

9903250151 990305 PDR ADDCK 0500032 R PDR

	Table of Contents
Topic	Page
I.	INTRODUCTION 1
II.	GENERAL DISCUSSION1
III.	DESCRIPTION OF COMPLETED TESTS
	A.Steady State Tests2B.Drift Tests3C.Transient Tests3D.Procedure Tests3E.Malfunction Tests4F.Real Time Tests6G.Simulator Fidelity6H.Simulator Limitations6I.Simulator Exceptions7
IV.	STATUS OF UNCORRECTED TEST PERFORMANCE DEFICIENCIES REPORTED IN 19957
V.	UNCORRECTED TEST PERFORMANCE DEFICIENCIES AND CORRECTION SCHEDULE
VI.	DESCRIPTION OF TEST DIFFERENCES FOR THE NEXT FOUR YEAR TEST PERIOD
VII.	SCHEDULE FOR TESTING DURING THE NEXT FOUR YEAR TEST PERIOD
<u>List o</u>	<u>f Tables</u>
Ti Ti Ti Ti Ti Ti	able 1Critical and Non-Critical Test Parameters2able 2Transient Test List3able 3Procedure Test List4able 4Malfunction Test List4able 5Limitations List6able 6Open Exception Report List7able 7Schedule for the Correction of Test Deficiencies8able 8Schedule for Testing During the Next Four Year Test Period8

I. INTRODUCTION

The submittal date of the initial certification of the Sequoyah simulator was March 21, 1991. The simulator certification process determines compliance on a four year interval with the requirements of ANSI-3.5-1985, Nuclear Power Plant Simulators for Use in Operator Training. This report outlines the test methods used, identifies any uncorrected test deficiencies, and includes a schedule for their correction. This report must be submitted to the NRC on the anniversary of certification, in accordance with 10 CFR 55.45 (b) (5) (ii).

Simulator test schedules were provided in the four year report submitted in March 1995. The tests were completed as outlined in those schedules.

II. GENERAL DISCUSSION

The Sequoyah simulator was first used for operator training in 1979 -- the original vendor was S3 Technologies (Singer-Link). It is used to license operators on both Unit 1 and Unit 2, with Sequoyah Unit 1 as the design reference plant. Since the last report submitted in 1995, the simulator has been used nearly continuously for various training needs at Sequoyah. During this testing period it has been maintained as required. Modifications and tuning adjustments were completed on a regular basis to maintain simulator configuration as close as practical to Unit 1.

The Sequoyah simulator uses a computer system that last received an upgrade in 1995. The main simulator computer uses two Mercury i860 processors. The simulator I/O system was completely upgraded and replaced in a phased-approach over a five year period, with the project completing in 1998. Sun workstations provide the instructor station and model development interface. One major plant modification that was installed two years ago involved the replacement and modification of simulator furniture, computer monitors, computers, computer peripherals, and various printers in the Main Control Room horseshoe area to replicate the new Integrated Computer System.

During the past four years, work on the simulator included tuning models to match plant data, improving model performance, installing new training malfunctions, and implementing plant design changes. Problem Reports (PRs) and Design Change Requests (DCRs) were processed during this period, as follows:

Work Item	Number at Start*	Opened	Closed	Number at End*
Problem Reports	60	690	730	20
Design Change Requests	36	136	150	22

*NOTE: Each of the PRs and DCRs e ig at the start were completed by the end of the four year test period. The N. oper at End were documented March 1, 1999.

III. DESCRIPTION OF COMPLETED T	ESTS		
years. Detailed test documentation is at the Sequoyah Training Center for r	npleted on the simulator over the past four maintained by the Simulator Services group eview, in accordance with the requirements of rected deficiencies are described in Section V encies and Correction Schedule.		
A. Steady State Tests			
test parameters (refer to Table simulator values at each of thr based on $\pm 2\%$ of span for crit parameters. A total of six defi last four years: all of these we			
	BLE 1		
CRITICAL TEST PARAMETERS	NON-CRITICAL TEST PARAMETERS		
Generator Gross MW	Generator Voltage		
Reactor Thermal Power Calculated	Generator MVARs		
Intermediate Range Channel	RCS Loop Average Temperatures		
Power Range Channels	RCS Loop Over-Power Delta-Temperatures		
Control Bank D Rod Position	RCS Loop Over-Temp Delta-Temperatures		
RCS Loop Flows	Reactor Vessel Wide Range Level		
RCS Hot Leg Loop Wide Range Temperatures	Reactor Vessel Narrow Range Level		
RCS Cold Leg Loop Wide Range Temperatures	Reactor Vessel Plenum Level		
RCS Auctioneered High Average Temperature	Pressurizer Relief Tank Level		
RCS Reference Temperature	Pressurizer Relief Tank Press		
RCS Loop Delta-Temperatures	Pressurizer Relief Tank Temp		
Charging Pump Discharge Header Pressure	Refueling Water Storage Tank Level		
Pressurizer Level	Accumulator Tank Levels		
Pressurizer Pressure	Accumulator Tank Pressures		
Containment Pressure	Charging Header Flow		
Steam Generator Narrow Range Levels Steam Generator Feed Flows	Letdown Flow		
Steam Generator Flows Steam Generator Steam Flows	Steam Generator Wide Range Levels Feedwater Header Pressure		
Steam Generator Steam Prossures			
Steam Generator Steam Pressures	125VDC Vital Battery Board Voltages		
#1 Feedwater Heaters Outlet Header Pressure	250VDC Battery Board Voltage		
#1 recowater reaters Outlet Reader Pressure	480V Shutdown Board Voltages		
	6.9 kV Shutdown Board Voltages		
	500 kV Bus Voltage		
	CCS Heat Exchanger Inlet Pressure		
	ERCW Supply Header Flows		

B. Drift Tests

Drift Tests were performed annually. The simulator was reset to 100 percent power and data was collected for an hour for each critical parameter at a rate of two samples per second. Plots were made with this data to check for stability. A parameter would fail the test if it drifted beyond $\pm 2\%$ of the initial value. No test deficiencies occurred.

C. Transient Tests

The 10 Transient Tests were performed annually (refer to Table 2). Data was collected for required parameters at a rate of two samples per second. Each year the test results were plotted and compared with responses from the prior year and with initial certification data. Additionally, a Transient Review. Committee consisting of engineers, instructors and operators evaluated each Transient Test in January 1999 for an independent evaluation. Each of the 10 transients were given this additional review. A total of five deficiencies were captured in PRs or DCRs in the last four years: two PRs remain to be completed.

	IABLE 2
	TRANSIENT TEST LIST
1.	Manual Reactor Trip
2.	Simultaneous Trip of All FW Purgs
3.	Simultaneous Closure of All MSIVs
4.	Simultaneous Trip of All RCPs
5.	Trip of Any Single RCP
6.	Main Turbine Trip at Max Power that Does Not Result in Reactor Trip (<p-9)< td=""></p-9)<>
7.	Maximum Power Ramp (100% To 75% Then Back Up To 100%)
8.	Maximum Size Reactor Coolant System Rupture Combined with Loss of All Offsite Power
9.	Maximum Size Un-Isolable Main Steam Line Rupture
10.	Slow Primary System Depressurization to Saturated Condition Using Pressurizer Relief or
	Safety Valve Stuck Open with No High Head Injection

TADLES

To distribute the work load between each testing year, approximately 25 percent of the procedure tests were performed each year. At the completion of the four year test cycle, each of the procedure tests had been completed. Table 3 provides a summary of the tests performed. Each test used the latest revision of Unit 1 controlled procedures. A total of 36 deficiencies were captured in PRs or DCRs in the last four years: three DCRs remain to be completed.

Sequoyah Nuclear Plant						
Four Year Simulator Test Report for Period Ending March	21, 1999					

		Denter and density of Party States	TABLE 3	ANT ADDRESS TO ADDRESS OF ADDRESS ADDRE			
			PROCED · E TEST LIST				
Annual Test Period Ending			Procedure Description				
1996	1996 General Operating Procedures: Plant Start Up from Cold Iron to 100 Percent Powe						
1997	Genera Iron	al Operating	Procedures: Plant Shutdown from 100 Percent Po	ower to Cold			
1998	Emerg	ency Operati	ing Procedures (includes Functional Restoration C Emergency Contingency Actions)				
1999	Abnor	mal Operatin	g Procedures and Emergency Abnormal Procedu	res			
E.	Mai To o requ con had	uired malfur pletion of t been tested	ests fork load in each testing year, approximately 2 nctions v. ce tested annually (refer to Table 4) the four year test cycle, each of the required m l. After inserting each malfunction, simulator). At the nalfunctions			
	proo mac sim wou feat cou	cedures, and de to ensure ulator could uld take the tures (if any ld be remov	e Malfunction Cause and Effects document, to d to available actual plant data. Additionally, that an appropriate Initial Condition existed, d be operated to a steady state condition, that of same actions in the reference plant, that the v) could be manipulated, and whether or not the yed. A total of 37 deficiencies were captured in	a check was that the operators ariable rate ae malfunction			
	proo mac sim wou feat cou	cedures, and de to ensure ulator could uld take the tures (if any ld be remov	to available actual plant data. Additionally, that an appropriate Initial Condition existed, be operated to a steady state condition, that of same actions in the reference plant, that the v could be manipulated, and whether or not the red. A total of 37 deficiencies were captured is st four years: all of these were resolved. TABLE 4	a check was that the operators ariable rate ae malfunction			
	proo mac sim wou feat cou DC	cedures, and de to ensure ulator could uld take the tures (if any ld be remov	It to available actual plant data. Additionally, that an appropriate Initial Condition existed, be operated to a steady state condition, that of same actions in the reference plant, that the v could be manipulated, and whether or not the yed. A total of 37 deficiencies were captured is st four years: all of these were resolved.	a check was that the operators ariable rate ae malfunction			
Period	proo mac sim wou feat cou DC	cedures, and de to ensure ulator could uld take the tures (if any ld be remov	to available actual plant data. Additionally, that an appropriate Initial Condition existed, be operated to a steady state condition, that of same actions in the reference plant, that the v could be manipulated, and whether or not the red. A total of 37 deficiencies were captured is st four years: all of these were resolved. TABLE 4	a check was that the operators ariable rate the malfunction in PRs or			
Period Ending	proo mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number	A to available actual plant data. Additionally, that an appropriate Initial Condition existed, d be operated to a steady state condition, that of same actions in the reference plant, that the v.) could be manipulated, and whether or not th ved. A total of 37 deficiencies were captured is st four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description	a check was that the operators ariable rate the malfunction in PRs or ANSI-3.5 Section			
Period	prod mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number CV09	A to available actual plant data. Additionally, that an appropriate Initial Condition existed, d be operated to a steady state condition, that of same actions in the reference plant, that the v) could be manipulated, and whether or not the yed. A total of 37 deficiencies were captured is st four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description VCT Level Transmitter Fails High	a check was that the operators ariable rate the malfunction in PRs or ANSI-3.5 Section 3.1.2(18)			
Period Ending	proo mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number CV09 TH05	to available actual plant data. Additionally, that an appropriate Initial Condition existed, be operated to a steady state condition, that of same actions in the reference plant, that the v could be manipulated, and whether or not th red. A total of 37 deficiencies were captured is t four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description VCT Level Transmitter Fails High Steam a nerator Tube Leak	a check was that the operators ariable rate in PRs or ANSI-3.5 Section 3.1.2(18) 3.1.2(1a)			
Period Ending	proc mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number CV09 TH05 CV04	to available actual plant data. Additionally, that an appropriate Initial Condition existed, d be operated to a steady state condition, that of same actions in the reference plant, that the v) could be manipulated, and whether or not th yed. A total of 37 deficiencies were captured is st four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description VCT Level Transmitter Fails High Steam a nerator Tube Leak Letdown Line Break Inside Auxiliary Building	a check was that the operators ariable rate in PRs or ANSI-3.5 Section 3.1.2(18) 3.1.2(1b) 3.1.2(1b)			
Period Ending	proo mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number CV09 TH05 CV04 TH03	to available actual plant data. Additionally, that an appropriate Initial Condition existed, be operated to a steady state condition, that of same actions in the reference plant, that the v.) could be manipulated, and whether or not the ved. A total of 37 deficiencies were captured is st four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description VCT Level Transmitter Fails High Steam an erator Tube Leak Letdown Line Break Inside Auxiliary Building Small Break Loss of Coolant Accident	a check was that the operators ariable rate the malfunction in PRs or ANSI-3.5 Section 3.1.2(18) 3.1.2(16) 3.1.2(1c)			
Period Ending	proc mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number CV09 TH05 CV04 TH03 TH04	to available actual plant data. Additionally, that an appropriate Initial Condition existed, be operated to a steady state condition, that of same actions in the reference plant, that the v) could be manipulated, and whether or not the yed. A total of 37 deficiencies were captured is st four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description VCT Level Transmitter Fails High Steam & nerator Tube Leak Letdown Line Break Inside Auxiliary Building Small Break Loss of Coolant Accident Failure of Pressurizer Safety Valve	a check was that the operators ariable rate the malfunction in PRs or ANSI-3.5 Section 3.1.2(18) 3.1.2(16) 3.1.2(10) 3.1.2(10) 3.1.2(10)			
Period Ending	prod mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number CV09 TH05 CV04 TH03 TH04 RD13	A to available actual plant data. Additionally, that an appropriate Initial Condition existed, d be operated to a steady state condition, that of same actions in the reference plant, that the v) could be manipulated, and whether or not the red. A total of 37 deficiencies were captured is t four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description VCT Level Transmitter Fails High Steam a nerator Tube Leak Letdown Line Break Inside Auxiliary Building Small Break Loss of Coolant Accident Failure of Pressurizer Safety Valve Stuck Rod	a check was that the operators ariable rate in PRs or ANSI-3.5 Section 3.1.2(18) 3.1.2(18) 3.1.2(10) 3.1.2(10) 3.1.2(10) 3.1.2(12)			
Period Ending	proo mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number CV09 TH05 CV04 TH03 TH04 RD13 IA02	to available actual plant data. Additionally, that an appropriate Initial Condition existed, d be operated to a steady state condition, that of same actions in the reference plant, that the v) could be manipulated, and whether or not th yed. A total of 37 deficiencies were captured is st four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description VCT Level Transmitter Fails High Steam onerator Tube Leak Letdown Line Break Inside Auxiliary Building Small Break Loss of Coolant Accident Failure of Pressurizer Safety Valve Stuck Rod Loss of Non-Essential Control Air	a check was that the operators ariable rate in PRs or ANSI-3.5 Section 3.1.2(18) 3.1.2(10) 3.1.2(10) 3.1.2(10) 3.1.2(12) 3.1.2(2)			
Ending	prod mac sim wou feat cou DC	cedures, and de to ensure ulator could ald take the tures (if any ld be remov Rs in the las Malfunction Number CV09 TH05 CV04 TH03 TH04 RD13	A to available actual plant data. Additionally, that an appropriate Initial Condition existed, d be operated to a steady state condition, that of same actions in the reference plant, that the v) could be manipulated, and whether or not the red. A total of 37 deficiencies were captured is t four years: all of these were resolved. TABLE 4 MALFUNCTION TEST LIST Malfunction Description VCT Level Transmitter Fails High Steam a nerator Tube Leak Letdown Line Break Inside Auxiliary Building Small Break Loss of Coolant Accident Failure of Pressurizer Safety Valve Stuck Rod	a check was that the operators ariable rate in PRs or ANSI-3.5 Section 3.1.2(18) 3.1.2(18) 3.1.2(10) 3.1.2(10) 3.1.2(10) 3.1.2(12)			

TABLE 4 (Continued) MALFUNCTION TEST LIST					
nnual Test	TEORAN AND AN AND AND				
Period Item Malfunction Malfunction				ANSI-3.5	
Ending	Number	Number	Description	Section	
1997	1	ED15	Loss of 250 VDC Battery Board	3.1.2(3)	
	2	RC01	Reactor Coolant Pump Locked Rotor	3.1.2(4)	
	3	RD05	Rod Misalignment	3.1.2(12)	
	4	RW02	Raw Cooling Water Pump Trip	3.1.2(6)	
	5	RW07	Loss of Cooling to Main Feed Pump Oil Coolers	3.1.2(6)	
	6	RH04	Residual Heat Removal Loop Suction Line Blockage	3.1.2(7)	
	7	RP01	Reactor Trip Signal Failure	3.1.2(24)	
	8	CC04	Component Cooling Pipe Break Inside Containment	3.1.2(8)	
	9	CN02	Condensate Booster Pump Trip	3.1.2(9)	
	10	MS01	Main Steam Line Break Inside Containment	3.1.2(20)	
	11	FW05	Loss of All Feedwater: Trip of Turbine MFWP	3.1.2(10)	
		FW07	Loss of All Feedwater: Trip of AFWP	3.1.2(10)	
1998	1	TH01	Hot Leg Loss of Coolant Accident	3.1.2(1c)	
	2	TU/02	Main Turbine High Vibration	3.1.2(15)	
	3	EG01	Main Generator Trip	3.1.2(16)	
	4	ED10	Loss of 120 VAC Inverter	3.1.2(3,11	
	5	RX18	Failure of T-average Control Signal	3.1.2(17)	
	6	RX07	Pressurizer Pressure Transmitter Failed High	3.1.2(18)	
	7	RH01	Residual Heat Removal Pump Trip	3.1.2(7)	
	8	RP05	False Auto Reactor Trip Signal	3.1.2(19)	
	9	MSu2	Main Steam Line Break Outside Containment	3.1.2(20)	
	10	FW23	Main Feedwater Line Break Inside Containment	3.1.2(20)	
	11	RD07	Dropped Rod	3.1.2(12)	
1999	1	ED12	Loss of 125 VDC Vital Bus	3.1.2(3)	
	2	N107	Power Range Channel Output Signal Failure	3.1.2(21)	
	3	HD12	#1 Feedwater Heater Level Control Failed Low	3.1.2(22)	
	4	CN09	Loss of Vacuum	3.1.2(5)	
	5	CV15	Charging Flow Control Problem: Pressurizer Level Swing	3.1.2(22)	
	6	RP02	Auto Safety Injection Initiation Signal Failure	3.1.2(23)	
	7	1A03	Loss of Essential Control Air	3.1.2(2)	
	8	RD08	Rod: Fail to Move on Demand	3.1.2(13)	
	9	THR02	Fuel Cladding Failure	3.1.2(14)	
	10	FW20	Main Feedwater Line Break Outside Containment	3.1.2(20)	
	11	NI04	Intermediate Range Channel Failure	3.1.2(21)	
	12	CV01	Charging Pumps Trip	3.1.2(18)	
	13	CV16	Failure of Letdown Relief Valve	3.1.2(22)	
	14	RC05	Failure of Pressurizer Power Operated Relief Valve	3.1.2(1d)	
	15	EG02	Loss of Emergency Diesel Generators	3.1.2(3)	
	16	CN23	Loss of Condenser Level Control (Hotwell Dumpback)	3.1.2(5)	
		CN29	Loss of Condenser Level Control (Hotwell Makeup)	3.1.2(5)	

Sequoyah Nuclear Plant Four Year Simulator Test Report for Period Ending March 21, 1999

· F.	Real Time Tests					
	These types of Peal Time Tests were performed annually					
	Three types of Real Time Tests were performed annually:					
	 Each Transient Test was checked by a stop watch against the computer run time clock. 					
	2. The simulator uses a real time executive test, which runs continually and monitors the execution of all simulation models. If a portion of a calculation does not finish in time, the simulator will automatically halt. A check confirmed that the simulator did not halt during any Transient Test.					
	3. For testing purposes, the simulator was forced to slip a timing fram to ensure that the simulator would halt.					
	No Real Time Test deficiencies were found.					
G.	Simulator Fidelity					
	As modifications are being initiated in the plant, design change packages are reviewed by the simulator staff for applicability. Additionally, photographs are made of the plant Main Control Room panels for comparison with the simulator. Items that were identified as having training impact were incorporated into the simulator under the DCR process. Plant changes are required to be compiled at least annually, and appropriate simulator modifications are required to be made within the following year. The required modifications were implemented within these time limits.					
H.	Simulator Limitations					
	The Sequoyah simulator imposes four Limitations (refer to Table 6). It is possible to create events on the simulator which progress beyond plant design limits. To avoid negative training, which could result from simulator operation during such events, the occurrence of an event on the simulator that progresses beyond the plant design limits causes the simulator to automatically halt.					
	TABLE 5					
	LIMITATIONS LIST					
	nent pressure exceeds the design limit (15psig).					
NA ADALAR BUILDER VOLGEN BUILDER GUNDEN VOLGEN ANDER DER						
2. Fuel clad	I temperature exceeds the clad melt point (1533 degrees K). extraction lines flood (any FW Heater full of water, with water in extraction line).					

I. Simulator Exceptions

Significant differences in simulator fidelity, other than those addressed by open PRs or DCRs, are tracked as Exception Reports (refer to Table 6 for the current list). Each have been evaluated to have no negative impact on training.

		OPEN EXCEPTION REPORT LIST
Exception Number*	Open Date	Exception Description
2	3/4/91	The ceiling and lighting do not match the plant Main Control Room: the plan ceiling diffuser grid is suspended ~12 inches above the panels; normal plant lighting is AC fluorescent lighting at ove the diffuser grid; and, emergency plant DC lighting is either wall mounted or suspended below the diffuser grid. The simulator is in a two story room with recessed Mercury vapor lighting. The second floor walls are lined on two sides with floor-to-ceiling glass windows for viewing from the second floor, fitted with adjustable shades. The simulator can replicate neither the loss of AC lighting nor the use of emergency DC lighting.
3	3/4/91	Panel M-7 is not simulated. In the plant, this penel contains the preferred and instrument power distribution breakers and transfer switches (remote functions are available).
4	3/4/91	Panel M-8 is not fully simulated. The rod coil disconnect switches are simulated, but turbine supervisory power drawers are not.
6	3/4/91	Panels M-21 and M-22 are not simulated. Plant panels contain the annunciator logic and SSPS demultiplexer cabinets.
8	3/4/95	Panel M-28A is not fully simulated for Unit 2 EGTS controls, and it is not located the same distance from the horseshoe as in the plant.
9	3/4/91	Electrical Control Board (switchyard control) is only partially simulated th side to side spacing of breaker bays has been collapsed to preserve floor space
12	7/21/92	Back panel M-31 is partially simulated a radiation monitor controller and two recorders are not simulated due to little use and high cost to replicate.
14	11/10/04	The simulator cannot be used for training on Unit 2 procedures.

TABLE 6

Note: For brevity, the six (6) closed Exceptions are not listed.

IV. Status of Uncorrected Test Performance Deficiencies Reported in 1995

Five open test deficiencies were documented in the four year report submitted in 1995. All five items were completed prior to their scheduled date.

V. Uncorrected Test Performance Deficiencies and Correction Schedule

Five open test deficiencies exist at the start of the next four year testing period. They are planned for correction as shown in Table 7.

	Sequoyah Nuclear Plant								
Four	Year Simulator	Test	Report	for	Period	Ending	March	21,	1999

OR TANDACIE MILIUM DURADA DA		TABLE 7	III SAL INCLUDING ADDRESS OF AN ADDRESS AND
	SCHEDULI	FOR THE CORRECTION OF TEST DEFICIENCE	LIES
Test	Deficiency	Description of Deficiency	Scheduled Date
Transient	PR-2661	RCS loop delta-temperature is to ow during Natural Circulation.	7/1/99
	PR-2802	S/G Safety valves incorrectly open on a loss of steam dumps.	7/1/99
Procedure	DCR-750	Add the Unit 2 Yokogowa EGTS controllers to panel M-28.	7/1/99
	DCR-790	Add remote functions for stripping individual breaker loads from vital battery boards.	5/28/99
	DCR-815	Simulate Unit 2 Emergency Shutdown buses supplying Unit 1 6.9 XV Shutdown boards.	5/28/99

VI. DESCRIPTION OF TEST DIFFERENCES FOR THE NEXT FOUR YEAR TEST PERIOD

During the next four year test period, each simulator test is planned to be performed in a manner similar to that of the previous period; no changes are anticipated in critical and non-critical test parameters.

VII. SCHEDULE FOR TESTING DURING THE NEXT FOUR YEAR TEST PERIOD

Table 8 lists planned test starting dates for the next simulator reporting cycle. The next anniversary of the Four Year Simulator Test Report is March 21, 2003.

SCHEDULE F	OR TESTING DUI	TABLE 8 RING THE NE	EXT FOUR Y	EAR TEST PE	RIOD
Test T	Planned Start Year 1 (Test Period Ending 3/21/2000)	Planned Start Year 2 (Test Period Ending 3/21/2001)	Planned Start Year 3 (Test Period Ending 3/21/2002)	Planned Start Year 4 (Test Period Ending 3/21/2003)	
Procedure *	(25% annually)	9/1/1999	9/1/2000	9/1/2001	9/1/2002
Transient/Real Time	(100% annually)	10/1/1999	10/1/2000	10/1/2001	10/1/2002
Malfunction **	(25% annually)	11/1/1999	11/1/2000	11/1/2001	11/1/2002
Steady State	(100% annually)	12/1/1999	12/1/2000	12/1/2001	12/1/2002

TABLE 8

Note: * Procedure tests will be conducted each test year in the pattern shown in Table 3.

** Malfunction tests will be conducted each test year in the pattern shown in Table 4.