

Log # TXX-6398 File # 10010 Ref # 10CFR50.30(a)

April 15, 1987

William G. Counsil Executive Vice President

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

SUBJECT: COMANCHE PEAK STEAM ELECTRIC STATION (CPSES)

DOCKETS NOS. 50-445 AND 50-446

REQUEST FOR ADDITIONAL INFORMATION - NUREG-0737, ITEM II.D.1

PERFORMANCE TESTING OF RELIEF AND SAFETY VALVES

Gentlemen:

By letter dated March 27, 1987, the NRC staff requested additional information regarding the TU Electric submittal of June 13, 1986, "NUREG-0737, Item II.D.1 - Performance Testing of Relief and Safety Valves".

Attached is the information requested.

Very truly yours,

W. S. Counsil

W. G. Counsil

G. S. Keeley

Manager, Nuclear Licensing

BSD/amb Attachment

c - Mr. E. H. Johnson, Region IV

Mr. D. L. Kelley, RI - Region IV Mr. H. S. Phillips, RI - Region IV

8704210075 870415 PDR ADOCK 05000445 A PDR

Aoy 6

Attachment to TXX-6398 April 15, 1987 Page 1 of 23

QUESTION 1: Load Combination Equation

In the load combination equation for the emergency service condition given on Page A-12 of Appendix A of Reference 1 [TU Electric letter TXX-4849 dated June 13, 1986], the summation of the moment, M_{Wt} , due to deadweight, and the moment, M_{SOTE} , due to safety valve discharge, is expressed as $M_{SOTE} + |M_{Wt}|$. Explain why the absolute value of the deadweight moment is used in this equation. This summation will produce unconservative results when both M_{SOTE} and M_{Wt} have negative values.

RESPONSE 1:

The computer program used for the stress evaluations automatically considers the absolute value of the respective moment from the thrust events including SOTE. Consequently, MSOT_E is actually the absolute value of MSOT_E and has been combined with the absolute value of MWt .

Attachment to TXX-6398 April 15, 1987 Page 2 of 23

QUESTION 2: Piping Stress Comparison

- A. The piping stress comparison presented in Appendix A of Reference 1 [TU Electric letter TXX-4849 dated June 13, 1986] included the design, fatigue, and faulted condition stresses for the Class 1 (upstream) portion of the safety valve and PORV piping. The upset and emergency condition stresses were not provided. Table A-5 in the above reference showed that the faulted condition stresses were low enough to fall below the emergency condition stress limits. However, it is difficult to draw the same conclusion for the upset condition, since not all of the stresses listed in Table A-5 are below the upset condition stress limit. The Licensee should provide a stress comparison for the upset condition to demonstrate that the PORV piping stresses are within allowable limits.
- B. Reference 1 did not include a stress comparison for the downstream piping. Provide a comparison of the normal, upset, emergency, and faulted condition stresses and the applicable stress limits for the downstream piping in a similar manner as those for Class 1 piping.
- C. Provide sketches of the upstream and downstream piping indicating the locations of the structural nodes used in the stress comparisons.

RESPONSE 2:

The loadings for the design condition listed in Table A-4 are for the combination P + DWT + SRSS (OBE, SOT_U). Therefore, the normal and upset conditions are automatically covered by the design data in Table A-4 and the emergency and faulted conditions are automatically covered by the faulted data in Table A-5 of the reference.

Attachment to TXX-6398 April 15, 1987 Page 3 of 23

RESPONSE 2: (cont'd) Since the transmittal and review of the reference data, the line has been reanalyzed to reflect pipe support changes. A comparison of the normal, upset, emergency and faulted condition stresses and the applicable stress limits for both the upstream and downstream piping is presented in the attached Tables 2-1 through 2-9 for the revised analysis. Figures A-1 and A-2 illustrate the structural node points and support locations.

Attachment to TXX-6398 April 15, 1987 Page 4 of 23

QUESTION 3: Piping Support Loads

- A. The piping support evaluation was performed in accordance with the ASME Boiler and Pressure Vessel Code, Section III, Subsection NF. The stress limits listed in Tables A-1 and A-2 (Reference 1) [TU Electric letter TXX-4849 dated June 13, 1986] for load combinations for normal, upset, emergency, and faulted conditions appear to be oriented toward pipe stresses only, and not pipe support stresses. The allowables for the supports would be expected to be multiples of Subsection NF stress limits. Therefore, clarify the stress limits used for the supports for all load combinations. Also, identify the stress limits used for standard components such as snubbers.
- B. Present a table comparing the worst case load (or stress) in several representative supports with the applicable allowable load (or stress) and identify the associated load combination equation. Also indicate in the table the support number and support type. If the support number used in the table are not shown in the piping sketche, in Figures A-8 through A-13 in Reference 1, provide additional sketches to identify the support locations.
- RESPONSE 3: Regarding Item 3A, the load combinations and stress allowables for the ASME Code Class 1, 2, and 3 pipe supports are in conformance with Subsection NF of the ASME Section III Code. This includes standard component supports. These allowables are tabulated in FSAR Tables 3.9B-1C, 3.9B-1D, and 3.9B-1E.

For Item 3B, the worst case load/stress versus the allowables for representative pipe supports in Figures A-8 through A-13 are tabulated in Tables 3-1 through 3-6, respectively. Table 3-7 contains a similar comparison for small bore pipe supports within the stress problem boundary but not shown in the piping sketches in Figures A-8 through A-13 of Reference 1.

Attachment to TXX-6398 April 15, 1987 Page 5 of 23

QUESTION 4: Provide a description of the pipe material for the Class 1 piping upstream of the valves.

RESPONSE 4: The Class 1 piping, per the as-built data, is either ASME SA-376 TP304 or TP316 stainless steel. However, the lower allowable stress values for TP304 are used in the stress analysis.

Attachment to TXX-6398 April 15, 1987 Page 6 of 23

Table 2-1
CLASS 1 (UPSTREAM) PRIMARY STRESS SUMMARY
NORMAL CONDITION

COMBINATION: P + DWT

Node Point	Piping Component	Maximum Equation #9 Stress (ksi)	Allowable Stress 1.5 S _m (ksi)		
3020	Butt Weld	10.064	24.225		
3041	Long Radius Elbow	12.123	24.225		
5000	Branch Connection	15.844	24.225		
3030	CRUN	9.905	24.225		
4332	5-D Bend	5.384	24.225		
4170	Reducer	12.867	24.225		

Table 2-2
CLASS 1 (UPSTREAM) PRIMARY STRESS SUMMARY
UPSET CONDITION

COMBINATION: P + DWT + SRSS (OBE, SOTU)

Node Point	Piping Component	Maximum Equation #9 Stress (ksi)	Allowable Stress (1.8 S _m or 1.5 S _y)* (ksi)
4480	Butt Weld	15.704	26.850
1031	Long Radius Elbow	17.089	26.850
5000	Branch Connection	26.466	26.850
4481	CRUN	15.704	26.850
4332	5-D Bend	13.625	26.850
4170	Reducer	19.561	26.850

^{*} The smaller of the given allowable is to be used.

Table 2-3
CLASS 1 (UPSTREAM) PRIMARY STRESS SUMMARY
EMERGENCY CONDITION

COMBINATION: P + DWT + SOTE

Node Point	Piping Component	Maximum Equation #9 Stress (ksi)	Allowable Stress (2.25 S _m or 1.8 S _y)* (ksi)
3161	Butt Weld	16.846	32.220
3152	Long Radius Elbow	23.471	32.220
3160	Branch Connection	31.104	32.220
3152	CRUN	16.846	32.220
4332	5-D Bend	7.885	32.220
4170	Reducer	13.730	32.220

^{*} The smaller of the given allowable is to be used.

Table 2-4
CLASS 1 (UPSTREAM) PRIMARY STRESS SUMMARY
FAULTED CONDITION

COMBINATION: P + DWT + SRSS (SSE, SOTF)

Node Point	Piping Component	Maximum Equation #9 Stress (ksi)	Allowable Stress 3.0 S _m (ksi)		
5170	Butt Weld	21.021	48.450		
1031	Long Radius Elbow	26.075	48.450		
5000	Branch Connection	40.223	48.450		
5171	CRUN	21.016	48.450		
4332	5-D Bend	17.868	48.450		
4170	Reducer	22.982	48.450		

Attachment to TXX-6398 April 15, 1987 Page 10 of 23

Table 2-5
CLASS NNS (DOWNSTREAM) PRIMARY STRESS SUMMARY
NORMAL CONDITION

COMBINATION: P + DWT

Node Point	Piping Component	Maximum Equation #9 Stress (ksi)	Allowable Stres 1.0 Sh (ksi)	
3302	Butt Weld	6.794	15.900	
3311	Long Radius Elbow	7.641	15.900	
2440	Branch Connection	5.206	15.900	
2430	CRUN	6.081	15.900	

Attachment to TXX-6398 April 15, 1987 Page 11 of 23

Table 2-6
CLASS NNS (DOWNSTREAM) PRIMARY STRESS SUMMARY
UPSET CONDITION

COMBINATION: P + DWT + SOTU

Node Point	Piping Component	Maximum Equation #9 Stress (ksi)	Allowable Stress 1.2 Sh (ksi)	
3302	Butt Weld	6.989	19.080	
3311	Long Radius Elbow	7.888	19.080	
2440	Branch Connection	5.703	19.080	
2430	CRUN	7.099	19.080	

Attachment to TXX-6398 April 15, 1987 Page 12 of 23

Table 2-7
CLASS NNS (DOWNSTREAM) PRIMARY STRESS SUMMARY
UPSET CONDITION

COMBINATION: P + DWT + SRSS (OBE, SOTU)

Node Point	Piping Component	Maximum Equation #9 Stress (ksi)	Allowable Stres: 1.8 Sh (ksi)	
4531	Butt Weld	14.070	28.620	
3311	Long Radius Elbow	11.965	28.620	
3450	Branch Connection	10.871	28.620	
2430	CRUN	13.414	28.620	

Table 2-8

CLASS NNS (DOWNSTREAM) PRIMARY STRESS SUMMARY

EMERGENCY CONDITION

COMBINATION: P + DWT + SOTE

Node Point	Piping Component	Maximum Equation #9 Stress (ksi)	Allowable Stress 1.8 Sh (ksi)
3360	Butt Weld	17.421	28.620
3322	Long Radius Elbow	18.386	28.620
1430	Branch Connection	10.860	28.620
1420	CRUN	18.629	28 620

Table 2-9
CLASS NNS (DOWNSTREAM) PRIMARY STRESS SUMMARY
FAULTED CONDITION

COMBINATION: P + DWT + SRSS (SSE, SOTF)

Node Piping Component		Maximum Equation #9 Stress (ksi)	Allowable Stress 2.4 Sh (ksi)
4531	Butt Weld	19.288	38.160
1311	Long Radius Elbow	20.838	38.160
3450	Branch Connection	14.571	38.160
1420	CRUN	22.400	38.160

Attachment to TXX-6398 April 15, 1987 Page 15 of 23

TABLE 3-1
Tabulation of Worst-Case Stress vs. Allowable Stress

Representative Supports from Figure A-8

		Worst Standard Component (Strut or Snubber)				Worst Stressed Structural Component			
Support No.	Support Type	Actual Load	Allowable	Load	L.C.**	Type*	Actual	Allowable	L.C.**
RC-1-115-015-C76R	Parallel struts attached to frame	52475 1bs	75900 1bs	(clamp)	F	2	18,189 psi	19,600 psi	F
						3	Interaction 0.76	1.0	F
						1	Interaction 0.565	1.0	F
RC-1-115-008-C76K	Snubber attached to frame	2346 1bs	22100 1bs		F	5	0.5" Thick plate	0.39" Thick plate	F (1)
						4	Interaction 0.57	1.0	F

*Structural Component Types:

1 - Support Member

2 - Weld

3 - Base Plate/Anchor Bolt

4 - Richmond Insert/Threaded Rod 5 - Other: Load-Carrying End Plate

**Load Combination Case:

F - Faulted E - Emergency U - Upset (1) Analysis based on allowable stress requires plate thickness of 0.39"; actual plate thickness is 0.50". Attachment to TXX-6398 April 15, 1987 Page 16 of 23

TABLE 3-2
Tabulation of Worst-Case Stress vs. Allowable Stress

Representative Supports from Figure A-9

		Wors	t Standard Compone (Strut or Snubber				t Stressed ral Component	
Support No.	Support Type	Actual Load	Allowable Load	L.C.**	Type*	Actual	Allowable	L.C.**
RC-1-115-019-C66K	Snubber attached to frame	20121 1bs	67200 1bs	E	3	Interaction 0.89	1.0	F
		20466 1bs	72450 1bs	F	1	Interaction 0.77	1.0	F
RC-1-115-020-C66R	Rigid frame				2	14,899 psi	17,864 psi	F
					3	Interaction 0.84	1.0	F
RC-1-115-023-C66R	Rigid frame		-2-		2	Interaction 0.76	1.0	F
					1	Interaction 0.56	1.0	F
RC-1-115-029-C56K	Snubber attached to frame	8226 1bs	72450 lbs	F	2	0.25"	0.221"	F (1)
					4	Interaction 0.66	1.0	F
*Structural Compon	nent Types:	**[oad Combination Ca	ase:				
1 - Support Member 2 - Weld 3 - Base Plate/An 4 - Richmond Inse 5 - Other:	nchor Bolt	E	- Faulted - Emergency - Upset			stress requir	ed on allowables weld size all weld size	of

Attachment to TXX-6398 April 15, 1987 Page 17 of 23

TABLE 3-3

Tabulation of Worst-Case Stress vs. Allowable Stress

Representative Sampling for Supports on Figure A-10

		Worst Standard Component (Strut or Snubber)			Worst Stressed Structural Component			
Support No.	Support Type	Actual Load	Allowable Load	L.C.**	Type*	Actual	Allowable	L.C.**
RC-1-097-002-C86K	Snubber attached to frame	8488 1hs	72450 lbs	F	3	Interaction 0.54	1.0	F
					3	12485 psi	26250 psi	F

*Structural Component Types:

1 - Support Member

2 - Weld

3 - Base Plate/Anchor Bolt

4 - Richmond Insert/Threaded Rod

5 - Other:

**Load Combination Case:

F - Faulted

E - Emergency

U - Upset

Attachment to TXX-6398 April 15, 1987 Page 18 of 23

TABLE 3-4 Tabulation of Worst-Case Stress vs. Allowable Stress

Representative Supports from Figure A-11

		Worst Standard Component (Strut or Snubber)			Worst Stressed Structural Component			
Support No.	Support Type	Actual Load	Allowable Load	L.C.**	Type*	Actual	Allowable	L.C.**
RC-1-099-002-C86K	Snubber attached to frame	7915 1bs	22100 lbs	F	4	Interaction 0.83	1.0	F
					2	14,005 psi	17,864 psi	F

*Structural Component Types:

1 - Support Member

2 - Weld

3 - Base Plate/Anchor Bolt 4 - Richmond Insert/Threaded Rod

5 - Other:

**Load Combination Case:

F - Faulted

E - Emergency

U - Upset

Attachment to TXX-6398 April 15, 1987 Page 19 of 23

TABLE 3-5 Tabulation of Worst-Case Stress vs. Allowable Stress

Representative Supports from Figure A-12

		Worst Standard Component (Strut or Snubber)			Worst Stressed Structural Component				
Support No.	Support Type	Actual Load	Allowable Load	L.C.**	Type*	Actual	Allowable	L.C.**	
RC-1-101-002-C86K	Snubber attached to base plate	3452 1bs	10640 lbs	F	5	13,125 psi	26,250 psi	F	
					3	Interaction 0.12	1.0	F	

*Structural Component Types:

1 - Support Member

2 - Weld

3 - Base Plate/Anchor Bolt 4 - Richmond Insert/Threaded Rod

5 - Other:_

**Load Combination Case:

F - Faulted E - Emergency U - Upset

Attachment to TXX-6398 April 15, 1987 Page 20 of 23

TABLE 3-6 Tabulation of Worst-Case Stress vs. Allowable Stress Representative Sampling for Supports on Figure A-13

		Worst	Worst Stressed Structural Component					
Support No.	Support Type	Actual Load	Allowable Load	L.C.**	Type*	Actual	Allowable	L.C.**
RC-1-110-001-C86K	Snubber attached to base plate	3226 1bs	6000 lbs	U	3	Interaction 0.43	1.0	F
		4612 1bs	9400 1bs	F	3	9,769 psi	23,925 psi	F
RC-1-112-003-C86K	Snubber attached to base plate	2147 1bs	6000 1bs	U	3	Interaction 0.25	1.0	F
		3339 1bs	9400 1bs	F	2	1,371 psi	20,365 psi	F

*Structural Component Types:

1 - Support Member

2 - Weld

3 - Base Plate/Anchor Bolt4 - Richmond Insert/Threaded Rod

5 - Other:

**Load Combination Case:

F - Faulted

E - Emergency

U - Upset

Attachment to TXX-6398 April 15, 1987 Page 21 of 23

TABLE 3-7 Tabulation of Worst-Case Stress vs. Allowable Stress Representative Sampling for Supports on Small Bore Iso RC-1-RB-019

		Worst Standard Component (Strut or Snubber)			Worst Stressed Structural Component			
Support No.	Support Type	Actual Load	Allowable Load	L.C.**	Type*	Actual	Allowable	L.C.**
RC-1-103-700-C75K	Snubber attached to frame	39 1bs	267 1bs	F				
RC-1-103-702-C75R	Rigid frame				3	1,528 psi	27,000 psi	F
					2	2,763 psi	17,864 psi	F
RC-1-103-705-C75R	Snubber attached to base plate	84 1bs	510 1bs	F	3	1,514 psi	27,000 psi	F

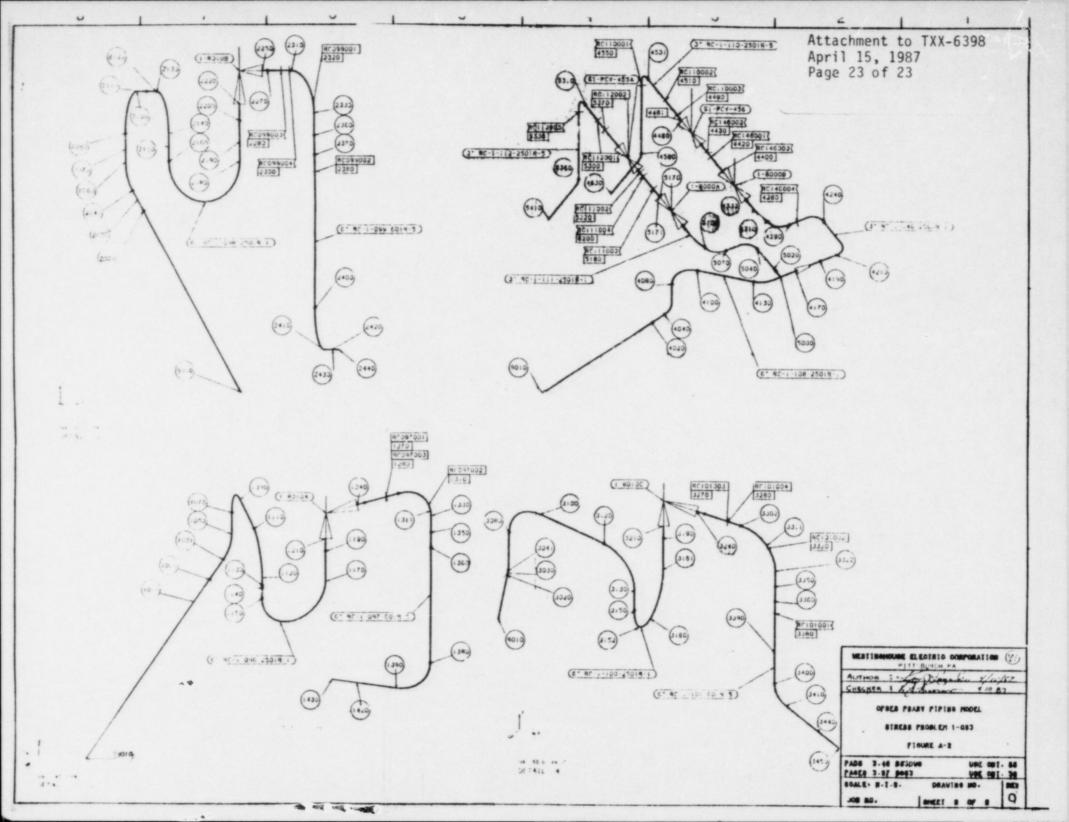
*Structural Component Types:

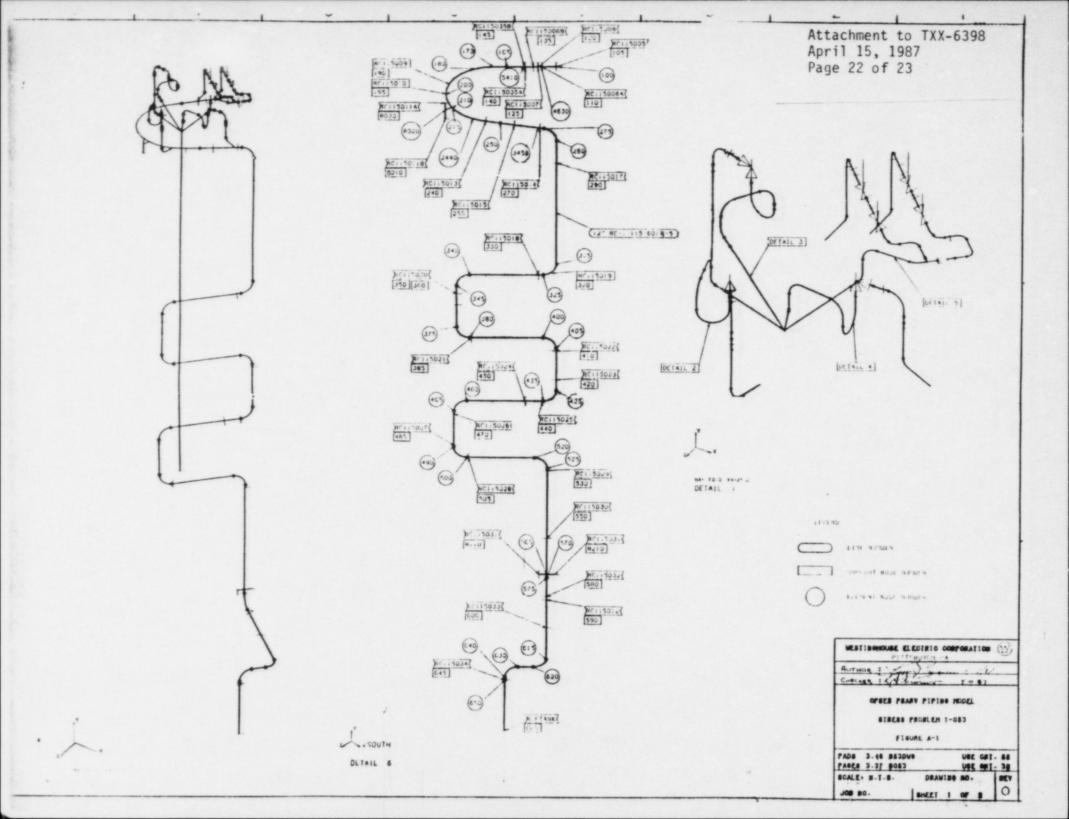
1 - Support Member

2 - Weld

3 - Base Plate/Anchor Bolt

4 - Richmond Insert/Threaded Rod


5 - Other:__


**Load Combination Case:

F - Faulted

E - Emergency

U - Upset

