSE

VALUES USED: (PSIG)

PRSS

= 1080

PEL

= 35.612

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS Prepared By: Corona E.I. HATCH NUCLEAR PLANT U 1 DATE 09/19 /86 Reviewed By: W.T. Barn DATE 09/20/86 UNIT 1 RCIC MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET J7 OF 53 . 09/18/86 DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER

1E51-FØ19

VALVE DESCRIPTION

TEST BYPASS TO COND STG TANK

VALVE FUNCTION

RCIC MINIMUM FLOW BYPASS ISOL VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PSOH+PELM

MAX DP UPSTREAM/DOWNSTREAM

UPSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE

OPEN

VALUES USED: (PSIG)

PSOH = 1276.271

PELM

= 29.416

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C. DATE 09/21/86 Reviewed By: 18 Harris CALC No. SNH-86-016 UNIT 1 RCIC MOTOR OPER VALVE DATE 09/2//86 DIFFERENTIAL PRESSURE CALC SHEET 38 OF53 . 09/21/86 DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER

1E51-FØ19

VALVE DESCRIPTION TEST BYPASS TO COND STG TANK

VALVE FUNCTION

RCIC MINIMUM FLOW BYPASS ISOL VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA DP=PMF+PELM+PVEL3

MAX DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE CLOSE

VALUES USED: (PSIG)
PMF =

= 1276.271 PELM = 29.416 PVEL3 = 1.4362

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19/86 orenan Reviewed By: DATE 09/20/86 UNIT 1 RCIC MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 39 OF53 . DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-FØ22

VALVE DESCRIPTION

TEST BYPASS TO COND STG TANK

VALVE FUNCTION

RCIC CST TEST RETURN VALVE

SAFETY FUNCTION (YES/NO)

N/A

DP CALCULATION FORMULA

NO SAFETY ACTION

MAX DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

NONE

MAXIMUM DP ON OPEN/CLOSE

N/A

VALUES USED: (PSIG)

DP (PSID)

N/A

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19/86

UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: W.T. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 40 OF 53.

DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-FØ29

VALVE DESCRIPTION

RCIC PMP SUCT VLV FRM SUP POOL

VALVE FUNCTION

RCIC SUPP POOL SUCTION ISOL VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PLOC+PLOM1 (c)

MAX DP UPSTREAM/DOWNSTREAM

UPSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE

CLOSE

VALUES USED: (PSIG)

PLOC = 30.5 PLOM1 = 5.6

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 DATE 09/19/86 Prepared By: C Reviewed By: W. T. Bass CALC No. SNH-86-016 UNIT 1 RCIC MOTOR OPER VALVE DATE 09/20/86 DIFFEREN 'AL PRESSURE CALC SHEET 4/ OF53 . DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-FØ29

VALVE DESCRIPTION

RCIC PMP SUCT VLV FRM SUP POOL

VALVE FUNCTION

RCIC SUPP POOL SUCTION ISOL VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRV-PELS

MAX DP UPSTREAM/DOWNSTREAM

DOWNSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE

OPEN

VALUES USED: (PSIG)

= 100

PRV

PELS

= 4.633

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19/86

UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: W.T. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 42 OF 53.

DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER 1E51-FØ31

VALVE DESCRIPTION RCIC PMP SUCT VLV FRM SUP POOL

VALVE FUNCTION RCIC SUPP POOL SUCTION ISOL VALVE

SAFETY FUNCTION (YES/NO) YES

DP CALCULATION FORMULA DP=PRV-PELS

MAX DP UPSTREAM/DOWNSTREAM DOWNSTREAM

SAFETY ON OPEN/CLOSE OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE OPEN

VALUES USED: (PSIG)

PRV = 100 PELS = 4.633

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES Prepared By: C E.I. HATCH NUCLEAR PLANT U 1 DATE 09/19/86 Reviewed By: W.T. Barr UNIT 1 RCIC MOTOR OPER VALVE DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 43 OF 53 . DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-FØ31

VALVE DESCRIPTION

RCIC PMP SUCT VLV FRM SUP POOL

VALVE PUNCTION

RCIC SUPP POOL SUCTION ISOL VALVE

SAFETY FUNCTION (YES/NO) YES

DP CALCULATION FORMULA

DP=PLOC+PLOM1 (c)

MAX DP UPSTREAM/DOWNSTREAM

UPSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE

CLOSE

VALUES USED: (PSIG)

PLOC = 30.5

PLOM1 = 5.6

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19 /86 Reviewed By: W.T. Ban UNIT 1 RCIC MOTOR OPER VALVE DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 44 OF 53 . DIFFERENTIAL PRESSURE CALCULATION Ø9/18/86

MPL NUMBER

1E51-FØ45

VALVE DESCRIPTION TURBINE STEAM SUPPLY VALVE

VALVE FUNCTION

RCIC STEAM ADMISSION VALVE

SAFETY FUNCTION (YES/NO) YES

DP CALCULATION FORMULA DP=PRSS

MAX DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE OPEN/CLOSE

VALUES USED: (PSIG)

PRSS = 1080

DP (PSID)

1080

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES Prepared By: C fores E.I. HATCH NUCLEAR PLANT U 1 DATE 09/19/86 Reviewed By: W.T. Burn DATE 09/20/86 UNIT 1 RCIC MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 45 OF 53. DIFFERENTIAL PRESSURE CALCULATION Ø9/18/86

MPL NUMBER

1E51-FØ46

VALVE DESCRIPTION

COOLING WATER SUPPLY VALVE

VALVE FUNCTION

RCIC TURBINE ACCESSORY COOL WTR VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PLOC+PLOM2+PVEL4

MAX DP UPSTREAM/DOWNSTREAM

UPSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE CLOSE

VALUES USED: (PSIG)

PLOC = 30.5PLOM2 = 6.449

PVEL4 = 0.116136

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C porener DATE 09/19/86 UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: W.T. Ban CALC No. SNH-86-016 DATE 09/20/86 DIFFERENTIAL PRESSURE CALC SHEET 46 OF 53 . DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-FØ46

VALVE DESCRIPTION

COOLING WATER SUPPLY VALVE

VALVE FUNCTION

RCIC TURBINE ACCESSORY COOL WTR VALVE

SAFETY FUNCTION (YES/NO) YES

DP CALCULATION FORMULA

DP=PSOI+PELC

MAX DP UPSTREAM/DOWNSTREAM

UPSTREAM

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE

OPEN

VALUES USED: (PSIG)

PSOI = 252.739

PELC

= 35.44

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C DATE 09/19/86

UNIT 1 RCIC MOTOR OPER VALVE Reviewed By: W.T. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 47 OF 53.

DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-F1Ø4

VALVE DESCRIPTION

GATE VALVE 1.5 IN MO

VALVE FUNCTION

RCIC VACUUM BREAKER LINE ISOL VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PC+PATM

MAX DP UPSTREAM/DOWNSTREAM

UPSTREAM

SAFETY ON OPEN/CLOSE

CLOSE

MAXIMUM DP ON OPEN/CLOSE

CLOSE

VALUES USED: (PSIG)

PC = 30.5

PATM

= 0

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES DATE 09/19/86 E.I. HATCH NUCLEAR PLANT U 1 Prepared By: C Reviewed By: (1). UNIT 1 RCIC MOTOR OPER VALVE DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-016 SHEET 48 OF 53 . DIFFERENTIAL PRESSURE CALCULATION 09/18/86

MPL NUMBER

1E51-F1Ø5

VALVE DESCRIPTION

GATE VALVE 2 IN MO

VALVE FUNCTION

RCIC VACUUM BREAKER LINE ISOL VALVE

SAFETY FUNCTION (YES/NO)

YES

DP CALCULATION FORMULA DP=PC+PATM

MAX DP UPSTREAM/DOWNSTREAM UPSTREAM

SAFETY ON OPEN/CLOSE

CLOSE

MAXIMUM DP ON OPEN/CLOSE CLOSE

VALUES USED: (PSIG)

= 30.5 PC

PATM

= Ø

DP (PSID)

|   | •               |    |
|---|-----------------|----|
|   | -               |    |
|   | #               | ٩. |
| , | ARCHITECTURE DE | -  |

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By C. Wilson            | Date 09/19/90  |  |
|------------------------------------------------|----------------------------------|----------------|--|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By Male                 | Date 9/21/86   |  |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 49 of 53 |  |

#### TWO INCH GLOBE VALVE PVEL CALCULATIONS

PAGE 1 OF 2

```
A3: [W11] ^MPL
B3: ^VALVE
C3: ^CLOSING
D3: ^UPSTR
E3: ^DNSTR
F3: 'UPSTRSYS
G3: 'DNSTRSYS
I3: ^dT UP
J3: ^dTDN
K3: ^TIMEul
L3: ^TIMEu2
M3: ^TIMEd1
N3: ^TIMEd2
03: * OPEN
P3: * OPEN
Q3: ^% OPEN
R3: ^% OPEN
S3: ^% CV
T3: * CV
U3: *8 CV
V3: * CV
W3: ^dVu
X3: ^dVd
Y3: ^Pvu
Z3: Pvd
AA3: 'Pvel
A4: [W11] ^NUMBER
B4: ^DIA, "
C4: T, SECS
D4: 'PIPE L'
E4: 'PIPE L'
F4: 'VEL FPS
G4: 'VEL FPS
O4: ^UPSTR1
P4: ^UPSTR2
Q4: DNSTR1
R4: ^DNSTR2
S4: ^UPSTR1
T4: ^UPSTR2
U4: ^DNSTR1
V4: ^DNSTR2
A5: [W11] \-
B5: \-
C5: \-
D5: \-
E5: \-
```

F5: \-



| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By C. Wilson            | Date 09 19 86  |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By McAL                 | Date 9/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 50 of 53 |

## TWO INCH GLOBE VALVE PVEL CALCULATIONS

C27: 'DENSITY

D27: 61.996

C28: 'C

D28: 4000

E27: 'LB/FT3

E28: 'FT/SEC

PAGE 2 OF 2

H5: [W2] \-15: \-J5: \-K5: \-L5: \-M5: \-N5: \-05: \-P5: \-Q5: \-R5: \-S5: \-T5: \-U5: \-V5: \-W5: \-X5: \-Y5: \-Z5: \-AA5: \-A6: [W11] '1E41-FØ59 B6: 1.75 C6: 10 D6: 25 E6: 31.42 F6: 7.601 G6: 7.601 H6: [W2] ' I6: (2\*D6)/\$D\$28 J6: (2\*E6)/\$D\$28 K6: +\$C6\*Ø.5 L6: +\$C6\*Ø.5+I6 M6: +\$C6\*0.5 N6: +\$C6\*0.5+J6 06: (+K6\*100)/\$C6 P6: (+L6\*100)/\$C6 Q6: (+M6\*100)/\$C6 R6: (+N6\*100)/\$C6 S6: +06\*Ø.8 T6: +P6\*0.8 U6: +Q6\*Ø.8 V6: +R6\*0.8 W6: (+F6\*(T6-S6))/100 X6: (+G6\*(V6-U6))/100 Y6: (W6\*\$D\$27\*\$D\$28)/(144\*32.2) Z6: (X6\*\$D\$27\*\$D\$28)/(144\*32.2) AA6: +Y6+Z6

| es | MA |
|----|----|

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Repared By C. Wilson             | Date 09 19 86  |  |  |
|------------------------------------------------|----------------------------------|----------------|--|--|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By MILL                 | Date 9/21/86   |  |  |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 51 of 53 |  |  |

## GATE VALVE PVEL CALCULATIONS

PAGE 1 OF 3

A3: [W11] ^MPL B3: ^VALVE C3: ^CLOSING

D3: ^UPSTR

E3: ^DNSTR F3: 'UPSTRSYS

G3: 'DNSTRSYS

I3: "dT UP

J3: ^dTDN

K3: ^TIMEul

L3: ^TIMEu2

M3: ^TIMEd1

N3: ^TIMEd2

O3: ^RISEul

P3: ^RISEu2

Q3: ^RISEd1

R3: ^RISEd2

S3: ^CHORDul

T3: ^CHORDu2

U3: ^CHORDd1 V3: ^CHORDd2

W3: 'MAX AREA

X3: ^Aflul Y3: ^Aflu2

Z3: ^Afld1

AA3: ^Afld2

AB3: ^a/Aul AC3: ^a/Au2

AD3: ^a/Ad1

AE3: ^a/Ad2

AF3: 'Vul

AG3: ~Vu2

AH3: 'Vd1

AI3: "Vd2

AJ3: ^dVu

AK3: ^dVd

AL3: Pvu AM3: Pvd

AN3: Pvel

A4: [W11] ^NUMBER

B4: ^DIA, " C4: ^T, SECS D4: ^PIPE L'

E4: 'PIPE L'

F4: 'VEL FPS

G4: 'VEL FPS

W4: 'FLOW

A5: [W11] \-

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Prepared By Children             | Wilson 09 19/86 |  |  |
|------------------------------------------------|----------------------------------|-----------------|--|--|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By                      | Date 4/21/86    |  |  |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 52 of 53  |  |  |

GATE VALVE PVEL CALCULATIONS

PAGI. 2 OF 3

```
B5: \-
C5: \-
D5: \-
E5: \-
F5: \-
G5: \-
H5: [W2] \-
15: \-
J5: \-
K5: \-
L5: \-
M5: \-
N5: \-
05: \-
P5: \-
Q5: \-
R5: \-
S5: \-
T5: \-
U5: \-
V5: \-
W5: \-
X5: \-
Y5: \-
Z5: \-
AA5: \-
AB5: \-
AC5: \-
AD5: \-
AE5: \-
AF5: \-
AG5: \-
AH5: \-
AI5: \-
AJ5: \-
AK5: \-
AL5: \-
AM5: \-
AN5: \-
A6: [W11] '1E51-FØ13
B6: 3+5/16
C6: 15
D6: 99.9
E6: 16.6
F6: 11.62
G6: 12.46
H6: [W2] '
I6: (2*D6)/$D$29
```

Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 1     | Repared By C. Wilson             | 09/19/86       |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 1 RCIC Motor Operated Valve | Reviewed By Might                | Date 9/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-016 | Sheet 53 of 53 |

#### GATE VALVE PVEL CALCULATIONS

PAGE 3 OF 3

```
J6: (2*E6)/$D$29
K6: ($D$3Ø*$C6)-I6
L6: +$D$3Ø*$C6
M6: ($D$3Ø*$C6)-J6
N6: +$D$30*$C6
O6: (K6/$C6)*($B6/2)
P6: (L6/$C6)*($B6/2)
Q6: (M6/\$C6)*(\$B6/2)
R6: (N6/\$C6)*(\$B6/2)
S6: @SQRT(8*06*(($B6/2)-(06/2)))
T6: @SQRT(8*P6*(($B6/2)-(P6/2)))
U6: @SQRT(8*Q6*(($B6/2)-(Q6/2)))
V6: @SQRT(8*R6*(($B6/2)-(R6/2)))
W6: 2*((1/12)*(((3*B6*B6)/4)+(4*B6*B6)))
X6: (F6) (W6)-(2*((06/(6*S6))*((3*06*06)+(4*S6*S6))))
Y6: (F6) (W6)-(2*((P6/(6*T6))*((3*P6*P6)+(4*T6*T6))))
Z6: (F6) ($W6)-2*((Q6/(6*U6))*((3*Q6*Q6)+(4*U6*U6)))
AA6: (F6) ($W6)-2*((R6/(6*V6))*((3*R6*R6)+(4*V6*V6)))
AB6: (F6) +X6/((@PI*$B6*$B6)/4)
AC6: (F6) +Y6/((@PI*$B6*$B6)/4)
AD6: (F6) +Z6/((@PI*$B6*$B6)/4)
AE6: (F6) +AA6/((@PI*$B6*$B6)/4)
AF6: (F6) +AB6*$F6
AG6: (F6) +AC6*$F6
AH6: (F6) +AD6*$G6
AI6: (F6) +AE6*$G6
AJ6: (F6) +AF6-AG6
AK6: (F6) +AH6-AI6
AL6: (F6) (AJ6*$D$28*$D$29)/(144*32.2)
AM6: (F6) (AK6*$D$28*$D$29)/(144*32.2)
AN6: (F6) +AL6+AM6
C28: 'DENSITY
D28: 61.996
E28: 'LB/FT3
C29: 'C
D29: 4000
E29: 'FT/SEC
C30: 'FUDGE FAC
D3Ø: 1
E30: 'DIMLESS
```

ENCLOSURE 3



-



# Calculation Cover Sheet



|                                         |                        |                 |                   |                    | on Number             |
|-----------------------------------------|------------------------|-----------------|-------------------|--------------------|-----------------------|
| Dyniact                                 |                        |                 |                   | SNH-<br>Disciplin  | -86-017               |
| Project E.I. HATCH NUCLEAR PLANT UNIT 2 |                        |                 |                   |                    | nanical               |
| Objective                               | TI TINTOT HOOLEAN TEAN | 1 01111 2       |                   | SDS Nun            |                       |
| Ca                                      | Iculate DP for HPCI Mo | otor Operated V | /alves            |                    |                       |
| Subject/T                               | itle                   |                 |                   |                    |                       |
| Un                                      | nit 2 HPCI Motor Opera | ted Valve Diffe | erential Pressure | Calculation        |                       |
|                                         |                        |                 |                   |                    |                       |
| Design Eng                              | gineer's Signature     | 11 1.           |                   | Date               | Last Page Number      |
|                                         | 48,                    | Harbina         |                   | Date 9-20-         | 59                    |
| Contents                                |                        |                 |                   |                    |                       |
| Topics                                  |                        | Page            | Topics            |                    | Page                  |
| I                                       | NTRODUCTION            | 1               | DEFINITION        | OF TERMS           | 7                     |
| Summary                                 | of Conclusions         | 3               | DEFINITION        | OF VALUES          | 0                     |
| Critaria an                             | d Assumptions          | 2               | DETTIMITION       | OF VALVES          | 3                     |
| Criteria an                             | d Assumptions          | 2               |                   |                    |                       |
| Listed Ref                              | erences                | 5               |                   |                    |                       |
| Body of C                               | alculations            | 9               |                   |                    |                       |
| Body of Ca                              | arculations            | 7               |                   |                    |                       |
| Computer                                | r Printout)            | 53              |                   |                    |                       |
| Record o                                | f Revisions            |                 |                   |                    |                       |
| Rev. No.                                | Description            |                 |                   | Originator Date Re | viewer Projengr. Date |
|                                         |                        |                 |                   | Origin Date Re     | Date Date             |
| 0                                       | APPROVED               |                 |                   | 7317 9-20-8 W      | 9/21/80 / 9/21/8      |
|                                         |                        |                 |                   |                    | 11/11/11/11           |
|                                         |                        |                 |                   |                    |                       |
|                                         |                        |                 |                   |                    |                       |
|                                         |                        |                 |                   |                    | /                     |
|                                         |                        |                 |                   |                    |                       |
|                                         |                        |                 |                   |                    |                       |
|                                         |                        |                 |                   |                    | /                     |
|                                         |                        |                 |                   |                    |                       |
|                                         |                        |                 |                   |                    |                       |
| Notes                                   |                        |                 |                   |                    |                       |

# Design Calculations

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By Chilson           | Date   19/86 |
|-----------------------------------------|-------------------------------|--------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By Ban               | Pate 9/21/86 |
| Differential Pressure Calculation       | Calculation Number SNH-86-017 | Sheet of 59  |

## INTRODUCTION

The Nuclear Regulatory Commission (NRC) IE Bulletin 85-03 (Motor Operated Valve Common Mode Failure) requested that owners of light water reactors develop and implement a program to ensure that torque switch settings on safety related motor-operated valves on high pressure systems are selected, set and maintained correctly to accommodate the maximum differential pressures expected on these valves during both normal and abnormal events within the design basis. The objective of this calculation is to determine the maximum Differential Pressure across each of the affected Unit 2 HPCI Motor Operated Valves.

# **Design Calculations**

Southern Company Services

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By Hopking           | 9-20-86       |
|-----------------------------------------|-------------------------------|---------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By M. Wala           | Date 9/21/86  |
| Differential Pressure Calculation       | Calculation Number SNH-86-017 | Sheet 2 of 59 |

### CRITERIA

1) The criteria, assumptions and formulas given in the General Electric "BWR Owner's Group Report on the Operational Design Basis of Selected Safety-Related Motor-Operated Valves," DRF-E12-00100-75, are assumed to be correct.

#### **ASSUMPTIONS**

1) PC is assumed to equal PLOC. The terms are defined as follows:

\* PLOC is the maximum wet well LOCA pressure.

- \* PC is the maximum wetwell LOCA pressure which the valve is required to operate against.
- 2) In the PVEL calculation, it is assumed that the time required for a sourd wave to travel to and return from an atmospheric vessel is infinity. Thus, the related term in the PVEL equation is equal to zero.
- 3) Disc and Port diameters are assumed to be equal. Equal diameters for disc and port yield higher rate of change therefore higher DV and is therefore more conservative.
- 4) The Formula for calculating area of the gate valve available for flow is approximated from a known geometric relationship and is off by a small percentage, however, the overall effect is negligible.
- 5) In the PVEL calculation, it is assumed that where a small line tees into a much larger line (i.e. Larger being two times or greater in diameter) the boundary for the small line ends at the line intersection.

00431

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By 4 B Harfiles         | Date 9-20-86 |
|-----------------------------------------|----------------------------------|--------------|
| Subject Title HPCI Motor Operated Valve | Reviewed By T. Ban               | Date 9/20/86 |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | 3 of 59      |

# UNIT 2 HPCI MOV CALCULATIONS REFERENCES

|     |         |      |     | REFERENCES                                      |
|-----|---------|------|-----|-------------------------------------------------|
| 1.  | A-26497 | REV. | 12  | INSTRUMENT SETPOINT INDEX                       |
| 2.  | A-26503 | REV. | N/A | SHT. 1, 2, 16 AND 30 MOV DATA SHEETS            |
| 3.  | H-26020 | REV. | 17  | HPCI SYSTEM P & ID SHEET 1                      |
| 4.  | H-26021 | REV. | 14  | HPCI SYSTEM P & ID SHEET 2                      |
| 5.  | H-26289 | REV. | 4   | FEEDWATER PIPING DRYWELL ELEV. 130' & ABOVE     |
| 6.  | S-25176 | REV. | 0   | PROCESS DIAGRAM HPCI SYSTEM                     |
| 7.  | S-25701 | REV. | Ε   | BYRON JACKSON PUMP MANUAL, PUMP CURVE T-33713-1 |
| 8.  | S-25711 | REV. | 0   | 4" PRESS SEAL GLOBE VALVE, VELAN                |
| 9.  | S-26835 | REV. | Ε   | KELLOGG ISOMETRIC DWG. 2E41-1                   |
| 10. | S-26837 | REV. | М   | KELLOGG ISOMETRIC DWG. 2E41-2                   |
| 11. | S-26839 | REV. | G   | KELLOGG ISOMETRIC DWG. 2E41-3                   |
| 12. | S-26841 | REV. | N   | KELLOGG ISOMETRIC DWG. 2E41-4                   |
| 13. | S-26843 | REV. | М   | KELLOGG ISOMETRIC DWG. 2E41-5                   |
| 14. | S-26845 | REV. | J   | KELLOGG ISOMETRIC DWG. 2E41-6                   |
| 15. | S-26847 | REV. | L   | KELLOGG ISOMETRIC DWG. 2E41-7                   |
| 16. | S-27026 | REV. | В   | 16" 150LB OSY GATE VALVE, POWELL 1523WE         |
| 17. | S-27131 | REV. | F   | 14" 900LB OSY GATE VALVE, POWELL 19023WE        |
| 18. | S-27294 | REV. | F   | MODEL LCT-20 SERIES RELIEF VALVE                |
| 19. | S-27535 | REV. | 0   | GENERAL PLAN DRYWELL AND TORUS LAYOUT           |
| 20. | S-28978 | REV. | N   | KELLOGG ISOMETRIC DWG. 2B21-3                   |
| 21. | S-28980 | REV. | М   | KELLOGG ISOMETRIC DWG. 2821-4                   |

22. S-29112 REV. H KELLOGG ISOMETRIC DWG 2B21-5

23. S-36017 REV. O KELLOGG ISOMETRIC DWG. 2E41-F6



| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By LB Hallin            | Date 9-20-86 |
|-----------------------------------------|----------------------------------|--------------|
| Subject Title HPCI Motor Operated Valve | Reviewed By 1/T. Bars            | 9/20/86      |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet of 59  |

## UNIT 2 HPCI MOV CALCULATIONS REFERENCES CONT'D

| 24. | S-36034 | REV.   | A   | KELLOGG  | ISOMETRIC  | DWG.   | 2E41-F2  | 23  |
|-----|---------|--------|-----|----------|------------|--------|----------|-----|
| 25. | S-36035 | REV.   | 0   | KELLOGG  | ISOMETRIC  | DWG.   | 2E41-F2  | 24  |
| 26. | S-36036 | REV.   | 0   | KELLOGG  | ISOMETRIC  | DWG.   | 2E41-F2  | 25  |
| 27. | S-36037 | REV.   | 0   | KELLOGG  | ISOMETRIC  | DWG.   | 2E41-F2  | 26  |
| 28. | S-36038 | REV.   | Α   | KELLOGG  | ISOMETRIC  | DWG.   | 2E41-F2  | 27  |
| 29. | S-36040 | REV.   | A   | KELLOGG  | ISOMETRIC  | DWG.   | 2E41-F2  | 28  |
| 30. | S-43166 | REV.   | 0   | 4" PRES  | S SEAL GLO | BE VAI | LVE, VE  | LAN |
| 31. | SX-2401 | 3 REV. | 0   | YARWAY I | WELBOND VA | LVE F  | IG. 5515 | 58  |
| 32. | SX-2258 | S REV. | D   | KELLOGG  | ISOMETRIC  | DWG.   | 2E41-17  | 7   |
| 33. | SX-2422 | S REV. | C   | KELLOGG  | ISOMETRIC  | DWG.   | 2E41-20  | 0   |
| 34. | UNIT NO | . 2 TE | CHN | ICAL SPE | CIFICATION | S AME  | NDMENT 6 | 62  |
|     |         |        |     |          |            |        |          |     |

- UNIT 2 FSAR TABLE 6.2-5 SHT. 2 NOTE 7 36.
- BWR OWNERS GROUP REPORT ON THE OPERATIONAL DESIGN BASIS OF SELECTED 37. SAFETY RELATED MOTOR OPERATED VALVES, DRF-E12-00100-75, AUGUST 1986.
- NEDO DOCUMENT 24569 REV. 2 FIGURE H2 4.1.2-1 38.
- CRANE TECHNICAL PAPER NO. 410, 18TH PRINTING 39.
- ENGINEERS COMPANION 1966 PAGE 13 40.
- 41. TELECOPY TO JACK ROBYN OF SCS FROM PAUL COUTINHO OF VELAN ON 9-18-86
- TELECOPY TO JACK ROBYN OF SCS FROM DAN HARASENYCH OF YARWAY ON 42. 9-11-86
- TELEPHONE CONFIRMATION FROM BRAD HARKINS OF SCS TO DENNIS SCHERER 43. OF POWELL ON 9-11-86
- ENGINEERING FORMULAS 4TH EDITION, PAGE B3 44.

# Design Calculations

Southern Company Services

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By                      | 9-20-86          |
|-----------------------------------------|----------------------------------|------------------|
| Subject Title HPCI Motor Operated Valve | Reviewed By W. T. Barr           | Date 9/20/86     |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet<br>5 of 59 |

#### SUMMARY OF CONCLUSIONS

The following page is a summary table of the results for each HPCI Motor Operated Valve in the Scope of NRC IEB 85-03.

The first column titled "MPL Number" gives the MPL number of the valve.

The second column titled "Valve Description" is the description of the valve given in the equipment location index (ELI).

The third column titled "Valve Function" is the function of the valve as stated in the General Electric "BWR Owners' Group Report on the Operational Design Basis of Selected Safety-Related Motor-Operated Valves."

The fourth column titled "Safety" indicates if the valve has any safety-related action.

The fifth column titled "DP Calculation Formula" gives the formula used to calculate the maximum differential pressure.

The sixth column titled "Maximum DP" indicates whether the maximum DP occurs upstream or downstream of the valve.

The seventh column titled " Max DP ON " indicates whether the maximum DP is calculated for opening or closing.

The eighth column titled "DP (PSID)" gives the calculated maximum DP in psid.

The ninth column titled "Safety On" gives the safety action of the valve.

00471

| DESIGN CALCULATIONS E. 1. HATCH NUCLEAR UNIT 2 HPCI MOTOR O DIFFERENTIAL PRESSU | DESIGN CALCULATIONS E.1. HATCH NUCLEAR PLANT UNIT 2 UNIT 2 HPCI HOTOR OPERATED VALVE DIFFERENTIAL PRESSURE CALCULATION | 8. 82 3                                              | PREPARED BY: CALCULATION NUMBER SNH-86-017 SUMMARY TABLE 09/21/ | ER SNH-86-017                     |            |                        | SOUTHERN COMPANY SERVICES  DATE 09/2//86  DATE 09/2//86  SHEET & DF 59 | E 09/2//86<br>E 09/2//86<br>E 09/2//86 |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|------------|------------------------|------------------------------------------------------------------------|----------------------------------------|
| MPL NUMBER<br>2E41-F001                                                         | VALVE DESCRIPTION<br>TURBINE STEAM SUPPLY VALVE                                                                        | VALVE FUNCTION<br>HPCI TURBINE STEAM ADMISSION VALVE | SAFETY                                                          | DP CALCULATION FORMULA<br>DP=PRSS | NAXIMUM DP | MAXIMUM DP<br>UPSTREAM | DP (PSID)<br>1090                                                      | SAFETY                                 |
| 2E41-F002                                                                       | STEAM SUPPLY INBOARD ISOL VALVE                                                                                        | HPCI STEAM LINE ISOLATION VALVE                      | CLOSE                                                           | DP = PRSS                         | SCLOSE     | UPSTREAM               | 1090                                                                   | YES                                    |
| 2E41-F003                                                                       | STEAM SUPPLY DUTBD ISOL VALVE                                                                                          | HPCI STEAM LINE ISOLATION VALVE                      | SULUSE                                                          | DP # PRSS                         | CLOSE      | UPSTREAM               | 1090                                                                   | YES                                    |
| 2E41-F004                                                                       | PUMP SUCT FRM COND STOR TANK                                                                                           | HPCI CST SUCTION VALVE                               | CLOSE                                                           | DP=PELD+PV+PVEL1                  | SCLOSE     | UPSTREAM               | 29.814                                                                 | YES                                    |
| 2E41-F006                                                                       | HPCI PUMP INBD DISCH VALVE                                                                                             | HPC1 INJECTION/ISOLATION VALVE                       | OPEN/CLOSE                                                      | DP=PSGH-PISO-PEL                  | OPEN       | UPSTREAM               | 1379.03                                                                | YES                                    |
| 2.41-F006                                                                       | HPCI PUMP INBO DISCH VALVE                                                                                             | HPCI INJECTION/ISOLATION VALVE                       | OPEN/CLOSE                                                      | DP=PSOH-PISO-PEL+PVEL2            | CLOSE      | UPSTREAM               | 1387.193                                                               | YES                                    |
| 2E41-F007                                                                       | HPCI PUMP DUTBD DISCH VALVE                                                                                            | HPCI INJECTION VALVE TEST VALVE                      | NDNE                                                            | NO SAFETY ACTION                  | N/A        | N/A                    | N/A                                                                    | ON.                                    |
| 2E41-F008                                                                       | TEST BYPASS VALVE TO COND STOR                                                                                         | HPCI CST TEST RETURN VALVE                           | NONE                                                            | ND SAFETY ACTION                  | N/A        | N/A                    | M/A                                                                    | ON                                     |
| 2E41-F011                                                                       | REDUNDANT SHUTDFF W/FOOB                                                                                               | HPCI CST TEST RETURN VALVE                           | NONE                                                            | NO SAFETY ACTION                  | N/A        | N/A                    | N/A                                                                    | DN                                     |
| 2E41-F012                                                                       | PMP MIN FLO BYP TO SUPP POOL                                                                                           | HPCI PUMP MIN FLO BYP ISOL VALVE                     | OPEN/CLOSE                                                      | DP=PSOH+PELM                      | OPEN       | UPSTREAM               | 2269.58                                                                | YES                                    |
| 2E41-F012                                                                       | PMP MIN FLO BYP TO SUPP POOL                                                                                           | HPCI PUMP MIN FLO BYP ISOL VALVE                     | OPEN/CLOSE                                                      | DP=PMF+PELM+PVEL3                 | CLOSE      | UPSTREAM               | 2270.605                                                               | YES                                    |
| 2E41-F041                                                                       | PMP SUCT FROM SUPP POOL                                                                                                | HPCI SUPP POOL SUCT ISOL VALVE                       | OPEN/CLOSE                                                      | DP=PRV-PELS                       | OPEN       | DOWNSTREAM             | 97.12                                                                  | YES                                    |
| 2E41-F041                                                                       | PMP SUCT FROM SUPP POOL                                                                                                | HPCI SUPP POOL SUCT ISON VALVE                       | OPEN/CLOSE                                                      | DP=PLOC+PLOM1                     | CLOSE      | UPSTREAM               | 37.06                                                                  | YES                                    |
| 2E41-F042                                                                       | PMP SUCT FROM SUPP POOL                                                                                                | HPCI SUPP POOL SUCT ISOL VALVE                       | OPEN/CLOSE                                                      | DP=PRV-PELS                       | OPEN       | DGWNSTREAM             | 97.12                                                                  | YES                                    |
| 2E41-F042                                                                       | PMP SUCT FROM SUPP POOL                                                                                                | HPCI SUPP POOL SUCT ISOL VALVE                       | OPEN/CLOSE                                                      | DP=PLOC+PLOM1                     | CLOSE      | UPSTREAM               | 37.06                                                                  | YES                                    |
| 2E41-F059                                                                       | COOLING MATER SUPPLY VALVE                                                                                             | HPCI TURBINE ACCES COOLING WTR VLV                   | OPEN/CLOSE                                                      | DP=PC+PLOM2                       | OPEN       | UPSTREAM               | 37.01                                                                  | YES                                    |
| 2E41-F059                                                                       | COOLING MATER SUPPLY VALVE                                                                                             | HPCI TURBINE ACCES COOLING WTR VLV                   | OPEN/CLOSE                                                      | DP=PC+PLOM2+PVEL4                 | CLOSE      | UPSTREAM               | 37.947                                                                 | YES                                    |
| 2E41-F104                                                                       | GATE VALVE 2 IN MO                                                                                                     | HPCI VAC BREAKER LINE ISOL VALVE                     | CLOSE                                                           | DP=PC+PATM                        | CLOSE      | UPSTREAM               | 31.6                                                                   | YES                                    |
| 2641-5111                                                                       | GATE VALVE 2 IN MD                                                                                                     | HPCI VAC BREAKER LINE ISOL VALVE                     | CLOSE                                                           | DP=PC+PATM                        | CLOSE      | UPSTREAM               | 31.6                                                                   | YES                                    |

DEFINITION OF TERM TERM VALVE MAXIMUM EXPECTED OPERATING DIFFERENTIAL DP PRESSURE DIFFERENTIAL PRESSURE DEVELOPED BY SYSTEM MAIN PSOH PUMPS AT ZERO FLOW RATE. FOR STEAM TURBINE DRIVEN PUMPS, USE MAXIMUM NORMAL TURBINE SPEED MINIMUM HYDROSTATIC PRESSURE DIFFERENCE BETWEEN PEL SUCTION AND DISCHARGE DUE TO ELEVATION. (DISCHARGE ELEVATION IS HIGHER THAN SUCTION) LOW REACTOR PRESSURE AT WHICH STEAM SUPPLY LINES PISO AUTOMATICALLY ISOLATE MAXIMUM HYDROSTATIC PRESSURE DIFFERENCE BETWEEN PELM SUCTION AND DISCHARGE SOURCE DUE TO ELEVATION PRSS REACTOR PRESSURE CORRESPONDING TO THE SPRING SETPOINT OF THE REACTOR SAFETY RELIEF VALVE WITH THE LOWEST NOMINAL SPRING SETPOINT PELD HYDROSTATIC PRESSURE DIFFERENCE BETWEEN CST AND SUPPRESSION POOL ASSUMING THE CST TO BE FULL AND THE SUPPRESSION POOL WATER LEVEL AT ITS MAXIMUM ALLOWABLE NORMAL LEVEL DIFFERENTIAL PRESSURE DEVELOPED BY THE SYSTEM MAIN PMF PUMPS AT A FLOW RATE EQUAL TO THE REQUIRED MINIMUM BYPASS FLOW RATE. FOR STEAM DRIVEN PUMPS USE MAXIMUM NORMAL TURBINE SPEED PV VELOCITY HEAD IN THE SUPPRESSION POOL SUCTION LINE

| DESIGN CALCULATIONS                  | SOL             | THERN COMPANY SERVICES |
|--------------------------------------|-----------------|------------------------|
| E.I. HATCH NUCLEAR PLANT U 2 Prepare | ed By: Caux C.C | DATE 09/ 7/86          |
| UNIT 2 HPCI MOTOR OPER VALVE Review  | ed By: W.T. Ba  | DATE 09/20/86          |
|                                      | . SNH-86-Ø17    | SHEET 8 OF 59 .        |
| DEFINITION OF TE                     | RMS 09/19/8     | 36                     |

| TERM | DEFINITION OF TERM AT THE LOCATION WHERE THE CST LINE CONNECTS TO IT |
|------|----------------------------------------------------------------------|
| PRV  | SYSTEM SUCTION RELIEF VALVE ACTUATION SET PRESSURE                   |
| PELS | HYDROSTATIC PRESSURE DIFFERENCE BETWEEN THE                          |
|      | MINIMUM SUPPRESSION POOL WATER LEVEL AND THE                         |
|      | LOCATION OF THE RELIEF VALVE ON THE PUMP SUCTION                     |
|      | LINE                                                                 |
| PLOC | LOCA WETWELL PRESSURE WHEN THE SYSTEM IS ISOLATED                    |
| PLOM | HYDROSTATIC PRESSURE UPSTREAM OF THE VALVE DUE                       |
|      | TO MAXIMUM LOCA SUPPRESSION POOL WATER LEVEL                         |
| PC   | MAXIMUM LOCA WETWELL PRESSURE WHEN SYSTEM IS                         |
|      | REQUIRED TO OPERATE                                                  |
| PATM | ATMOSPHERIC PRESSURE                                                 |
| PVEL | DIFFERENTIAL PRESSURE ASSOCIATED WITH VALVE                          |
|      | CLOSURE DUE TO FLUID VELOCITY CHANGES (I.E., WATER                   |
|      | HAMMER TYPE PRESSURE INCREASE) INSIDE THE PIPE                       |

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 38/2000 UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: 0.7.2000 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017

13 /4 / DATE 09/19/86
DATE 09/20/86

SHEET 9 OF 59 .

CALC CALC No. SNH-86-017 DERIVATION OF VALUES 09/1

09/19/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PSOH 2240 FROM S-25701 REV. E, BYRON JACKSON PUMP

MANUAL, PUMP CURVE T-33713-1 @ A TURBINE

SPEED OF 4000 RPM.

PEL 5.97 THE ELEVATION OF THE FEEDWATER PIPING

NOZZLE AT THE REACTOR IS GIVEN AS

183' 9 1/2" IN H-26298 REV. 4.

THE MAXIMUM WATER LEVEL IN THE CST

IS GIVEN AS 170' 0" IN A-26497 REV. 12.

FOR 2P21-NØØ2.

THUS THE DIFFERENCE IN ELEVATION IS:

183' 9 1/2" - 170' 0" = 7' 9 1/2"

 $= 13.79 \text{ FT } H2\emptyset.$ 

AND THE HYDROSTATIC PRESSURE IS:

13.79 FT H20 X 0.432781 PSIG/FT H20=5.97 PSIG

PISO 855 FROM A-26497 REV.12 INSTRUMENT SETPOINT

INDEX. USE THE MSL ISOLATION SETPOINT AS

GIVEN FOR INSTRUMENTS 2B21-NØ15 A-D.

PELM 29.58 THE CST IS AT ITS MAXIMUM WATER LEVEL

AND THE SUPPRESSION POOL IS AT ITS

MINIMUM WATER LEVEL WHEN THE

MINIMUM FLOW BYPASS VALVE IS REQUIRED

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PELM

TO OPERATE.

THE MAXIMUM WATER LEVEL IN THE CST IS GIVEN AS 170' 0" IN A-26497 REV. 12 FOR INSTRUMENT 2P21-N002. THE MINIMUM WATER LEVEL IN THE SUPPRESSION POOL IS GIVEN AS 12' 2" IN THE UNIT 2 TECHNICAL SPECIFICATION SECTION 3.6.2.1 AMENDMENT NO. 62. THE INSIDE BOTTOM ELEVATION OF THE SUPPRESSION POOL IS GIVEN AS 89' 5 3/4", DERIVED FROM 103' 6 1/4" - 14' 1/2 ", IN S-27535 REV. Ø. THE ELEVATION OF THE SUPPRESSION POOL AT MINIMUM WATER LEVEL IS THE INSIDE BOTTOM ELEVATION PLUS THE MINIMUM WATER LEVEL: 89' 5 3/4" + 12' 2" = 101' 7 3/4"THE HEAD DIFFERENCE IS THEN: 170' 0" - 101' 7 3/4" = 68' 4 1/4"  $= 68.35 \text{ FT } H2\emptyset$ THUS THE HYDROSTATIC PRESSURE IS: 68.35 FT H20 X 0.432781 PSIG/FT H20 =29.58 PSIG

DATE 09/20/86 DATE 09/21/86

UNIT 2 HPCI MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC Reviewed By: W.T. CALC No. SNH-86-017

SHEET 11 OF 59 .

DERIVATION OF VALUES

09/20/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PRSS 1090 FROM UNIT 2 TECHNICAL SPECIFICATION

SECTION 3.4.2.1 AMENDMENT NO. 62.

PELD 29.44

THE MAXIMUM WATER LEVEL IN THE CST

IS GIVEN AS 170' 0" IN A-26497 REV. 12 FOR

INSTRUMENT 2P21-N002.

THE MAXIMUM WATER LEVEL IN THE
SUPPRESSION POOL IS 12' 6" GIVEN IN
UNIT 2 TECHNICAL SPECIFICATION SECTION
3.6.2.1 AMENDMENT NO. 62.

THE INSIDE BOTTOM ELEVATION OF THE SUPPRESSION POOL IS 89' 5 3/4", DERIVED FROM 103' 6 1/4" - 14' 1/2", IN S-27535 REV. 0.

THE ELEVATION OF THE SUPPRESSION POOL MAXIMUM WATER LEVEL IS THE INSIDE BOTTOM ELEVATION PLUS THE MAXIMUM WATER LEVEL:

89' 5 3/4" + 12' 6" = 101' 11 3/4"

THE HEAD DIFFERENCE IS THEN:

170' 0" - 101' 11 3/4" = 68' 0 1/4"

= 68.02 FT H20

THUS THE HYDROSTATIC PRESSURE IS:

68.02 FT X 0.432781 PSI/FT H20 = 29.44 PSIG

FROM S-25701 REV.E, BYRON JACKSON PUMP MANUAL,
PUMP CURVE T-33713-1 AT A MINIMUM FLOW

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 2 UNIT 2 HPCI MOTOR OPER VALVE

Prepared By: Reviewed By:

DATE 09/20/86 DATE 09/21/86

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-017

SHEET 12 OF 59 .

DERIVATION OF VALUES

09/20/86

PRESSURE (PSIG) DERIVATION OF VALUE TERM

PMF

BYPASS RATE OF 450 GPM, S-25176 REV. 0 PROCESS DIAGRAM HPCI SYSTEM, AND A TURBINE SPEED OF 4000 RPM.

PV Ø.374 THE HPCI SYSTEM RATED FLOW IS GIVEN AS 4250 GPM IN THE UNIT 2 TECHNICAL SPECIFICATION SECTION 4.5.1 AMENDMENT NO. 62.

THE INSIDE DIAMETER OF THE SUPPRESSION POOL SUCTION LINE IS 15.250 GIVEN IN H-26020 REV. 17, UNIT 2 PIPE SPECIFICATION AND THE CRANE TECHNICAL PAPER NO. 410, 18TH PRINTING. THE VELOCITY HEAD IS EQUAL TO: (V)\*\*2/2\*gc FROM CRANE TP NO 410, WHERE:

gc IS GRAVITATIONAL CONSTANT

= 32.2 FT/(SEC)\*\*2

PI = 3.1416

V = Q/A

V = (4250\*0.13368)\*(144/60)/

. [PI (15.250)\*\*2/4]

= 7.46 FT/SEC

THUS THE VELOCITY HEAD IS:

 $(7.46)**2/2(32.2) = \emptyset.865$  FT H20

DATE 09/20/86

DIFFERENTIAL PRESSURE CALC

Reviewed By: W. CALC No. SNH-86-017

DATE 09/21/86 SHEET 13 OF 59 .

DERIVATION OF VALUES

09/20/86

PRESSURE (PSIG) DERIVATION OF VALUE TERM

PV

AND VELOCITY HEAD PRESSURE IS:

Ø.865 FT H20 X Ø.432781 PSIG/FT H20

 $= \emptyset.374 PSIG$ 

PRV 100 FROM S-27294 REV. F MODEL LCT-20

SERIES RELIEF VALVE.

PELS 2.88

THE MINIMUM SUPPRESSION POOL ELEVATION WAS

DETERMINED TO BE 101' 7 3/4" IN THE

CALCULATION FOR PELM ABOVE.

THE ELEVATION FOR THE SUCTION RELIEF VALVE

2E41-FØ2Ø IS GIVEN AS 95' Ø" IN S-36Ø17

REV. Ø.

THUS THE HYDROSTATIC HEAD IS:

101' 7 3/4" - 95' 0" = 6' 7 3/4"

= 6.65 FT H20

AND THE HYDROSTATIC PRESSURE IS:

6.65 FT. X Ø.432781 PSIG/FT H2Ø

= 2.88 PSIG

PLOC 31.6

PLOC=PC. THE ECCS OPERATION MAY REQUIRE

THE CLOSURE OF THE SUPPRESSION POOL

ISOLATION VALVES TO PROVIDE PRIMARY

CONTAINMENT ISOLATION FOR EXTREME LOCA

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 4B Harris DATE 09/20/86
UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: 47. Bar DATE 09/21/86
DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 14 OF 59.

DERIVATION OF VALUES 09/20/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PLOC CONDITIONS FOLLOWING UTILIZATION OF THE

WETWELL INVENTORY.

PLOM1 5.46 THE MAXIMUM LOCA SUPPRESSION POOL WATER LEVEL

IS 102' 7 1/2" GIVEN IN S-27535 REV. 0.

THE CENTERLINE ELGVATION OF VALVES 2E41-FØ41

AND 2E41-FØ42 IS 90' 0" FROM

S-26835 REV. E.

THE HEAD DIFFERENCE IS:

102' 7 1/2" - 90' 0" = 12' 7 1/2"

= 12.625 FT H20.

THUS THE HYDROSTATIC PRESSURE IS:

12.625 FT H20 X 0.432781 PSIG/FT H20

= 5.46 PSIG

PLOM2 5.41 THE MAXIMUM LOCA SUPPRESSION POOL WATER

LEVEL IS 102' 7 1/2" GIVEN IN S-27535 REV. 0.

THE CENTERLINE ELEVATION OF VALVE 2E41-FØ59

IS 90' 1 1/2" FROM S-36034 REV. A.

THE HEAD DIFFERENCE IS:

102' 7 1/2" - 90' 1 1/2" = 12' 6"

= 12.5 FT H20

THUS THE HYDROSTATIC PRESSURE IS:

12.5 FT H20 X 0.432781 PSIG/FT H20

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 4/3 Hankin UNIT 2 HPCI MOTOR OPER VALVE

Reviewed By: C CALC No. SNH-86-017 DATE 09/21/86 DATE 09/21/86

DIFFERENTIAL PRESSURE CALC

SHEET 15 OF 59 .

DERIVATION OF VALUES 09/21/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PLOM2

= 5.41 PSIG

31.6 PC

FROM NEDO DOC. 24569 REV. 2 FIGURE

H2 4.1.2-1.

PATM 0 NORMAL ATMOSPHERIC PRESSURE = 14.6976 PSIA

 $PSIG = PSIA - 14.696 = \emptyset$ 

PVEL1 Ø

KELLOGG ISOMETRIC DRAWINGS S-26835 REV. E, S-26837 REV. M. SX-22585 REV. D. AND SX-24226 REV. C SHOW THAT THE UPSTREAM PIPING IS CONNECTED TO THE CONDENSATE STORAGE TANK. IT IS ASSUMED THAT ANY WATER HAMMER EFFECTS IN THE UPSTREAM PIPING WOULD BE DISSIPATED WITHIN THE CST VOLUME AND PRODUCE NO RESULTANT PRESSURE RISE ON THE VALVE. THE REFERENCED DRAWINGS ALSO SHOW THAT THE DOWNSTREAM PIPING IS INTERCONNECTED WITH THE SUPPRESSION POOL SUCTION LINE. IT IS ASSUMED THE HPCI PUMP IS OPERATING TO DRAW A SUCTION FROM THE SUPPRESSION POOL WHEN 2E41-F004 BEGINS TO CLOSE. THEREFORE NO DOWNSTREAM FLUID DECELERATION WILL RESULT. IT MAY BE CONCLUDED THAT NO INCREASE IN PRESSURE

DERIVATION OF VALUES 09/21/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PVEL1 RESULTS BECAUSE OF WATER HAMMER.

CONSIDERING THE ABOVE FACTS VALVE 2E41-F004

CAN BE CONSIDERED TO HAVE NO WATER

HAMMER PRESSURE INCREASE.

PVEL2 8.163

DIFFERENTIAL PRESSURE ACROSS THE VALVE DUE

TO WATER HAMMER FOR 2E41-F006:

THE VALUE FOR PVEL2 IS CALCULATED BY COMPUTER.

A DERIVATION FOR PVEL AND THE GATE VALVE

AREA VS PERCENT OPEN CURVE USED IN THE CALCULATION

ARE FOUND ATTACHED. THE FOLLOWING DATA IS USED

IN THE CALCULATION TO DERIVE PVEL2:

SYSTEM VELOCITY UPSTREAM (Vsu) AND SYSTEM VELOCITY DOWNSTREAM (Vsd), WHERE:

- . FLOWRATE = 4250 GPM FROM S-25176 REV. 0.
- . AREA OF 14" SCH 80 PIPE = 122.72 IN SQ
- . AREA OF 14" SCH 100 PIPE = 115.49 IN SQ
- FROM CRANE TECHNICAL PAPER No. 410.

#### THEN:

- . Vsu=(4250 GPM x 0.321) / 122.72 IN SQ
- = 11.12 FT/SEC
- . Vsd=(4250 GPM x 0.321) / 115.49 IN SQ
- = 11.81 FT/SEC

DERIVATION OF VALUES Ø9/21/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PVEL2

CLOSURE TIME = 20 SEC FROM A-26503 SH 2
VALVE THROAT DIAMETER

- . DIAM VALVE = 11.25" PER TELEPHONE CONFIRMATION
- . FROM BRAD HARKINS OF SCS TO DENNIS
- SCHERER OF POWELL ON 09/11/86

LENGTH UPSTREAM (LU) AND DOWNSTREAM (LD)

- . LU = 252.36 FT FROM S-26839 REV. G,
- S-26841 REV. N AND S-26843 REV. M
- . LD = 152.35 FT FROM S-26843 REV. M, S-29112
- REV. H, S-28980 REV. M AND S-28978 REV. N

  PVEL2 = 8.163 FROM COMPUTER PRINTOUT.

PVEL3 6.025

DIFFERENTIAL PRESSURE ACROSS THE VALVE DUE TO WATER HAMMER FOR 2E41-FØ12:

THE VALUE FOR PVEL3 IS CALCULATED BY COMPUTER.

A DERIVATION DOR PVEL AND THE GLOBE VALVE

CV VS PERCENT OPEN CURVE USED IN THE CALCULATION

ARE FOUND ATTACHED. THE FOLLOWING DATA IS USED

IN THE CALCULATION TO DERIVE PVEL3:

SYSTEM VELOCITY UPSTREAM (Vsu) AND SYSTEM VELOCITY DOWNSTREAM (Vsd) WHERE:

- . FLOWRATE = 450 GPM FROM S-25176 REV. 0
- . AREA IF 4" SCH 80 PIPE = 11.5 IN SQ

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By:

SOUTHERN COMPANY SERVICES

DATE 09/21/86

Reviewed By: CALC No. SNH-86-017 DIFFERENTIAL PRESSURE CALC

SHEET 18 OF 59 .

DERIVATION OF VALUES 09/21/86

#### TERM PRESSURE (PSIG) DERIVATION OF VALUE

PVEL3

- AREA OF 4" SCH 40 PIPE = 12.73 IN SQ
- . FROM CRANE TECHNICAL PAPER No. 410

THEN:

Vsu=(450 GPM x 0.321) / 11.5 IN SQ

= 12.561 FT/SEC

Vsd=(450 GPM x 0.321) / 12.73 IN SQ

= 11.347 FT/SEC

CLOSURE TIME = 10 SEC FROM A-26503 SH 30

VALVE THROAT DIAMETER

- DIAM VALVE = 2.5" PER TELECOPY TO JACK
- ROBYN OF SCS FROM PAUL COUTINHO OF VELAN
- ON 9/18/86.

LENGTH UPSTREAM (LU) AND LENGTH DOWNSTREAM (LD)

- LU = 59.86 FT FROM S-26845 REV. J
- AND S-26839 REV. G
- LD = 49.59 FT FROM S-26845 REV. J
- AND S-26847 REV. L
- FOR LD IT IS ASSUMED THAT THE WATER HAMMER
- BOUNDARY ENDS AT THE TIE IN TO THE
- RHR TEST LINE.

PVEL3 = 6.025 FROM COMPUTER PRINTOUT

PVEL4 0.937

DIFERENTIAL PRESSURE ACROSS THE VALVE DUE TO WATER HAMMER FOR 2E41-FØ59.

SOUTHERN COMPANY SERVICES

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 13 Harking DATE 09/21/86 Reviewed By: C UNIT 2 HPCI MOTOR OPER VALVE

don

DATE 09/21/86

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-017

SHEET 19 OF 59 .

DERIVATION OF VALUES

09/21/86

#### PRESSURE (PSIG) DERIVATION OF VALUE TERM

PVEL4

THE VALUE FOR PVEL4 IS CALCULATED BY COMPUTER. A DERIVATION FOR PVEL AND THE GLOBE VALVE CV VS PERCENT OPEN CURVE USED IN THE CALCULATION ARE FOUND ATTACHED. THE FOLLOWING DATA IS USED IN THE CALCULATION TO DERIVE PVEL4:

SYSTEM VELOCITY UPSTREAM (Vsu) AND SYSTEM VELOCITY DOWNSTREAM (Vsd) WHERE:

- FLOWRATE = 70 GPM FROM S-25176 REV. 0
- AREA OF 2" SCH 80 PIPE = 2.953 IN SO
- FROM CRANE TECHNICAL PAPER No. 410

THEN

- Vsu=(70 gpm X 0.321) / 2.953 IN SQ
- = 7.601 FT/SEC
- Vsd=Vsu

CLOSURE TIME = 10 SEC FROM A-26503 SH 1

- PER STD. STROKE TIME HNP2
- FSAR TABLE 6.2-5 SH 2 NOTE 7

VALVE THROAT DIAMETER

- DIAM VALVE = 1.403" PER TELECOPY TO JACK
- ROBYN OF SCS FROM DAN HARASENGCH OF
- YARWAY ON 9/11/86.

LENGTH UPSTREAM (LU) AND LENGTH DOWNSTREAM (LD)

LU = 16.23 FT FROM S-36034 REV. A

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By:

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By:

DATE 09/21/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 20 OF 59.

DERIVATION OF VALUES 09/21/86

TERM PRESSURE (PSIG) DERIVATION OF VALUE

PVEL4 . LD = 41.39 FT FROM S-36034 REV. A, S-36035

REV. Ø, S-36036 REV. Ø, S-36037 REV. Ø,

S-36038 REV. A, AND S-36040 REV. A.

PVEL4 = 0.937 FROM COMPUTER PRINTOUT

### Design Calculations



| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By                      | Date<br>9-19-86 |
|-----------------------------------------|----------------------------------|-----------------|
| Subject Title HPCI Motor Operated Valve | A. S. Kink                       | Date 9-20-86    |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 21 of 59  |

# DETERMINE THE PRESSURE INCREASE DUE TO THE RAPID DECELERATION OF FLUID CAUSED BY THE MOVEMENT OF A PROCESS GATE OR GLOBE VALVE

### ASSUMPTIONS

- 1) Valve openings result in no waterhammer effects. The differential pressure across a valve during opening is decreased by an increase in fluid velocity. The maximum actuator loading takes place before the valve lift occurs.
- 2) Steam valve closure results in only minor or no waterhammer effect. The compressible nature of the fluid medium coupled with maximum anticipated velocity changes make the pressure addition insignificant.
- Area of flow through a gate valve is a direct and linear relation to system velocity.
- 4) The percentage of valve opening is a direct relation to opening time.
- 5) It is assumed that flowing pressure does not drop below the fluids vapor pressure.

The pressure increase due to sudden deceleration of fluid may be expressed as:

$$PVEL = P1 + P2$$

Where P1 is the upstream pressure change, and P2 is the downstream pressure change.

The respective valves for P1 and P2 may be calculated as follows:

$$P_1, P_2 = \frac{f_C \Delta VMAX}{144 g}$$

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By Hubbas               | Date 9-19-84    |
|-----------------------------------------|----------------------------------|-----------------|
| Subject Title HPCI Motor Operated Valve | Reviewed By  A. 8 Kinh           | Date<br>9-20-86 |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 22 of 59  |

Where: f is the fluid density

C is the speed of sound through the fluid

△ VMAX is the maximum system fluid differential velocity

144 is a conversion factor

and g is the Gravatational Constant

The fluid  $\Delta V$  is assumed to be a direct relation to flow area, as shown in the gate valve area — percent open curves, and is a direct relation to CV, as shown on the globe valve CV — percent open curves.

The valve  $\Delta t$  is a direct relation to  $\Delta$  percentage open.

Therefore:

$$\frac{\Delta}{\Delta \%} \stackrel{A}{\text{Open}} \approx \frac{\Delta}{\Delta \%} \stackrel{CV}{\text{Open}} \approx \frac{\Delta}{\Delta} \stackrel{V}{\text{Open}}$$

Having plotted a velocity relation against a time relation the region of highest differential velocity is examined.





### Design Calculations

Southern Company Services **A** 

| Project                                                                         | Prepared By                      | Date            |
|---------------------------------------------------------------------------------|----------------------------------|-----------------|
| E.I. Hatch Nuclear Plant Unit 2  Subject Title Unit 2 HPCI Motor Operated Valve | Reviewed By                      | 9-19-86<br>Date |
| Unit 2 HPC1 Motor Operated Valve                                                | a. S. Kink                       | 9-20-86         |
| Differential Pressure Calculation                                               | Calculation Number<br>SNH-86-017 | 23 of 59        |

Incremental time is Defined As:

$$\Delta t = t2 - t1 = \frac{2L}{c}$$

Where the term 2L/C is the time require for a pressure wave to travel down a pipe's flow length and rebound to it's source valve.

Knowing the equation of the curve, the maximum  $\Delta V$  for  $\Delta t$  ( ie; greatest slope) is calculated and entered into the pressure equations.

The procedure is once again performed for the down stream side of the valve and added as follows to produce PVEL

PVEL = P1 + P2

Reference: BWROG REPORT APP. B

0082d

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By Corona            | Date 9.19.80   |
|-----------------------------------------|-------------------------------|----------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By M. M.L.           | Date 9/21/86   |
| Differential Pressure Calculation       | Calculation Number SNH-86-017 | Sheet 24 of 59 |

## RELATIONSHIP OF THE GATE VALVE FLOW AREA TO THE PERCENTAGE OPENING OF A TYPICAL GATE VALVE

It is assumed that the diameter of the gate is equal to the port diameter of the valve since the difference in diameters is insignificantly small.

THE FLOW AREA OF THE VALVE MAY BE DETERMINED BY SUBTRACTING THE AREA OF THE GATE OCCLUDING THE TOTAL PORT AREA.



A = Area

AFlow = APort - AGate

THE AREA OF THE PORT IS CALCULATED USING THE CIRCULAR SEGMENT CALCULATION



 $ASEG = h/6s (3h^2 + 4s^2)$ 

WITH h = RISE = RADIUS AND s = CHORD = DIAMETER

THE AREA OF THE PORT IS EQUAL TO TWICE ASEG



APORT = 2ASEG = R/6D (3R\*\*2 + 4D\*\*2)

## Design Calculations

| E.I. Hatch Nuclear Plant Unit 2         | Prepared By                   | Date 9.19.8(0   |
|-----------------------------------------|-------------------------------|-----------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By Mc4/              | Date 9/21/86    |
| Differential Pressure Calculation       | Calculation Number SNH-86-017 | Street 25 of 59 |

THE OCCLUDING AREA OF THE GATE IS FOUND BY USING THE AREA OF A CIRCULAR SEGMENT CALCULATION.



ASEG = 
$$h/6s (3h^2 + 4s^2)$$
  
r =  $h/2 + s^2/8h$ 

TRANSFORMING THE LATER EQUATION

$$s = (8h (r-(h/2)))^{1/2}$$

WHICH COMBINED WITH THE ASEG CALCULATION MAY BE READILY SOLVED.

THE AREA OCCLUDED IS EQUAL TO TWICE ASEG.



THUS THE AREA OF FLOW THROUGH THE VALVE IS CALCULATED AS:

AFlow = APORT - AGATE



|   | 4 | ۸ |   |   |
|---|---|---|---|---|
|   | _ | ٦ | ۱ |   |
| 4 | Z | ٠ | d | L |

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By Sores                | 9.19.8 Co      |
|-----------------------------------------|----------------------------------|----------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By Medil                | Date 9/21/86   |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 26 of 59 |

A GRAPHIC PRESENTATION OF THE TYPICAL FLOW AREA VS. PERCENT VALVE OPENING IS GIVEN AS FOLLOWS.



REFERENCE: ENGINEERING FORMULAS 4th EDITION, PAGE 83.

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By Lorence           | 9.19.86        |
|-----------------------------------------|-------------------------------|----------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By  A. S. Kirk       | Date 9-19-86   |
| Differential Pressure Calculation       | Calculation Number SNH-86-017 | Sheet 27 of 59 |

# NUMERICAL RELATIONSHIP BETWEEN A GRAPHICAL PRESENTATION OF MANUFACTURER'S 2" GLOBE VALVE OPENING VS. MANUFACTURER'S CV DATA

Given a curve of 0-100 % opening (see attached), It is Desired to numerically relate the first 60% of opening to CV.

The First 60% of opening is a linear function thus, the curve may be equated using linear regression of the point-slope form.

$$y - y1 = m(x-x1)$$

Using the points (0,0) and (50,40)

40-0 = m(50-0)

Solving for m

m = 40/50 = 0.8

The equation of a line is given as:

y = mx

Hence, the equation relating cv with percent opening is:

CV = 0.8 (percentage opening)

FOR ALL OPENINGS LESS THAN 60%.

Reference: THE ENGINEER'S COMPANION 1966 PG. 13.

. . .

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By                      | Date 9 / 19 0/ |
|-----------------------------------------|----------------------------------|----------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By                      | Date 9-19-86   |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 29 of 59 |

## OF MANUFACTURER'S 4" GLOBE VALVE OPENING VS. MANUFACTURER'S CV DATA

Given a curve of 0-100 % opening (see attached), It is Desired to numerically relate the first 45% of opening to CV.

The First 45% of opening is a linear function thus, the curve may be equated using linear regression of the point-slope form.

$$y - y1 = m(x-x1)$$

Using the points (10,15) and (30,49)

$$49-15 = m(30-10)$$

Solving for m

$$m = 34/20 = 1.7$$

The equation of a line is given as:

$$y = mx$$

Hence, the equation relating cv with percent opening is:

CV = 1.7 (percentage opening)

FOR ALL OPENINGS LESS THAN 49%.

Reference: THE ENGINEER'S COMPANION 1966 PG. 13.



| DESIGN CALCULATIONS            |                   | SOUTHERN COMPANY |            |
|--------------------------------|-------------------|------------------|------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Prepared By:      | B Harblin DATE   | 09/21/86   |
| MOTOR OPERATED VALVE           | Reviewed By: D.W  | ulson DATE       | 09/21/86   |
| DIFFERENTIAL PRESSURE CALC     | CALC No. SNH-86-0 | 17 SHEET         | 31 OF 59 . |
| GATE VALVE                     | E PVEL CALCULATIO | N                |            |

MPL NUMBER

VALVE DIAMETER (INCHES)
CLOSING TIME (SECONDS)

UPSTREAM PIPE LENGTH (FT)
DOWNSTREAM PIPE LENGTH (FT)

UPSTREAM SYSTEM VEL (FT/SEC)

DOWNSTREAM SYSTEM VEL (FT/SEC)

11.12
11.81

delta TIME UPSTREAM (SECONDS) Ø.12618 delta TIME DWNSTREAM (SECONDS) 0.076175 TIME UPSTREAM 1 (SECONDS) 19.87382 TIME UPSTREAM 2 (SECONDS) 20 TIME DOWNSTREAM 1 (SECONDS) 19.923825 TIME DOWNSTREAM 2 (SECONDS) 20 RISE UPSTREAM 1 5.5895119 RISE UPSTREAM 2 5.625 RISE DOWNSTREAM 1 5.6035758 RISE DOWNSTREAM 2 5.625 CHORD UPSTREAM 1 11.249776 CHORD UPSTREAM 2 11.25 CHORD DOWNSTREAM 1 11.249918 CHORD DOWNSTREAM 2 11.25 MAX AREA (IN SQ) 100.19531 AREA FLOW UPSTREAM 1 Ø.8312275 AREA FLOW UPSTREAM 2 AREA FLOW DOWNSTREAM 1 0.5019387 AREA FLOW DOWNSTREAM 2 a/Aul 0.0083623 a/Au2 a/Adl 0.0050496 a/Ad2 Ø VELOCITY UPSTREAM 1 (FT/SEC) 0.0929886 VELOCITY UPSTREAM 2 (FT/SEC) VELOCITY DOWNSTREAM 1 (FT/SEC) 0.0596356

Pvel2(PSIG)

VELOCITY DOWNSTREAM 2 (FT/SEC)

delta VEL UPSTREAM (FT/SEC)

delta VEL DOWNSTREAM (FT/SEC)

Pvu UPSTREAM PRESSURE (PSIG)

Pvd DOWNSTREAM PRESSURE (PSIG)

8.1626046

Ø

0.0929886

0.0596356

3.1894146

| DESIGN CALCULATIONS        | SOUTHERN                          | COMPANY SERVICES |
|----------------------------|-----------------------------------|------------------|
| E.I. HATCH NUCLEAR PLANT U | Reviewed By: 78 Harbon            | DATE 09/19/86    |
| MOTOR OPERATED VALVE       | Reviewed By: D. Wulson            | DATE 09/20/86    |
| DIFFERENTIAL PRESSURE CALC | CALC No. SNH-86-017               | SHEET 32 OF 59 . |
| BOUR THOU                  | OF ORE TISTUR BURT OST OUT SETONO |                  |

FOUR INCH GLOBE VALVE PVEL CALCULATIONS

| MPL NUMBER                     | 2E41-FØ12 |
|--------------------------------|-----------|
| VALVE DIAMETER (INCHES)        | 2.5       |
| CLOSING TIME (SECONDS)         | 10        |
| UPSTREAM PIPE LENGTH (FT)      | 59.86     |
| DOWNSTREAM PIPE LENGTH (FT)    | 49.59     |
| UPSTREAM SYSTEM VEL (FT/SEC)   | 12.561    |
| DOWNSTREAM SYSTEM VEL (FT/SEC) | 11.347    |
| delta TIME UPSTREAM (SECONDS)  | Ø.Ø2993   |
| delta TIME DWNSTREAM (SECONDS) | 0.024795  |
| TIME UPSTREAM 1 (SECONDS)      | 5         |
| TIME UPSTREAM 2 (SECONDS)      | 5.02993   |
| TIME DOWNSTREAM 1 (SECONDS)    | 5         |
| TIME DOWNSTREAM 2 (SECONDS)    | 5.024795  |
| % OPEN UPSTREAM 1              | 50        |
| % OPEN UPSTREAM 2              | 50.2993   |
| % OPEN DOWNSTREAM 1            | 50        |
| % OPEN DOWNSTREAM 2            | 50.24795  |
| % CV UPSTREAM 1                | 85.7      |
| % CV UPSTREAM 2                | 86.213    |
| % CV DOWNSTREAM 1              | 85.7      |
| % CV DOWNSTREAM 2              | 86.124986 |
| delta VEL UPSTREAM (FT/SEC)    | 0.064438  |
| delta VEL DOWNSTREAM (FT/SEC)  | 0.0482232 |
| Pvu UPSTREAM (PSIG)            | 3.4462521 |
| Pvd DOWNSTREAM (PSIG)          | 2.579059  |
|                                |           |

Pvel3(PSIG) 6.0253112

| DESIGN CALCULATIONS            |          | SOUTHERN                      | COMPANY SERVICES |
|--------------------------------|----------|-------------------------------|------------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Prepared | By: 75 / Mahler<br>By: Dulyon | DATE 09/19/86    |
| MOTOR OPERATED VALVE           | Reviewed | By: D. Wilson                 | DATE 09/20/86    |
| DIFFERENTIAL PRESSURE CALC     | CALC No. | SNH-86-Ø17                    | SHEET 33 OF 59 . |

TWO INCH GLOBE VALVE PVEL CALCULATIONS

| MPL NUMBER                     | 2E41-FØ59 |
|--------------------------------|-----------|
| VALVE DIAMETER (INCHES)        | 1.403     |
| CLOSING TIME (SECONDS)         | 10        |
| UPSTREAM PIPE LENGTH (FT)      | 16.23     |
| DOWNSTREAM PIPE LENGTH (FT)    | 41.39     |
| UPSTREAM SYSTEM VEL (FT/SEC)   | 7.601     |
| DOWNSTREAM SYSTEM VEL (FT/SEC) | 7.601     |
| delta TIME UPSTREAM (SECONDS)  | 0.008115  |
| delta TIME DWNSTREAM (SECONDS) | 0.020695  |
| TIME UPSTREAM 1 (SECONDS)      | 5         |
| TIME UPSTREAM 2 (SECONDS)      | 5.008115  |
| TIME DOWNSTREAM 1 (SECONDS)    | 5         |
| TIME DOWNSTREAM 2 (SECONDS)    | 5.020695  |
| % OPEN UPSTREAM 1              | 50        |
| % OPEN UPSTREAM 2              | 50.08115  |
| % OPEN DOWNSTREAM 1            | 50        |
| % OPEN DOWNSTREAM 2            | 50.20695  |
| % CV UPSTREAM 1                | 40        |
| % CV UPSTREAM 2                | 40.06492  |
| % CV DOWNSTREAM 1              | 40        |
| % CV DOWNSTREAM 2              | 40.16556  |
| delta VEL UPSTREAM (FT/SEC)    | 0.0049346 |
| delta VEL DOWNSTREAM (FT/SEC)  | 0.0125842 |
| Pvu UPSTREAM (PSIG)            | 0.2639092 |
| Pvd DOWNSTREAM (PSIG)          | 0.6730254 |
|                                |           |

Pvel4(PSIG)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS Reviewed By: 1/5. DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 2 UNIT 2 HPCI MOTOR OPER VALVE CALC No. SNH-86-017 DATE 09/20/86 SHEET34 OF 59 . DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-FØØ1

VALVE DESCRIPTION

TURBINE STEAM SUPPLY VALVE

VALVE FUNCTION

HPCI TURBINE STEAM ADMISSION VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRSS

MAXIMUM DP UPSTREAM/DOWNSTREAM

OPEN

SAFETY ON OPEN/CLOSE

OPEN

MAXIMUM DP ON OPEN OR CLOSE

UPSTREAM

VALUES

PRSS = 1090

DP (PSID)

1090

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 2 Prepared By: Harking DATE 09/20/86 UNIT 2 HPCI MOTOR OPER VALVE DATE 09/20/86 Reviewed By: (1). SHEET 35 OF 59 . CALC No. SNH-86-017 DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PRSS = 1090

2E41-F002

STEAM SUPPLY INBOARD ISOL VALVE

HPCI STEAM LINE ISOLATION VALVE

YES

DP=PRSS

CLOSE

CLOSE

UPSTREAM

DP (PSID)

1090

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES Prepared By: Reviewed By: HARE 09/20/86 DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 2 UNIT 2 HPCI MOTOR OPER VALVE CALC No. SNH-86-017 DIFFERENTIAL PRESSURE CALC SHEET 360F 59 . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-FØØ3

VALVE DESCRIPTION

STEAM SUPPLY OUTBD ISOL VALVE

VALVE FUNCTION

HPCI STEAM LINE ISOLATION VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRSS

MAXIMUM DP UPSTREAM/DOWNSTREAM

CLOSE

SAFETY ON OPEN/CLOSE

CLOSE

MAXIMUM DP ON OPEN OR CLOSE

UPSTREAM

VALUES

PRSS = 1090

DP (PSID)

1090

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES B HARIN DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 2 Prepared By: Reviewed By: W.T. Ban CALC No. SNH-86-017 UNIT 2 HPCI MOTOR OPER VALVE DATE 09/20/86 DIFFERENTIAL PRESSURE CALC SHEET 37 OF 59 . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-FØØ4

VALVE DESCRIPTION

PUMP SUCT FRM COND STOR TANK

VALVE FUNCTION

HPCI CST SUCTION VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PELD+PV+PVEL1

MAXIMUM DP UPSTREAM/DOWNSTREAM

CLOSE

SAFETY ON OPEN/CLOSE

CLOSE

MAXIMUM DP ON OPEN OR CLOSE

UPSTREAM

VALUES

PELD = 29.44

PV

= 0.374

PVEL1 = Ø

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 4/3 DATE 09/2//86 Jupine Reviewed By: C UNIT 2 HPCI MOTOR OPER VALVE DATE 09/21/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-36-Ø17 SHEET 38 OF 59 . DIFFERENTIAL PRESSURE CALCULATION 09/21/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PSOH = 2240

PISO = 855

PEL = 5.97

PVEL2 = 8.163 2E41-FØØ6

HPCI PUMP INBD DISCH VALVE

HPCI INJECTION/ISOLATION VALVE

YES

DP=PSOH-PISO-PEL+PVEL2

CLOSE

OPEN/CLOSE

UPSTREAM

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 1/3 Hugh DATE 09/20/86

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: 1/7. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 39 OF 59.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PSOH = 2240

PISO = 855

PEL = 5.97

2E41-FØØ6

HPCI PUMP INBD DISCH VALVE

HPCI INJECTION/ISOLATION VALVE

YES

DP=PSOH-PISO-PEL

OPEN

OPEN/CLOSE

UPSTREAM

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: 

DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 40 OF 59.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-FØØ7

VALVE DESCRIPTION

HPCI PUMP OUTBD DISCH VALVE

VALVE FUNCTION

HPCI INJECTION VALVE TEST VALVE

SAFETY ACTION (YES/NO)

NO

DP CALCULATION FORMULA

NO SAFETY ACTION

MAXIMUM DP UPSTREAM/DOWNSTREAM

N/A

SAFETY ON OPEN/CLOSE

NONE

MAXIMUM DP ON OPEN OR CLOSE

N/A

VALUES

DP (PSID)

N/A

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 48 Markles DATE 09/20/86

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: 47. Bass DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 41 OF 59.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

2E41-FØØ8

TEST BYPASS VALVE TO COND STOR

HPCI CST TEST RETURN VALVE

NO

NO SAFETY ACTION

N/A

NONE

N/A

DP (PSID)

N/A

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 
UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: 
U.T. Barn DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 42 OF 59.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-FØ11

VALVE DESCRIPTION

REDUNDANT SHUTOFF W/FØØ8

VALVE FUNCTION

HPCI CST TEST RETURN VALVE

SAFETY ACTION (YES/NO)

NO

DP CALCULATION FORMULA

NO SAFETY ACTION

MAXIMUM DP UPSTREAM/DOWNSTREAM

N/A

SAFETY ON OPEN/CLOSE

NONE

MAXIMUM DP ON OPEN OR CLOSE

N/A

VALUES

DP (PSID)

N/A

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 Prepared By: B Harker DATE 09/20/86 UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: DATE Ø9/20/86 Ban CALC No. SNH-86-017 DIFFERENTIAL PRESSURE CALC SHEET43 OF 59 . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PMF = 2235

PELM

= 29.58

PVEL3 = 6.025

2E41-FØ12

PMP MIN FLO BYP TO SUPP POOL

HPCI PUMP MIN FLO BYP ISOL VALVE

YES

DP=PMF+PELM+PVEL3

CLOSE

OPEN/CLOSE

UPSTREAM

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS Prepared By: 7. Ban DATE 09/26/86
Reviewed By: 0.7. Ban DATE 09/26/86
CALC No. SNH-86-017 SHEET 44 OF 59. E.I. HATCH NUCLEAR PLANT U 2 Prepared By: UNIT 2 HPCI MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PSOH =  $224\emptyset$ 

PELM = 29.58

2E41-FØ12

PMP MIN FLO BYP TO SUPP POOL

HPCI PUMP MIN FLO BYP ISOL VALVE

YES

DP=PSOH+PELM

OPEN

OPEN/CLOSE

UPSTREAM

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 Prepared By: Horpine DATE 09/20/86 Reviewed By: W. UNIT 2 HPCI MOTOR OPER VALVE DATE 09/20/86 Bars CALC No. SNH-86-Ø17 DIFFERENTIAL PRESSURE CALC SHEET 45 OF 59 DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-FØ41

VALVE DESCRIPTION

PMP SUCT FROM SUPP POOL

VALVE FUNCTION

HPCI SUPP POOL SUCT ISOL VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRV-PELS

MAXIMUM DP UPSTREAM/DOWNSTREAM

OPEN

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

DOWNSTREAM

VALUES

PRV = 100

PELS

= 2.88

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By:

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By:

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-617

DIFFERENTIAL PRESSURE CALCULATION

SOUTHERN COMPANY SERVICES

DATE 09/20/86

SHEET 44 OF 59

DIFFERENTIAL PRESSURE CALCULATION

09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PLOC = 31.6

PLOM1 = 5.46

2E41-FØ41

PMP SUCT FROM SUPP POOL

HPCI SUPP POOL SUCT ISOL VALVE

YES

DP=PLOC+PLOM1

CLOSE

OPEN/CLOSE

UPSTREAM

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS DATE 09/20/86 DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 2 Prepared By: UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: SHEET 47 OF 59 . CALC No. SNH-86-017 DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-FØ42

VALVE DESCRIPTION

PMP SUCT FROM SUPP POOL

VALVE FUNCTION

HPCI SUPP POOL SUCT ISOL VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PRV-PELS

MAXIMUM DP UPSTREAM/DOWNSTREAM

OPEN

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

DOWNSTREAM

VALUES

PRV = 100

PELS

= 2.88

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 18 Harplan DATE 09/20/86 Reviewed By: W. DATE 09/20/86 UNIT 2 HPCI MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 48 OF 59 . DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PLOC

= 31.6

PLOM1 = 5.46

2E41-FØ42

PMP SUCT FROM SUPP POOL

HPCI SUPP POOL SUCT ISOL VALVE

YES

DP=PLOC+PLOM1

CLOSE

OPEN/CLOSE

UPSTREAM

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS Prepared By: 7/3 Horher DATE 09/26/86
Reviewed By: 10.7. Ban DATE 09/20/86
CALC No. SNH-86-017 SHEET 49 OF 59. E.I. HATCH NUCLEAR PLANT U 2 UNIT 2 HPCI MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-FØ59

VALVE DESCRIPTION

COOLING WATER SUPPLY VALVE

VALVE FUNCTION

HPCI TURBINE ACCES COOLING WTR VLV

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PC+PLOM2

MAXIMUM DP UPSTREAM/DOWNSTREAM

OPEN

SAFETY ON OPEN/CLOSE

OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

UPSTREAM

VALUES

PC = 31.6

PLOM2

= 5.41

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 78 Mg/km DATE 09/20/86

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: 77 Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 50 OF 59.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PC = 31.6

PLOM2 = 5.41

PVEL4 =  $\emptyset.937$ 

2E41-FØ59

COOLING WATER SUPPLY VALVE

HPCI TURBINE ACCES COOLING WTR VLV

YES

DP=PC+PLOM2+PVEL4

CLOSE

OPEN/CLOSE

UPSTREAM

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: J. Ban DATE 09/20/86

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: J. Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEETS/ OF 59.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

2E41-F104

VALVE DESCRIPTION

GATE VALVE 2 IN MO

VALVE FUNCTION

HPC1 VAC BREAKER LINE ISOL VALVE

SAFETY ACTION (YES/NO)

YES

DP CALCULATION FORMULA

DP=PC+PATM

MAXIMUM DP UPSTREAM/DOWNSTREAM

CLOSE

SAFETY ON OPEN/CLOSE

CLOSE

MAXIMUM DP ON OPEN OR CLOSE

UPSTREAM

VALUES

PC

= 31.6

PATM

= 0

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: 78 fault DATE 09/20/86

UNIT 2 HPCI MOTOR OPER VALVE Reviewed By: 77 Ban DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-017 SHEET 52 OF 59.

DIFFERENTIAL PRESSURE CALCULATION 09/19/86

MPL NUMBER

VALVE DESCRIPTION

VALVE FUNCTION

SAFETY ACTION (YES/NO)

DP CALCULATION FORMULA

MAXIMUM DP UPSTREAM/DOWNSTREAM

SAFETY ON OPEN/CLOSE

MAXIMUM DP ON OPEN OR CLOSE

VALUES

PC = 31.6

PATM = Ø

2E41-F111

GATE VALVE 2 IN MO

HPCI VAC BREAKER LINE ISOL VALVE

YES

DP=PC+PATM

CLOSE

CLOSE

UPSTREAM

DP (PSID)

Southern Company Services

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By C. Wilson            | Date 09 19 86  |
|-----------------------------------------|----------------------------------|----------------|
| Subject Title HPCI Motor Operated Valve | Reviewed By McAll                | Date 9/21/86   |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 53 of 59 |

## GATE VALVE PVEL CALCULATIONS

PAGE 1 OF 3

A3: [W11] ^MPL B3: ^VALVE C3: ^CLOSING ^VALVE D3: ^UPSTR E3: ^DNSTR F3: 'UPSTRSYS G3: 'DNSTRSYS I3: ^dT UP J3: ^dTDN K3: ^TIMEul L3: ^TIMEu2 M3: ^TIMEd1 N3: ^TIMEd2 O3: ^RISEul P3: ^RISEu2 Q3: ^RISEd1 R3: ^RISEd2 S3: ^CHORDul T3: ^CHORDu2 U3: ^CHORDd1 V3: ^CHORDd2 W3: 'MAX AREA X3: ^Aflul Y3: ^Aflu2 Z3: ^Afld1 AA3: ^Afld2 AB3: ^a/Au1 AC3: ^a/Au2 AD3: ^a/Ad1 AE3: ^a/Ad2 AF3: ^Vul AG3: ^Vu2 AH3: ^Vdl AI3: ^Vd2 AJ3: ^dVu AK3: ^dVd AL3: Pvu AM3: ^Pvd AN3: ^Pvel A4: [W11] ^NUMBER B4: ^DIA, " C4: ^T, SECS D4: 'PIPE L' E4: 'PIPE L' F4: 'VEL FPS G4: 'VEL FPS

W4: 'FLOW A5: [W11] \-



| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By                      | Date 09 19 86  |
|-----------------------------------------|----------------------------------|----------------|
| Subject Title HPCI Motor Operated Valve | Reviewed By Mc Hola              | Date 9/21/86   |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 54 of 59 |

GATE VALVE PVEL CALCULATIONS

PAGE 2 OF 3

```
B5: \-
C5: \-
D5: \-
 E5: \-
 F5: \-
G5: \-
H5: [W2] \-
15: \-
J5: \-
K5: \-
L5: \-
M5: \-
N5: \-
05: \-
P5: \-
Q5: \-
R5: \-
S5: \-
T5: \-
U5: \-
V5: \-
W5: \-
X5: \-
Y5: \-
Z5: \-
AA5: \-
AB5: \-
AC5: \-
AD5: \-
AE5: \-
AF5: \-
AG5: \-
AH5: \-
AI5: \-
AJ5: \-
AK5: \-
AL5: \-
AM5: \-
AN5: \-
A6: [W11] '1E51-FØ13
B6: 3+5/16
C6: 15
D6: 99.9
E6: 16.6
F6: 11.62
G6: 12.46
H6: [W2] '|
I6: (2*D6)/$D$29
```



| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By C. Wilson            | Date 09/19/86 |
|-----------------------------------------|----------------------------------|---------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By McAcha               | Date 9/21/86  |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | 55 of 59      |

GATE VALVE PVEL CALCULATIONS

PAGE 3 OF 3

```
J6: (2*E6)/$D$29
K6: ($D$30*$C6)-I6
L6: +$D$30*$C6
M6: ($D$30*$C6)-J6
N6: +$D$30*$C6
O6: (KE/$C6)*($B6/2)
P6: (L6/$C6)*($B6/2)
Q6: (M6/$C6)*($B6/2)
R6: (N6/$C6)*($B6/2)
S6: @SQRT(8*06*(($B6/2)-(06/2)))
T6: @SQRT(8*P6*(($B6/2)-(P6/2)))
U6: @SQRT(8*Q6*(($B6/2)-(Q6/2)))
V6: @SQRT(8*R6*(($B6/2)-(R6/2)))
W6: 2*((1/12)*(((3*B6*B6)/4)+(4*B6*B6)))
X6: (F6) (W6)-(2*((O6/(6*S6))*((3*O6*O6)+(4*S6*S6))))
Y6: (F6) (W6)-(2*((P6/(6*T6))*((3*P6*P6)+(4*T6*T6))))
Z6: (F6) ($W6)-2*((Q6/(6*U6))*((3*Q6*Q6)+(4*U6*U6)))
AA6: (F6) ($W6)-2*((R6/(6*V6))*((3*R6*R6)+(4*V6*V6)))
AB6: (F6) +X6/((@PI*$B6*$B6)/4)
AC6: (F6) +Y6/((@PI*$B6*$B6)/4)
AD6: (F6) +Z6/((@PI*$B6*$B6)/4)
AE6: (F6) +AA6/((@PI*$B6*$B6)/4)
AF6: (F6) +AB6*$F6
AG6: (F6) +AC6*$F6
AH6: (F6) +AD6*$G6
AI6: (F6) +AE6*$G6
AJ6: (F6) +AF6-AG6
AK6: (F6) +AH6-AI6
AL6: (F6) (AJ6*$D$28*$D$29)/(144*32.2)
AM6: (F6) (AK6*$D$28*$D$29)/(144*32.2)
AN6: (F6) +AL6+AM6
C28: 'DENSITY
D28: 61.996
E28: 'LB/FT3
C29: 'C
D29: 4000
E29: 'FT/SEC
C3Ø: 'FUDGE FAC
D30: 1
E30: 'DIMLESS
```

| thern Company Services 🔬 |  |
|--------------------------|--|
|                          |  |

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By C. Wilson            | Date 09/19/86 |
|-----------------------------------------|----------------------------------|---------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By Mc Ala               | Date 9/21/86  |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 59      |

## FOUR INCH GLOBE VALVE PVEL CALCULATIONS PAGE 1 OF 2

```
A3: [W11] ^MPL
B3: ^VALVE
C3: ^CLOSING
D3: ^UPSTR
E3: ^DNSTR
F3: 'UPSTRSYS
G3: 'DNSTRSYS
I3: ^dT UP
J3: ^dTDN
K3: ^TIMEul
L3: ^TIMEu2
M3: ^TIMEd1
N3: ^TIMEd2
O3: ^% OPEN
P3: ** OPEN
Q3: * OPEN
R3: ** OPEN
S3: ^% CV
T3: * CV
U3: ^% CV
V3: ^% CV
W3: ^dVu
X3: ^dVd
Y3: ^Pvu
Z3: Pvd
AA3: 'Pvel
A4: [W11] ^NUMBER
B4: ^DIA, "
C4: ^T, SECS
D4: 'PIPE L'
E4: 'PIPE L'
F4: 'VEL FPS
G4: VEL FPS
O4: ^UPSTR1
P4: ^UPSTR2
Q4: ^DNSTR1
R4: ^DNSTR2
S4: ^UPSTR1
T4: ^UPSTR2
U4: ^DNSTR1
V4: ^DNSTR2
A5: [W11] \-
B5: \-
C5: \-
D5: \-
E5: \-
```

F5: \-G5: \-



| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By C. Wilson            | Date 09 19 86  |
|-----------------------------------------|----------------------------------|----------------|
| Unit 2 HPCI Motor Operated Valve        | Reviewed By Mc Make              | Date 9/21/8/   |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 57 of 59 |

# FOUR INCH GLOBE VALVE PVEL CALCULATIONS

C24: 'C

D24: 4000

C23: 'DENSITY

D23: 61.996

E23: 'LB/FT3

E24: 'FT/SEC

PAGE 2 OF 2

```
H5: [W2] \-
15: \-
J5: \-
K5: \-
L5: \-
M5: \-
N5: \-
05: \-
P5: \-
Q5: \-
R5: \-
S5: \-
T5: \-
U5: \-
V5: \-
W5: \-
X5: \-
Y5: \-
Z5: \-
AA5: \-
A6: [W11] '1E41-FØ12
B6: 2.5
C6: 10
D6: 61.05
E6: 38.958
F6: 12.561
G6: 11.347
H6: [W2] '|
I6: (2*D6)/$D$24
J6: (2*E6)/$D$24
K6: +$C6*Ø.5
L6: +$C6*Ø.5+I6
M6: +$C6*Ø.5
N6: +$C6*0.5+J6
06: (+K6*1ØØ)/$C6
P6: (+L6*100)/$C6
Q6: (+M6*100)/$C6
R6: (+N6*100)/$C6
S6: +06*1.714
T6: +P6*1.714
U6: +Q6*1.714
V6: +R6*1.714
W6: (+F6*(T6-S6))/100
X6: (+G6*(V6-U6))/100
Y6: (W6*$D$23*$D$24)/(144*32.2)
Z6: (X6*$D$23*$D$24)/(144*32.2)
AA6: +Y6+Z6
```

| Project E.I. Hatch Nuclear Plant Unit 2 | Prepared By C. Wilson | Date 09 19 86  |
|-----------------------------------------|-----------------------|----------------|
| Subject/Title HPCI Motor Operated Valve | Reviewed By Mc Rel    | Date 9/21/86   |
| Differential Pressure Calculation       | Calculation Number    | Sheet 58 of 59 |

TWO INCH GLOBE VALVE PVEL CALCULATIONS

PAGE 1 OF 2

```
A3: [W11] ^MPL
B3: ^VALVE
C3: ^CLOSING
D3: ^UPSTR
E3: ^DNSTR
F3: 'UPSTRSYS
G3: 'DNSTRSYS
13: ^dT UP
J3: ^dTDN
K3: ^TIMEul
L3: ^TIMEu2
M3: ^TIMEd1
N3: ^TIMEd2
03: ^% OPEN
P3: ^% OPEN
Q3: ^% OPEN
R3: * OPEN
S3: ^% CV
T3: ^% CV
U3: * CV
V3: * CV
W3: ^dVu
X3: ^dVd
Y3: Pvu
Z3: Pvd
AA3: 'Pvel
A4: [W11] ^NUMBER
B4: ^DIA, "
C4: ^T, SECS
D4: ^PIPE L'
E4: 'PIPE L'
F4: 'VFL FPS
G4: 'VEL FPS
O4: ^UPSTR1
P4: ^UPSTR2
Q4: ^DNSTR1
R4: ^DNSTR2
S4: ^UPSTR1
T4: ^UPSTR2
U4: ^DNSTR1
V4: ^DNSTR2
A5: [W11] \-
B5: \-
C5: \-
D5: \-
E5: \-
```

F5: \-G5: \-



| Project E.I. Hatch Nuclear Plant Unit 2 | Propared By C. Wilson            | Date<br>09/19/96 |
|-----------------------------------------|----------------------------------|------------------|
| Unit 2 HPCI Motor Operated Valve        | Reviewed By Mc Shala             | Date 9/21/86     |
| Differential Pressure Calculation       | Calculation Number<br>SNH-86-017 | Sheet 59 of 59   |

## TWO INCH GLOBE VALVE PVEL CALCULATIONS

C27: 'DENSITY

D27: 61.996

C28: 'C

D28: 4000

E27: 'LB/FT3

E28: 'FT/SEC

PAGE 2 OF 2

```
H5: [W2] \-
I5:
J5: \-
K5: \-
L5: \-
M5: \-
N5: \-
05: \-
P5: \-
Q5: \-
R5: \-
S5: \-
T5: \-
U5: \-
V5: \-
W5: \-
X5: \-
Y5: \-
Z5: \-
AA5: \-
A6: [W11] '1E41-FØ59
B6: 1.75
C6: 10
D6: 25
E6: 31.42
F6: 7.601
G6: 7.601
H6: [W2] '
I6: (2*D6)/$D$28
J6: (2*E6)/$D$28
K6: +$C6*Ø.5
L6: +$C6*Ø.5+I6
M6: +$C6*Ø.5
N6: +$C6*Ø.5+J6
06: (+K6*1ØØ)/$C6
P6: (+L6*100)/$C6
Q6: (+M6*100)/$C6
R6: (+N6*100)/$C6
S6: +06*Ø.8
T6: +P6*Ø.8
U6: +Q6*Ø.8
V6: +R6*Ø.8
W6: (+F6*(T6-S6))/100
X6: (+G6*(V6-U6))/100
Y6: (W6*$D$27*$D$28)/(144*32.2)
Z6: (X6*$D$27*$D$28)/(144*32.2)
AA6: +Y6+26
```

ENCLOSURE 4





8610090442-04

## Calculation Cover Sheet

|                                                          |                                   |           |                  | Calculation              | Number<br>NH-86-018 |
|----------------------------------------------------------|-----------------------------------|-----------|------------------|--------------------------|---------------------|
| Project E.I. HATCH NUCLEAR PLANT UNIT 2                  |                                   |           | Discipline<br>M  | Discipline<br>Mechanical |                     |
| Objective<br>Calculate DP for RCIC Motor Operated Valves |                                   |           |                  | SDS Numb                 | per                 |
|                                                          | it:e<br>Unit 2 RCIC Motor Operate |           |                  | re Calculation           |                     |
| Design Eng                                               | gineer's Signature                | Sover     | · ·              | Date<br>9.19.80          | Last Page Number    |
| Contents                                                 |                                   |           |                  |                          |                     |
| Topics                                                   | INTRODUCTION                      | Page<br>1 | Topics DEFINITIO | N OF TERMS               | Page 7              |
| Summary                                                  | of Conclusions                    | 3         | DERIVATIO        | N OF VALUES              | 9                   |
| Criteria an                                              | d Assumptions                     | 2         |                  |                          |                     |
| Listed Ref                                               | erences                           | 5         |                  |                          |                     |
| Body of Ca                                               | alculations                       | 9         |                  |                          |                     |
| Computer                                                 | r Printout)                       | 48        |                  |                          |                     |
| Record o                                                 | f Revisions                       |           |                  |                          |                     |
| Rev. No.                                                 | Description                       |           |                  | Originator Date Revi     | ewer Projengr. Date |
| 0                                                        | APPROVED                          |           |                  | CA 9.90 WY               | 9/21/84 9/21        |
|                                                          |                                   |           |                  |                          |                     |
|                                                          |                                   |           |                  |                          |                     |
|                                                          |                                   |           |                  |                          |                     |
|                                                          |                                   |           |                  |                          |                     |
|                                                          |                                   |           |                  |                          |                     |
|                                                          |                                   |           |                  |                          |                     |

Notes

Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By Wilson               | Date 09 19 86 |
|------------------------------------------------|----------------------------------|---------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By Barn                 | Date 9/20/36  |
| Differential Pressure Calculation              | Calculation Number<br>SNH-85-018 | Sheet of 52   |

#### INTRODUCTION

The Nuclear Regulatory Commission (NRC) IE Bulletin 85-03 (Motor Operated Valve Common Mode Failure) requested that owners of light water reactors develop and implement a program to ensure that torque switch settings on safety related motor-operated valves on high pressure systems are selected, set and maintained correctly to accommodate the maximum differential pressures expected on these valves during both normal and abnormal events within the design basis. The objective of this calculation is to determine the maximum Differential Pressure across each of the affected Unit 2 RCIC Motor Operated Valves.

00451

Southern Company Services 🔬

| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By                      | 9.19.86       |
|------------------------------------------------|----------------------------------|---------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By Me al                | Date /21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet 2 of 52 |

#### CRITERIA

1) The criteria, assumptions and formulas given in the General Electric "BWR Owner's Group Report on the Operational Design Basis of Selected Safety-Related Motor-Operated Valves," DRF-E12-00100-75, are assumed to be correct.

#### ASSUMPTIONS

- 1) PC is assumed to equal PLOC. The terms are defined as follows:
  - \* PLOC is the maximum wet well LOCA pressure.
  - \* PC is the maximum wetwell LOCA pressure which the valve is required to operate against.
- 2) In the PVEL calculation, it is assumed that the time required for a sound wave to travel to and return from an atmospheric vessel is infinity. Thus, the related term in the PVEL equation is equal to zero.
- 3) In the PVEL calculation, downstream velocities for lines of equal sizes with differing wall thicknesses are assumed to be equal. The impact upon the downstream pressure increase is small.
- 4) Disc and Port diameters are assumed to be equal. Equal diameters for disc and port yield higher rate of change therefore higher DV and is therefore more conservative.
- 5) The Formula for calculating area of the gate valve available for flow is approximated from a known geometric relationship and is off by a small percentage, however, the overall effect is negligible.
- 6) In the PVEL calculation, it is assumed that where a small line tees into a much larger line (i.e. Larger being two times or greater in diameter) the boundary for the small line ends at the line intersection.

00431

Southern Company Services

| Froject<br>E.I. Hatch Nuclear Plant Unit 2        | Prepared By Corena               | 9.19.84       |
|---------------------------------------------------|----------------------------------|---------------|
| Subject/Title<br>Unit 2 RCIC Motor Operated Valve | Reviewed By W. T. Bars           | 9/20/8C       |
| Differential Pressure Calculation                 | Calculation Number<br>SNH-86-018 | Sheet 3 of 52 |

#### SUMMARY OF CONCLUSIONS

The following page is a summary table of the results for each RCIC Motor Operated Valve in the Scope of NRC IEB 85-03.

The first column titled "MPL Number" gives the MPL number of the valve.

The second column titled "Valve Description" is the description of the valve given in the equipment location index (ELI).

The third column titled "Valve Function" is the function of the valve as stated in the General Electric "BWR Owners' Group Report on the Operational Design Basis of Selected Safety-Related Motor-Operated Valves."

The fourth column titled "Safety" indicates if the valve has any safety-related action.

The fifth column titled "DP Calculation Formula" gives the formula used to calculate the maximum differential pressure.

The sixth column titled "Maximum DP" indicates whether the maximum DP occurs upstream or downstream of the valve.

The seventh column titled " Max DP ON " indicates whether the maximum DP is calculated for opening or closing.

The eighth column titled "DP (PSID)" gives the calculated maximum DP in psid.

The ninth column titled "Safety On" gives the safety action of the valve.

00471

| DESIGN CALCULATIONS     | DESIGN CALCULATIONS E. I. HATCH NUCLEAR PLANT UNIT 2 | PREPARED BY:                                      | 0 ik                                                   | Brem                              |                     | TOOS                   | SOUTHERN COMPANY SERVICES | SERVICES<br>09/E//86 |
|-------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|-----------------------------------|---------------------|------------------------|---------------------------|----------------------|
| UNIT 2 RCIC             | UNIT 2 RCIC MOTOR OPERATED WALVE                     | REVIEWED BY:                                      | BY:                                                    | 8 Harber                          |                     |                        |                           | 09/2//86             |
| DIFFERENTIA             | DIFFERENTIAL PRESSURE CALCULATION                    | SUM                                               | CALCULATION NUMBER SNH-86-018<br>SUMMARY TABLE 09/21/1 | H-86-018<br>09/21/86              |                     |                        | 1                         | . 25.                |
| MPL NUMBER<br>2E51-F007 | VALVE DESCRIPTION<br>RCIC STEAM INBOARD ISOL VALVE   | VALVE FUNCTION<br>RCIC STIEM LINE ISOLATION VALVE | SAFETY                                                 | DP CALCULATION FORMULA<br>DP=PRSS | MAXIMUM DP<br>CLOSE | MAXIMUM DP<br>UPSTREAM | DP (PSID)<br>1090         | SAFETY               |
| ZE51-F008               | RCIC STEAM OUTBOARD ISOL VLV                         | RCIC STEAM LINE ISOLATION VALVE                   | CLOSE                                                  | DP=PRSS                           | CLOSE               | UPSTREAM               | 1090                      | YES                  |
| 2E51-F010               | PUMP SUCT FRM COND STG TNK                           | RCIC CST SUCTION ISOLATION VALVE                  | SCLOSE                                                 | DP=PELD+PV+PVEL1                  | CLOSE               | UPSTREAM               | 29.6217                   | YES                  |
| 2E51-F012               | RCIC PUMP OUTGOARD DISCH VLV                         | RCIC INJECTION VALVE TEST VALVE                   | NONE                                                   | NO SAFETY ACTION                  | N/A                 | N/A                    | M/A                       | R                    |
| 2E51-F013               | RCIC PUMP INBOARD DISCH YLV                          | RCIC INJECTION VALVE                              | OPEN/CLOSE                                             | DP≈PRSS+PEL                       | OPEN/CLOSE          | DOWNSTREAM             | 1125.612                  | YES                  |
| 2E51-F019               | TEST BYPASS TO COND STG TANK                         | RCIC MININUM FLOW BYPASS ISOL VALVE               | OPEN/CLOSE                                             | DP=PSOH+PELM                      | OPEN                | UPSTREAM               | 1330.173                  | YES                  |
| 2E51-F019               | TEST BYPASS TO COND STG TANK                         | RCIC MINIMUM FLOW BYPASS ISOL VALVE               | OPEN/CLOSE                                             | DP=PMF+PELM+PVEL3                 | CLOSE               | UPSTREAM               | 1333.883641               | YES                  |
| 2E51-F022               | TEST BYPASS TO COND STG TANK                         | RCIC CST TEST RETURN VALVE                        | NONE                                                   | ND SAFETY ACTION                  | N/A                 | N/A                    | M/A                       | ON.                  |
| 2E51-F029               | RCIC PMP SUCT VLV FRM SUP POOL                       | RCIC SUPP POOL SUCTION ISOL VALVE                 | OPEN/CLOSE                                             | DP=PRV-PELS                       | DPEN                | DOWNSTREAM             | 95.6                      | YES                  |
| 2E51-F029               | RCIC PMP SUCT VLV FRM SUP POOL                       | RCIC SUPP POOL SUCTION ISOL VALVE                 | OPEN/CLOSE                                             | DP=PLOC+PLOM1                     | 35070               | UPSTREAM               | 37.317                    | YES                  |
| 2E51-F031               | RCIC PMP SUCT VLV FRM SUP POOL                       | RCIC SUPP POOL SUCTION ISOL VALVE                 | OPEN/CLOSE                                             | DP=PRV-PELS                       | OPEN                | DOWNSTREAM             | 95.6                      | YES                  |
| 2E5!-F031               | RCIC PMP SUCT VLV FRM SUP POOL                       | RCIC SUPP POOL SUCTION ISOL VALVE                 | OPEN/CLOSE                                             | DP=PLOC+PLOM1                     | SCLOSE              | UPSTREAM               | 37.317                    | YES                  |
| 2E51-F045               | TURBINE STEAM SUPPLY VALVE                           | RCIC STEAM ADMISSION VALVE                        | OPEN/CLOSE                                             | DP=PRSS                           | OPEN/CLOSE          | UPSTREAM               | 1090                      | YES                  |
| 2E51-F046               | COOLING WATER SUPPLY VALVE                           | RCIC TURBINE ACCESSORY COOL WTR VALVE             | OPEN/CLOSE                                             | DP=PSOI+PELC                      | OPEN                | UPSTREAM               | 291.974                   | YES                  |
| 2E51-F046               | CODLING MATER SUPPLY VALVE                           | RCIC TURBINE ACCESSORY COOL WTR VALVE             | OPEN/CLOSE                                             | DP=PLOC+PLOM2+PVEL4               | SCLOSE              | UPSTREAM               | 37.381729                 | YES                  |
| 2E51-F104               | BATE VALVE 1.5 IN MD                                 | RCIC VACUUM BREAKER LINE ISOL VALVE               | SCLOSE                                                 | DP=PC+PATM                        | 35073               | UPSTREAM               | 31.6                      | YES                  |
| 2E51-F105               | BATE VALVE 2 IN MD                                   | RCIC VACUUM BREAKER LINE ISOL VALVE               | CLOSE                                                  | DP=PC+PATM                        | 35070               | UPSTREAM               | 31.6                      | YES                  |
| 2E51-F119               | LSTB VALVE                                           | REIC STEAM ADMISSION BYPASS VALVE                 | CLOSE                                                  | DP=PRSS                           | 35070               | UPSTREAM               | 0601                      | YES                  |

| Project<br>E.I. Hatch Nuclear Plant Unit 2 | Prepared By Conon                | Date 9.19.86  |
|--------------------------------------------|----------------------------------|---------------|
| Unit 2 RCIC Motor Operated Valve           | Reviewed By 1. T. Bars           | Date 9/20/96  |
| Differential Pressure Calculation          | Calculation Number<br>SNH-86-018 | Sheet 5 of 52 |

# RCIC MOV CALCULATIONS REFERENCES

- H-26281 REV. 5 RCIC SYSTEM BAROMETRIC CONDENSER PIPING 1. PLANS & SECTIONS 4 FEEDWATER PIPING -DRYWELL ELEVATION 130'-0" H-26298 REV. 2. AND ABOVE H RCIC SYSTEM SUCTION FROM TORUS, RHR HEAT H-26844 REV. 3. EXCHANGE AND CONDENSATE STORAGE TANK. H-27535 REV. A GENERAL PLAN - CONTAINMENT TECHNICAL SPECIFICATIONS REV. 05-25-86 UNIT NO. 2 A-26497 REV. 12 INSTRUMENT SETPOINT INDEX 6. G.E. NEDO - 24569 REV. 2 7. H-26023 REV. 15 RCIC SYSTEM P & ID SHEET 1 8. H-26024 REV. 13 RCIC SYSTEM P & ID SHEET 2 9. CRC HANDBOOK OF CHEMISTRY & PHYSICS SECTION F 10. 57TH EDITION - CONVERSION FACTORS CRANE " FLOW OF FLUIDS " TECHNICAL PAPER 11. SECTION B NO. 410 - PIPE DATA
- 12. BWR OWNERS GROUP REPORT ON THE OPERATIONAL DESIGN BASIS OF SELECTED SAFETY RELATED MOTOR OPERATED VALVES, DRF-E12-00100-75, AUGUST 1986.
- 13. TELEPHONE CONFIRMATION 09-05-86 BETWEEN CHRIS SORENSEN OF SCS AND GORDON PARKS OF BINGHAM PUMP.
- 14. S-25171 REV. A RCIC FLOW DIAGRAM
- 15. A-26503 DATA SHEET
- 16. TELEPHONE CONFIRMATION D. SCHERER OF POWELL VALVE AND B. HARKINS OF SCS ON 9-11-86



| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By Concran              | Date 9.19.8(0 |
|------------------------------------------------|----------------------------------|---------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By Ban                  | Date 9/20/0   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet of 52   |

### UNIT 2 RCIC MOV CALCULATIONS REFERENCES CONT'D

S-27083 REV. J KELLOGG ISOMETRIC 17. S-27085 REV. J KELLOGG ISOMETRIC 18. S-27087 REV. J KELLOGG ISOMETRIC 19. S-36100 REV. A KELLOGG ISOMETRIC 20. S-36095 REV. A KELLOGG ISOMETRIC 21. S-36096 REV. A KELLOGG ISOMETRIC 22. S-36097 REV. A KELLOGG ISOMETRIC 23. S-36098 REV. A KELLOGG ISOMETRIC 24. TELECOPY FROM D HORASOWYCH YARWAY TO JACK ROBYN OF SCS ON 25. 9-11-86 HNP-2-FSAR TABLE 6.2-5 SHT 21 NOTE 7 26. S-28657 REV. 2 6" 150LB OSY GATE VALVE POWELL 1523 WE 27. S-2582 REV. H YARWAY FIG. 55158 WELBOND VALVE 28. BM-26509 REV. 5 BILL OF MATERIALS 29. 30. BM-26502 REV. 4 BILL OF MATERIALS S-27294 REV. F VALVE COMPOSITE DRAWING 31.

S-36136 REV. A KELLOGG ISOMETRIC DRAWING

0073d

DESIGN CALCULATIONS

SOUTHERN COMPANY SERVICES

Prepared By: Laun Chilian E.I. HATCH NUCLEAR PLANT U 2 UNIT 2 RCIC MOTOR OPER VALVE

Reviewed By: (1). T. Ban CALC No. SNH-86-018

DATE 09/17/86 DATE 09/20 /86

DIFFERENTIAL PRESSURE CALC

SHEET 7 OF 52 .

UNIT 2 RCIC TERM DEFINITIONS 09/19/86

| TERM<br>DP | DEFINITION OF TERM<br>VALVE MAXIMUM EXPECTED OPERATING DIFFERENTIAL |
|------------|---------------------------------------------------------------------|
|            | PRESSURE                                                            |
| PSOH       | DIFFERENTIAL PRESSURE DEVELOPED BY SYSTEM MAIN                      |
|            | PUMPS AT ZERO FLOW RATE. (MAXIMUM NORMAL TURBINE                    |
|            | SPEED)                                                              |
| PEL        | MINIMUM HYDROSTATIC PRESSURE DIFFERENCE BETWEEN                     |
|            | SUCTION AND DISCHARGE DUE TO ELEVATION. (DISCHARGE                  |
|            | ELEVATION IS HIGHER THAN SUCTION)                                   |
| PISO       | LOW REACTOR PRESSURE AT WHICH STEAM SUPPLY LINES                    |
|            | AUTOMATICALLY ISOLATE                                               |
| PELM       | MAXIMUM HYDROSTATIC PRESSURE DIFFERENCE BETWEEN                     |
|            | SUCTION AND DISCHARGE SOURCE DUE TO ELEVATION                       |
| PRSS       | REACTOR PRESSURE CORRESPONDING TO THE SPRING                        |
|            | SETPOINT OF THE REACTOR SAFETY RELIEF VALVE WITH                    |
|            | THE LOWEST NOMINAL SPRING SETPOINT                                  |
| PELD       | HYDROSTATIC PRESSURE DIFFERENCE BETWEEN CST AND                     |
|            | SUPPRESSION POOL ASSUMING THE CST TO BE FULL AND                    |
|            | THE SUPPRESSION POOL WATER LEVEL AT ITS MAXIMUM                     |
|            | ALLOWABLE NORMAL LEVEL                                              |
| PMF        | DIFFERENTIAL PRESSURE DEVELOPED BY THE SYSTEM MAIN                  |
|            | PUMPS AT A FLOW RATE EQUAL TO THE REQUIRED MINIMUM                  |
|            | BYPASS FLOW RATE. (MAXIMUM NORMAL TURBINE SPEED)                    |
| PV         | VELOCITY HEAD IN THE SUPPRESSION POOL SUCTION LINE                  |

DESIGN CALCULATIONS

MEDIA

SOUTHERN COMPANY SERVICES

Prepared By: Lawn Clubson E.I. HATCH NUCLEAR PLANT U 2 R OPER VALVE Reviewed By: W.T. Ban SSURE CALC CALC No. SNH-86-018 UNIT 2 RCIC TERM DEFINITIONS 09/19 UNIT 2 RCIC MOTOR OPER VALVE

DATE 09/ /86 DATE 09/20 /86

DIFFERENTIAL PRESSURE CALC

DEPTAIRMENT OF MEDIA

SHEET 8 OF 52 .

09/19/86

| TERM | AT THE LOCATION WHERE THE CST LINE CONNECTS TO IT  |
|------|----------------------------------------------------|
| PRV  | SYSTEM SUCTION RELIEF VALVE ACTUATION SET PRESSURE |
| PELS | HYDROSTATIC PRESSURE DIFFERENCE BETWEEN THE        |
|      | MINIMUM SUPPRESSION POOL WATER LEVEL AND THE       |
|      | LOCATION OF THE RELIEF VALVE ON THE PUMP SUCTION   |
|      | LINE                                               |
| PLOC | LOCA WETWELL PRESSURE WHEN THE SYSTEM IS ISOLATED  |
| PLOM | HYDROSTATIC PRESSURE UPSTREAM OF THE VALVE DUE     |
|      | TO MAXIMUM LOCA SUPPRESSION POOL WATER LEVEL       |
| PC   | MAXIMUM LOCA WETWELL PRESSURE WHEN SYSTEM IS       |
|      | REQUIRED TO OPERATE                                |
| PELC | HYDROSTATIC PRESSURE DIFFERENCE BETWEEN CST AND    |
|      | LOCATION OF VALVE WHEN THE CST IS FULL             |
| PSOI | RCIC PUMP DISCHARGE PRESSURE AT ZERO FLOW AND A    |
|      | TURBINE SPEED OF 2000 RPM                          |
| PATM | ATMOSPHERIC PRESSURE                               |
| PVEL | DIFFERENTIAL PRESSURE ASSOCIATED WITH VALVE        |
|      | CLOSURE DUE TO FLUID VELOCITY CHANGES (I.E., WATER |
|      | HAMMER TYPE PRESSURE INCREASE) INSIDE THE PIPE     |
|      |                                                    |

UNIT 2 RCIC TERM DERIVATIONS Ø9/19/86

| TERM | PRESSURE (PSIG) | DERIVATION OF TERM                             |
|------|-----------------|------------------------------------------------|
| PSOH | 1300.54         | TELEPHONE CONFIRMATION -C.SORENSEN/G.PARKS     |
|      |                 | ON SEPTEMBER 5, 1986                           |
|      |                 |                                                |
| PEL  | 35.612          | THE ELEVATION FOR THE INJECTION POINT OF       |
|      |                 | DISCHARGE IS GIVEN AS 183' 9 1/2" ON DRAWING   |
|      |                 | H-26298 REV.4.                                 |
|      |                 | THE CENTERLINE OF THE SUPPRESSION POOL IS      |
|      |                 | GIVEN AS 103' 6 1/4" AND THE INSIDE DIAMETER   |
|      |                 | IS GIVEN AS 28' 1" ON DRAWING S-27535 REV. A.  |
|      |                 | THE INSIDE BOTTOM ELEVATION OF THE SUPPRESSION |
|      |                 | POOL IS THE CENTERLINE MINUS 1/2 THE DIAMETER: |
|      |                 | 103' 6 1/4" - (28' 1") /2 = 89' 5 3/4"         |
|      |                 | THE MINIMUM SUPPRESSION POOL LEVEL IS GIVEN    |
|      |                 | AS 12' 2" IN THE TECHNICAL SPECIFICATIONS      |
|      |                 | SECTION 3.6.2.1                                |
|      |                 | THE MINIMUM SUPPRESSION POOL ELEVATION IS      |
|      |                 | THE BOTTOM ELEVATION PLUS THE MINIMUM LEVEL:   |
|      |                 | 89' 5 3/4" + 12' 2" = 101' 7 3/4"              |
|      |                 | THE HYDROSTATIC DIFFERENCE IS THUS:            |
|      |                 | 183' 9 1/2" - 101' 7 3/4" = 82' 1 3/4"         |
|      |                 | = 985.75" 720                                  |
|      |                 | AND HYDROSTATIC PRESSURE IS:                   |

985.75" H20 / 27.6807" H20/PSIG = 35.612

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: C UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: 0.7. B
DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018

DATE 09/19/86 DATE 09/20/86

SHEET 10 OF 52 .

UNIT 2 RCIC TERM DERIVATIONS 09/19/86

| TERM | PRESSURE (PSIG) | DERIVATION OF TERM                           |
|------|-----------------|----------------------------------------------|
| PISO | 855             | A-26497 UNIT 2 REV.12 INSTRUMENT SETPOINT    |
|      |                 | INDEX INSTRUMENTS 2B21-NØ15 A-D              |
|      |                 |                                              |
| PELM | 29.633          | THE MAXIMUM CST LEVEL IS GIVEN AS 170' 0"    |
|      |                 | FOR THE SETPOINT OF 2P21 N002 ON DRAWING     |
|      |                 | A-26497 REV. 12.                             |
|      |                 | THE MINIMUM SUPPRESSION POOL LEVEL WAS       |
|      |                 | CALCULATED AS 101' 7 3/4" IN THE CALCULATION |
|      |                 | FOR PEL ABOVE.                               |
|      |                 | THUS THE HYDROSTATIC DIFFERENCE IS:          |
|      |                 | 170' 0" - 101' 7 3/4" = 68' 4 1/4"           |
|      |                 | = 820.25 "H20                                |
|      |                 | HYDROSTATIC PRESSURE IS:                     |
|      |                 | 820.25"H20 / 27.6807 "H20/PSIG = 29.633      |
|      |                 |                                              |
| PRSS | 1090            | UNIT 2 TECHNICAL SPECIFICATIONS              |
|      |                 | SECTION 3.4.2.1                              |
|      |                 |                                              |
| PELD | 29.488          | THE MAXIMUM CST LEVEL IS GIVEN AS 170' 0"    |
|      |                 | FOR THE SETPOINT OF 2P21-N002 ON DRAWING     |
|      |                 | A-26497 REV. 12.                             |
|      |                 | THE INSIDE BOTTOM ELEVATION OF THE           |

SUPPRESSION POOL WAS CALCULATED AS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: UNIT 2 RCIC MOTOR OPER VALVE Reviewed By:

DATE 09/19 /86 DATE 09/20/86

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-018

SHEETH OF 52 .

UNIT 2 RCIC TERM DERIVATIONS 09/20/86

PRESSURE (PSIG) DERIVATION OF TERM TERM

PELD

89' 5 3/4" IN THE CALCULATION FOR PEL.

THE MAXIMUM SUPPRESSION POOL LEVEL IS GIVEN

AS 12' 6" IN THE UNIT 2 TECHNICAL

SPECIFICATIONS SECTION 3.6.2.1

THE MAXIMUM ELEVATION LEVEL OF THE

SUPPRESSION POOL IS:

89' 5 3/4" + 12' 6" = 101' 11 3/4"

THUS THE HYDROSTATIC DIFFERENCE IS:

170' 0" - 101' 11 3/4" = 68' 1/4"

= 816.25"H20

HYDROSTATIC PRESSURE EOUALS

816.25 "H2Ø / 27.68Ø7 "H2Ø/PSIG = 29.488

PMF 1300.54 TELEPHONE CONFIRMATION - C.SORENSEN/G.PARKS

ON SEPTEMBER 5, 1986.

Ø.1337 PV

THE RCIC SYSTEM RATED FLOW IS GIVEN AS 400 GPM IN DRAWING S-25171 REV. A. THE SIZE OF THE SIZE OF THE SUCTION LINE IS GIVEN AS 6" HLB ON

DRAWING H-26023 REV. 15, WHICH IS SCHEDULE 40

PIPE IN THE UNIT 2 PIPE SPECS. THE INTERNAL

DIAMETER IS GIVEN IN CRANE AS 6.065".

6.065" x 12 IN/FT = 0.5054 FEET

Horense

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: DATE 09/19/86 DATE 09/20/86

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-018

SHEET 12 OF 52 .

UNIT 2 RCIC TERM DERIVATIONS 09/19/86

## TERM PRESSURE (PSIG) DERIVATION OF TERM

PV

THE VELOCITY HEAD IS EQUAL TO:

- . [(V)\*\*2] / 2 x gc, FROM CRANE 410 eqn 2-1
- . WHERE gc IS THE GRAVITATIONAL CONSTANT
- gc = 32.2 FT/SEC\*\*2
- . AND V = Q/A; FROM CRANE 410 eqn 3-2

PI=3.1416

 $V = [400 \times 60 \times 8.3378] / [PI \times (0.5054 ** 2)/4]$ 

. = 4.46 FT/SEC

VELOCITY HEAD IS:

 $[4.46**2] / 2 \times 32.2 = \emptyset.3089 \text{ FT } H20$ 

VELOCITY HEAD PRESSURE IS

- . Ø.3089 FT H20 x Ø.432781 PSIG/FT H20
- $= \emptyset.1337 PSIG$

PRV 100

DWG S-27294 REV. F. VALVE COMPOSITE DRAWING

FOR 2E51-FØ17 GIVES THE RELIEF

SETTING OF 100 PSIG

PELS 4.4

THE MINIMUM SUPPRESSION POOL ELEVATION WAS

DETERMINED TO BE 101' 7 3/4" IN THE

CALCULATION FOR PEL.

THE ELEVATION FOR THE SUCTION RELIEF VALVE

2E51-F017 IS GIVEN AS 91' 6" ON DRAWING

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 Prepared By: C DATE Ø9/19/86 - Forem Reviewed By: W.T. Ban UNIT 2 RCIC MOTOR OPER VALVE DATE 09/20/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 SHEET 13 OF 52 .

UNIT 2 RCIC TERM DERIVATIONS 09/19/86

PRESSURE (PSIG) DERIVATION OF TERM TERM

S-36136 REV. 6. PELS

THUS THE HYDROSTATIC DIFFERENCE IS:

101' 7 3/4" - 91' 6" = 10' 1 3/4"

= 121,75 "H20

HYDROSTATIC PRESSURE IS:

121.75 "H20 / 27.6807 "H20/PSIG = 4.40

PLOC 31.6 NEDO-27569-2 FIG. H2 4.1.2.-1 PG 9.

THE ACCIDENT SUPPRESSION POOL LEVEL IS GIVEN PLOM1 5.717

AS 102' 7 1/2" ON DRAWING S-27535 REV. 1

THE ELEVATION FOR THE SUPPRESSION POOL

ISOLATION VALVES 2E51-F029 AND F031 ARE GIVEN

AS 89' 5 1/4" ON DRAWING H-26844 REV. H.

THUS THE HYDROSTATIC DIFFERENCE IS:

102' 7 1/2" - 89' 5 1/4" = 13' 2 1/4"

= 158.25 "H20

THE HYDROSTATIC PRESSURE IS:

158.25 "H20 / 27.6807 "H20/PSIG = 5.717

THE ACCIDENT SUPPRESSION POOL LEVEL IS GIVEN PLOM2 5.69

AS 102' 7 1/2" ON DRAWING S-27535 REV. 1

THE ELEVATION FOR THE TURBINE ACCESSORIES

UNIT 2 RCIC TERM DERIVATIONS 09/20/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PLOM2 VALVE 2E51-FØ46 IS GIVEN AS 89' 6"

DRAWING S-36097 REV. A.

THUS THE HYDROSTATIC DIFFERENCE IS:

102' 7 1/2" - 89' 6" = 157.5

= 157.5"H20

THE HYDROSTATIC PRESSURE IS:

157.5 "H20 /27.6807 "H20/PSIG = 5.690

PC 31.6 NEDO-27569-2 FIG.H2 4.1.2-1 PG 9.

PELC 34.9 THE MAXIMUM CST LEVEL IS GIVEN AS 170' 0"

PER SETPOINT FOR 2P21-NØØ2 ON DRAWING A-26497

REV. 12.

THE ELEVATION FOR THE RCIC TURBINE

ACCESSORIES COOLING WATER VALVE 2E51-F046 IS

GIVEN AS 89' 6" ON DRAWING S-36097 REV. A.

THUS THE HYDROSTATIC DIFFERENCE IS:

170' 0" - 89' 6" = 80' 6"

= 966 "H2Ø

THE HYDROSTATIC PRESSURE IS:

966 "H20 /27.6807 "H20/PSIG = 34.90

UNIT 2 RCIC TERM DERIVATIONS 09/19/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PSOI ON SEPTEMBER 5, 1986.

PATM Ø NORMAL ATMOSPHERIC PRESSURE = 14.696 PSIA.

PSIG = PSIA - 14.696 = Ø

PVEL1 Ø P & I DIAGRAMS H-26023 REV.15 AND H-26024 REV. 13

SHOW THAT THE UPSTREAM PIPING IS CONNECTED TO

THE CONDENSATE STORAGE TANK.

IT IS ASSUMED THAT ANY WATER HAMMER EFFECTS IN
THE UPSTREAM PIPING WOULD BE DISSIPATED WITHIN
THE CST VOLUME, AND PRODUCE NO RESULTANT
PRESSURE RISE UPON THE VALVE.

THE REFERENCED DRAWINGS ALSO SHOW THAT THE

DOWNSTREAM PIPING IS INTERCONNECTED WITH THE

SUPPRESSION POOL SUCTION LINE. IT IS ASSUMED

THAT THE RCIC PUMP IS OPERATING TO DRAW A

SUCTION FROM THE SUPPRESSION POOL WHEN 2E51-F010

BEGINS TO CLOSE. THEREFORE, NO DOWNSTREAM FLUID

DECELERATION WILL RESULT. IT MAY BE

CONCLUDED THAT NO INCREASE IN PRESSURE BECAUSE

OF WATER HAMMER WILL RESULT. CONSIDERING

THE ABOVE FACTS, VALVE 2E51-F010 CAN BE

CONSIDERED TO HAVE NO WATER HAMMER PRESSURE

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: C. UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: 4B Happins

CALC No. SNH-86-018

DATE 09/21 /86 DATE 09/21/86 SHEETILO OF 52 .

DIFFERENTIAL PRESSURE CALC UNIT 2 RCIC TERM DERIVATIONS

09/21/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

INCREASE. THEREFORE PVEL1 = Ø PVEL1

PVEL2 3.029 SYSTEM VELOCITY GATE FOR 2E51-F013

FLOW RATE = 400 GPM FROM

. RCIC FLOW DIAGRAM S-25171 REV. A

AREA OF 4" SCH 80 PIPE = 11.5 SQ IN

. FROM CRANE 410

VELOCITY = [ 400 GPM X 0.3211] / 11.5 SQ IN

. 11.1687 FT/SEC

CLOSURE TIME

TC = 15 SEC

FROM DATA SHEET A-26503

VALVE THROAT DIAMETER

VALVE DIAMETER = 3 7/16"

TELEPHONE CON. D SCHERER OF POWELL AND

B. HARRIN OF SCS ON 9/11/86

LENGTH UPSTREAM (LU) AND DOWNSTREAM (LD)

LU = 99.995 FT

KELLOGG ISOMETRIC S-27083 REV. J

KELLOGG ISOMETRIC S-27085 REV. J

LD = 19.75 FT

KELLOGG ISOMETRIC S-27085 REV. J

KELLOGG ISOMETRIC SX-23286 REV. B

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: C UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: 92

DATE 09/21 /86 DATE 09/21/86

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018

SHEET 17 OF 52

UNIT 2 RCIC TERM DERIVATIONS

09/21/86

PRESSURE (PSIG) DERIVATION OF TERM TERM

PVEL2 PVEL2 = 3.029 FROM COMPUTER PRINTOUT

PVEL3 3.710641 SYSTEM VELOCITY FOR 2E51-F019

FLOW RATE = 50 GPM FROM

. RCIC FLOW DIAGRAM S-25171 REV. A

AREA OF 2" SCH 80 PIPE = 2.953 SQ IN

. CRANE 410

VELOCITY = [50 GPM X 0.3211] / 2.953 SQ IN

= 5.4368 FT/SEC

CLOSURE TIME

. TC = 4 SEC

DATA SHEET A-26503

VALVE THROAT DIAMETER

VALVE DIAMETER = 1.403

TELECOPY D. HARASONYSH OF YARWAY TO

J. ROBYN OF SCS ON 9/11/86.

LENGTH UPSTREAM (LU) AND DOWNSTREAM (LD)

LU = 8.6146 FT

KELLOGG ISOMETRICS S-36100A, S-27083J

LD = 119 FT

KELLOGG ISOMETRICS S-36102 A, S-36095 A,

AND S-36096 REV. 0.

PVEL3 = 3.710641 FROM COMPUTER PRINTOUT

E.I. HATCH NUCLEAR PLANT U 2 Prepared By: CUNIT 2 RCIC MOTOR OPER VALVE Reviewed By:

DATE 09/21 /86
DATE 09/21/86

DIFFERENTIAL PRESSURE CALC

CALC No. SNH-86-018

SHEET 18 OF 52

UNIT 2 RCIC TERM DERIVATIONS 09/21/86

TERM PRESSURE (PSIG) DERIVATION OF TERM

PVEL4 Ø.091729

SYSTEM VELOCITY FOR 2E51-FØ46

FLOW RATE = 16 GPM FROM

. RCIC FLOW DIAGRAM S-25171 REV. A

AREA OF 2" SCH 80 PIPE = 2.953 SQ IN

. CRANE 410

VELOCITY = [16 GPM X Ø.3211] / 2.953 SQ IN

= 1.7398 FT/SEC

CLOSURE TIME

TC = 10 SEC FROM DATA SHEET A-26503

. HNP2 FSAR TABLE 6.2-5 SHT 21 NOTE 7.

VALVE THROAT DIAMETER

. VALVE DIAMETER = 1.403

. TELECOPY D. HARASONYSH OF YARWAY TO

. J. ROBYN OF SCS ON 9/11/86

LENGTH UPSTREAM (LU) AND DOWNSTREAM (LD)

. LU = 9.3125 FT

. KELLOGG ISOMETRIC S-36097 A

LD = 15.3333 FT

. KELLOGG ISOMETRIC S-36097 A

. KELLOGG ISOMETRIC S-36098 A

PVEL4 = 0.091729 FROM COMPUTER PRINTOUT

| DESIGN CALCULATIONS            |              |         | COMPANY SERVICES |
|--------------------------------|--------------|---------|------------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Prepared By: | C som   | DATE 09/21 /86   |
| MOTOR OPERATED VALVE           | Reviewed By: | Dialson | DATE 09/21/86    |
| DIFFERENTIAL PRESSURE CALC     | CALC No. SNH | -86-018 | SHEET 19 OF 52 . |

GATE VALVE PVEL CALCULATION

| MPL_NUMBER VALVE DIAMETER (INCHES) CLOSING TIME (SECONDS) UPSTREAM PIPE LENGTH (FT) DOWNSTREAM PIPE LENGTH (FT) UPSTREAM SYSTEM VEL (FT/SEC) DOWNSTREAM SYSTEM VEL (FT/SEC)                                                                                                                                                                                                                                                                                                                                                                                                                         | 2E51-FØ13<br>3.4375<br>15<br>94.995<br>19.75<br>11.1687<br>11.1687                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| delta TIME UPSTREAM (SECONDS) delta TIME DWNSTREAM (SECONDS) TIME UPSTREAM 1 (SECONDS) TIME UPSTREAM 2 (SECONDS) TIME DOWNSTREAM 1 (SECONDS) TIME DOWNSTREAM 2 (SECONDS) RISE UPSTREAM 1 RISE UPSTREAM 1 RISE DOWNSTREAM 2 CHORD UPSTREAM 1 CHORD UPSTREAM 1 CHORD UPSTREAM 1 CHORD DOWNSTREAM 1 CHORD DOWNSTREAM 1 CHORD DOWNSTREAM 1 CHORD DOWNSTREAM 1 AREA FLOW UPSTREAM 1 AREA FLOW UPSTREAM 1 AREA FLOW UPSTREAM 2 AREA FLOW DOWNSTREAM 1 AREA FLOW DOWNSTREAM 2 A/Au1 a/Au2 a/Au1 a/Au2 a/Ad1 a/Ad2 VELOCITY UPSTREAM 1 (FT/SEC) VELOCITY UPSTREAM 2 (FT/SEC) VELOCITY DOWNSTREAM 1 (FT/SEC) | 0.0474975<br>0.009875<br>14.952502<br>15<br>14.990125<br>15<br>1.7133076<br>1.71875<br>1.7176185<br>1.71875<br>3.4374828<br>3.4375<br>3.4374993<br>3.4375<br>9.3546549<br>0.0389633<br>0.0081027<br>0.0081027<br>0.0041984<br>0.0008731<br>0.00468903<br>0.0097512 |
| VELOCITY DOWNSTREAM 2 (FT/SEC)  delta VEL UPSTREAM (FT/SEC)  delta VEL DOWNSTREAM (FT/SEC)  Pvu UPSTREAM PRESSURE (PSIG)  Pvd DOWNSTREAM PRESSURE (PSIG)                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ø.Ø4689Ø3<br>Ø.Ø4689Ø3<br>Ø.ØØ97512<br>2.5Ø77756<br>Ø.5215117                                                                                                                                                                                                      |

Pvel2(PSIG)

| DESIGN CALCULATIONS            | SOUTHERN                | COMPANY SERVICES |
|--------------------------------|-------------------------|------------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Prepared By: Coforena   | DATE 09/19/86    |
| MOTOR OPERATED VALVE           | Reviewed By: D Wilson   | DATE @9/31 /86   |
| DIFFERENTIAL PRESSURE CALC     | CALC No. SNH-86-018     | SHEET ZO OF 52 . |
| TWO INCH GLOBE                 | VALVE PVEL CALCULATIONS |                  |

MPL NUMBER 2E51-FØ19 VALVE DIAMETER (INCHES) 1.403 4 CLOSING TIME (SECONDS) UPSTREAM PIPE LENGTH (FT) 8.6146 DOWNSTREAM PIPE LENGTH (FT) 119 UPSTREAM SYSTEM VEL (FT/SEC)
DOWNSTREAM SYSTEM VEL (FT/SEC) 5.4368 5.4368 delta TIME UPSTREAM (SECONDS) 0.0043073 delta TIME DWNSTREAM (SECONDS) 0.0595 TIME UPSTREAM 1 (SECONDS) TIME UPSTREAM 2 (SECONDS) 2.0043073 TIME DOWNSTREAM 1 (SECONDS) 2 TIME DOWNSTREAM 2 (SECONDS) 2.0595 & OPEN UPSTREAM 1 50 % OPEN UPSTREAM 2 50.107682 % OPEN DOWNSTREAM 1 50 % OPEN DOWNSTREAM 2 51.4875 % CV UPSTREAM 1 40 % CV UPSTREAM 2 40.086146 % CV DOWNSTREAM 1 40 % CV DOWNSTREAM 2 41.19 delta VEL UPSTREAM (FT/SEC)
delta VEL DOWNSTREAM (FT/SEC) 0.0046836 0.0646979 Pvu UPSTREAM (PSIG) 0.2504862 Pvd DOWNSTREAM (PSIG) 3.4601555

Pvel3(PSIG)

| DESIGN CALCULATIONS            | SOUTHERN                | COMPANY SERVICES |
|--------------------------------|-------------------------|------------------|
| E.I. HATCH NUCLEAR PLANT U 1&2 | Prepared By: Corene     | DATE Ø9/19/86    |
| MOTOR OPERATED VALVE           | Reviewed By: Obulan     | DATE Ø9/20/86    |
| DIFFERENTIAL PRESSURE CALC     | CALC No. SNH-86-018     | SHEET Z/ OF 52 . |
| TWO INCH GLOBE                 | VALVE PVEL CALCULATIONS |                  |

| MPL NUMBER                     | 2E51-FØ46 |
|--------------------------------|-----------|
| VALVE DIAMETER (INCHES)        | 1.403     |
| CLOSING TIME (SECONDS)         | 10        |
| UPSTREAM PIPE LENGTH (FT)      | 9.3125    |
| DOWNSTREAM PIPE LENGTH (FT)    | 15.3333   |
| UPSTREAM SYSTEM VEL (FT/SEC)   | 1.7398    |
| DOWNSTREAM SYSTEM VEL (FT/SEC) | 1.7398    |
| delta TIME UPSTREAM (SECONDS)  | 0.0046562 |
| delta TIME DWNSTREAM (SECONDS) | 0.0076666 |
| TIME UPSTREAM 1 (SECONDS)      | 5         |
| TIME UPSTREAM 2 (SECONDS)      | 5.0046563 |
| TIME DOWNSTREAM 1 (SECONDS)    | 5         |
| TIME DOWNSTREAM 2 (SECONDS)    | 5.0076666 |
| % OPEN UPSTREAM 1              | 5Ø        |
| % OPEN UPSTREAM 2              | 50.046563 |
| % OPEN DOWNSTREAM 1            | 50        |
| % OPEN DOWNSTREAM 2            | 50.076667 |
| % CV UPSTREAM 1                | 40        |
| % CV UPSTREAM 2                | 40.03725  |
| % CV DOWNSTREAM 1              | 40        |
| % CV DOWNSTREAM 2              | 40.061333 |
| delta VEL UPSTREAM (FT/SEC)    | 0.0006481 |
| delta VEL DOWNSTREAM (FT/SEC)  | 0.0010671 |
| Pvu UPSTREAM (PSIG)            | 0.0346602 |
| Pvd DOWNSTREAM (PSIG)          | 0.057069  |
|                                |           |

Pvel4(PSIG)



# DETERMINE THE PRESSURE INCREASE DUE TO THE RAPID DECELERATION OF FLUID CAUSED BY THE MOVEMENT OF A PROCESS GATE OR GLOBE VALVE

#### **ASSUMPTIONS**

- Valve openings result in no waterhammer effects. The differential pressure across a valve during opening is decreased by an increase in fluid velocity. The maximum actuator loading takes place before the valve lift occurs.
- 2) Steam valve closure results in only minor or no waterhammer effect. The compressible nature of the fluid medium coupled with maximum anticipated velocity changes make the pressure addition insignificant.
- Area of flow through a gate valve is a direct and linear relation to system velocity.
- 4) The percentage of valve opening is a direct relation to opening time.
- 5) It is assumed that flowing pressure does not drop below the fluids vapor pressure.

The pressure increase due to sudden deceleration of fluid may be expressed as:

$$PVEL = P1 + P2$$

Where P1 is the upstream pressure change, and P2 is the downstream pressure change.

The respective valves for P1 and P2 may be calculated as follows:

$$P_1, P_2 = \frac{\text{C} \Delta VMAX}{144 \text{ g}}$$

| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By C Possons | Date 9.19.86  |
|------------------------------------------------|-----------------------|---------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By  A. Kirk  | Date 9-20-86. |
| Differential Pressure Calculation              | Calculation Number    | Sheet         |

Where:  $\mathcal{H}$  is the fluid density

C is the speed of sound through the fluid  $\Delta$  VMAX is the maximum system fluid differential velocity

144 is a conversion factor

and g is the Gravatational Constant

The fluid  $\Delta V$  is assumed to be a direct relation to flow area, as shown in the gate valve area — percent open curves, and is a direct relation to Cv, as shown on the globe valve Cv — percent open curves.

The valve  $\Delta t$  is a direct relation to  $\Delta$  percentage open.

Therefore:

$$\frac{\Delta}{\Delta} \frac{A}{\Lambda} \approx \frac{\Delta}{\Delta} \frac{Cv}{Open} \approx \frac{\Delta}{\Delta} \frac{V}{\Delta} \frac{V}{t}$$

Having plotted a velocity relation against a time relation the region of highest differential velocity is examined.





## Design Calculations

| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By                      | Date 9.19.8(o  |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By  A. S. Kirk          | Date 9-20-86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet 24 of 52 |

Incremental time is Defined As:

$$\Delta t = t2 - t1 = 2L$$

Where the term 2L/C is the time require for a pressure wave to travel down a pipe's flow length and rebound to it's source valve.

Knowing the equation of the curve, the maximum  $\Delta V$  for  $\Delta t$  (ie; greatest slope) is calculated and entered into the pressure equations.

The procedure is once again performed for the down stream side of the valve and added as follows to produce PVEL

PVEL = P1 + P2

Reference: BWROG REPORT APP. B

0082d



| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By Coron                | Date 9.19.80   |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By Mc Stake             | Date 4/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet 25 of 52 |

### RELATIONSHIP OF THE GATE VALVE FLOW AREA TO THE PERCENTAGE OPENING OF A TYPICAL GATE VALVE

It is assumed that the diameter of the gate is equal to the port diameter of the valve since the difference in diameters is insignificantly small.

THE FLOW AREA OF THE VALVE MAY BE DETERMINED BY SUBTRACTING THE AREA OF THE GATE OCCLUDING THE TOTAL PORT AREA.



A = Area

AFlow = APort - AGate

THE AREA OF THE PORT IS CALCULATED USING THE CIRCULAR SEGMENT CALCULATION



 $ASEG = h/6s (3h^2 + 4s^2)$ 

WITH h = RISE = RADIUS AND s = CHORD = DIAMETER

THE AREA OF THE PORT IS EQUAL TO TWICE ASEG



APORT = 2ASEG = R/6D (3R\*\*2 + 4D\*\*2)



| Project<br>E.I. Hatch Nuclear Plant Unit 2      | Prepared By                      | Date 9.19.8(e  |
|-------------------------------------------------|----------------------------------|----------------|
| Si Sject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By Might                | Date 4/21/56   |
| Differential Pressure Calculation               | Calculation Number<br>SNH-86-018 | Sheet 26 of 52 |

THE OCCLUDING AREA OF THE GATE IS FOUND BY USING THE AREA OF A CIRCULAR SEGMENT CALCULATION.



ASEG = 
$$h/6s (3h^2 + 4s^2)$$
  
r =  $h/2 + s^2/8h$ 

TRANSFORMING THE LATER EQUATION

$$s = (8h (r-(h/2)))^{1/2}$$

WHICH COMBINED WITH THE ASEG CALCULATION MAY BE READILY SOLVED. THE AREA OCCLUDED IS EQUAL TO TWICE ASEG.



THUS THE AREA OF FLOW THROUGH THE VALVE IS CALCULATED AS:

AFlow = APORT - AGATE



|   | • |
|---|---|
|   | _ |
| , |   |

| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By Conon                | Date 9.19.86   |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed on Mill                 | Date 9/21/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet 27 of 52 |

A GRAPHIC PRESENTATION OF THE TYPICAL FLOW AREA VS. PERCENT VALVE OPENING IS GIVEN AS FOLLOWS.



REFERENCE: ENGINEERING FORMULAS 4th EDITION, PAGE B3.



| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By Coreso               | Date 9.19.86   |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By  a. S. Kirk          | Date 9-19-86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet 28 of 52 |

#### NUMERICAL RELATIONSHIP BETWEEN A GRAPHICAL PRESENTATION OF MANUFACTURER'S 2" GLOBE VALVE OPENING VS. MANUFACTURER'S CV DATA

Given a curve of 0-100 % opening (see attached). It is Desired to numerically relate the first 60% of opening to CV.

The First 60% of opening is a linear function thus, the curve may be equated using linear regression of the point-slope form.

$$y - y1 = m(x-x1)$$

Using the points (0.0) and (50.40)

$$40-0 = m(50-0)$$

Solving for m

$$m = 40/50 = 0.8$$

The equation of a line is given as:

$$y = mx$$

Hence, the equation relating cv with percent opening is:

CV = 0.8 (percentage opening)

FOR ALL OPENINGS LESS THAN 60%.

Reference: THE ENGINEER'S COMPANION 1966 PG. 13.

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 Prepared By: CUNIT 2 RCIC MOTOR OPER VALVE Reviewed By: U.7 DATE 09/19/86 DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 SHEET 30 OF 52 . DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØØ7

VALVE DESCRIPTION:

RCIC STEAM INBOARD ISOL VALVE

VALVE FUNCTION:

RCIC STEAM LINE ISOLATION VALVE

SAFETY ACTION (YES/NO): YES

DP CALCULATION FORMULA:

DP=PRSS

SAFETY ACTION ON OPEN/CLOSE: CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PRSS =1090

DP (PSID)

1090

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 DATE 09/19/86 Prepared By: UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: DATE 09/20/86 CALC No. SNH-86-018 DIFFERENTIAL PRESSURE CALC SHEET 3/ OF52 .

DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØØ8

VALVE DESCRIPTION:

RCIC STEAM OUTBOARD ISOL VLV

VALVE FUNCTION:

RCIC STEAM LINE ISOLATION VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PRSS

SAFETY ACTION ON OPEN/CLOSE: CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PRSS

=1090

DP (PSID)

1090

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 2 DATE Ø9/19/86 Prepared By: Reviewed By: W.7 DATE 09/20/86 UNIT 2 RCIC MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 SHEET 32 OF 52 . DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ1Ø

VALVE DESCRIPTION:

PUMP SUCT FRM COND STG TNK

VALVE FUNCTION:

RCIC CST SUCTION ISOLATION VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PELD+PV+PVEL1

SAFETY ACTION ON OPEN/CLOSE: CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PELD

=29.488

PV

 $= \emptyset.1337$ 

FVEL1 = Ø

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By:

UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: (J.T. Bay DATE 09/z0/86)

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 SHEET 33 OF 52.

DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ12

VALVE DESCRIPTION:

RCIC PUMP OUTBOARD DISCH VLV

VALVE FUNCTION:

RCIC INJECTION VALVE TEST VALVE

SAFETY ACTION (YES/NO):

NO

DP CALCULATION FORMULA:

NO SAFETY ACTION

SAFETY ACTION ON OPEN/CLOSE:

NONE

MAXIMUM DP ON OPEN/CLOSE:

N/A

MAXIMUM DP UPSTREAM/DOWNSTREAM N/A

VALUES USED:

DP (PSID)

N/A

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 2 DATE 09/19/86 Prepared By: DATE 09/20/86 UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: CALC No. SNH-86-018 SHEET 34 OF 52 . DIFFERENTIAL PRESSURE CALC

DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ13

VALVE DESCRIPTION:

RCIC PUMP INBOARD DISCH VLV

VALVE FUNCTION:

RCIC INJECTION VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PRSS+PEL (b)

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM DOWNSTREAM

VALUES USED:

PRSS

=1090

PEL

= 35.612

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 DATE 09/19 /86 Prepared By: UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: W.T. Barr DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 SHEET 35 OF 52 .

DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ19

VALVE DESCRIPTION:

TEST BYPASS TO COND STG TANK

VALVE FUNCTION:

RCIC MINIMUM FLOW BYPASS ISOL VALVE

SAFETY ACTION (YES/NO): YES

DP CALCULATION FORMULA:

DP=PSOH+PELM

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE: OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PSOH

=1300.54

PELM

=29.633

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 Prepared By: DATE 09/19 /86 UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: 0.7.
DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 DATE 09/20/86 SHEET 36 OF 52 . DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ19

VALVE DESCRIPTION:

TEST BYPASS TO COND STG TANK

VALVE FUNCTION:

RCIC MINIMUM FLOW BYPASS ISOL VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PMF+PELM+PVEL3

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PMF

=1300.54

PELM

= 29.633

PVEL3

=3.710641

DP (PSID)

DESIGN CALCULATIONS

E.I. HATCH NUCLEAR PLANT U 2 Prepared By:

UNIT 2 RCIC MOTOR OPER VALVE Reviewed By:

DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018

DIFFERENTIAL PRESSURE CALCULATION

SOUTHERN COMPANY SERVICES

DATE 09/19/86

SHEET 37 OF 52.

MPL NUMBER:

2E51-FØ22

VALVE DESCRIPTION:

TEST BYPASS TO COND STG TANK

VALVE FUNCTION:

RCIC CST TEST RETURN VALVE

SAFETY ACTION (YES/NO):

NO

DP CALCULATION FORMULA:

NO SAFETY ACTION

SAFETY ACTION ON OPEN/CLOSE:

NONE

MAXIMUM DP ON OPEN/CLOSE:

N/A

MAXIMUM DP UPSTREAM/DOWNSTREAM N/A

VALUES USED:

DP (PSID)

N/A

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 DATE 09/19/86 Prepared By: C Reviewed By: W.T. Ban DATE 09/20/86 UNIT 2 RCIC MOTOR OPER VALVE SHEET 38 OF 52 . DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ29

VALVE DESCRIPTION:

RCIC PMP SUCT VLV FRM SUP POOL

VALVE FUNCTION:

RCIC SUPP POOL SUCTION ISOL VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PLOC+PLOM1 (c)

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PLOC =31.6

PLOM1

= 5.717

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES DATE 09/19/86 DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 2 Prepared By: C Reviewed By: W.7 UNIT 2 RCIC MOTOR OPER VALVE SHEET39 OF 52 . CALC No. SNH-86-018 DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ29

VALVE DESCRIPTION:

RCIC PMP SUCT VLV FRM SUP POOL

VALVE FUNCTION:

RCIC SUPP POOL SUCTION ISOL VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PRV-PELS

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE:

OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM DOWNSTREAM

VALUES USED:

PRV

=100

PELS

=4.4

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS Prepared By: C E.I. HATCH NUCLEAR PLANT U 2 DATE 09/19/86 UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: W.T. Ban DATE 09/20/86 DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 SHEET 40 OF 52 . DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ31

VALVE DESCRIPTION:

RCIC PMP SUCT VLV FRM SUP POOL

VALVE FUNCTION:

RCIC SUPP POOL SUCTION ISOL VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PRV-PELS

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE:

OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM DOWNSTREAM

VALUES USED:

PRV

=100

PELS

= 4.4

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES DATE 09/19/86 E.I. HATCH NUCLEAR PLANT U 2 Prepared By: C UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: W.T. DATE 09/20/86 DIFFERENTIAL PRESSURE CALC SHEET 41 OF 52 . CALC No. SNH-86-018 DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ31

VALVE DESCRIPTION:

RCIC PMP SUCT VLV FRM SUP POOL

VALVE FUNCTION:

RCIC SUPP POOL SUCTION ISOL VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PLOC+PLOM1 (c)

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PLOC =31.6

PLOM1

=5.717

DP (PSID)

COUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 2 Prepared By: ( DATE 09/19/86 Reviewed By: W.7 DATE 09/20/86 UNIT 2 RCIC MOTOR OPER VALVE CALC No. SNH-86-018 SHEET 42 OF 52 . DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ45

VALVE DESCRIPTION:

TURBINE STEAM SUPPLY VALVE

VALVE FUNCTION:

RCIC STEAM ADMISSION VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PRSS

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE:

OPEN/CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PRSS =1090

DP (PSID)

1090

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES DATE 09/19/86 DATE 09/20/86 E.I. HATCH NUCLEAR PLANT U 2 Prepared By: C Reviewed By: W.T. / CALC No. SNH-86-018 UNIT 2 RCIC MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC SHEET 43 OF 52 . DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ46

VALVE DESCRIPTION:

COOLING WATER SUPPLY VALVE

VALVE FUNCTION:

RCIC TURBINE ACCESSORY COOL WTR VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PLOC+PLOM2+PVEL4

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PLOC =31.6

PLOM2

• 5.69

PVEL4

=0.091729

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 Prepared By: C DATE 09/19/86 Reviewed By: W. DATE 09/20/86 UNIT 2 RCIC MOTOR OPER VALVE DIFFERENTIAL PRESSURE CALC CALC No. SNH-86-018 SHEET 44 OF 52 . DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-FØ46

VALVE DESCRIPTION:

COOLING WATER SUPPLY VALVE

VALVE FUNCTION:

RCIC TURBINE ACCESSORY COOL WTR VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PSOI+PELC

SAFETY ACTION ON OPEN/CLOSE: OPEN/CLOSE

MAXIMUM DP ON OPEN/CLOSE:

OPEN

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PSOI =257.074

PELC

= 34.9

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES DATE 09/19 /86 E.I. HATCH NUCLEAR PLANT U 2 Prepared By: Reviewed By: DATE 09/20/86 UNIT 2 RCIC MOTOR OPER VALVE CALC No. SNH-86-018 SHEET 45 OF 52 . DIFFERENTIAL PRESSURE CALC DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-F104

VALVE DESCRIPTION:

GATE VALVE 1.5 IN MO

VALVE FUNCTION:

RCIC VACUUM BREAKER LINE ISOL VALVE

SAFETY ACTION (YES/NO):

YES

DP CALCULATION FORMULA:

DP=PC+PATM

SAFETY ACTION ON OPEN/CLOSE: CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PC

=31.6

PATM = Ø

DP (PSID)

DESIGN CALCULATIONS SOUTHERN COMPANY SERVICES E.I. HATCH NUCLEAR PLANT U 2 Prepared By: DATE 09/19/86 Reviewed By: W.T. Z CALC No. SNH-86-018 UNIT 2 RCIC MOTOR OPER VALVE DATE 09/20/86 DIFFERENTIAL PRESSURE CALC SHEET46 OF 52 .

DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-F1Ø5

VALVE DESCRIPTION:

GATE VALVE 2 IN MO

VALVE FUNCTION:

RCIC VACUUM BREAKER LINE ISOL VALVE

SAFETY ACTION (YES/NO): YES

DP CALCULATION FORMULA:

DP=PC+PATM

SAFETY ACTION ON OPEN/CLOSE: CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PC

=31.6

PATM = Ø

DP (PSID)

SOUTHERN COMPANY SERVICES DESIGN CALCULATIONS E.I. HATCH NUCLEAR PLANT U 2 Prepared By: DATE 09/13 /86 UNIT 2 RCIC MOTOR OPER VALVE Reviewed By: DATE 09/20/86 CALC No. SNH-86-018 DIFFERENTIAL PRESSURE CALC SHEET 47 OF52 . DIFFERENTIAL PRESSURE CALCULATION

MPL NUMBER:

2E51-F119

VALVE DESCRIPTION:

LSTB VALVE

VALVE FUNCTION:

RCIC STEAM ADMISSION BYPASS VALVE

SAFETY ACTION (YES/NO): YES

DP CALCULATION FORMULA:

DP=PRSS

SAFETY ACTION ON OPEN/CLOSE:

CLOSE

MAXIMUM DP ON OPEN/CLOSE:

CLOSE

MAXIMUM DP UPSTREAM/DOWNSTREAM UPSTREAM

VALUES USED:

PRSS =1090

DP (PSID)

1090

# Design Calculations

# Southern Company Services

| Project<br>E.I. Hatch Nuclear Plant Unit 2        | Prepared By C. Wulson            | Date 09/19/86     |
|---------------------------------------------------|----------------------------------|-------------------|
| Subject/Title<br>Unit 2 RCIC Motor Operated Valve | Reviewed By Mycks                | Date 9/20/86      |
| Differential Pressure Calculation                 | Calculation Number<br>SNH-86-018 | Sheet<br>48 of 52 |

## TWO INCH GLOBE VALVE PVEL CALCULATIONS PAGE 1 OF 2

```
A3: [W11] ^MPL
B3: ^VALVE
C3: ^CLOSING
D3: ^UPSTR
E3: ^DNSTR
F3: 'UPSTRSYS
G3: 'DNSTRSYS
I3: ^dT UP
J3: ^dTDN
K3: ^TIMEul
L3: ^TIMEu2
M3: ^TIMEd1
N3: ^TIMEd2
03: "% OPEN
P3: ^% OPEN
Q3: ^% OPEN
R3: ^% OPEN
S3: * CV
T3: * CV
U3: * CV
V3: * CV
W3: ^dVu
x3: ^dvd
Y3: Pvu
Z3: Pvd
AA3: 'Pvel
A4: [W11] ^NUMBER
B4: "DIA, "
C4: ^T, SECS
D4: ^PIPE L'
E4: ^PIPE L'
F4: 'VEL FPS
G4: 'VEL FPS
O4: ^UPSTR1
P4: ^UPSTR2
Q4: DNSTR1
R4: ^DNSTR2
S4: ^UPSTR1
T4: ^UPSTR2
U4: ^DNSTR1
V4: ^DNSTR2
A5: [W11] \-
B5: \-
C5: \-
D5: \-
E5: \-
F5: \-
```

G5: \-



| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By                      | Date 09 19 86  |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By Mc Hoh               | Date 9/20/86   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet 49 of 52 |

#### TWO INCH GLOBE VALVE PVEL CALCULATIONS

C27: 'DENSITY

D27: 61.996

C28: 'C

D28: 4000

E27: 'LB/FT3

E28: 'FT/SEC

PAGE 2 OF 2

```
H5: [W2] \-
15: \-
J5: \-
K5: \-
L5: \-
M5: \-
N5: \-
05: \-
P5: \-
Q5: \-
R5: \-
S5: \-
T5: \-
U5: \-
V5: \-
W5: \-
X5: \-
Y5: \-
Z5: \-
AA5: \-
A6: [W11] '1E41-FØ59
B6: 1.75
C6: 10
D6: 25
E6: 31.42
F6: 7.601
G6: 7.601
H6: [W2] '|
I6: (2*D6)/$D$28
J6: (2*E6)/$D$28
K6: +$C6*Ø.5
L6: +$C6*Ø.5+I6
M6: +$C6*Ø.5
N6: +$C6*Ø.5+J6
06: (+K6*100)/$C6
P6: (+L6*100)/$C6
Q6: (+M6*100)/$C6
R6: (+N6*100)/$C6
S6: +06*Ø.8
T6: +P6*0.8
U6: +Q6*Ø.8
V6: +R6*Ø.8
W6: (+F6*(T6-S6))/100
X6: (+G6*(V6-U6))/100
Y6: (W6*$D$27*$D$28)/(144*32.2)
Z6: (X6*$D$27*$D$28)/(144*32.2)
AA6: +Y6+Z6
```

# Design Calculations

Southern Company Services 🛕

| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By C. Wilson            | Date 09/19/86  |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By Milliake             | Date 9/20/8/   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet 50 of 52 |

## GATE VALVE PVEL CALCULATIONS

PAGE 1 OF 3

A3: [W11] ^MPL B3: ^VALVE C3: ^CLOSING D3: ^UPSTR E3: ^DNSTR F3: 'UPSTRSYS G3: 'DNSTRSYS I3: ^dT UP J3: ^dTDN K3: ^TIMEul L3: ^TIMEu2 M3: ^TIMEd1 N3: ^TIMEd2 O3: ^RISEul P3: ^RISEu2 Q3: ^RISEd1 R3: ^RISEd2 S3: ^CHORDul T3: ^CHORDu2 U3: ^CHORDd1 V3: CHORDd2 W3: 'MAX AREA X3: ^Aflul Y3: ^Aflu2 Z3: ^Afldl AA3: ^Af1d2 AB3: ^a/Aul AC3: ^a/Au2 AD3: ^a/Ad1 AE3: ^a/Ad2 AF3: 'Vul AG3: ^Vu2 AH3: "Vd1 AI3: 'Vd2 AJ3: ^dVu AK3: ^dVd AL3: ^Pvu AM3: "Pvd AN3: Pvel A4: [W11] ^NUMBER B4: ^DIA, " C4: T, SECS D4: 'PIPE L' E4: 'PIPE L' F4: "VEL FPS

G4: ^VEL FPS W4: 'FLOW A5: [W11] \-



GATE VALVE PVEL CALCULATIONS

PAGE 2 OF 3

```
B5: \-
C5: \-
D5: \-
E5: \-
F5: \-
G5: \-
H5: [W2] \-
15:
J5: \-
K5:
    1-
L5:
M5: \-
N5: \-
05:
P5:
Q5:
R5: \-
S5: \-
T5:
U5: \-
V5:
W5:
X5:
Y5:
Z5: \-
AA5: \-
AB5: \-
AC5: \-
AD5:
AE5:
AF5: \-
AG5:
AH5:
AI5: \-
AJ5: \-
AK5:
AL5: \-
AM5: \-
AN5: \-
A6: [W11] '1E51-FØ13
B6: 3+5/16
C6: 15
D6: 99.9
E6: 16.6
F6: 11.62
G6: 12.46
H6: [W2] '|
16: (2*D6)/$D$29
```

# Design Calculations

. .. .

# Southern Company Services

|   | • |
|---|---|
| , |   |

| Project<br>E.I. Hatch Nuclear Plant Unit 2     | Prepared By Wilson               | Date 09/19/84  |
|------------------------------------------------|----------------------------------|----------------|
| Subject/Title Unit 2 RCIC Motor Operated Valve | Reviewed By Mc Gal               | Date 9/20/8/   |
| Differential Pressure Calculation              | Calculation Number<br>SNH-86-018 | Sheet 52 of 52 |

### GATE VALVE PVEL CALCULATIONS

PAGE 3 OF 3

```
J6: (2*E6)/$D$29
K6: ($D$30*$C6)-I6
L6: +$D$30*$C6
M6: ($D$30*$C6)-J6
N6: +$D$30*$C6
O6: (K6/$C6)*($B6/2)
P6: (L6/$C6)*($B6/2)
Q6: (M6/$C6)*($B6/2)
R6: (N6/$C6)*($B6/2)
S6: @SQRT(8*06*(($B6/2)-(06/2)))
T6: @SQRT(8*P6*(($B6/2)-(P6/2)))
U6: @SQRT(8*Q6*(($B6/2)-(Q6/2)))
V6: @SQRT(8*R6*(($B6/2)-(R6/2)))
W6: 2*((1/12)*(((3*B6*B6)/4)+(4*B6*B6)))
X6: (F6) (W6)-(2*((06/(6*S6))*((3*06*06)+(4*S6*S6))))
Y6: (F6) (W6)-(2*((P6/(6*T6))*((3*P6*P6)+(4*T6*T6))))
Z6: (F6) ($W6)-2*((Q6/(6*U6))*((3*Q6*Q6)+(4*U6*U6)))
AA6: (F6) ($W6)-2*((R6/(6*V6))*((3*R6*R6)+(4*V6*V6)))
AB6: (F6) +X6/((@PI*$B6*$B6)/4)
AC6: (F6) +Y6/((@PI*$B6*$B6)/4)
AD6: (F6) +Z6/((@PI*$B6*$B6)/4)
AE6: (F6) +AA6/((@PI*$B6*$B6)/4)
AF6: (F6) +AB6*$F6
AG6: (F6) +AC6*$F6
AH6: (F6) +AD6*$G6
AI6: (F6) +AE6*$G6
AJ6: (F6) +AF6-AG6
AK6: (F6) +AH6-AI6
AL6: (F6) (AJ6*$D$28*$D$29)/(144*32.2)
AM6: (F6) (AK6*$D$28*$D$29)/(144*32.2)
AN6: (F6) +AL6+AM6
C28: 'DENSITY
D28: 61.996
E28: 'LB/FT3
C29: 'C
D29: 4000
E29: 'FT/SEC
C30: 'FUDGE FAC
D30: 1
E30: 'DIMLESS
```

ENCLOSURE 5

|                                                                   |                                                                                                                                                                                                                                                               | YEAR                                                                     | 1986 |        | 1987           |    |     |    |     |    |    |    |    |    |          |    |    |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------|--------|----------------|----|-----|----|-----|----|----|----|----|----|----------|----|----|
|                                                                   | ACTIVITY                                                                                                                                                                                                                                                      | \ MONTH                                                                  | œ    | NO     | DE             | JA | FE  | MA | AP  | MA | JU | JU | AU | SE | $\infty$ | NO | DE |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | BUDGET & APPROVAL PREPARE SPECIFICAT REVIEW SPECIFICAT DETERMINE FULL DP ISSUE INQUIRY PAC REVIEW BID PACKAG ISSUE PURCHASE OR DETERMINE THRUST PREPARE SITE PROC *SET TORQUE SWITCH DETERMINE THRUST PREPARE SITE PROC *SET TORQUE SWITCH *SET TORQUE SWITCH | TION ION VALVES KAGE E DER VALUES U1 EDURES U1 ES U1 VALUES U2 EDURES U2 | *-   | *      | _*<br>*<br>*_* |    | *_* | *  | * * | *  |    | *  | .* | .* | *        |    |    |
|                                                                   | UNIT # 1 1987 OUTAGE<br>UNIT # 2 1987 OUTAGE                                                                                                                                                                                                                  |                                                                          |      | ****** |                |    |     |    |     |    |    |    |    |    |          |    |    |

<sup>\*</sup> NOTE: BASED ON CURRENT INFORMATION ON OUTAGE SCHEDULES.