

NUCLEAR PEGULATORY COMMISSION WASHINGTON, D. C. 20555

July 28, 1988

Docket Nos. 50-312, 346, 269, 270, 287, 313, 289 and 302

FAL'LITIES:

RANCHO SECO

OCONEE

ARKANSAS NUCLEAR ONE, UNIT 1 THREE MILE ISLAND, UNIT 1

CRYSTAL RIVER 3 DAVIS-BESSE

LICENSEES:

SACRAMENTO MUNICIPAL UTILITY DISTRICT

DUKE POWER

ARKANSAS POWER & LIGHT

GPU NUCLEAR

FLORIDA POWER CORPORATION

TOLEDO EDISON

SUBJECT:

SUMMARY OF MEETING HELD WITH BAW OWNERS GROUP ON JULY 14, 1988 RE: GL 87-12, "LOSS OF RHR WHILE THE

REACTOR COOLANT SYSTEM IS PARTIALLY FILLED"

On July 14, 1988, the NRC staff met with representatives of the B&W Owners Group to discuss industry and NRC actions to resolve the issues raised in Generic Letter 87-12. Persons attending the reeting are identified in Enclosure 1. Viewgraphs presented at the meeting by the NRC staff are contained in Enclosure 2.

The purpose of the meeting was to emphasize the importance of the issues raised in GL 87-12 and to discuss both short-term and longer-term actions that the NRC staff is considering. The meeting provided an opportunity for the B&W Owners Group to comment on the various actions that are being considered. The NRC staff believes that inadequate attention has been given by licensees to this mode of operation, that responses to GL 87-12 were generally inadequate, and prompt action is needed to reduce the probability of losses of decay heat removal in this mode of operation.

The short-term actions being considered are containment closure prior to the time core damage could occur, providing RCS temperature instrumentation, improved level instrumentation, holding off on any maintenance that could potentially perturb RCS water inventory, assuring that backup cooling equipment is available, controlling hot leg and cold leg closure such that rapid RCS level changes cannot occur (steam pressurization), and crew briefings with operating staffs of the Diablo Canyon event of April 10, 1987 (NUREG-1269) and other events.

8808170324 880728 PDR ADOCK 05000269 DFO!

Programmed enhancements for the longer term include permanent improved instrumentation, analyses, and technical specification changes where impacts are identified with respect to the recommended enhancements.

B&W plants are less vulnerable to core uncovery while drained down because the core flood check valves prevent differential pressure from developing across the internals and therefore prevent early core uncovery due to steam pressurization. Also, B&W plants do not drain down to the mid-loop level often. Other differences are shown on Enclosure 3.

The B&W Owners Group felt that, because of these differences and the fact that only momentary losses of DHR flow have occurred at B&W plants, B&W plants should either be excluded from the letter NRC is considering or the more foregiving design appropriately noted.

The Group also recommended that the usual Technical Specification definition of containment closure (for fuel movement) should be adequate for a definition of containment closure in the event of a total loss of decay heat removal ability.

Charles M. Trammell, Senior Project Manager

Project Directorate V

Division of Reactor Projects - III,

IV, V and Special Projects

Enclosure:

1. Attendees

2. Staff Viewgraphs

3. B&W Design Differences

cc: w/enclosures See next page Mr. Kenneth P. Baskin Southern California Edison Company

CC Charles R. Kocher, Assistant General Counsel James Beoletto, Esquire Southern California Edison Company Post Office Box 800 Rosemead, California 91770

David R. Pigott Orrick, Herrington & Sutcliffe 600 Montgomery Street San Francisco, California 94111

Mr. Robert G. Lacy Manager, Nuclear San Diego Gas & Electric Company P. O. Box 1831 San Diego, California 92112

Resident Inspector/San Onofre NPS U.S. NRC P. O. Box 4329 San Clemente, California 92672

Mayor City of San Clemente San Clemente, California 92672

Chairman Board of Supervisors County of San Diego 1600 Pacific Highway Room 335 San Diego, California 92101

Director
Energy Facilities Siting Division
Energy Resources Conservation &
Development Commission
1516 - 9th Street
Sacramento, California 95814

Regional Administrator, Region V U.S. Nuclear Regulatory Commission 1450 Maria Lane, Suite 210 Walnut Creek, California 94596 San Chofre Nuclear Generating Station, Unit No. 1

Mr. Jack McGurk, Acting Chief Radiological health Branch State Department of Health Services 714 P Street, Office Bldg. 8 Sacramento, California 95814

Mr. Hans Kaspar, Executive Director Marine Review Committee, Inc. 531 Encinitas Boulevard, Suite 105 Encinitas, California 92024

Mr. Dennis M. Smith, Chief Radiological Programs Division Governor's Office of Emergency Svcs. State of California 2800 Meadowview Road Sacramento, California 95832 File CG Meeting

Nuive Charles Trammell WARREN LYON ASHOK THADANI Im Martin Kobert Wright CRAIG HARBUCK MAYNE Hadas Fabert Jones Alfred Spano Werry Magetis Mike Woterman Wayne Morgan 5. A. Holland Dan Williams RICHARD B. THORNTON LARRY ROOD J. H. TAYLOR Rosen Histon Robert L. Black Yayl Guill Louis Simon

Alfolution NEC NRR SRXB NRR /DEST MC/NER/ADT NRR/DRSP NRR/ORSP NRR/DEST/SRXB NER/DEST/SPXB RES/DRPS/RPS/B RES DROS RPSIB INEL/EGIG Idaho (NR. Duke Power 10PS Eng/Geonee Duke Power co - nuclear comation Arkan sas Power + Light (e. ARKANSAS POWER + LIGHT Dicarouseco- OR Baw NUMARC Bow Duke Power TOLEDO EDISON

COOLING CONDITIONS

JULY 14, 1988

STAFF PRESENTATION TO RABCOCK AND WILCOX OWNERS REPRESENTATIVES

CHIEF, REACTOR SYSTEMS BRANCH

ISSUE

WE ARE SERIOUSLY CONCERNED THAT PWR
OPERATION DURING DECAY HEAT REMOVAL
SYSTEM COOLING IS A SIGNIFICANT
CONTRIBUTOR TO THE LIKELIHOOD OF A
RELEASE DUE TO A CORE DAMAGE ACCIDENT

OVERVIEW

- I. BACKGROUND
- II. CORRECTIVE ACTIONS
- III. FUTURE STAFF ACTION

I. BACKGROUND

- A. EXPERIENCE
- B. PHENOMENA
- C. PROBABILISTIC RISK ANALYSIS (PRA)
- D. GENERIC LETTER (GL) 87-12
- E. SERIOUS DEFICIENCIES
- F. REDUCED RCS INVENTORY OPERATION

A. EXPERIENCE

ACCIDENTS CONTINUE TO INITIATE AT AN UNACCEPTABLY HIGH RATE. TWO REPORTED IN MAY. NUMEROUS PUBLICATIONS AND MEETINGS HAVE NOT LED TO SOLUTION.

B. PHENOMENIA

PHENOMENA IDENTIFIED WHICH POTENTIALLY
LEAD TO SEVERE CORE DAMAGE IN SHORTER
TIME THAN PREVIOUSLY PELIEVED. OTHER
"NEW" PHENOMENA AFFECT THE REACTOR
COOLANT SYSTEM (RCS), DECAY HEAT REMOVAL
(DHR) SYSTEM, INSTRUMENTATION AND OTHER
EQUIPMENT.

C. PRA

LIKELIHOOD OF RELEASE DUE TO CORE DAMAGE ACCIDENT DURING DECAY HEAT REMOVAL OPERATION IS OF CONCERN.

D. GL 87-12

a. NO RESPONSES FULLY SATISFACTORY.

SOME LICENSEES UNSATISFACTORY IN

EVERY ONE OF 12 CATEGORIES

EVALUATED. SERIOUS LACK OF

UNDERSTANDING AND INADEQUATE

PREPARATION FOR OPERATION IDENTIFIED.

SOME LICENSEES NOT TAKING CORRECTIVE

ACTION OF ANY KIND.

D. GL 87-12 - cont

b. INDIVIDUAL LICENSEES HAVE SHOWN
EXCELLENT INSIGHT INTO SELECTED
AREAS SUCH AS RCS DRAINING,
CONTAINMENT CLOSURE,
INSTRUMENTATION, DHR SYSTEM
OPERATION, OTHERS. INFORMATION IS
NOT EFFECTIVELY SHARED.

D. GL 87-12 - cont

FOR EXAMPLE, DIABLO CANYON HAS RESPONDED TO CONCERNS AND ADDRESSED SUCH ITEMS AS:

- 1. CONTAINMENT CLOSURE
- 2. LEVEL INDICATION IN CONTROL ROOM
- 3. RCS TEMPERATURE INDICATION
- 4. PREVENTION OF RCS PERTURBATIONS
- 5. RHR PROCEDURES
- 6. BACKUP EQUIPMENT
- 7. ANALYSES
- 8. QUALITY CONTROL AND FOLLOWUP
- 9. PROCEDURES
- 10. OTHERS

E. SERIOUS DEFICIENCIES

- 1. EVENTS CONTINUE TO INITIATE WHICH HAVE POTENTIAL TO BECOME SERIOUS
- 2. MITIGATION PLANNING TO PREVENT CORE
 DAMAGE IS OFTEN POOR
- 3. PLANNING TO PREVENT A RELEASE
 SHOULD CORE DAMAGE OCCUR IS OFTEN
 NONEXISTENT
- 4. ANALYSES OFTEN NONEXISTENT. PLANTS
 OPERATED IN UNANALYZED AREAS WHERE
 IMPLICATIONS NOT UNDERSTOOD.
- 5. MANY MORE

- F. REDUCED RCS INVENTORY OPERATION
- 1. LOSS OF DHR A FREQUENT OCCURRENCE
- 2. ONE THIRD (40) HAVE OCCURRED DURING REDUCED INVENTORY OPERATION

- 5. REDUCED RCS INVENTORY OPERATION-CONT
- 3. THIS IS OF SERIOUS CONCERN BECAUSE:
 - A. TWO FISSION PRODUCT BARRIERS
 TYPICALLY ALREADY BREACHED
 (RCS PRESSURE BOUNDARY AND
 CONTAINMENT)
 - B. LOSS OF DHR CHALLENGES THE THIRD BARRIER

F. REDUCED RCS INVENTIONY OPERATION-CONT

3. CONCERN - COT

C. POOR GIALITY THYPORARY INSTRIMENATION USED

D. MICH INSTRIMENTALTON AND EQUIPMENT UNAVAILABLE

F. PROCEDURES POOR, SMETTINE NYMEXISTENT

F. RCS CONDITIONS HAVE NOT BESN ANALYZED
AND NOT UNDEPSTOOD

- F. RETNUCED RCS INVENTORY OFFRATION-CONT.
- INVENTORY OPERATION CONTRIBUTE

 SIGNIFICANTLY TO THE LIKELIHOOD OF
 A SEVERE CORE DAMAGE ACCIDENT AND ARE
 OF SERIOUS CONCERN ALTHOUGH OTHER REGIONS
 MUST ALSO BE ADDRESSED.

II. CORRECTIVE ACTIONS

- A. APPROACH
- B. EXPEDITIOUS ACTIONS
- C. PROGRAMMED ENHANCEMENTS

A. APPROACH

- 1. SOME REDUCTION IN CORE DAMAGE

 LIKELIHOOD "EXPEDITIOUS ACTIONS"

 ACCOMPLISH IMMEDIATE, EFFECTIVE

 REDUCTION IN LIKELIHOOD OF RELEASE

 IF CORE DAMAGE ACCIDENT OCCURS
- SIMULTANEOUSLY INITIATE ACTIONS
 WHICH TAKE A LONGER TIME TO DEVELOP
 "PROGRAMMED ENHANCEMENTS"
- 3. MODIFY EXPEDITIOUS ACTIONS AS
 APPROPRIATE AS PROGRAMMED
 ENHANCEMENTS BECOME AVAILABLE

II. CORRECTIVE ACTIONS

- A. APPROACH
- B. EXPEDITIOUS ACTIONS
 - 1. ASSURE CONTAINMENT CLOSURE
 - 2. PROVIDE RCS TEMPERATURE
 - 3. PROVIDE LEVEL INFORMATION
 - 4. DO NOT PERTURB RCS
 - 5. ASSURE BACKUP COOLING EQUIPMENT
 - 6. CONTROL HOT AND COLD LEG CLOSURE
 - 7. DISCUSS DIABLO CANYON IMPLICATIONS
 WITH OPERATION STAFF
- C. PROGRAMMED ENHANCEMENTS

1. ASSURE CONTAINMENT CLOSURE

- a. DEVELOP PROCEDURES TO REASONABLY
 ASSURE CONTAINMENT CLOSURE PRIOR TO
 THE TIME A CORE DAMAGE ACCIDENT CAN
 OCCUR FOLLOWING LOSS OF DECAY HEAT
 REMOVAL.
- b. IMPLEMENT PROCEDURES WHEN DRAINING RCS WHILE LEVEL IS BELOW TOP OF REACTOR VESSEL OR WHILE OPERATING IN A REDUCED INVENTORY CONDITION.
- PRIOR TO REACHING CORE DAMAGE, THEN
 PENETRATIONS CAUSING CLOSURE
 FAILURE SHOULD NOT BE OPENED.

2. PRIVIDE RCS TEMPERATURE

A. PROVINE TWO TSTERATURES REPRESENTATIVE
OF CORE EXIT MIENEVER RCS WATER LEVEL AT
OR RELOW LEVEL OF TOP OF HOT LETS AT THE
REACTOR VESSEL

B. ETHER BE ARLE TO MONITOR IN CONTROL ROOM
OR FROM LOCATION ONTSIDE OF COMPANIENT
RHILDING WITH CONTINUOUS COMMUNICATION
CAPABILITY TO OPFRATOR

3. PRIVIDE LEVEL INFORMATION

APPLICABLE TO PLANTS THAT DO NOT HAVE LEVEL, INDICATION IN THE CONTROL, ROCM

PROVIDE ESSENTIALLY CONTINUOUS COPPUNICATION OF WATER LEVEL INFORMATION TO THE OFFBATORS MIFNEVER EITHER:

- 1. ROTH CONTAINMENT CONDITIONS PERMIT LOCAL
 ORSERVATION AND PCS LEVEL IS AT OR BELOW
 THE LEVEL OF THE TOP OF THE HOT LEGS AT THE
 REACTOR VESSEL.
- 2. IF DRAINING RCS, THEN RCS LEVEL BELOW TOP OF REACTOR VESSEL.

4. DO NOT PERTURB RCS

DO NOT ALLOW PERTURBATION OF THE RCS AND/OR SYSTEMS USED TO MAINTAIN THE RCS IN A STABLE AND CONTROLLED CONDITION WHILE DRAINING RCS OR AT REDUCED RCS INVENTORY.

- 5. ASSURE BACKUP COOLING EQUIPMENT
- a. IN ADDITION TO NORMAL CHR SYSTEM, PROVIDE SEVERAL INDEPENDENT MEANS OF ADDING INVENTORY TO THE RCS DURING REDUCED INVENTORY OPERATION.
- b. WATER ADDITION RATE OF EACH MEANS
 TO BE SUFFICIENT TO MAINTAIN CORE
 IN A COVERED CONDITION.

6. CONTROL HOT AND COLD LEG CLOSURE.

ESSENTIALLY DO NOT SIMULTANEOUSLY BLOCK ALL HOT LEGS UNLESS A VENT PATH IS PROVIDED TO THE REACTOR VESSEL UPPER PLENUM THAT IS LARGE ENOUGH TO PREVENT RCS PRESSURIZATION.

7. DISCUSS DIABLO CANYON EVENT . WITH OPERATIONS STAFF

- a EVENT
- b. LESSONS LEARNED
- c. IMPLICATIONS FOR LICENSEE PLANT

C. PROGRAMMED ENHANCEMENTS

- INSTRUMENTATION
- 2. PROCEDURES
- 3. EQUIPMENT
- 4. ANALYSES
- 5. TECHNICAL SPECIFICATIONS

PROCEDURES ARE CONSIDERED TO REPRESENT THE LARGEST EFFORT, FOLLOWED BY ANALYSES. WE HAVE MINIMIZED INSTRUMENTATION RECOMMENDATIONS TO THE MINIMUM BELIEVED NECESSARY, AND WE ANTICIPATE EXISTING EQUIPMENT IS SUFFICIENT TO MEET RECOMMENDATIONS.

B. EXPEDITIOUS ACTIONS

- 1. CONTAINMENT CLOSURE
- 2. RCS TEMPERATURE
- 3. RCS LEVEL
- 4. DO NOT PERTURB RCS
- 5. BACKUP EQUIPMENT
- 6. HOT AND COLD LEG CLOSURE
- 7. DISCUSS DIABLO CANYON
 IMPLICATIONS WITH OPERATIONS
 STAFF

C. PROGRAMMED ENHANCEMENTS

- 1. INSTRUMENTATION
- 2. PROCEDURES
- 3. EQUIPMENT
- 4. ANALYSES
- 5. TECHNICAL SPECIFICATIONS

- C. PROGRAMMED ENHANCEMENTS
- 1. INSTRUMENTATION
 - a. RCS LEVEL
 - b. RCS TEMPERATURE
 - c. DHR SYSTEM MONITORING
 - d. ABNORMAL CONDITION INDICATIONS

1. INSTRUMENTATION - GENERAL

RELIABLE INDICATIONS TO BE PROVIDED IN THE CONTROL ROOM UNDER NORMAL AND ACCIDENT CONDITIONS WHENEVER IRRADIATED FUEL IS IN REACTOR VESSEL.

RELIABLE MEANS THE ITEM CAN BE
REASONABLY EXPECTED TO PERFORM ITS
INTENDED FUNCTION. CONTROL GRADE WILL
GENERALLY MEET THIS REQUIREMENT. UNDER
SOME CIRCUMSTANCES, A LESSER QUALITY IS
SUFFICIENT.

1. INSTRUMENTATION - cont

a. RCS LEVEL

PROVIDE TWO INDEPENDENT RCS LEVEL INDICATIONS IN THE CONTROL ROOM.

b. RCS TEMPERATURE

CONTINUOUSLY DISPLAY TWO TEMPERATURE INDICATIONS WHENEVER REACTOR VESSEL HEAD IS LOCATED ON TOP OF THE REACTOR VESSEL.

1. INSTRUMENTATION - cont

c. DHR MONITORING

PROVIDE THE CAPABILITY OF MONITORING DHR SYSTEM PERFORMANCE WHENEVER A DHR SYSTEM IS IN USE FOR COOLING THE RCS.

d. ABNORMAL CONDITION INDICATIONS

PROVIDE VISUAL AND AUDIBLE INDICATIONS
OF ABNORMAL CONDITIONS IN TEMPERATURE,
LEVEL, AND DHR SYSTEM PERFORMANCE.

2. PROCEDURES

- THAT COVER NORMAL OPERATION OF NSSS, CONTAINMENT AND SUPPORTING SYSTEMS UNDER CONDITIONS WHERE COOLING NORMALLY PROVIDED BY DHR SYSTEMS.
- b. PROVIDE EMERGENCY PROCEDURES THAT COVER ABOVE IDENTIFIED AREAS IF AN OFF-NORMAL CONDITION DEVELOPS.
- c. PROVIDE ADMINISTRATIVE CONTROLS TO SUPPORT PROCEDURES AND ALL RECOMMENDED ACTIONS.

3. EQUIPMENT

- PROVIDE ADEQUATE, RELIABLE

 EQUIPMENT FOR RCS COOLING AND FOR

 AVOIDING A LOSS OF RCS COOLING.
- b. PROVIDE PERSONNEL COMMUNICATIONS.
- C. PROVIDE ADDITIONAL EQUIPMENT TO

 MITIGATE A LOSS OF DHR OR A LOSS OF

 RCS INVENTORY SHOULD THESE OCCUR.

4. ANALYSES

- a. PROVIDE BASIS FOR PROCEDURES,
 INSTRUMENTATION, EQUIPMENT
 OPERATION, AND CONTAINMENT.
- b. ENCOMPASS THERMODYNAMIC AND CONFIGURATION CONDITIONS WHICH CAN BE REASONABLY ENCOUNTERED.
- C. EMPHASIZE DEVELOPMENT OF COMPLETE UNDERSTANDING OF NSSS BEHAVIOR DURING NONPOWER OPERATING REGIONS OF INTEREST.

5. TECHNICAL SPECIFICATIONS

IDENTIFY TECHNICAL SPECIFICATIONS
IMPACTED BY ABOVE RECOMMENDED ACTIONS
AND SUBMIT APPROPRIATE CHANGES.

III. FUTURE STAFF ACTION

STAFF IS STUDYING OPTIONS TO IMPLEMENT RECOMMENDATIONS IN BEST MANNER. THESE RANGE FROM VOLUNTARY LICENSEE RESPONSE TO ORDERS.

CONCLUSIONS

WE'VE COVERED THE ISSUE, THE BACKGROUND

AS WE SEE IT, RECOMMENDED CORRECTIVE

ACTIONS, AND THE OPTIONS WE ARE

CONSIDERING.

WE WELCOME INDUSTRY REPRESENTATIVE
RESPONSE TO MOST RAPIDLY ACHIEVE THE
DUAL OBJECTIVES OF:

- SHORT TERM PROTECTION FROM A RELEASE DUE TO A CORE DAMAGE ACCIDENT AND
- 2. LONG TERM RESOLUTION OF THE
 PROBLEMS ASSOCIATED WITH OPERATION
 DURING CONDITIONS WHERE COOLING BY DHR
 SYSTEMS IS DESIRED.

DAW NSS LESS SUSCEPTIBLE TO LOSS OF DAR DUE TO MID LOOP OPERATIONS

- G MINIMUM LEVEL REQUIRED FOR MAINTENANCE IS APPROXIMATELY 30 INCHES ABOVE DHR DROP LINE
- O OTSG DESIGN PROVIDES POSITIVE
 MEANS OF VENTING RCS THUS
 PROVIDING A STABLE LEVEL
 INDICATION DURING DRAIN DOWN
- O REACTOR COOLANT INJECTED INTO CF
 NOZZLES (WHICH ARE NIGHER
 ELEVATIONS THAN BOT LEG NOZZLES)
 DIRECTLY INTO INLET PLENUM THUS
 ELIMINATING LEVEL CHANGES DUE TO
 WATER FLOW

DHR DUE TO MID LOOP OPERATIONS (CONT'D)

O INCORE THERMOCOUPLES EXIT THROUGH
BOTTOM OF RV THUS INCREASING
PROBABILITY THAT CORE EXIT
THERMOCOUPLES WOULD BE AVAILABLE
DURING DRAINED DOWN OPERATIONS

O REACTOR VESSEL INTERNAL VENT
VALVES CLARATES CONCERN ABOUT
UPPER VESSEL PLESSURIZATION
FORCING VESSEL DOWN

Programmed enhancements for the longer term include permanent improved instrumentation, analyses, and technical specification changes where impacts are identified with respect to the recommended enhancements.

B&W plants are less vulnerable to core uncovery while drained down because the core flood check valves prevent differential pressure from developing across the internals and therefore prevent early core uncovery due to steam pressurization. Also, B&W plants do not drain down to the mid-loop level often. Other differences are shown on Enclosure 3.

The B&W Owners Group felt that, because of these differences and the fact that only momentary losses of DHR flow have occurred at B&W plants, B&W plants should either be excluded from the letter NRC is considering or the more foregiving design appropriately noted.

The Group also recommended that the usual Technical Specification definition of containment closure (for fuel movement) should be adequate for a definition of containment closure in the event of a total loss of decay heat removal ability.

original signed by Charles M. Trammell, Senior Project Manager Project Directorate V Division of Reactor Projects - III, IV, V and Special Projects

Enclosure:

1. Attendees

2. Staff Viewgraphs

3. B&W Design Differences

cc: w/enclosures See next page

DISTRIBUTION

Docket File

PDR

LPDR

PDV Reading

GKnighton

Project Manager

OGC-WF

EJordan

BGrimes

NRC Participants

ACRS (10) MRJohnson

DKirsch

Plant Service List (See next page)

Licensee

MT raggie 11: dr

DBSMAPDI GWATIGHTON 7/28/88

OFFICIAL RECORD COPY

DFOI