Unrestricted

DRAFT

98-SWO-WTANK-R1

ENCLOSURE 1

Decision Analysis To Support West Valley Tank Farm Transition End Point Development for HLW Tank Cleanup

Robert K. Perdue Information and Electronics Technology

24 April 1998

Work performed for West Valley Nuclear Services Company, Inc. under P.O. 19-91711-I-LH (DE-AC24-81NE44139)

APPROVED:

W. J. Trosky, Manager Information and Electronics Technology

Westinghouse STC 1310 Beulah Road Pittsburgh, Pennsylvania 15235-5098

9904130343 990322 PDR PROJ M-32 PDR

DISCLAIMER

This Decision Analysis report is only one part of the evaluation. Additional studies are underway to evaluate the remaining criteria cited in correspondence from R. M. Bernero, Office of Nuclear Material Safety and Safeguards to J. Lytle, Office of Waste Management Environmental Restoration and Waste Management, dated March 9, 1993, however, the WVDP wants to maintain timely communications with the Nuclear Regulatory Commission (NRC) regarding each of the work products as they are developed. In this manner NRC's early input can be factored into the remaining studies being conducted. Specifically, we are seeking NRC's comments on the model's use of site specific data and the appropriateness of the methodology as it is applied to the site. Although results in the report are based on site specific data, they may be revised as updated information becomes available, NRC's input is obtained and other studies are completed.

Overview of the Technical and Economic Feasibility Decision Model and Analysis for High Level Waste (HLW) Tank Heel Removal

The West Valley Demonstration Project (WVDP) Waste Tank Farm (WTF) consists of two pairs of underground tanks that have supported nuclear fuel processing in the past and are currently being used in the process of permanently isolating blended high-level radioactive wastes via vitrification. Removal of the HLW from the tanks must continue until any residual waste in the tanks is no longer classified as HLW. To achieve this, the cleanup must remove radionuclides to the maximum extent that is technically and economically practical and meet, as a minimum, performance based limits. The performance based limits have been tentatively defined based on the performance assessment associated with the Draft Environmental Impact Statement for Completion of the WVDP. This report quantifies the tank cleanup limits based on technical and economic considerations. It is proposed that this analysis model be included as a basis for the Nuclear Regulatory Commission's (NRC's) assessment regarding incidental waste determination of the HLW tanks' residue.

This study uses tools from decision analysis and social cost - benefit analysis to develop estimates of expected benefits and costs to society for levels of curie removal ranging up to 99.9% for four possible cleanup technology scenarios that are viewed as spanning the range of available or potentially available cleanup processes. At one extreme, all advanced technologies currently under development are assumed to be available. The opposite scenario has only current technologies available, while two other scenarios represent intermediate positions. "Benefits" to society for each technology scenario are calculated for various levels of curie removal by projecting the monetized value of avoided person-rems plus a credit for avoided closure costs. "Costs" to society are represented by operating expenses for the vitrification process plus capital costs for technology development. The study follows or adapts key elements of the NRC guidelines for regulatory analyses. The analytical model quantifies the process of HLW tank heel removal based on the existing and forecasted data supplemented by the WVDP operational experience. The key parameters associated with the model are:

- \$2000 per person-rem avoided same as the current value adopted by the NRC for their regulatory analyses
- 3% real discount rate a conservative value recommended by the NRC for long duration projects
- WVDP operating costs of \$2 Million/month for vitrification
- WVDP site specific capital costs for various technologies
- WVDP site specific projections for time to remove specific amounts of HLW
- Reference or starting point 69% of the initial curies removed as of January 1998

The significant results from the analysis include:

- The Expected Net Social Benefit remains high up to approximately 94% curie removal for all the technologies. For further cleanup beyond this point, the Net Social Benefit shows a marked decline which is attributed to the increased difficulty and, therefore, higher costs of continued cleaning.
- Expected Net Social Benefit for all Technology Scenarios goes negative in the range of 98% to 99% curie removal.

The desired cleanup levels based on economic feasibility are sensitive to the costs of cleanup which consist of the operating costs and the capital costs. The operating costs are a function of the time to reach the necessary level of curie removal and dominate the total costs. The capital costs are a relatively small fraction of the total cleanup costs. As the current cleanup and the end of HLW vitrification approaches, a more precise value for these variables will become available. A revision of the input to the analytical model at the end of Phase I vitrification and prior to implementation of the subsequent steps of the stepped approach will enable WVNS to update the results of this analysis.

The technical and economic feasibility analysis model for the HLW tank heel removal, as described in this report, is useful for developing a project consensus and to initiate discussions with the NRC to seek their concurrence regarding the classification of tank residue as incidental waste.

Decision Analysis to Support West Valley Tank Farm Transition End Point Development for HLW Tank Cleanup: Final Report

Robert K. Perdue Westinghouse Science & Technology Center April 24, 1998

Abstract

The West Valley Demonstration Project Waste Tank Farm consists of four tanks that have supported nuclear fuel reprocessing in the past and are currently being used to support the vitrification of blended high level radioactive wastes (HLW). At its completion, this process must leave behind a sufficiently small amount of radionuclides in the tanks to allow any residual waste to be classified as "not HLW." This study uses the tools of decision analysis and applicable regulatory analysis guidelines to estimate societal costs and benefits of cleaning the waste tanks to a level that would meet safetyrelated regulatory guidelines while incorporating economic and technical considerations. A computer model is developed to implement the process. The results can be used in conjunction with other studies pertaining to the safety criterion and engineering aspects of the cleanup technologies to support an informed decision as to the appropriate endpoint for cleanup once the minimum acceptable safety criterion has been determined and achieved.

	Table of Contents	
Section Number	Abstract	Page Number ii
	List of Tables	iv
	List of Figures	v
	Executive Summary	vi
1.0	Introduction	1
2.0	Overview of Decision Analysis	2
3.0	Problem Structure Phase	5
3.1	Identification and Definition of Alternatives	5
3.2	The Decision Criteria	9
4.0	Deterministic Phase: A Computer Model of the Decision Criteria	12
4.1	Social Net Benefit' Relation to Curies Removed & "Time to RF"	12
4.2	Overview of the Computer Model	15
5.0	Probabilistic Phase: Derivation of Model Inputs	18
5.1	Derivation of Benefit Parameters	18
5.2	Regression Model for Baseline Forecast of Time to RF	20
5.3	Derivation of Projections for other Technologies	22
5.4	Derivation of Capital Costs and other Inputs	26
6.0	Probabilistic Phase: The Simulation Model's Expected	27
6.1	Value Projections Sum of Fractions and Gross Benefits	28

iii

Table of Contents (continued)

.

Section		Page
6.2	Time to RF	29
6.3	Gross Social Cosi	31
6.4	Net Social Benefit	32
7.0	Evaluation Phase:	33
	Uncertainty and	
	Sensitivity Analysis	
7.1	Uncertainty Analysis	33
7.2	Sensitivity to Alternative	35
	Discount Rate	
8.0	Summary and	36
	Conclusions	
	References	37
	Appendix (Table of	39
	Contents)	

List of Tables

		Page Number
Table 1	"Momentum" Strategy Table	6
Table 2	Technology Options List	8
Table 3	Technology Scenarios	9
Table 4	Values for Isotope Inventory, Limiting Ci, Mci, Mcc	18
Table 5	Regression Analysis of Historical Transfers	21
Table 6	Comparison of Experts' Assessed Times to Regression Model Forecasts	24
Table 7	Mean Imputed Values of β for Equation 13	26
Table 8	Estimated Incremental Capital Costs	26

List of Figures

List of righten	
	Page Number
Decision Analysis Cycle	3
Model Overview	16
Time Module	16
Social Cost Module	17
Social Benefits Module	18
Three - Pt Approximation to a Continuous Probability Distribution	23
Sum of Fractions Corresponding to RF values	28
Exp. Gross Social Benefits of	29
Exp. Contribution of Melter Failure to Total Time to RF	30
Expected Total Time to Indicated RF, by Technology	31
Exp. Incremental Gross Social	32
Exp. Incremental Net Social	33
Incremental Net Social Benefit -	34
Comparison of Exp. Net Benefit w/Cost discounted at 3% v 7%	35
	Decision Analysis Cycle Model Overview Time Module Social Cost Module Social Cost Module Social Benefits Module Three - Pt Approximation to a Continuous Probability Distribution Sum of Fractions Corresponding to RF values Exp. Gross Social Benefits of Moving to RF = 69% Exp. Contribution of Melter Failure to Total Time to RF Expected Total Time to RF

Executive Summary

The West Valley Demonstration Project Waste Tank Farm consists of two pairs of underground tanks that have supported nuclear fuel processing in the past and are currently being used in the process of permanently isolating blended high-level radioactive wastes (HLW) via vitrification. Cleaning and rinsing the HLW tanks must continue until any residual waste in the tanks is no longer classified as HLW. The problem is to decide when the tank cleanup (and, hence, the vitrification process) can be stopped. The definition of these tank cleanup "endpoints" must include applicable safety -related regulations, as well as technical and socially - economical feasibilty.

This study uses tools from decision analysis and social cost - benefit analysis to develop estimates of expected incremental monetary benefits and costs to society for levels of curie removal ranging up to 99.9% for four possible cleanup technology scenarios that are viewed as spanning the range of available or potentially available cleanup processes. At one extreme, all advanced technologies currently under development are assumed to be available. The opposite scenario has only current technologies available, while two other scenarios represent intermediate positions. "Benefits" to society for each technology scenario are calculated for various levels of curie removal by projecting the monetized value of avoided person-rems plus a credit for avoided closure costs. "Costs" to society are represented by operating expenses for the vitrification process plus capital costs for technology development. The study follows or adapts key elements of Nuclear Regulatory Commission guidelines for regulatory analysis. Salient conclusions include:

- Expected Net Social Benefit for all Technology Scenarios peaks in the range 89% to 92% curie removal and goes negative in the range of 98% to 99% curie removal.
- There is a high degree of statistical confidence that pushing cleanup to 99.9% for any Technology Scenario will yield a negative net social benefit.

The results can be used in conjunction with other studies pertaining to the safety criterion and engineering aspects of the cleanup technologies to support an informed decision as to the appropriate endpoint for cleanup once the minimum acceptable safety criterion has been determined and achieved. Decision Analysis to Support West Valley Tank Farm Transition End Point Development for HLW Tank Cleanup: Final Report

1.0 Introduction

The West Valley Demonstration Project (WVDP) Waste Tank Farm (WTF) consists of two pairs of underground tanks that have supported nuclear fuel reprocessing in the past and are currently being used to support the vitrification of blended high-level (radioactive) wastes (HLW). HLW requires permanent isolation and is currently being solidified by the aforementioned vitrification process. The larger pair of tanks, known as 8D-1 and 8D-2, are carbon steel tanks holding the majority of the HLW and the smaller pair (8D-3 and 8D-4) are stainless steel tanks currently used to hold recycled materials from the vitrification process. At its completion, this process must leave behind a sufficiently small amount of radionuclides in the tanks \bigcirc allow any residual waste to be classified as "not HLW."

The problem is to decide when the tanks are clean enough for such a reclassification; that is, when can the cleanup of the tanks (particularly, 8D-1 and 8D-2) and, hence, the vitrification process be discontinued? Definition of the "endpoints" for this cleanup process must consider applicable Nuclear Regulatory Commission (NRC) safety-based regulations, as well as technical and economic feasibility. A task team of WVDP professionals and managers (hereafter, the Team [22]) formed to ad tress this issue has produced a document [10] addressing the safety - based regulations. This report is intended to complement the latter by using the tools of decision analysis and a social cost - benefit methodology to develop estimates of expected incremental monetary benefits and costs to society for levels of curie removal ranging up to 99.9% under four possible cleanup technology scenarios. At one extreme, all advanced technologies currently under development are assumed to be available. The opposite scenario has only current technologies available, while two other scenarios represent intermediate positions.

1

"Benefits" to society for each technology scenario are calculated for various levels of curie removal by projecting the monetized value of avoided person-rems plus a credit for avoided closure costs. "Costs" to society are represented by operating expenses for the vitrification process plus capital costs for technology development. The study follows or adapts key elements of Nuclear Regulatory Commission guidelines for regulatory analysis. The study is intended to serve as a source document to support the selection of a cost-effective and socially - beneficial cleanup option for tanks 8D-1 and 8D-2 once minimum safety criteria have been selected and met.

The plan of the report is as follows. Section 2 below provides a brief introduction to decision analysis. Section 3, defines the alternatives and decision criteria. Section 4 provides a derivation of the model's major equations and an overview of the computerized model used to quantify the decision criteria. Section 5 describes the derivation of model inputs. Section 6 presents the analytical results. Section 7 presents an uncertainty and sensitivity analysis, and Section 8 summarizes and provides conclusions.

2.0 Overview of Decision Analysis

Rooted in the axioms of rational decision theory, decision analysis is a powerful and practical tool for quantitatively dealing with the uncertainty, risk and complexity often associated with important decisions, including those involving public safety. Decision analysis is a structured process which can be characterized by the "decision analysis cycle" (Figure 1). The first phase of this process addresses *Problem Structuring* with a set of facilitating tools to define actionable alternatives, uncover the decision criteria that will be used to judge alternatives and identify the major information that will be required to quantify those criteria. In this study, for example, several alternative strategies were initially constructed, one dominant strategy was identified and tactical variations on this strategy were then evaluated. Further, a version of "net social benefit" consistent with the Nuclear Regulatory Commission's guidelines for regulatory analysis

2

was identified as a logically appropriate decision criterion. Typically, an "influence diagram" tool is used to identify the key variables, their interrelationships and the elemental inputs required. In this study, early or preliminary influence diagrams helped guide the model building and were eventually refined to the diagrams shown in subsequent sections. The objectives for the Problem Structuring Phase are: a set of clearly-specified alternatives, a set of quantifiable decision

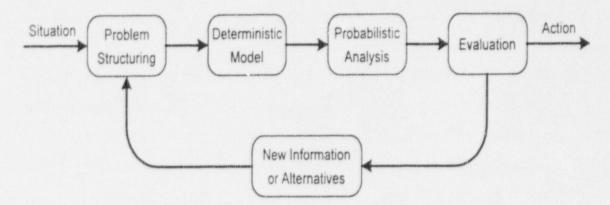


Figure 1: The Decision Analysis Cycle

criteria, a blueprint (i.e., the influence diagram) for at least a rapid prototype model that could quantify the value of the decision criteria for each alternative, and identification of the primary sources of information that will be required to implement the model.

The second or "Deterministic Modeling" Phase uses the influence diagrams to design and implement a computer model to compute values for the decision criteria. Initially, the model should be a rapid prototype - that is, have the look and feel of the final model but without the refinements necessary for a credible defense of the ultimate decision. This rapid prototype is supplied with very preliminary inputs for the sole purpose of performing sensitivity analysis to determine where subsequent model refinements and information-gathering should be focused. The objective for this stage is a computer model.

The Probabilistic Analysis Phase overlaps synergistically with the model-building effort in the Deterministic Modeling stage. The data for most important decisions is primarily judgmental or leavened with a heavy dose of (e.g., "engineering") judgment. Decision analysis has a set of techniques for extracting judgmental uncertainty as probabilistic information and/or combining subjective probabilities with "objective" statistics. These probabilistic assessments may initially be crude range estimates used for sensitivity analysis. The latter identifies the model variables that are critical in the sense of affecting choices and hence helps focus future modeling and data collection. Probability distributions for these critical inputs are then elicited in more detail as the model and the basis for a decision evolve. In this study, the rapid prototype was used to perform a sensitivity analysis that led to subsequent refinements in the method for forecasting the time to achieve specified levels of cleanup. This phase has three objectives: (1) Characterization of the uncertainty surrounding major inputs by probability distributions reflecting the best available state of knowledge. (2) Identification of critical variables. (3) Solutions of the model for values of the decision criterion or criteria which reflect the probabilistic uncertainty (and in certain cases, risk preferences and / or tradeoffs among different objectives).

Finally, the extent to which the process iterates back through the first three phases depends upon the results of the *Evaluation Phase*, which provides tools and principles for deciding whether and to w^{*} it extent there is value in further information-gathering and analysis before making a decision. This phase helps insure that the study stays focused on its purpose - to provide a recommended course of action. If the decision is to "act" rather than "study some more" the process can be extended to support evaluation of implementation tactics. If the decision is to gather more information, the process can be employed to help structure a sequential information gathering and updating plan to improve the ultimate basis for a decision. The present study completed the first iteration through this cycle in December of 1997 with recommendations for further information - gathering and model refinements. The model and results described in this final report incorporate and build upon those recommendations.

4

3.0 Problem Structure Phase: Definition of Alternatives and Decision Criteria

3.1 Identification and Definition of Alternatives

Of the four underground tanks used for spent nuclear fuel reprocessing at WVDP, 8D-3 has no inventory of radionuclides assigned to it and 8D-4, which has been used to hold slurry from the Vit Cell waste header, has only a minuscule fraction of the total Tank Farm radionuclide inventory [10, p.30]. Thus, attention is here focused on the two tanks 8D-1 and 8D-2. The former "...holds in-tank components of the Supernatant Treatment System (STS) and excess liquid decanted from 8D-2 to maintain process concentration for vit feed" [10, p.10]. Tank 8D-2 serves as the primary feed tank for the vit process.

A project kickoff meeting held on 27 June 1997 was devoted to the construction of a set of "strategy tables" which: (1) identify the major decision areas, (2) list the feasible options under each decision area, (3) support the identification of a set of actionable alternative strategies. Table 1 contains one such strategy table. The column headings represent the nine major decision areas where the Task Team thought that WVDP ostensibly has choices to make that will impact the decision at hand. Under each column, the Task Force identified the menu of options avai able (e.g., under the column labeled "Mobilize Solids, "More Pumps to Eliminate Dead Spots" is one option; another is (use) "Existing Mob Pumps (w/tweaking)." By selecting one or more options under each decision area, a "strategy" can be identified. Thus, for example, the italicized underlined cells in Table 1 map out the Momentum strategy; that is, the strategy that currently holds the most currency with decision makers. While any number of strategies could be constructed in this manner, not all would be logically correct or of interest. In fact, all that is needed is a limited number of clearly different and actionable strategies which span the spectrum of conceivable alternatives. The Task Force identified five such strategies:

- Momentum Strategy (shown in Table 1)
- Containment Strategy (Appendix)
- Unrestricted Use Strategy (Appendix)
- Vacuum Technology Strategy (Appendix)
- Oxalic Acid Strategy (Appendix)

Table 1: "Momentum" Strategy Table

Mobilize Solids	Clean Tank Internals	Transfer Solids	Vitrificati on Proc. Oper.	Vitrified Cannister s	Verificati on of Results	Charac. of Waste	Definition of Limits	Phy./Chem. Properties
Existing	Ultrasonic	Existing	Run the	Stick to	Process-	Use Grout	Rad limits	Treat Rud alone
Mob	Cleaning	Pumps (no	way it is	"300"	based	to meet	Unrestricte	(assume good
Pumps		tweaking)		limit	Knowledg	requirem'l	d/Sitewide	enough for Haz
(w/iweakin		4.			R	of LLW	Greenfield	
More	Mechnical	Modify	Install	Atplof	Direct	Use	Rad	Include
Pumps to	Cleaning	Pumps to	Solids	dim.	Measurem	Nongrout	Limits	Hazardous
elim dead		enhance	Separation	returns,	ent (in	material	Restricted	consideration
spals		canster	Fouinment	continue	situ no	for	lise/site	
Better	Power	Add	Use Oxlate	At the pt	Visual	Use	Rad	
Suspensio	Wathing	Grinders	Feed	of dim.	Exam	nuclie() -	Limits:	
n	(& word if	to help	Stream	returns,		sensitive	restrict or	
a contract of the state of the state	necessary	transfer	("Global	change to	1	retainers	unrestriced	
Mod/repl	Chemical	Add	Adjust the	Make	"Grab	Do	Rad	
nozzle @	Cleaning	Movable	Glass	"Light"	Sample"	Nothing	Limits:	
bottom		Sump	Recipe	cannisters		so clean its	restricted	
		Pumn	(min #			ercenfield	ile v	
Shucers a	"None of	Replace	Don'i		Sample		Adapt	
<16	the above	Pumps w/	Replace		Side	Character.	Available	
		Fixed	Failed		Stream	everything	Technolog	
		Suction	Equin after		from one		us lantes	
Eductor		Replace	Additional		Process-		Research	
Tubes		Pumps w/	Waste		based		& Develop	
		Movable	Str'ms		Knowledg		New	
		Suction	from proc.		<u>e</u> +		Technolog	
Impeller		Replace			Verify by		Emphasize	
Mixers		Pumps w/			Survey		(leanup	
		vacuum	1.		what is left			
		tech			hehind		F	
Air Lance					Monitor		Emphasize	
					Results		Containme	
							nt (clean	
Chem to							10 a ni	
							Actively	
increase							Manage	
Viscosity							Leak	
Revise				and the second			Likelihood	and the second se
way of								
using								
caustic Use Oxalic								and a construction of a construction of the second
Acid								
75616								

Subsequent discussion and review [22] of these tables yielded the following insights.

First, the Containment Strategy is really a strategy for closure, not "transition" (the phase

of interest here) and is hence outside the purview of the Team. Second, there are three major decision areas dealing directly with Tank Farm cleanup: Mobilize Solids, Clean Tank Internals, and Transfer Solids, and the choices made under these three headings are unaffected by whether the site is to be classified as "restricted" or "unrestricted" (compare "Unrestricted Use" Strategy with Momentum Strategy in the **Appendix**). Third, "Oxalic Acid" and "Vacuum Technology" are "clearly different" strategies only if they are carried to extremes; taken in moderation they are tactical options under the Momentum Strategy. Fourth, while the Team started with nine decision areas to consider, only three are of relevance to the cleanup decisions which can be impacted by Team recommendations. Finally, due to the long lead time required to implement technical options, a sufficient number of resource allocation decisions have already been made to severely restrict the set of strategies and even tactical options. These historical decisions have been guided by a tactical version of the Momentum Strategy called the *Stepped Approach*.

The Stepped Approach is described in [6]. Essentially, this approach involves sequentially deploying ever more sophisticated technologies to remove the zeolite in 8D-1 and the HLW sludge in 8D-2 as the need arises. Many of the long-lead time items are either under development or, in some cases, even under order. The basic premise of the Stepped Approach is that the technologies should be available if and when they are needed. A meeting with WVDP experts ([19], with dates for implementation added later as per a meeting with [17] and by reference to Attachments to [6] produced the clustering of the Stepped Approach's constituent technologies into the "Technology Options" in Table 2, with the Baseline option being a collection of the current or currently-planned technologies and Technology Options B, C, D, and E representing more advanced technologies.

7

Table 2: Technology Options List

A. Baseline for 8D-1: Mob pump seal leakage is being addressed. Replace bottom part of Mob in M-3 riser. Increase rotational speed of all mole pumps. Purchase complete mob pump to put in M-5 riser. Pieces for modification of marginal transfer pump are on order (may not modify). Designed and ordered long-lead mast-mounted part of delivery system (crucial element for end effectors like sluice/spray/vac system and is the delivery system for grinders, cameras, Weidemann mechanical arm. Baseline for 8D-2: Busted mob pump will be fixed. New pump in the empty riser. Rotational speed and leaking seal will be fixed. Decant pump will be replaced in 1997.

B. Grinders (or other solids reducing option) for 8D-1: Alternative : odifying marginal transfer pump. Have conceptual designs and grinders for testing (not encouraging results). Mast-mounted but no arms needed. Nominal plan is to install July 1998. For 8D-2: No grinder option.

C. Weidemann Mechanical Ar.m for 8D-1: Once installed, water level can be lowered and appropriate end effectors (sluice, spray, vacuum) can be attached to wash, spray, swab, etc. as needed. Operational time thought to be "lengthy." Nominal installation date is July 1998. For 8D-2: Ditto. Although not strictly necessary, if a mechanical arm is installed in 8D-1, another is assumed to be installed in 8D-2 (alternative is to use one entitly in both tanks).

D. Tool Delivery System for 8D-1: This will be a moble system to get the hard to reach places with high pressure spray and deployed using aforementioned mast. "Use to get the last few curies." Would not address size reduction problem. Very "researchy" at this stage with non-trivial risk of failure to perform intended function. Nominal installation date is April 1999. For 8D-2: Ditto.

E. Oxalic Acid for 8D-1: Use to break down solids and then rinse out. Could use at virtually anytime but the more solids there are, the more acid required (40 liters of acid per Kg of solids) and the greater the risk of eating a hole in the tank. Momentum strategy is to wait for mechanical methods to reduce solids to a level where only a safe level of acid need be used. Would need a contingency plan for possible acid-induced tank leak. For 8D-2: If use acid in 8D-1 then 8D-2 gets acid by transfer, although the reverse is not true. Assumption is acid would be applied to both. No nominal date (sometime after mechanical means have been deployed).

Under the Stepped Approach, the Baseline is continued until there is a demonstrated need to augment the Baseline technology to offset declining efficiency in transferring zeolite/sludge. The implied progression is A to B to C to D (if available) and perhaps E if mechanical means fail. It is not the intent of this report to evaluate the optimal timing of the technology implementations. Rather, it is assumed that technology options such as the Weidemann Mechanical Arm will be implemented if they are technically viable at the appropriate time and there is a perceived technical need. Since, however, we do not

presently know whether the advanced technical options will in fact be available at the appropriate time, alternative strategies or scenarios that bound the likely technical choices are constructed. One such bounding scenario is that the *Baseline* as defined in A of Table 2 turns out to be the only available option. At approximately the opposite extreme, a stylized version of the *Stepped Approach* is constructed by assuming that all options from A through D in Table 2 are implemented at their nominal projected dates of availability, and that (should it be necessary) Oxalic Acid is employed once 97 percent of the curies have been removed. Two intermediate strategies are also to be evaluated: (a) *Augmented Baseline*: Baseline Strategy is augmented by options B and C in the second-half of 1998. No other options are implemented. (b) *Stepped Approach without Acid*: Stepped Approach Strategy with the deletion of Oxalic Acid's use. In summary, the study evaluates four Technology Scenarios:

Table 3

	Technology Scenarios
Baseline = C	ption A defined in Table 2.
Augmented	Baseline = Baseline augmented by options B and C in Table 2.
Stepped App	roach = All options & dates in Table 2, with Oxalic Acid used at 3% hee
Stepped App	roach w/o Acid = Stepped Approach without use of Oxalic Acid.

For each Technology Scenario, the "alternatives" to be evaluated are alternative degrees of cleanliness, as measured by the fraction of the original inventories of curies removed.

3.2 The Decision Criteria

The "Waste Tank Farm Transition End Points" document [10] identifies the Nuclear Regulatory Commission as the relevant regulatory agency in terms of gaining concurrence that the remaining waste can be classified as "not HLW". This event, in turn, will allow "...the shutdown of the melter at WVDP or declare the end of vitrification for the purpose of solidifying the HLW" [ibid. p. 5]. Tables 4.3.1 and 4.3.2 of the referenced document imply that, at the minimum, this cannot occur until "...An evaluation of the residue in Tank 8D-1 (8D-2, etc.) has been made relative to the *sum-offractions radionuclide limits* (emphasis added). The Sum - of - Fractions Rule essentially states that the sum of all ratios of remaining curies to their respective limiting counterparts (defined later in this document) sum to a value not exceeding unity. The ALARA (As Low As Reasonably Achievable) Rule is also likely to apply. If the Sum - of - Fractions Rule can be met for some fraction of the starting curies inventory that is less than 100 percent, then a justification will be needed to show that not only has the aforementioned rule being satisfied but also that the curies have been removed to the maximum technical and economically - feasible extent using best available technologies.

The "best available technology" will presumably be part of one of the scenarios in Table 3. The "economically - feasible" extent to which this technology is employed can, in principle, be determined by comparing the incremental benefits and costs to society of each degree of curie removal beyond that mandated by the Sum - of - Fractions Rule. Social cost - benefit analysis, as this type of analysis is called, is a branch of economics that is routinely applied to support certain categories of Federal and State decisions using guidelines [16] promulgated by the Federal Office of Management and Budget (OMB). The Nuclear Regulatory Commission (NRC) has adopted a version of social cost - benefit analysis to evaluate proposed regulatory actions pertaining to either power reactor or non - power reactor sectors. The NRC's provides its perspective on the use of "regulatory analysis" in NUREG/BR-0058 Rev. 2 [12] and also provides a Handbook, NUREG/BR-0184, [13] for performing such analyses. The latter Handbook prefers to call its version of social cost - benefit analysis "Value - Impact Analysis," and summarizes the essential elements of the analysis as follows (quotes are from pages 4.5 and 5.2 of [13]):

 "Values (Benefits): The beneficial aspects anticipated from a proposed regulatory action...."

- "Impacts (Costs): The costs anticipated from a proposed regulatory action...."
- "Section 4 4...requires that the value-impact of an alternative be quantified as the 'net value' (or 'net benefit').
- "The net value method calculates a numerical value that is intended to summarize the balance between the favorable and unfavorable consequences of the proposed action. The basic perspective of the net value measure is national economic efficiency. All values and impacts are added together and the total is intended to reflect the aggregate effect of the proposed action on the national economy."
- "To calculate a net value, all attributes must be expressed in common units, typically dollars. Person-rems of averted exposure, a measure of safety value, is converted to dollars via a dollar/person-rem equivalence factor...."

Expressed in the more conventional terminology of social cost - benefit accounting, the value - impact criterion is captured in the following equation:

(1) Net Social Benefit = Social Benefit - Social Cost.

The idea is to account for all 'he costs to society and then take credit for the monetized benefits of the proposed action. To account for the fact that: (a) "sunk" costs and benefits are irrelevant to the choice at hand, and (b) the variable Net Social Benefit is an uncertain quantity, (2) is modified as follows:

(2) Expected Incremental Net Social Benefit = Expected Incremental Social Benefit - Expected Incremental Social Cost.

The term "expected value" refers to the mean of a probability distribution and reflects awareness of the fact that the estimated Net Social Benefit will be an uncertain quantity described by a probability distribution of possible values. The term "incremental" reflects the fact that only those benefits and costs that have not yet been realized are relevant to the decision. In the following sections, the terms Expected Incremental Net Social Benefit or simply Net Social Benefit or Net Benefit are used interchangeably to refer to the variable defined in Equation 2.

To summarize, this section has identified a set of technology scenarios, alternatives defined as degrees of cleanliness for each technology scenario and decision criteria, Sum - of - Fractions (the focus of [10]) and Net Social Benefit (the focus of this study), for choosing the alternative that is best in the sense of pleeting safety goals in a technically and economically efficient manner. The next step is specify a model capable of quantifying the decision criterion Net Social Benefit for each alternative.

4.0 Deterministic Phase: A Computer Model of the Decision Criteria

4.1 Net Social Benefit's relation to curies removed and "Time to RF"

A model is required to predet the future course of Net Social benefit at each attained level of curie removal. It is assumed that virtually any level of curies could be removed by any of the technology strategies in Table 1 *if given enough time*. To be more precise, define a "curies reduction factor", RF, as,

(3) RF = cumulative curies removed / initial inventory of curies,

where it will be assumed that nuclides are homogeneously distributed throughout the zeolite or sludge in the two tanks and therefore the same reduction factor applies to all nuclides. The key variable is now "Time to (any specified) RF." This is a reasurable and, more importantly, "assessable" variable - experts could reasonably be expected to form an opinion about the variable and produce a range estimate for its value. It is also a variable on which substantial evidence has already accrued via records on the amounts of the reference nuclides removed by each transfer.

The regulatory analysis guidelines [13, p. 4.5] define Social Cost to potentially include *incremental* (constant '97\$) costs to any *efficite* i stakeholder, including the regulatory agencies. However, the major societal cost here is that generated by the Vitrification operation itself. Thus, Gross Social Cost for a Technology Option at the jth RF is defined as

(4) Gross Social Cost_i = Vit Variable Cost_i + Vit Capital Cost_i

where it is understood that all costs are incremental or 'going forward' costs measured in constant dollars (i.e., net of inflation) from some common time base. The Vit Capital Cost are the incremental capitalized expenditures required to deploy a technology (again, ignoring money already spent). The variable cost of achieving a specified RF is obtained from the product of incremental operating costs per unit time (operating cost/time) of the Vit operation and the time to the specified jth RF,

(5) Variable Cost, = operating cost/time × Time to Rf, .

The variable "operating cost/time" will be treated as a constant so that variable cost of a technology will be a linear function of the assessed or projected time to a specified curies reduction factor. Of course, Time to RF may be a non-linear function of RF so that variable cost itself may be a non-linear (e.g., exponential) function of RF. Equation 5 is incomplete in that the social cost accounting framework requires that a future stream of monetary values be discounted to a present value. Using the continuous compounding version of the formula for the present value of an annuity, Equation 5 is modified as follows:

(o) Variable Cost = (operating cost/time) × $[(1/r) \times (1 - \exp(-r \times \text{Time to } RF_j))],$

where r = the discount rate per unit time. The term in brackets is the "annuity factor" that converts the stream of future operating costs per unit time (the annuity) to a present

value based on the projected number of months required to get to the stipulated reduction factor.

The Social Benefit side of (2) consists essentially of "pricing out" (in dollars) the safety related risks that society will avoid by choosing the indicated alternative, and is modeled here as follows:

(7) Gross Social Benefit, = Value of Avoided Curies, + Value of Avoided Closure Cost, .

Both of the right-hand variables in (7) are a function of curies removed which is equal to $RF \times initial$ inventory. Making this substitution into (7) and letting Mci_i = the social value of radiation exposure avoided associated with an additional curie of the ith nuclide removed (which is very different across nuclides) and Mcc = the tradeoff weight that translates an additional curie of the ith nuclide removed into a dollar - equivalent savings in closure costs (also different across nuclides), yields the gross benefit of removing the stipulated fraction of the initial inventory of the ith nuclide,

(8) Gross Social Benefit_{ij} = ((Mci_i + Mcc_i) × [(RF_j × initial inventory_i) - curies alr dy removed.)]

The Mcc parameter (suggested by Kumar [22]) reflects the fact that the public is to be protected not only by cleanup of the tanks but also by engineered containment of the residues in the tanks. While this study is focused on the cleanup of the tanks, it does nevertheless recognize through the Mcc tradeoff parameter that the more resources invested in cleanup, the less need be invested in containment. Gross Social Benefit must also be converted to a present value basis and this is done through the calculation of the Mci described in a subsequent section.

Summing (8) across all eight relevant nuclides for a specified RF level yields the Gross Social Benefit for the jth RF,

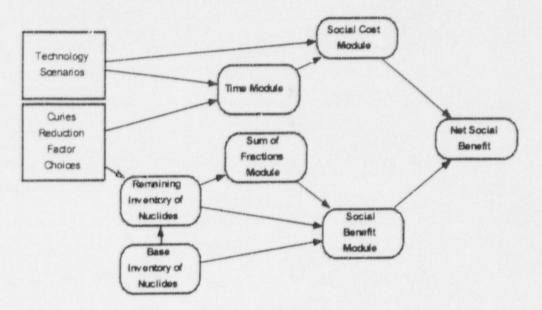
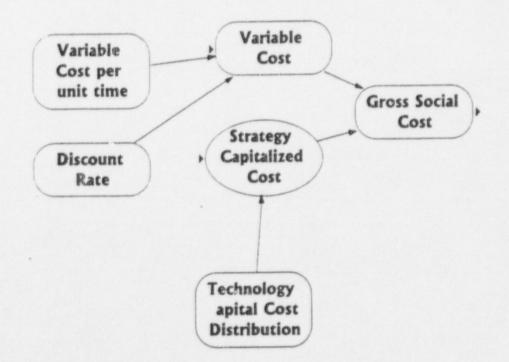
(9)
$$GrossSocialBenefit_{j} = \sum_{i} GrossSocialBenefit_{ij}$$

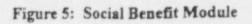
Net Social Benefit for the jth RF is obtained by substituting (4) and (9) into (2). Equations (2) through (9) constitute the skeletal frame of a model of the Social Net Cost criterion.

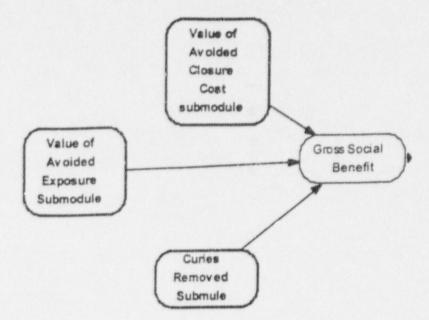
4.2 Overview of the Computer Model

The computer model is implemented in Analytica[®][23], a graphical, hierarchical modeling software package that uses Monte Carlo simulation methods to solve models with probabilistic inputs. An overview of the fleshed - out version of the model is diagrammed in Figure 2 (this is a screen shot of what the user actually sees when opening the model). The box at the extreme left of Figure 2 labeled Technology Scenarios contains the list of technical scenarios (described in Table 3). The box or decision node labeled Curies Reduction FactorChoices contains the alternative Reduction Factors (RF), ranging from 84% to 99.9%, to be evaluated for each Technology Scenario. Each of the remaining nodes in Figure 1 are modules containing sets of other equations and sub modules that are presently hidden. One hidden input variable is Time-to-RF, which is in the Time Module (Figure 3). For each RF, the model generates a projection of Total Time to RF for each Technology Option which incorporates: (a) A regression model projection derived from a statistical analysis of historical transfers through January 19, 1998. This represents the projected future Baseline scenario. (b) Expert (probabilistic) assessments of the extent to which each non - Baseline candidate technology will change the Time to RF. (c) The likelihood of delays associated with Melter failure (an increasing function of time in operation, as modeled by comparing each new time to the simulation drawing from a probability distribution on how long the Melter will last).

Figure 2: Model Over iew


Figure 3: Time Module



As illustrated in Figure 4, the Social Cost Module converts the time projections into incremental cost projections for each technology option as per Equations 4 and 5, with Operating Cost/time and probabilistic projections of Capital Cost for each technology option being inputs. Moving back to the left of Figure 2, the choice of a curies reduction factor (combined with the initial inventory) yields a projection of curies removed and curies remaining, by nuclide, in the module entitled Remaining Inventory of Nuclides . The projected curies remaining are combined with the corresponding limiting curies (user input) in the Sum of Fractions Module to compute, for references purposes, the Sum-of-Fractions corresponding to the chosen RF and for each Technology on the list. As illustrated in Figure 5, the projected incremental curies removed (i.e., over and above those curies already removed as of January 19, 1998) are combined with estimates for the Mci (in Avoided Radiation Exposure per Curie Removed) and Mcc (Avoided Closure Cost per Curie Removed) to produce an estimate of the (incremental) Gross Social Benefit corresponding to the Sum-of-Fractions associated with the chosen RF and for each Technology. Finally, Equation 2 is invoked to calculate (incremental) Net Social Benefit for each Reduction Factor.

5.0 Probabilistic Phase: Derivation of Model Inputs

5.1 Derivation of the Benefit Parameters (Mci. Mcc)

1	2	3	4	5
Isotope Name	Initial (1996) Inventory ¹	Limiting Ci @ 100 mR/yr (= Gi) ²	Mci = \$ value of avoided exposure per Ci ³	Mcc=\$ value of avoided closure cost per Ci ⁴
Am-241	5.35E+4	1.34E+30	0	0
C-14	1.37E+2	5.50E+1	72,700	49,078
Np-237	2.35E+1	0.88E+0	4,545,000	3,643,835
Pu-238	8.94E+3	1.26E+22	0	0
Pu-239	1.65E+3	1.48E+3	2703	1,852
Tc-99	3.5E+1	7.00E+1	52,140	40,672
Sr-90	5.81E+6	:.40E+13	0	0
Cs-137	6.29E+6	3.80E+28	0	0

Table 4 Values for Isotope Inventory, Limiting Ci, Mci, Mcc

* See text.

¹[WVDP-267 rev 0(draft) 8/1/97m Table 5.1.1, p.29]. Tc-99 initial inventory revised as per [Champion] ² ibid.

See text.

Table 4 contains the data used to estimate Mci and Mcc. The limiting curies have been estimated in "Performance Assessment" work described in [3] and [6] and relate to the maximum curies of the indicated nuclide which could be left in the tanks without exceeding an onsite (offsite) risk equivalent of 500 mR/yr (25 mR/yr). The latest limits are listed in Table 5.1.1 of [10] for eight relevant radionuclides. The same document scaled the curie limits to match the more recently - promulgated 100 mR/yr on-site requirement. It is these 100 mR/yr - based onsite limits that are used in this study. For reference purposes, the Sum of Fractions rule defined in [10, p. 27] is repeated here:

Let Si represent the curies of the ith radionuclide remaining in the WTF and Gi be 'he "proposed" limiting or allowable curies for the ith radionuclide (estimated under the assumption that the ith radionuclide is the only one present). Then the sum of-fractions rule states that the sum across all radionuclides of the ratios Si to Gi must be no greater than unity,

(10) $\Sigma(\text{Si} \div \text{Gi}) \le 1$.

The calculation of Mci (the value of avoided radiation associated with removal of a curie of the indicated nuclide) in Table 4 is as follows. The limiting curies shown in Column 3 of Table 4 are equivalent to 100 mR/yr = 0.1 Rem/yr to the "maximum exposed" onsite of the radiological dose to the entire (roughly 12 individual. An estimate miles/ 20 kilometers radius) exposed population (i.e., person-rems) is not available and its authoritative calculation is beyond the scope of this analysis. However, a rough estimate is obtained by setting person-rems = 600 maximum exposed population × .1Rems/yr = 60 person-rems/yr, where the figure of 600 is from the Draft Environmental Impact study [9. Table 4-14, p. 4-59 for West Valley]. The societal health and property cost per person-rem is set at \$2000 as per [12, p. 22]. Using the real discount rate for Value-Impact calculations of 3% [12, p. 23] suggested for long-range benefit flows, the present value of \$2000 x 60 person-rems/yr into perpetuity is \$120,000 per year .03 = \$4,000,000. Hence Mci = \$4M/Gi = an estimate of the value (in terms of avoided onsite exposure) of removing (i.e., transferring to the CFMT) one curie of the indicated nuclide

19

(column 4 of Table 4). The societal benefit of reducing onsite exposure is not calculated because it is dominated by the onsite avoided risk.

The value for Mcc (value of avoided closure cost per curie removed) is estimated by relating changes in estimated closure costs of \$13.3 million between two different grout / closure designs in [9, Table 4.1.3 p.107] to the resulting changes in limiting curies as ascertained by comparing [11, Table 4.1.1] with its counterpart in [10, Table 5.1.1]. The changes in Gi between the two dates were induced by the closure design changes. Dividing the \$13.3M by the change in Gi between the two aforementioned tables yields Mcc in Table 4 above.

5.2 Regression Model for Baseline Forecast of Time to RF

As of January 18, 1998, some 50 transfers had been made with about 69 percent of the estimated initial inventory of reference curies having been removed. This history (**Appendix**) provides a basis for a statistical analysis of the relationship between Time - to - RF (measured in the regression analysis as number of days from completion of the first transfer in June 25, 1996). Initially, a semi-log function of the following type was fit to the entire data range:

(11) Time to $RF = \alpha + \beta Log (1 - RF)$.

Where α and β are regression constants to be estimated and the "log" is to base 10. This function has a slope that decreases in (1 - RF) and, hence, increases in RF; that is, it takes progressively more time to increase RF by one unit as RF increases. When estimated over all 50 transfers, this model overestimates the Time to RF for the first 15 transfers and, by a progressively larger amount, the last nine transfers. These periods roughly correspond to periods when the yield of curies per gallon was steadily increasing and steadily decreasing, respectively; with a long plateau interval in between. The following

modification of (11) was estimated to test the statistical significance of the variation in regression parameters across the three aforementioned historical intervals:

(12) Time to RF = $\alpha_0 + \beta_0 \log (1-RF) + \alpha_1 Dum1 + \alpha_2 Dum2 + \beta_1 Dum1 \log (1-RF) + \beta_2 Dum2 \log(1-RF)$.

The Dum1 variable equals 1 if the observation refers to any of the first 42 transfers and zero thereafter. The Dum 2 variable equals 1 for the first 15 transfers and zero thereafter. The terms α_1 Dum1 and α_2 Dum2 thus let the constant term shift across the three historical periods while the terms β_1 Dum1log(1-RF) and β_2 Dum2 log(1-RF) perform the same function for the β coefficient. The regression results for (12) are in Table 5.

Table 5: Regression Analysis of Historical Transfers (Equation 12 in Text)

	α	βο	α,	α2	βι	β2	R-Bar Sqr (%)	Stand. Error
Estimated Value	184.6	828.3	-103.4	-76.5	-426.5	-971.7	98.9	19.6
t -Statisic	2.80	5.44	-1.56	-5.65	-2.69	-2.98		

The t - statistics indicate that the shifts in the β coefficient over the historical period are statistically significant. Essentially, due to this structural change, only the last nine transfers are "relevant" for purposes of prediction. Setting all Dum variables equal to zero produces the model that fits the last nine transfers:

(13) Time to $RF = 184.6 - 828.3 \log (1-RF)$.

The regression summary for fitting this model to the last nine transfers is in the **Appendix**. This model has an R-Bar Squared of 98.5% (that is, as described in any introductory statistics text, the variation in (1-RF) "explains" 98.5% of the variation in the last nine observations) and a "standard error of β " = 35.8. Examination of the

residue dicates no tendency to over- or under - predict. Forecasts are obtained by inserting the appropriate RF into (12) and then: (a) subtracting 598 days from the projection to bring it to the January 19, 1998 starting date, and (b) dividing the result by 30 to convert to months. The result is a forecast of the Mean Time to RF for the Baseline Technology. The commonly - used standard deviation of this forecast value is:

(14) Std. Dev. = $((1/N) + ((\log(1-RF_j) - \text{historical mean of } (\log(1-RF_j))^2)^2$ (Std. Error of $\beta)^2)^{0.5}$ = $((1/9) + (\log(1-RF_j) - (-)0.431)^2 (35.8)^2)^{0.5}$

Where N = number of observations used in the regression analysis. For simulation purposes, it is assumed that future values of Time to RF for the Baseline can be approximated by a normal distribution with a mean value generated by (13) and a standard deviation as given in (14). The simulation model samples from this normal distribution to get a projected Time to RF for the Baseline Scenario expressed in days from January 19, 1998 and then divides the result by 30 to convert to months.

5.3 Derivation of Probabilistic Projections of Time to RF for the Other Technologies

No relevant historical data exists on Time to RF for the alternatives to the Baseline Technology option. For that matter, we do not have statistically useful "objective" information on capital costs for each technology scenario or for melter life and melter down time in the event of a major failure. Consequently, the uncertainties associated with future values for these variables have been encoded as probability distributions that reflect the engineering judgment of West Valley site experts. These subjective probability distributions have been elicited by decision analysis procedures [15, Chapter 8] as three - point approximations to assumed continuous probability distributions as illustrated in Figure 6.

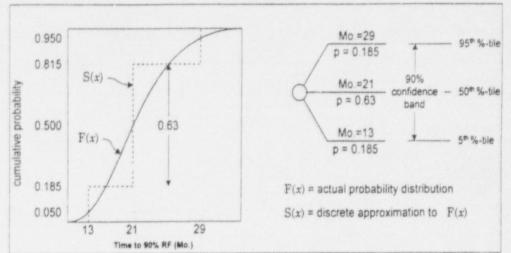


Figure 6: Three-Point Approximation to a Continuous Cumulative Probability Distribution

Essentially, the expert provides a median estimate for the uncertain variable - for example, median Time to 90% Reduction Factor = 21 months for Baseline Technology and two symmetric extreme percentiles - for example, the 5th and 95th percentiles (or "fractiles" as they are sometimes called) are estimated by the expert to be 13 and 29 months, respectively. A standard probability distribution approximation formula (the "Extended Pearson - Tukey 3 point Approximation" illustrated in Figure 6) is then applied to obtain the discrete 3-point probability distribution used in the simulation model. Table 6 contains expert assessments for Time to RF for RF = 90%, 97%, 99% and 99.9% for the Baseline technology and expert assessments for all other Technology Scenarios for the 99.9% RF. These assessments, predicated on a July, 1997 base date, are averages of those initially provided by WVDP experts [17], and [18] and subsequently reviewed and augmented to include ranges for RF = 99.9% by [8, **Appendix**]. For comparative purposes, the regression model forecasts for Baseline, adjusted to the July, 1997 base (for this table only), are also shown.

Technology (RF)	Low (5 th %tile)	Median	High (95th %tile)
Baseline (90%)	13 (17)	21 (20)	29 (23)
Baseline (97%)	18 (31)	25 (34)	39 (38)
Baseline (99%)	24 (43)	31 (47)	65 (52)
Baseline (99.9%)	30 (68)	43 (75)	80 (82)
Aug. Baseline (99.9%)	27	38	62
Stepped w/o (99.9%)	28	39	49
Stepped Appr. (99.9%)	28	34	47

Table 6: Comparison of Experts' Assessed Times (months from 7/97) to Selected Reduction Factors with Regression Model Forecasts (in parentheses)

Note that the regression model forecast (which, because of the normal distribution assumption, is both a mean and a median value) differs from the experts' median projection by only one month at RF=90 percent. Thereafter, however, the regression model's forecast is progressively above the experts'. Note, however, that the regression forecast falls within the Experts' 90 percent confidence band for all RF values or, equivalently, the Experts' were sufficiently uncertain that, in statistical parlance, they could not reject the possibility that the actual Time would be as high as that projected by the regression model at a 10 percent "level of significance." If in fact the future path of the time to each RF is describable by the non-linear regression model, then it would not be surprising if the experts were to underestimate the model's path: it is difficult, in the absence of electronic aids, to correctly incorporate compounding into, say, an estimate of accrued interest on a bond. It is an easier cognitive task to evaluate the extent to which choosing an alternative will lead to a <u>relative</u> deviation from some base, and this is how the information in Table 6 is used. Specifically, the model:

 Assumes that forecasts for all technology scenarios equal the Baseline Regression model forecast for any RF ≤ 90 percent. Computes a forecast for each non-Baseline scenario and a new slope coefficient (β) for each non-Baseline scenario for the interval RF > 90 percent as follows:

Let $ER_k = Ratio$ of Expert Assessment of Time to 99.9% for kth Technology Scenario to Expert Assessment of Time to 99.9% for Baseline, then projected Time to 99.9% for the kth Technology Scenario = $ER_k \times Regression$ Forecast to 99.9% for Baseline. The imputed slope coefficient for the kth Technology that will fit Equation 13 to the Times to RF = 90% and RF = 99.9% is derived as follows:

Projected Time to 99.9% for kth Technology = Time to 90% + incremental time from 90% to 99.9% as projected by Equation 13. Substituting Equation 13 evaluated at RF = .90 and noting that incremental time from 90 to 99.9% can be written as $\beta(\log(.001) - \log(.10)) = 2\beta$, the imputed value of β for the kth technology is:

(15) $\beta_k = (((ER_k(185-598-828 \log(.001)) - (185-598-828 \log(.10))) - (185-598-828 \log(.10))) = (2071ER_k - 415)/2$

The simulation model samples from the discrete probability distributions on the expert assessments whose percentiles are given in Table 6 and forms new distributions on ER_k and β_k in Equation 15. The mean values for the imputed slope coefficients for Equation 13 for the interval 90% < RF \leq 99.9% are in Table 7. For each non-Baseline Technology Scenario, the simulation model samples from the probability distribution on β , substitutes the result into Equation 13 and then generates a projection of Time to RF. This approach combines both the "objective" evidence from the historical experience, and the experts' knowledge and informed judgment about that for which no historical data exists.

Technology Scenario	Mean Value of β
Baseline (i.e., regression model)	828
Augmented Baseline	760
Stepped Approach	639
Stepped Approach w/o Acid (for RF > 97%)	719

Table 7: Mean Imputed Values of β_k for Equation 13 (90% < RF \leq 99.9%)

5.4 Derivation of Capital Cost: and Other Inputs

Table 8 contains probabilistic estimates for incremental capital costs for the indicated strategy alternative. These are probabilistic combinations of three-point probabilistic ranges for individual capital components elicited from a WVDP expert [20]. Thus, for example, Augmented Baseline Capital Costs includes the Baseline incremental capital costs (ignoring money already spent) plus the incremental cost of deploying the grinders and mechanical arm by the stipulated date in Table 2.

Table 8: Estimates of Incremental Capital Costs (\$ 000)

Strategy Alternative	Low (5th Percentile)	Median	High (95th Percentile)
Baseline	300	500	700
Current Mechanical	1100	1450	2000
Tool Delivery System	3800	4540	5200
Oxalic Acid	4040	4900	5710

The variable cost per unit time is set equal to the approximate average monthly total cost of \$2 million for the Vitrification Operations Cost over the past two years ([1], in **Appendix**). The high, median and low estimates of remaining Melter life are 18, 60, and 96 months, respectively (Source: [21]). A Melter failure is assumed to add between 6 and 18 months (based on assessments provided by [21] and [17]) to total duration and is modeled by a uniform distribution between those two extremes

Finally, NUREG/BR-0184 [13, p. B.2] specifies that "When the time horizon associated with a regulatory action exceeds 100 years, ... the *net value* (emphasis added) should be calculated using the 3% real discount rate." This study initially follows the implication that both Gross Benefits, which occur over hundreds of years, and Variable Costs, which occur over only a half - dozen or so years, should be discounted by the 3% rate. Sensitivity analysis is then used to show the impact of continuing to discount benefits at 3% but discounting Variable Costs at 7% per annum. Capital costs are relatively near-term expenditures and, thus, not discounted.

6.0 Probabilistic Phase: The Simulation Model's Expected Value Projections Note: Data for all graphs in this section can be found in the Appendix

The simulation model samples (using a variant of Monte Carlo called "Median Latin Hypercube") from all probability distributions describing the uncertain inputs during each of a large number of trials (500) and, for each trial, calculates a value for each variable of interest. Relative frequency distributions of results from all trials are calculated and the resulting relative frequencies are interpreted as probabilities. The mean (i.e., "expected") value of each variable is calculated (as the sum of the probability - weighted outcomes), as are various other summary statistics and confidence bands. This section presents the expected values for all variables of interest. A subsequent section presents the associated confidence intervals that bound these "best estimates."

6.1 Sum-of-Fractions and Gross Benefits

As indicated in Figure 7, there is an equivalent RF for every Sum-of-Fraction level. The Gross Benefit of achieving any stipulated Sum-of-Fractions or, equivalently, the corresponding RF, is the imputed value to society of both the risks avoided and the reduction in associated closure costs. As indicated in Figure 8, the (present value) of Expected Incremental Gross Social Benefits of moving cleanup of curies from the base period R7 value of 69% to an RF of 84% is worth about \$33 million to society in constant 1997 prices. Each additional percentage point in RF has a gross benefit of approximately \$2 million. The expected incremental gross benefit of moving from an RF = 97 percent, where the Sum-of-Fractions is just under unity for the current closure design, to an RF of 99.9% is about \$6 million.

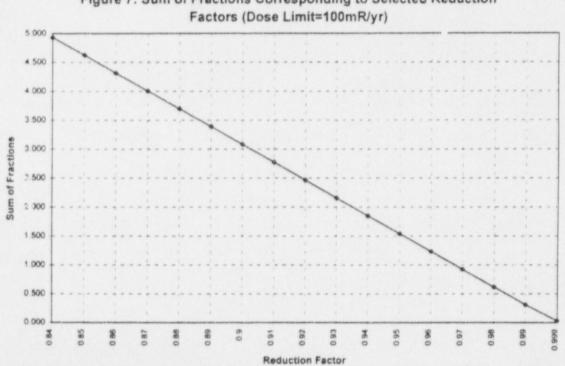


Figure 7: Sum of Fractions Corresponding to Selected Reduction

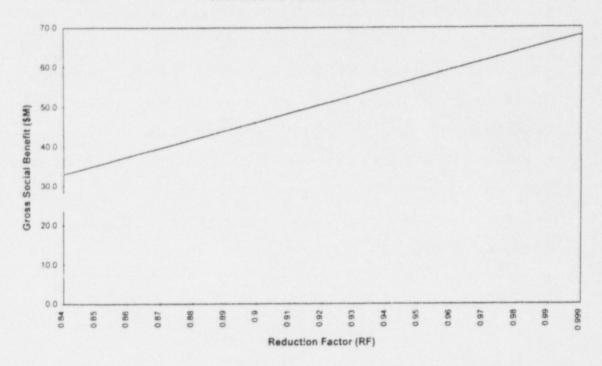


Figure 8: Incremental Gross Social Benefit of Moving from RF = 69% to Indicated Reduction Factor

6.2 Time to RF

The projected expected total time to each RF must incorporate the increasing likelihood of melter failure (and consequent downtime) as the target RF is increased. The simulation results for the expected incremented time associated with melter failure are plotted in Figure 9. Contribution to Total Time from melter failure increases sharply for all technologies after an RF of 97 percent, reaching a high of 10 months for the Baseline at the 99.9% RF.

As illustrated in Figure 10, The <u>Expected Total Time to RF</u> (= expected Time to RF + incremental time due to melter failure) also increases sharply for the higher RF values. Under all Technology Scenarios, the Expected Incremental Time to RF = 90% is 14 months. From 90% to 9.7%, the Stepped Approach takes the shortest time at 25.8 months (3.4 months shorter than if the Baseling materializes). To go from 97% to 99.9%, the

Stepped Approach is expected to require an additional 37 months; or about the same time as it is expected to take to get from 69% to 99 percent. Depending on which technology is actually deployed, the expected total times to 97% range from 26 months (Stepped Approach) to 29 months (Baseline) for a range of 3 months. The range over the same technologies for getting to 99.9% is from 63 months (Stepped Approach) to 79 months (Baseline), or a range of 16 months. Thus, the question of which Technology Scenario will actually materialize becomes exponentially more important as higher RF values are contemplated. In comparing technology scenarios, it should be remembered that, while the expected value incorporates the possibility that the technology might take an inordinately long time to reach a specified RF (as indicated in the uncertainty analysis in a subsequent section), the possibility that a technology might *never* reach a specified RF is not considered.

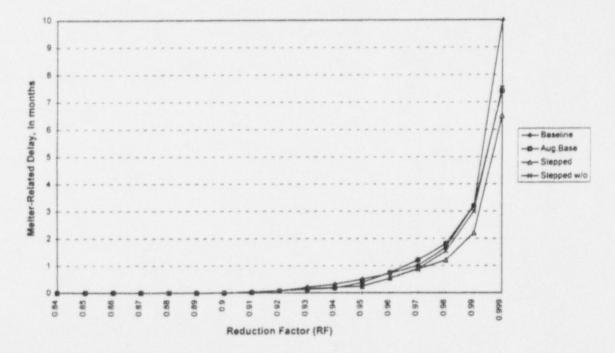
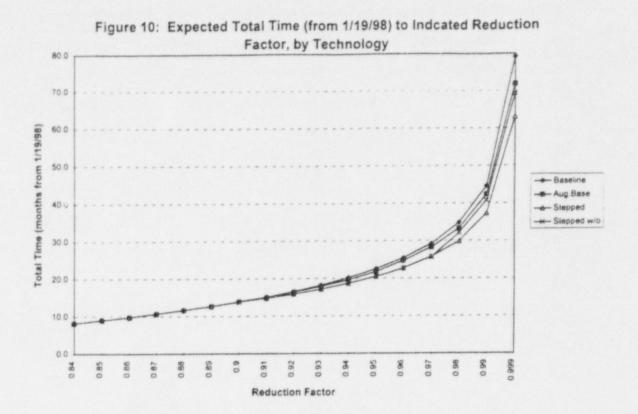
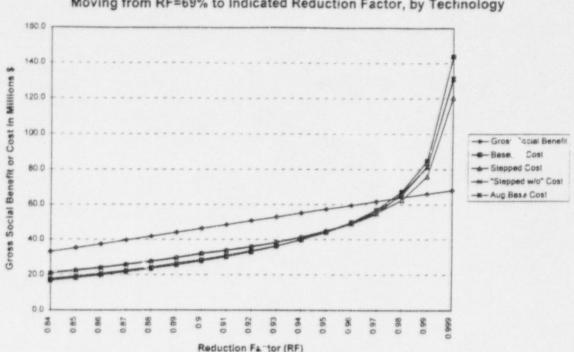




Figure 9: Expected Contribution of Melter Failure to "Total Time to RF," by Technology

6.3 Gross Social Cost

Figure 11 compares the Gross Benefit projection with the Expected (present value of) Incremental Gross Social Cost (constant 1997 prices) of achieving those benefit levels for each of the four Technology Scenarios. For example, the expected incremental social cost of moving cleanup from the base period RF of 69% to 84% with the Stepped Approach is about \$21 million, or some \$12 million less than the corresponding Gross Benefit of \$33 million. However, while benefits increase linearly for higher RF, costs climb exponentially, so that, for example, the Stepped Approach expected cost grows by (\$55M - \$32M =) \$23 million (for a percentage increase of 72%) between RF = 90% and 97%, while benefits over the same interval grow by (\$62M - \$46M =) \$16 million (percentage increase of 35%). Between RFs 97% and 99.9%, benefits increase by only 10% while Stepped Approach costs grow by 110 percent, so that it costs (\$120M - \$55M =) \$65 million to obtain an additional benefit of \$6 million.

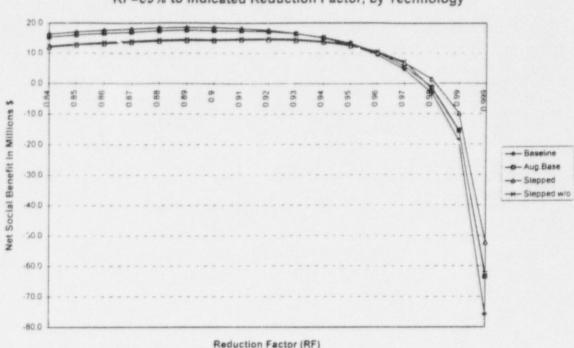


Figure 11: Expected Incremental Gross Social Benefit & Cost of Moving from RF=69% to Indicated Reduction Factor, by Technology

6 4 Net Social Benefits

Figure 12 graphs Expected (present value of) Incremental Net Social Benefit of moving from RF = 69% to the indicated Reduction Factor for each Technology Scenario. Salient points are as follows:

- The highest Net Social Benefit is \$18.5 million, achieved by the Baseline scenario at RF = 90 percent.
- All Technology Scenarios peak in the range of Rf =89% to 92% and go negative in the range of RF = 98% to 99%.
- For RF values equal to or greater than 97%, the highest Net Social Benefit occurs under the Stepped Approach w/o Acid scenario (+\$7.2 million) at an RF equal to 97 percent.
- For RF values exceeding 97%, the Stepped Approach is highest at (+\$1.4 million) at RF = 98 percent.
- The range of Net Social Benefits across all Technology Scenarios at RF = 99.9% is from -\$76 million (Baseline) to -\$52 million (Stepped Approach).

Figure 12: Expected Incremental Net Social Benefit of Moving from RF=69% to Indicated Reduction Factor, by Technology

7.0 Evaluation Phase: Uncertainty and Sensitivity Analysis

Note: All data used in this section's graphs can be found in the Appendix.

7.1 Uncertainty Analysis

The regulatory analysis guidelines [13] recommend that an uncertainty analysis be performed. As indicated in the preamble to the previous section, the simulation model constructs probability distributions on all variables of interest and calculates summary statistics, including "confidence bands;" that is, upper and lower values where the variable has a specified probability of falling. This is accomplished by first constructing cumulative probability distributions for the variable, and then picking off relevant percentile values. For example, using the 5th and 95th percentiles would produce a 90 percent confidence band (a "percentile" indicates the probability of getting a value less than or equal to the indicated value - for example, there is a 95% chance of getting a net social benefit less than or equal to \$20.9 million at RF = 84% for the Baseline scenario). The **Appendix** ("Data Used in Graphs (Sheet 2)") contains the 5th and 95th percentiles for all Net Social Benefit projections. Figure 13 contains 90 percent confidence bands for the Baseline and Stepped Approach scenarios. These bands provide an interval for each RF such that there is a 5% chance of Net Social Benefit falling below the low value and a 5% chance of falling above the high number. The bands get wider as RF increases. This uncertainty emanates entirely from the cost side, and the bulk of the latter is from the probability distributions describing Total Time to RF. The lower band is positive up to an RF of 95 percent for both Technology Scenarios. At an RF of 97 percent, the band includes the possibility of a negative net benefit (12% and 30% probabilities (read from the cumulative probability distributions that produce the confidence bands) for Baseline and Stepped Approach, respectively). By the 99.9% RF, the possibility of getting a positive net benefit can be decisively rejected (i.e., the probability of a negative outcome is almost unity) for the Baseline scenario. The Stepped Approach scenario's outcome at RF = 99.9%, however, is sufficiently uncertain that the possibility of getting the job done quickly enough to generate a positive net social benefit cannot be rejected (there is about a 15% probability of a positive outcome).

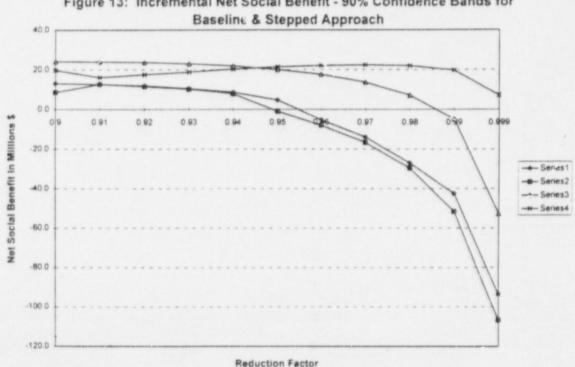


Figure 13: Incremental Net Social Benefit - 90% Confidence Bands for

7.2 Sensitivity to Alternative Discount Rate on Variable Cost

The use of a 3 percent per annum discount rate on both costs and benefits is, as indicated in Section 5.4, consistent with regulatory analysis guidelines calling for the discounting of net values at 3 percent when dealing with time horizons in excess of 100 years. However, it might also be argued that this understates true net benefits. Specifically, while the benefits accrue over many years, the costs are incurred in a relatively small number of years. Hence, an argument can be made for discounting Gross Benefits at 3 percent, as before, but using a 7% discount (recommended for short time horizons) on the cost side. This is done in Figure 14 for the Stepped Approach scenario (results for all scenarios are in the Appendix ("Sheet 3"). The results are noticeably different only for the highest RF, where Expected Incremental Net Social Value is increased by about \$12 million. However, the result is still a very negative \$40 million, and no substantive changes in perspective occur as a result of the change in discounting procedure.

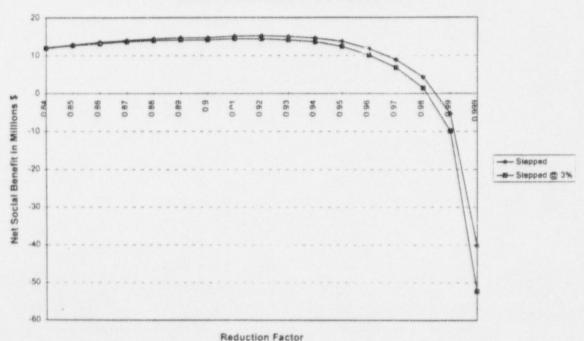


Figure 14: Comparison of Expected Net Benefit for Stepped Approach w/Cost discounted at 3% versus 7%

8.0 Summary and Conclusions

This study provides estimates of expected incremental benefits and costs to society for levels of curie removal ranging up to 99.9% for four possible Technology Scenarios that bound the range of available or potentially available cleanup processes. At one extreme, ("Stepped Approach") all advanced technologies currently under development are assumed to be deployable at their nominal projected dates of availability. The opposite scenario ("Baseline") has only current technologies available, while two other scenarios represent intermediate positions. "Benefits" are measured by the imputed value of person-rems avoided plus a credit for closure costs avoided. "Costs" are direct expenses of continuing to run the Vitrification Operation and capital costs of developing and deploying the technologies. A computer model implemented in a commercial probabilistic simulation package produces probabilistic forecasts and performs uncertainty analysis. The study's main results are:

- All Technology Scenarios peak in the range of Rf =89% to 92% and go negative in the range of RF = 98% to 99%.
- For RF values equal to or greater than 97%, (approximately the RF at which the Sum-of-Fractions Rule is currently satisfied) the highest Net Social Benefit occurs under the Stepped Approach w/o Acid scenario (+\$7.2 million) at an RF equal to 97 percent.
- The range of Net Social Benefits across all Technology Scenarios at RF = 99.9% is from -\$76 million (Baseline) to -\$52 million (Stepped Approach).
- There is a high degree of statistical confidence that pushing cleanup to 99.9% for any Technology Scenario will yield a negative net social benefit.

These results can be used in conjunction with other studies pertaining to the safety criterion and engineering aspects of the cleanup technologies to support an informed decision as to the appropriate endpoint for cleanup once the minimum acceptable safety criterion has been determined and achieved.

References

WVDP and DOE Documents:

- "Analysis of Vitrification Operations Cost: July '96 through January 8 '98" from office of H. W. Morse/J.B. Green, 2/20/98. (Appendix)
- Champion, Bill, "Update of the HLW Storage Area and Vitrification Facility Waste Characterization Report," (WVDP-EIS-017), September 30, 1997
- Dames & Moore, "Derivation of Residual Radionuclide Inventory Guidelines for the WNYNSC High-Level waste Tanks," August, 1996.
- DOE/EIS-0226-D, "Draft Environmental Impact Statement for Completion of West Valley Demonstration Project and Closure or Long-Term Management of Facilities at the Western New York Nuclear Service Center," U. S. Department of Energy, January, 1996.
- 5. Drobot, A. "Curies Processed," memo # CD:97:0043, 7/14/97.
- Hammelman, James E., "Final Report on Task 11B" (attached to a memo dated July 18, 1997 to Dan Sullivan describing "long term performance assessment models").
 - et, James, "Attachment A: HLW Tank Farm Transition Stepped Approach for Zeolite Removal D-1," memo # CA:97:0042, July, 1997.
- Statist, Shyam, "Table updated added Assessed Times for 99.9% from Fred Damerow 2/17/98" (Fax styled from 2/21/98). (Appendix)
- WVDP-EIS-033 rev 01, "Revised Tank Farm and Vitrification Facility Closure E esign Information," (D. Wescott), 7/23/97.
- WVDP-267 rev 0 (2nd Draft), "Waste Tank Farm Transition End Points," memo CA:97:0055, August 8, 1997.
- WVDP-267 rev 0 (1st Draft), "Waste Tank Farm Transition End Points," memo WD:96:0971, December 20, 1996.
- U. S. Nuclear Regulatory Commission Documents:
- NUREG/BR-0058 rev 2, "Regulatory Analysis Guidelines of the U.S. Nuclear Regulatory Commission," November, 1995.
- 13. NUREG/BR-0184 "Regulatory Analysis Technical Evaluation Handbook," January, 1997.
- 14. NUREG/CR-6349, "Cost Benefit Considerations in Regulatory Analysis," October, 1995.

Other Documents and Texts:

 Clemen, Robert T., Making Hard Decisions: An Introduction to Decision Analysis, PWS-Kent Publishing Co., Boston MA, 1991.

16. U.S. Office of Management and Budget (OMB), "Regulatory - Impact Analysis Guidance," Appendix
 V in -gulatory Program of the United States Government. April, 1991 - March 31, 1992.

Interviews Referenced (name(s) of individual(s) interviewed and date):

17. Conners, Bernie, August 8, 1997.

18. Damerow, Fred and Fazio, John, August 8, 1997.

19. Hurst, James and Kumar, Shyam, August 6, 1997.

20. Hurst, James, July 16, 1997.

21. Palmer, Ron, July 16, 1997.

22. "Team" (Core members of this team are: Fred Damerow, James Hurst, meetings on Shyam Kumar (Team Leader), Om Menderatta, and V. K. Swarma, all with WVDP) July 15-16, 1997.

Software:

 Analytica 1.1.1 for Windows, Decisioneering, Inc., 1515 Arapahoe Street, Suite 1311, Denver, CO 80202.

APPENDIX

Table of Contents

	Page Number
"Restricted Use" Strategy Table	Al
"Containment" Strategy Table	A2
"Vacuum Technology" Strategy Table	A3
"Oxalic Acid" Strategy Table	A4
Transfer History (used in regression analysis)	A5
Regression Analysis Summary	A7
Vitrification Operations Cost Analysis	A8
Data Used in Graphs (Sheets 1 - 3)	A9
"Outline - WVNS Tank Farm End Point	A12
Evaluation Model" (outline of computer model	
modules and variables)	
"Assessed Times (months) to 90%, 97%,	A16
99% and 99.9% Reduction Factors"	

"UNRESTRICTED USE" STRATEGY TABLE

Mobilize Solids	Clean Tank Internals	Transfer Solids	Vitrification Proc. Oper.	Vitrified Cannisters	Verification of Results	Charac. of Waste	Definition of Limits	Phy./Chem. Properties
Existing Mob Pumps (w/tweaking)	Ultrasonic Cleaning	Existing Pumps (no tweaking)	Run the way it is	Stick to "300" limit	Process-based Knowledge, including statistical inferences	Use Grout to meet requirem'ts of LLW classification	Rad limits: Unrestricted/ Sitewide Greenfield	Treat Rad alotte (assum good enough for Haz)
More Pumps to elim. dead spots	Mechnical Cleaning	Modify Pumps to enhance transfer	Install Solids Separation Equipment	At pt of dim. returns, continue	Direct Measurement (in situ, no sampling of level, of nuclieds)	Use Nongrout material for leaching purposes	Rad Limits: Restricted Use/ site wide	Include Hazardous consideratior
Better Suspension	Power Washing (& acid if necessary)	Add Grinders to help transfer	Use Oxlate Feed Stream ("Global Decision")	At the pt of dim. returns, change to oxalic acid (increases # cannisters)	Visual Exam	Use nuclied - sensitive retainers	Rad Limits: restrict or unrestriced on facility by facility basis	
Mod/repl nozzle @ bottom	Chemical Cleaning	Add Movable Sump Pump	Adjust the Glass Recipe (min # * * cannisters)	Make "Light" cannisters	"Grab Sample"	Do Nothing because so clean it's not even LLW	Rad Limits: restricted offsite v. onsite	
Sluicers @ <16''	"None of the above"	Replace Pumps w/ Fixed Suction	Don't Replace Failed Equip after a point		Sample Side Stream from one spot	Greenfield- characterize everything	Adapt Available Technologie s (only)	
Eductor Tubes		Replace Primps w/ Ns_vable Suction	Additional Waste Str'ms from proc bldg to vit facility		Process-based Knowledge + nonrepresenta tive sampling		Research & Develop New Technologie s	
Impeller Mixers		Replace Pumps w/ vacuum tech			Verify by Survey what is left behind		Emphasize	
Air Lance					Monitoring of Results		Emphasize Containmen t (clean to a pt then contain)	
Chem. to increase Viscosity							Actively Manage Leak Likelihood (e.g., dry out tank)	
Revise way of using caustic								
Use Oxalic Acid								

"CONTAINMENT" STRATEGY TABLE

Mobilize	Clean Tank	Transfer	Vitrification	Vimfied Cannisters	Verification of Results	Charac. of Waste	Definition of Limits	Phy./Chem Properties
Solids Existing Mob Pumps (w/tweaking)	Internals Ultrasonic Cleaning	Solids Existing Pumps (no tweaking)	Proc. Oper. Run the way it is	Stick to "300" limit	Process-based Knowledge, including statistical inferences	Use Grout to meet requirere'ts of LLW classification	Rad limits: Unrestricted/ Sitewide Greenfield	Truat Rad alone (assume goo enough for Haz)
More Pumps to elim. dead spots	Mechnical Cleaning	Mod Pump to enhance transfer	nstall Solids Separation Equipment	At pt of dim. returns, continue	Direct Measurement (in situ, no sampling of level, of nuclieds)	Use Nongrout material for leaching purposes	Rad Limits: Restricted Use/ site wide	Include Hazardous consideratio
Better Suspension	Power Washing (& acid ff necessary)	Add Grinders to help transfer	Use Oxlate Feed Stream ("Global Decision")	At the pt of dim. returns, change to oxalic acid (increases # cannisters)	Visual Exam	Use nuclied - sensitive retainers	Rad Linnits: restrict or unrestriced on facility by facility basis	
Mod/repl nozzle @ bottom	Chemical Cleaning	Add Movable Sump Pump	Adjust the Glass Recire (min # cannisters)	Make "Light" cannisters	"Grab Sample"	Do Nothing because so clean it's not even LLW	Rad Limits: restricted offsite v. onsite	
Sluicers @ <16''	"None of the above"	Replace Pumps w/ Fixed Suction	Don't Replace Failed Equip after a point		Sample Side Stream from one spot	Greenfield- characterize everything	Adapt Available Technologies (only)	
Eductor Tubes		Replace Pumps w/ Movable Suction	Additional Waste Str'ms from proc bldg to vit facility		Process-based Knowledge + nonrepresenta tive sampling		Research & Develop New Technologies	
Impeller Mixers		Replace Pumps w/ vacuum tech			Verify by Survey what is left behind		Emphasize Cleanup	
Air Lance					Monitoring of Results		Emphasize Containment (clean to a pt then contain)	
Chem. to increase Viscosity							Actively Manage Leak Likelibood (e.g., dry out tank)	
Revise way of using caustic Use Oxalic Acid								

"VACUUM TECHNOLOGY" STRATEGY TABLE

Mobilize	Clean Tank	Transfer	Vitrification	Vimfied Cannisters	Verification of Results	Charac. of Waste	Definition of Limits	Phy. Chem. Properties
Solids Existing Mob Pumps (w/tweaking)	Internals Ultrasonic Cleaning	Solids Existing Pumps (no tweaking)	Proc. Oper. Run the way it is	Stick to "300" limit	Process-based Knowledge, including statistical inferences	Use Grout to meet requirem [*] ts of LLW classification	Rad limits: Unrestricted/ Sitewide Greenfield	Treat Rad alone (assume good enough for Haz)
More Pumps to elim. dead spots	Mechnical Cleaning	Modify Pumps to enhance transfer	Install Solids Separation Equipment	At pt of dim. returns, continue	Direct Measurement (in situ, no sampling of level, of nuclieds)	Use Nongrout material for leactung purpo.	Rad Limits: Restricted Use/ site wide	Include Hazardous consideration
Better Suspension	Power Washing (& acid if * necessary)	Add Grinders to help transfer	Use Oxlate Feed Stream ("Global Decision")	At the pt of dim. returns, change to oxalic acid (increases # cannisters)	Visual Exam	Use nuclies sensitive retainers	Red Limits: restrict or unrestriced on facility by facility basis	
Mod/repl nozzle @ bottom	Chemical Cleaning	Add Movable Sump Pump	Adjust the Glass Recipe (min # carmisters)	Make "Light" cannisters	"Grab Sample"	Do Nothing because so clean it's not even LLW	Rad Limits: restricted offsite v. onsite	
Sluicers @ <16''	"None of the above"	Replace Pumps w/ Fixed Suction	Don't Replace Failed Equip after a point		Sumple Side Stream from one spot	Greenfield- characterize everything	Adapt Available Technologie s (only)	
Eductor Tubes		Replace Pumps w/ Movable Suction	Additional Waste Str'ms from proc bldg to vit facility		Process-based Knowledge + nonrepresenta tive sampling		Research & Develop New Technologie S	
Impeller Mixers	and an	Replace Pumps w/ vacuum tech			Venfy by Survey what is left behind		Emphasize Cleanup	
Air Lance					Monitoring of Results		Emphasize Containmen t (clean to a pt then contain)	
Chem. to increase Viscosity				and the second se			Actively Manage Leak Likelihood (e.g., dry out tank)	
Revise way of using caustic								
Use Oxalic Acid		and the second		egisarianise a di formana				

"OXALIC ACID" STRATEGY TABLE

Mobilize	Clean Tank	Transfer Solids	Vitrification Proc. Oper.	Vitrified Cannisters	Venfication of Results	Charac. of Waste	Definition of Limits	Phy./Cherr Properties
Solids Existing Mo'5 Pumps (w/tweaking)	Internals Ultrasonic Cleaning	Existing Pumps (no tweaking)	Run the way it is	Stick to "300" limit	Process-based Knowiedge, including statistical inferences	Use Grout to meet requirem'ts of LLW classification	Rad limits: Unrestricted/ Sitewide Greenfield	Treat Rad alone (assume goo epough for Haz)
More Pumps to elim. dead spots	Mechnical Cleaning	Modify Pumps to enhance transfer	Install Solids Separation Equipment	At pt of dim. returns, continue	Direct Measurement (in situ, no sampling of level, of nuclieds)	Use Nongrout material for leaching purposes	Rad Limits: Restricted Use/ site wide	Include Hazardous consideration
Better Suspension	Power Washing (& acid if necessary)	Add Grinders to help transfer	Use Oxlate Feed Stream ("Global Decision")	At the pt of dim. returns, change to oxalic acid (increases # cannisters)	Visual Exam	Use nuclied - sensitive retainers	Rad Limits: restrict or unrestriced on facility by facility basis	
Mod/repl nozzle @ bottom	Chemical Cleaning	Add Movable Sump Pump	Adjust the Glass Recipe (min # cannisters)	Make "Light" cannisters	"Grab Sample"	Do Nothing because so clean it's not even LLW	Rad Limits: restricted offsite v. onsite	
Sluicers @ <16''	"None of the above"	Replace Pumps w/ Fixed Suction	Don't Replace Failed Equip after a point		Sample Side Stream from one spot	Greenfield- characterize everything	Arlapt Available Technologi's (only)	
Eductor Tubes		Replace Pumps w/ Movable Suction	Additional Waste Str'ms from proc bldg to vit facility		Process-based Knowledge + nonrepresenta tive sampling		Research & Develop New Technologies	
Impeller Mixers		Replace Pumps w/ vacuum tech			Verify by Survey what is left behind		Emphasize Cleanup	
Air Lance					Monitoring of Results		Emphasize Containn.ent (clean to a pt then contain)	
Chem to increase Viscosity							Actively Manage Leak Likelihood (e.g., dry out tank)	
Revise way of using caustic Use Oxalic								
Acid						Services States & Adding Street Production		

dum1 dum2		*	4	+	****	+	+-	*		+	+	-	+	4 ~~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
dum1		*	1	-	*	1	-	d	-	+	-	-	+	*-	-	+	+	-	+		-	444	-	-	1	-	-	1	-	-	*
RF		0.00398	0.00952	0.01708	0.02702	0.03725	0.04925	0.05608	0.06577	0.075/34	0.08622	0.09552	0.10646	0.12025	0.13137	0.14068	0.15415	0.17124	0.18804	0.20253	0.22097	0.23670	0.25287	0.27258	0.28746	0.30700	0.32340	0.34178	0.35970	0.37850	0 30788
Days um.day		0.00	11.00	20.00	35.00	45.00	56.00	65.00	73.00	83.00	92.00	104.00	113.00	120.00	131.00	139.00	154.00	164.00	174.00	187.00	197.00	212.00	246.00	259.00	292.00	331.00	341.00	349.00	358.00	366.00	375 00
Days		0.00	11.00	9.00	15.00	10.00	11.00	00.6	8.00	10.00	00.6	12.00	9.00	7.00	11.00	8.00	15.00	10.00	10.00	13.00	10.00	15.00	34.00	13.00	33.00	39.00	10.00	8.00	9.00	8.00	000
Cum Ci		48610	116069	208369	329588	454468	600825	684227	802446	915449	1051834	1165383	1298806	1467004	1602738	1716321	1880637	2089156	2294141	2470854	2695777	2887798	3085065	3325420	3507065	3745442	3945448	4169698	4388341	4617666	4854100
Curies		48610	67479	92280	121219	124880	146357	83402	112213	113003	136385	113549	133423	168198	135734	113583	164316	208519	204985	176713	224923	192021	197267	240355	181645	238377	200006	224250	218643	229325	236434
Calc. Xfer gals	(v3-v1-v2)	1899	3119	2714.2	2434.6	2020	1995.7	1266.6	1762.7	2865.4	2083	1854.3	1922.2	2459	2843	2207	3125	3485	3442	3010	3467	3393	2590	3520	3520	3251	3681	3383	3510	3822	3665
Date		06/25/00	07/06/00	07/15/00	07/30/00	08/10/00	08/21/00	08/30/00	00/10/60	09/17/00	09/26/00	10/08/00	10/17/00	10/24/00	11/05/00	11/13/00	11/28/00	12/08/00	12/18/00	12/31/00	01/09/00	01/24/01	02/28/01	03/11/01	04/14/01	04/23/01	05/03/01	05/11/01	05/20/01	05/28/01	06/07/01
Transfer	雅	-	2	3	4	5	9	2	8	6	10	11	12	13	14	15	16	11	18	19	20	21	22	23	24	25	26	27	28	29	30

transfers

Page 1

0 0 0 000 0 000000 00 0 0 0 dum2 000 00 dum1 0 0 0 0 0.51803 0.63885 0.67:57 0.53695 0.55363 0.57042 0.58653 0.60092 0.61323 0.62462 0.65584 0.68460 0.41459 0.43200 0.44880 0.46544 0.48091 0.49993 RF 598.00 471.00 482.00 493.00 504.00 513.00 521.00 530 00 556.00 569.00 589.00 418.00 428.00 451.00 461.00 408.00 387.00 397.00 urn.day 10.00 10.00 23.00 10.00 10.00 11.00 11.00 11.00 9.00 8.00 00.6 26.00 13.00 20.00 9.00 12.00 11.00 Days 10.00 6959119 7155649 7793976 8001238 6754313 8193195 6319984 6550765 5058025 5270349 5475362 5678404 5867143 6099153 7331236 7481431 7620423 8352134 Cum Ci 188739 232010 230781 205013 220831 203548 204806 196530 150195 138992 173553 207262 191957 175587 158939 212324 203042 203925 Curies 3759 4928 5244 5132 5154 5132 7904 8643 3856 4275 4041 4231 4094 4392 4843 4827 8892 8823 Calc. Xfer gz's 09/12/01 10/15/01 11/02/01 06/19/01 08/22/01 09/02/01 09/23/01 10/04/01 11/11/01 01/10/02 01/19/02 06/29/01 07/10/01 07/20/01 07/30/01 10/24/01 2/07/01 12/20/01 Date 33 34 35 35 35 35 39 45 33 32 38 40 41 42 43 44 46 47 48 Transfer

transfers

Pr-92

Sheet32

SUMMAR	VO	ITP	IT
SOMMINIAN	10	UIF	UI

Regression	Statistics
Multiple R	0.99353421
R Square	J.98711022
Adjusted R S	0.98526883
Standard Erro	4.60938638
Observations	9

ANOVA

Residual 7 148.7251 21.2464428		df	SS	MS	F	Significance F
	Regression	1	11389.4971	11389.4971	536.066071	7.1118E-08
Total 8 11538.2222	Residual	7	148.7251	21.2464428		
	Total	8	11538.2222			
	Total	8	11538.2222			
		I PARTY OF A VERY DRY TO A VERY D		the second state optimization of the second state of the second st		11700010

Intercept	184.553268	15.4907867	11.9137441	6.6736E-06	147.923404
X Variable 1	-828.312535	35.7754474	-23.1531007	7.1118E-08	-912.907965
And an and the second s	and and a final state of the product	OTHER DESIGNATION OF THE OWNER AND THE REPORT OF THE PARTY OF THE PART	Makeron is Sherbaganan work metal and with the Court of Sherbick	THE REAL PROPERTY AND ADDRESS OF A DREAM AND A	REFERENCES OF THE REPORT OF THE REPORT OF THE PARTY OF T

RESIDUAL OUTPUT

Observation	Predicted Y	Residuals
1	488.507135	4.49286505
2	502.256295	1.74370503
3	515.001188	-2.00118755
4	526.273207	-5.27320718
5	537.0288	-7.02879957
6	550.926647	5.07335269
7	568.259584	0.74041555
8	585.093422	3.90657765
9	599.653722	-1.65372168

ANALYSIS OF VITRIFICATION OPERATIONS COST JULY '98 through JANUARY '98 (Cost Data in Thousands)

ADMINISTRATIVELY CONFIDENTIAL COSTING INFORMATION REMOVED FROM REPORT

Received from H. W. Morse/J. B. Green on 2/20/98

AB

Data Used in Graphs (Sheet 1)

0.84 4 0.85 4 0.85 4 0.86 4 0.88 3 0.89 3 0.91 22 0.91 22 0.93 22 0.93 22 0.93 22 0.93 22 0.93 12 0.93 12 0.93 12 0.99 0 0.999 0 0.996 1 0.996 1 0.966 1 0.977 0 0.966 1 0.977 0 0.977 0 0.097 0 0.097 0 0.097 0 0.097 0 0.097 0 0.097 0 0.0977 0 0.097 0 0.007 0 0000 0 0000 0 0000 0 0000000000		¥	8	c	0	ш	L	9	I	-	٢	¥		-
085 4.622 352 9.0 9.0 9.0 9.0 9.0 18.2 2.2.7 2.2.2 0.86 4.005 336 10.7 10.7 10.7 10.7 10.7 216 23.6 0.88 3.697 4.005 336 10.7 11.7 11.7 11.7 215 23.6 23.6 0.89 3.691 4.62 13.9 13.9 13.9 13.9 27.8 23.2 23.8 23.6 0.91 2.773 48.4 15.1 15.0 14.8 14.8 30.2 34.0 35.7 0.92 2.465 50.6 16.6 16.4 15.9 17.2 18.7 35.7 34.9 34.1 44.6 0.93 2.154 52.0 216 18.7 36.7 35.7 35.7 35.7 35.7 34.9 44.6 44.6 0.93 1.841 57.2 21.7 22.7 22.7 49.7 49.6 <td< td=""><td>2</td><td>1.1.1</td><td>4.930</td><td></td><td>8.2</td><td>8.2</td><td>8.2</td><td>8.2</td><td>16.7</td><td>21.2</td><td>20.7</td><td>16.</td><td>3</td><td>26</td></td<>	2	1.1.1	4.930		8.2	8.2	8.2	8.2	16.7	21.2	20.7	16.	3	26
0 86 4 313 374 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 19 9 2 4 3 2 3 89 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 </td <td>3</td> <td></td> <td></td> <td>35.2</td> <td></td> <td>9.0</td> <td>0.6</td> <td>9.0</td> <td>18.2</td> <td>22.7</td> <td>22.2</td> <td></td> <td></td> <td>27.5</td>	3			35.2		9.0	0.6	9.0	18.2	22.7	22.2			27.5
0.87 4.005 396 107 107 107 107 216 256 21 0.88 3597 418 117 117 117 117 217 235 279 274 22 0.89 3081 46.2 157 127 127 127 127 215 255 299 295 274 22 0.91 3081 46.2 156 166 164 159 139 265 218 227 331 336 332 336 332 336 332 336 332 336 332 336 335 33 33 33 33 33 33 33 33 33 33 33 36 33 36 33 35 34 33 35 34 33 33 35 34 33 36 33 36 33 36 35 36 35 36 35 <t< td=""><td>4</td><td>0.86</td><td></td><td>37.4</td><td></td><td>9.8</td><td>9.8</td><td>9.8</td><td>19.9</td><td>24.3</td><td>23.8</td><td></td><td>1</td><td>29.2</td></t<>	4	0.86		37.4		9.8	9.8	9.8	19.9	24.3	23.8		1	29.2
0.88 3567 41.8 11.7 11.7 11.7 11.7 11.7 11.7 23.5 27.9 27.4 22.7 0.99 3.389 44.0 12.7 12.7 12.7 12.7 12.7 23.5 29.9 29.5 24.5 23.4 23.5 23.4 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 3	-	0.87	4.005	39.6	10.7	10.7	10.7	10.7	21.6	26.0	25.6			31.1
089 3389 440 12.7 12.7 12.7 12.7 12.7 25.5 29.9 29.5 24.2 0.9 3.081 46.2 13.9 13.9 13.9 13.9 23.6 33.6	0	0.88	3.697	41.8	11.7	11.7	11.7	11.7	23.5	27.9	27.4			32.9
09 3081 46.2 139 139 139 139 139 27.8 32.2 318 26 091 2.773 48.4 15.1 15.0 14.8 14.8 30.2 34.0 33.6 33 32 33 33 32 34 33 33 32 36 37 33 35 35 36 37 33 35 36 37 33 35 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 36 37 36 37 36 36 37 36 36 37 36 37 36	2	0.89		44.0	12.7	12.7	12.7	12.7	25.5	29.9	29.5		1	35.1
091 2773 484 151 150 148 148 302 340 335 32 092 2465 506 166 164 159 172 172 352 340 335 33 093 2157 528 182 172 172 172 362 386 382 34 093 2157 550 202 196 187 187 398 414 410 35 094 1849 550 202 196 187 187 398 414 410 35 095 1541 572 225 218 205 205 443 445 39 097 0924 616 533 2257 227 491 486 37 098 0616 638 343 323 259 321 671 654 661 41 0999 0301 680 <td< td=""><td>80</td><td></td><td>3.081</td><td>46.2</td><td>13.9</td><td>13.9</td><td>13.9</td><td>13.9</td><td>27.8</td><td>32.2</td><td>31.8</td><td></td><td>1</td><td>37.6</td></td<>	80		3.081	46.2	13.9	13.9	13.9	13.9	27.8	32.2	31.8		1	37.6
0922 2.465 50.6 16.6 16.4 15.9 15.9 35.9 36.1 35.7 33 093 2.157 52.8 18.2 17.2 17.2 17.2 36.2 38.6 38.2 34 35.7 33 094 1.849 55.0 20.2 196 18.7 18.7 39.8 41.4 41.0 35 34 095 1.541 57.2 22.5 21.8 20.5 20.5 44.3 44.9 44.5 35 35 35 35 35 35 35 35 36 37 35 36 37 35 36 37 35 36 37 37 36 37 35 36 37 37 36 37 37 36 37 37 37 37 37 37 37 37 36 37 37 36 37 37 36 67 67 67 67 </td <td>6</td> <td></td> <td>2.773</td> <td>48.4</td> <td>15.1</td> <td>15.0</td> <td>14.8</td> <td>14.8</td> <td>30.2</td> <td>34.0</td> <td>33.6</td> <td></td> <td>1</td> <td>15.7</td>	6		2.773	48.4	15.1	15.0	14.8	14.8	30.2	34.0	33.6		1	15.7
093 2157 528 182 179 172 172 362 386 382 34 094 1849 550 202 196 187 187 362 386 382 34 094 1849 550 202 196 187 187 398 414 410 35 095 1541 572 225 218 205 205 44.3 44.9 44.5 35 096 1232 594 254 24.7 22.7 227 49.7 49.6 41.6 099 0934 616 292 283 25.8 25.7 56.8 54.4 37 46 0999 0311 680 79.2 719 63.0 69.3 143.8 75.9 81.7 46 10999 0311 680 79.2 71.9 63.0 69.3 143.8 120.3 130.6 61.7 45 45	10		2.465		16.6	16.4	15.9	15.9	32.9	36.1	35.7		1	38.9
094 1849 550 202 196 18.7 18.7 39.8 41.4 41.0 35 095 1541 57.2 22.5 21.8 20.5 20.5 44.3 49.7 49.1 48.6 37 096 1232 59.4 25.4 24.7 22.7 22.7 49.7 49.1 48.6 37 097 0924 616 292 28.3 25.8 25.7 56.8 54.9 54.4 39 099 0516 63.8 34.8 33.3 29.9 32.1 67.1 62.4 61 41 0999 0031 68.0 79.2 71.9 63.0 69.3 143.8 75.9 81.7 46 A = Reduction Factor 79.2 71.9 63.0 69.3 143.8 120.3 130.6 61 41 A = Reduction Factor 79.2 71.9 63.0 69.3 143.8 120.3 130.6 61	11	0.93			18.2	17.9	17.2	17.2	36.2	38.6	38.2		1	42 ;
095 1541 57.2 22.5 21.8 20.5 20.5 44.3 44.9 44.5 36 0.96 12.32 59.4 25.4 24.7 22.7 22.7 49.7 49.1 48.6 37 0.97 0.924 61.6 29.2 28.3 25.8 25.7 56.8 54.9 54.4 39 0.99 0.616 63.8 34.8 33.3 29.9 32.1 67.1 62.4 61. 41 0.999 0.308 66.0 44.6 42.4 37.3 40.8 84.8 75.9 81.7 46 A = Reduction Factor 71.9 63.0 69.3 143.8 120.3 130.6 61 A = Reduction Factor 71.9 63.0 69.3 143.8 120.3 130.6 61 A = Reduction Factor 71.9 63.0 69.3 143.8 120.3 130.6 61 A = Reduction Fac	12		1.849	55.0	20.2	19.6	18.7	18.7	39.8	41.4	41.0		1	47.2
0.96 1 232 594 25 4 24 7 22 7 49 7 49 1 48 6 37 0.97 0.924 61 6 23 8 33 3 25 8 25 7 56 8 54 9 54 4 39 0.98 0616 63 8 34 8 33 3 29 9 32.1 67 1 62 4 66 1 41 0.99 0.308 66 0 44 6 42 4 37 3 40 8 84 8 75 9 81 7 46 0.999 0.031 680 79 2 71 9 63 0 69 3 143 8 120 3 130 6 61 41 0.999 0.031 680 79 2 71 9 63 0 69 3 143 8 120 3 130 6 61 41 A = Reduction Factor 75 9 61 1 75 9 81 7 46 75 9 81 7 46 75 9 81 7 46 75 9 81 7 46 8 8 8 75 9 81 7 </td <td>13</td> <td></td> <td>1.541</td> <td>57.2</td> <td>22.5</td> <td>21.8</td> <td>20.5</td> <td>20.5</td> <td>44.3</td> <td>44.9</td> <td>44.5</td> <td></td> <td></td> <td>58.2</td>	13		1.541	57.2	22.5	21.8	20.5	20.5	44.3	44.9	44.5			58.2
0.97 0.924 61.6 29.2 28.3 25.8 25.7 56.8 54.9 54.4 39 0.98 0616 63.8 34.8 33.3 29.9 32.1 67.1 62.4 66.1 41 0.99 0.308 66.0 44.6 42.4 37.3 40.8 84.8 75.9 81.7 46 0.999 0.031 68.0 79.2 71.9 63.0 69.3 143.8 75.9 81.7 46 0.999 0.031 68.0 79.2 71.9 63.0 69.3 143.8 720.3 130.6 61 41 A = Reduction Factor 40.8 63.0 69.3 143.8 120.3 130.6 61 41 A = Reduction Factor 5 68.0 79.2 71.9 63.0 69.3 143.8 120.3 130.6 61 41 B = Sum of Fractions 6 6 74.9 75.9 81.7 40.8 55.5 <td>14</td> <td>0.96</td> <td>1 232</td> <td>59.4</td> <td></td> <td>24.7</td> <td>22.7</td> <td>22.7</td> <td>49.7</td> <td>49.1</td> <td>48.6</td> <td></td> <td></td> <td>67.4</td>	14	0.96	1 232	59.4		24.7	22.7	22.7	49.7	49.1	48.6			67.4
0.98 0.616 63.8 34.8 33.3 29.9 32.1 67.1 62.4 66.1 41 0.99 0.308 66.0 44.6 42.4 37.3 40.8 84.8 75.9 81.7 46 0.999 0.301 68.0 79.2 71.9 63.0 69.3 143.8 75.9 81.7 46 A = Reduction Factor 68.0 79.2 71.9 63.0 69.3 143.8 120.3 130.6 61 A = Reduction Factor 5 68.0 71.9 63.0 69.3 143.8 75.9 81.7 46 A = Reduction Factor 5 71.9 63.0 69.3 143.8 120.3 130.6 61 7 A = Reduction Factor 5 69.3 143.8 120.3 130.6 61 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15				29.2	28.3	25.8	25.7	56.8	54.9	54 4			78.3
0.99 0.308 66.0 44.6 42.4 37.3 40.8 84.8 75.9 81.7 46 0.999 0.031 68.0 79.2 71.9 63.0 69.3 143.8 75.9 81.7 46 A = Reduction Factor A = Reduction Factor 130.6 61 130.6 61 B = Sum of Fractions A = Reductions 143.8 120.3 130.6 61 D = Mean of Gross Social Benefit (\$M) A = Mean of Total Time to RF - Baseline (Month) A = Mean of Total Time to RF - Stepped Approach (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month) A = Mean of Total Time to RF - Stepped W/o ACID (Month)	16	0.98		63.8	34.8	33.3	29.9	32.1	67.1	62.4	66.1			93.5
0.999 0.031 68.0 79.2 71.9 63.0 69.3 143.8 120.3 130.6 61 A = Reduction Factor A = Reduction Factor B = Sum of Fractions 143.8 120.3 130.6 61 B = Sum of Fractions A = Reduction Factor 130.6 61 B = Sum of Fractions A = Reduction Factor A = Reduction Factor A = Reduction Factor 143.8 120.3 130.6 61 D = Mean of Gross Social Benefit (\$M) A = Mean of Total Time to RF - Sugmented Baseline (Month) A = Mean of Total Time to RF - Stepped w/o ACID (Month) A = Mean of Total Time to RF - Stepped w/o ACID (Month) A = Mean of Total Time to RF - Stepped w/o ACID (Month) A = Mean of Total Time to RF - Stepped w/o ACID (Month) A = Mean of Gross Social Cost - Baseline (\$M\$) A = Mean of Gross Social Cost - Baseline (\$M\$) A = Mean of Gross Social Cost - Baseline (\$M\$) A = Mean of Gross Social Cost - Baseline (\$M\$) A = Mean of Gross Social Cost - Baseline (\$M\$) A = Mean of Gross Social Cost - Baseline (\$M\$) A = Mean of Gross Social Cost - Baseline (\$M\$) A = Mean of Gross Social Cost - Baseline (\$M\$) A = Mean of Gross Social Cost - Baseline (\$M\$)	11			0		42.4	37.3	40.8		75.9	81.7		in the second	117.7
A = Reduction Factor A = Reduction Factor B = Sum of Fractions B = Sum of Fractions C = Mean of Gross Social Benefit (\$M) A = Rean of Total Time to RF - Baseline (Month) D = Mean of Total Time to RF - Augmented Baseline (Month) A = Mean of Total Time to RF - Stepped Approach (Month) F = Mean of Total Time to RF - Stepped w/o ACID (Month) A = Mean of Total Time to RF - Stepped w/o ACID (Month) H = Mean of Gross Social Cost - Baseline (\$M) A = Mean of Total Time to RF - Stepped w/o ACID (Month)	18	0.999		0		71.9	63.0	69.3	3	120.3	130.6		1	174.8
A = Reduction Factor B = Sum of Fractions C = Mean of Gross Social Benefit (\$M) D = Mean of Total Time to RF - Baseline (Month) E=Mean of Total Time to RF - Augmented Baseline F = Mean of Total Time to RF - Stepped Approach G = Mean of Total Time to RF - Stepped w/o ACID H = Mear of Gross Social Cost - Baseline (\$M)	19													
B = Sum of Fractions B C = Mean of Gross Social Benefit (\$M) D = Mean of Gross Social Benefit (\$M) E=Mean of Total Time to RF - Baseline (Month) E=Mean of Total Time to RF - Augmented Baseline F = Mean of Total Time to RF - Stepped Approach G = Mean of Total Time to RF - Stepped w/o ACID H = Mean of Gross Social Cost - Baseline (\$M)	20	A = Reduc	tion Factor											
C = Mean of Gross Social Benefit (\$M) D = Mean of Total Time to RF - Baseline (Month) E=Mean of Total Time to RF - Augmented Baseline F = Mean of Total Time to RF - Stepped Approach G = Mean of Total Time to RF - Stepped w/o ACID H = Mean of Gross Social Cost - Baseline (\$M)	27	11	Fractions											
D = Mean of Total Time to RF - Baseline (Month) E=Mean of Total Time to RF - Augmented Baseline F = Mean of Total Time to RF - Stepped Approach G = Mean of Total Time to RF - Stepped w/o ACID H = Mean of Gross Social Cost - Baseline (\$M)	28	C = Mean	of Gross Sc	ocial Benefi	it (SM)									
E=Mean of Total Time to RF - Augmented Baseline F = Mean of Total Time to RF - Stepped Approach G = Mean of Total Time to RF - Stepped w/o ACID H = Mean of Gross Social Cost - Baseline (\$M)	29	0	of Total Tin	te to RF - E	Baseline (M	onth)								
F = Mean of Total Time to RF - Stepped Approach G = Mean of Total Time to RF - Stepped w/o ACID H = Mean of Gross Social Cost - Baseline (\$M)	30	personal a	f Total Time	to RF - AL	igmented B	aseline (M	onth)							
G = Mean of Total Time to RF - Stepped w/o ACID H = Mean of Gross Social Cost - Baseline (\$M)	31	F = Mean	of Total Tim	ie to RF - S	tepped Apr	proach (Mo	inth)							
-	32	0	of Total Tin	ne to RF - S	Stepped w/c	ACID (Mo	onth)						1	
	33	I	of Gross Sc	ocial Cost -	Baseline (\$	(W)								
	36	J = Mean	of Gross So	cial Cost -	Stepped w/	o Acid (\$M	(1	
	37	×	rcentile of (Bross Socia	al Cost - Ste	spped Appr	roach (\$M)						1	
TX	38	-	ercentile of	Gross Soc	ial Cost - S	tepped Apr	roach (\$M)							
J = Mean of Gross Social Cost - Stepped w/o Acid (\$M) K = 5th Percentile of Gross Social Cost - Stepped Approach L = 95th Percentile of Gross Social Cost - Stepped Aproach	39	2	= Mean of Gross Social Cost - Augmented B	ocial Cost -	Augmente	d Baseline (\$M	(\$M)						-	

	V	8	C	0	Ш	F	0	I	-	ſ	X	-	¥
6	0 B.4	16.3	15.3	11.9	12.3	115	10.5	1.0	7.8	20.9	20.1	16.4	1.71
• •	α	17.0	16.0	12.6	13.0	12.2	11.2	7.7	8.1	21.8	20.9	17.4	17.9
2	0 BK	17.6	166	13.1	13.6	12.8	11.7	8.2	8.6	22.4	21.4	18.0	18.4
8 4		19.0	17.0	13.6	14.0	13.1	12.0	8.6	0.6	23.1	22.0	18.7	19.1
0 4	88.0	18.4	17.4	13.9	14.4	13.3	12.5	c.5 80	9.3	23.6	22.5	19.0	19.6
0 -	0.80	185	17.6	14.1	14.6	13.3	12.2	8.8	9.2	23.7	22.7	19.3	19.7
- 195	60		17.5	14.1	14.5	13.0	12.2	8.5	9.0	24.0	23.0	19.7	20.0
0	0.91		17.5	14.4	14.8	12.6	15.8	12.7	13.1	23.9	19.1	16.0	16.4
10		17.6	17.1	14.4	14.8	11.9	13.4	11.5	11.9	23.6	20.5	17.5	17.9
++		16.5	16.4	14.1	14.6	10.5	10.9	10.1	10.4	22.9	21.7	18.8	19.2
12	0 04	15.0	15.2	13.6	13.9	86	7.7	7.8	8.2	21.8	22.7	20.2	20.5
-		127	13.3	12.4	12.8	4.7	-7.1	-1.0	-0.5	20.0	23.4	21.3	21.5
14		9.5	10.2	10.1	10.6	-5.3	-17.0	-8.0	-7.5	17.6	23.9	22.0	22.5
15			57	6.8	72	-14.0	-29.4	-16.7	-16.4	13.6	23.8	22.3	22.6
16		-32	-1.3	14	-1.8	-27.1	45.2	-29.7	-334	7.1	22.8	21.9	19.3
17	0.99	-18.8	-15.4	6.6-	-15.7	42.7	-67.9	-51.7	-57.0	4.9	19.6	19.7	15.8
18	0 999	-75.8	-63.4	-52.3	-62.5	-93.6	-134.8	-106.8	-122.6	-52.7	3.9	7.1	-0.7
19													
20	A = Reduct	Reduction Factor											
29	8	of Net Socia	Mean of Net Social Benefit (\$M)	M) - Baseline	le								
30	0	of Net Socia	Mean of Net Social Benefit (\$M) -	M) - Augmented	ented Baseline	ne							
31	D = Mean o	of Net Socia	Mean of Net Social Benefit (\$M) -	M) - Stepped Ap	ed Approach								
32	ш Ш	of Net Socia	Mean of Net Social Benefit (\$M) - Stepped w/o	M) - Steppe	ed w/o Acid								
33	11	rcentile of N	5th Percentile of Net Social Benefit (\$M) - Bas	enefit (\$M)	- Baseline				4				
34	0	rcentile of 1	Vet Social B	enefii (\$M)	5th Percentile of Net Social Benefit (\$M) - Augmented Baseline	d Baseline							
35	II I	rcentile of h	Vet Social B	enefit (\$M)	5th Percentile of Net Social Benefit (\$M) - Stepped Approach	Approach							
36	11	centile of N	5th Percentile of Net Social Benefit (\$M)	nefit (\$M) -	- Stepped w/o Acid	to Acid							
37	11	ercentile of	95th Percentile of Net Social Benefit (\$M) - Ba	Benefit (\$M) - Baseline								
38	× "	ercentile of	95th Percentile of Net Social Benefit (\$M)	Benefit (\$M	- AI	ugmented Baseline	6)						
39	=	ercentile of	95th Percentile of Net Social Benefit (\$M)	Benefit (\$M	- St	Approach							
40	= W	Percentile o	95th Percentile of Net Social Benefit (\$M) - S	Benefit (\$N	4547	epped w/o Acid							

Data Used in Graphs (Sheet 2)

A10

Data Used in uraphs (Sheet 3)

	¥	8	0	0	ш	L.	9	H	-	5	
3	0.84	0	0	0	0	16.5		12.1	12.5	11.9	
100	0.85	0	0	0	0	17.2	16.3	12.8	13.3	12.6	
*	0.86	0	0	0	0	17.9	16.9	13.5	13.9	13.1	
10	0.87	0	0	0	0	18.4	17.4	14	14.4	13.6	
9	0.88	0	0	0	0		17.8	14.4	14.8	13.9	
2	0.85	0	0	0	0	19.1	18.1	14.7	15.1	14.1	
00	0.9	0	0	0	0	19.2	18.2	14.7	15.2	14.1	
0	0.91	0.04	0.02	0.02	0.02	19	18.2	15.1	15.5	14.4	
10	0.92	0.08	0.08	0.08	0.08	18.5	17.9	15.2	15.6	14.4	
-	0.93	0.21		0.15	0.15	17.6	17.4	15	15.5	14.1	
12	0.94	0.31	0.18	0.2	0.2	16.3	16.5	14.6	15	13.6	
5	0.95	0.5		0.24	0.25	14.4		13.7	14.2	12.4	
14	0.96	0.71	0.74	0.54	0.54	11.6		11.8	12.3	10.1	
10	0.97	-	1.2	00	0.89	7.4	8.4		9.4	6.8	
16	0.98	1.66	1.8	1.2	1.53	0.5		1	1.1	1.4	
17	0.99	3.2	3.2		2.99	-12.9		-5.4	-10.3	-9.9	
00	0.999	10	7.4	6.5	7.51	-58.9	47.7	40.2	48.3	-52.3	
5											
20	A = Reductio	Reduction Factor									
21	B = Expected	Expected Melter Down	Time -	Baseline (months)	onths)						
22	C = Expected	Expected Melter Down	Time -	Augmented	Augmented Baseline (months	nonths)					
23	D = Expected	Expected Melter Down	Time -	Stepped Ap	Stepped Approach (months	nths)					
24	E = Expected	Expected Metter Down	Time -	Stepped w/c	- Stepped w/o Acid (months	ths)					
25	F = Expected	Expected Net Benefit	@ 7%	isc.Rate on	Disc.Rate on Cost - Baseline	line					
26	G = Expected	Expected Net Benefit	@ 7%	lisc.Rate on	Disc.Rate on Cost - Augmented Baseline	nented Bas	eline				
27	H = Expected	Expected Net Benefit	efit @ 7% Disc.	isc. Rate on Cost	1	Stepped Approach	ach				
28	I = Expected	Expected Net Benefit	fit @ 7% Disc.	sc. Rate on Cost -	100	Stepped w/o Acid	77	/			
20	J = Exnected	Expected Net Benefit	@ 3%	Disc. Rate on	Cost - Step	ped Approa	ch (copied	Rate on Cost - Stepped Approach (copied from Sheet	10		

0

	Prototype Techno-Economic Evaluation Model for Tank 8D
\bigtriangledown	Base Inventory of Nuclides
	O Base Am-241
	O Base Cs
	Base C-14
	Base NP-237
	Base Pu-238
	O Base Pu-239
	O Base Sr
	O Base Tc-99
\bigtriangledown	Social Cost Module
	Strategy Capitalized Cost
5	Technology Capital Cost Distributions
	O P-T Appx for Base Capital
	O P-T Appx for Base+Mech
	C common index for base
	Common Index for base + mech
	Prob for Base Capital
	Prob for Base + Mech
	triangular for acid cap(alone)
	Triangular for Tool Sys Capital(alone)
	Values for Base Capital
	─ Values for Base +Mech
	─ Values for Tool Sys (alone)
	 Discount Rate
	Gross Social Cost
	O Variable Cost
	O Variable Cost per unit time
	Curies Reduction Factor Choices
\bigtriangledown	C Social Benefit Module
\bigtriangledown	Curies Removed Submule
	Am-241 Removed
	Cs Removed
	C-14 Removed
	Fraction already removed
	Np-237 Removed
	C Pu-238 Removed
	Pu-239 Removed
	Sr Removed
	Tc-99 Removed

	Total Curies Removed Since 7/1/97
	Gross Social Benefit
\bigtriangledown	Value of Avoided Closure Cost submodule
	Value of a Am-241 Curie (mcc)
	Value of a C-14 Curie (mcc)
	Value of a Cs Curie (mcc)-Read me!
	Value of a Np-237 Curie (mcc)
	Value of a Pu238 Curie (mcc)
	Value of a Pu239 Curie (mcc)
	Value of a Sr Curie (mcc)
	Value of a Tc-99 Curie (mcc)
\bigtriangledown	Value of Avoided Exposure Submodule
	Value of a Am-241 Curie (mci)
	Value of a C-14 Curie (mci)
	Value of a Cs Curie (mci)-Read me!
	Value of a Np-237 Curie (mci)
	Value of a Pu238 Curie (mci)
	Value of a Pu239 Curie (mci)
	Value of a Sr Curie (mci)
	Value of a Tc-99 Curie (mci)
∇	Net Social Benefit
	Net Social Benefit (dose limit=100mR/yr)
\bigtriangledown	Remaining Inventory of Nuclides
	Remaining Am-241
	Remaining Cs
	C Remaining C-14
	C Remaining NP-237
	C Remaining Pu-238
	Remaining Pu-239
	Remaining Sr
	Remaining Tc-99
	 Sampling or Verification Error
\bigtriangledown	Sum of Fractions Module
\bigtriangledown	C Limiting Curies Module
	 Limiting Curies for Am-241
	 Limiting Curies for C-14
	 Limiting Curies for Cs-137
	 Limiting Curies for NP-237
	 Limiting Curies for Pu-238
	 Limiting Curies for Pu-239

4

0	Outline - WVNS Tank Farm End point Ev
	C Limiting Curies for Sr90
	C Limiting Curies for Tc-99
\bigtriangledown	Sum of Fraction Rule
	Am-241 Fraction
	C-14 Fraction
	Cs Fraction
	NP-237 Fraction
	Pu-238 Fraction
	C Pu-239 Fraction
	Sr Fraction
	Sum of Fractions
	Tc-99 Fraction
	Technology Choices
~	Time Module
	Expert ratios for Stepped Appr.
	Expert ratios for Augmented Baseline
\bigtriangledown	Experts' "Time to" Distributions
	Acid Time to 99
	Acid Time to 999
	O Base Time to 90
	O Base Time to 93
	O Base Time to 95
	Base Time to 97
	Base Time to 99
	Base Time to 999
	C common index for Base Time (90 & 97)
	Curr Time to 90
	Curr Time to 93
	Curr Time to 95
	Curr time to 97
	Curr Time to 99
	Curr Time to 999
	Probabilities (P-T Approx.)
	TDS Time to 97
	O TDS Time to 99
	TDS Time to 999
	Values for Base 90
	Values for Base 97
	Values for Curr Mech 90
	Values for Curr Mech 97

Outline - WVNS Tank Farm End point Evaluation Model

- O Values for Tool Sys 97
- O Values for Tool sys 99
- O Values for Acid 99

0

V

- O Values for acid 999
- O Values for Base 999
- O Values for Base 93
- O Values for Base 95
- O Values for Base 99
- O Values for Curr Mech 93
- Values for Curr Mech 95
- Values for Curr Mech 99
- Values for cur 999
- O Values for Tool Sys 999
-) Implied Beta for 90 to 99.9% RF
- Melter Down Time
- Melter Failure
- O Melter Life
- Regress. Model Fcst of Time to RF
 - O Baseline Fost of Time to RF
 - O Mean of Baseline Fcst
 - Standard Deviation of Baseline Fcst
 - C Expert ratios for Stepped w/o Acid
 - Time to Reduction Factor
 - Total Time to Reduction Fact

Note: Table updated - added Assessed Times for 99.9% from Fred Damerow 2/17/98

Strategy Alternative	Low (5th Percentile)	Median	High (95th Percentile)
Baseline (90%)	13	21	29
Baseline (97%)	18	25	39
Baseline (99%)	24	31	65
Baseline (99.9%)	30	43	80
Current Mech (90%)	13	20	29
Current Mech (97%)	18	23	39
Current Mech (99%)	24	29	47
Current Mech(99.9%)	27	38	62
Tool Divry Sys (90%)	NA	NA	NA
Tool Divry Sys (97%)	21	24	30
Tool Divry Sys (99%)	25	32	37
Tool Divry Sys (99.9%)	28	39	49
Oxalic Acid (90%)	NA	NA	NA
Oxalic Acid (97%)	NA	NA	NA
Oxalic Acid (99%)	24	28	35
Oxalic Acid (99.9%)	28	34	47

Assessed Times (months) to 90%, 97%, 90%, and 99.9% Reduction Factors

Kumar/Disk #7B/February 23. 1998/TABLE5.WP6