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ABSTRACT

This report documents the development and validation of analytical models to predict steam
generator (SG) tube leakage that can be expected from cracks within the tube-to-tubesheet
junction at high temperature. It is recognized that the problem of predicting the leakage from
cracked tubes within the tube sheet (TS) during severe accidents is too complex to be solved by
either purely analytical or purely experimental means. In this study Argonne National
Laboratory (ANL) adopted a combined analytical-experimental approach. The experiments
were designed to simulate several key aspects of the tubesheet behavior during a postulated
station blackout severe accident. The resultant predicted leak rates were determined through
these efforts.

Pressure and leak rate tests were conducted at high temperatures on 12 tube-to-collar junction
specimens with independent pressurization of the tube and the leakage path (crevice). A finite
element model of the specimen was used to calculate the variation of contact pressure and
tube-to-tubesheet gap over time. A leak rate model was developed based on plane Couette-
Poiseuille flow along the interface between two rough contacting surfaces. The model
parameters were determined from the leak rate tests.

A finite element model was developed for a Westinghouse Model 51 SG tube-to-tubesheet
interface, including the divider plate, lower head and a short segment of the SG shell. The
model was used to analyze first, the spatial variation of the temperature with time, and second,
the variations of contact pressure and gap along the tube-to-tubesheet interface as functions of
time during the postulated station blackout severe accident. The leak rate model was used to
predict the leak rates during the severe accident.

Results in this report indicate that leakage could occur through the tube-to-tubesheet joints in
station blackout accident conditions, and there are significant variations in the leak rates
calculated for different paths. In addition, results show that the leak rate remains low for three
hours, after which the rate is predicted to increase. In the absence of tests with realistic
interface and boundary conditions, the present results should be considered as best estimates.






FOREWORD

There is concern with a proposal to limit inspection for steam generator (SG) defects inside the
thick tubesheet region. It has been argued that the joint between the sheet and the tubes is so
tight, that even if cracks grow completely through the tubes, the primary water cannot leak to the
secondary side of a nuclear power plant. The staff has expressed concerns that an initially tight
seal may not remain so over time. To investigate this, a combination of experimental validation
and model development was performed, by ANL and the U.S. Nuclear Regulatory Commission,
respectively, to estimate the magnitude of this potential leakage.

Tube-to-collar test specimens were designed to simulate the contact pressures generated in a
real SG tube-to-tubesheet junction due to hydraulic expansion and thermal expansion mismatch
between the tube and tubesheet. The tubes and the leakage paths (crevices) in the test
specimens were independently pressurized. The tests showed a steady decrease of leak rate
with increasing temperature from room temperature, reduced to almost zero at ~500°C. In tests
where the crevice pressure was held constant and the temperature of the specimen was
increased continuously, leakage resumed at temperatures between 670-690°C and increased at
an increasing rate with temperature to high values (>5,000 mg/min) until the test was stopped.
However, if the crevice was kept mostly depressurized and a crevice pressure applied only
intermittently to measure the leak rates, no such large leakage was observed. Thus, it was
concluded that large leakage is not possible unless the crevice is pressurized for a sufficiently
long time to relax the contact pressure and open a gap at the tube-to-collar interface by
deforming the collar by creep.

Results showed that under a postulated station blackout severe accident, leakage flow could
occur. There was significant variation in the leak rates calculated for different paths. The
results showed that leak rate remains low for three hours, then the leak rate is predicted to
increase. In the absence of tests with realistic interface and boundary conditions, the present
results should be considered as best estimates to approximate potential field conditions.
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EXECUTIVE SUMMARY

During severe accidents, there is a concern that superheated steam from the primary side may
be discharged outside the containment by a breach of a sufficient number of SG tubes. Such
SGs in the field may have cracks that are contained within the tubesheet. It is customary to
assume that during design basis accidents, these cracks would not constitute a breach of the
tube wall because the high contact pressure at the tube-to-tubesheet interface would prevent
any leakage of the coolant from the primary to the secondary side. However, during severe
accidents, the high contact pressures may be relaxed out by creep and the interface region
could provide a low resistance path for the primary coolant to leak out into the secondary side.
This report documents the detailed analysis involving a Westinghouse Model 51 SG of the tube-
to-tubesheet interface to provide estimated values of leakage from such cracks under
postulated (Case 8B) station blackout severe accident conditions. Case 8B is a station blackout
with a stuck opened PORV on one SG. The tests and models discussed in this report are
based on the postulated pressurization of the tube-to-tubesheet gap (crevice) due to SG tube
cracking and subsequent leakage of the RCS into this gap.

Model Development

A 2-D axisymmetric finite element model and a simplified 1-dimensional model of the specimen
were developed and used to calculate the variation of contact pressure and gap at the tube-to-
collar interface with time. The analyses included stresses due to hydraulic expansion, thermal
stresses due to mismatch in thermal expansion coefficients between the tube and the collar and
stresses induced by tube and crevice pressures. The high temperature mechanical properties
needed for analysis were obtained from literature in addition to a limited number of tensile and
creep tests conducted on three heats of Alloy 600 tubes and a single heat of A508 steel. Tests
were also performed to obtain thermal expansion coefficient data for a single heat of Alloy 600
and A508 steel as functions of temperature up to 700°C. Both the finite element model and
simplified models were successful in predicting the temperature at which there was a complete
loss of contact pressure, leading to onset of large leakage.

A 1-D leak rate model was developed based on plane Couette-Poiseuille flow applied to the
interface between two plane rough surfaces in contact. The leak rates of most of the tests could
be predicted to within a factor of 2-3 by appropriate choices of three adjustable parameters of
the model. All three parameters were determined from the initial leak rate tests at room
temperature before the high temperature tests were performed.

A finite element model of a Westinghouse Model 51 tube-to-tubesheet joint was developed.
The model included a single SG tube (hot tube) embedded inside the tubesheet (with a solid
rim), the divider plate, the lower head and a short segment of the SG shell. The
inhomogeneous tubesheet with tube holes was replaced by a homogeneous tubesheet with
equivalent anisotropic properties. The anisotropic properties were determined from finite
element analysis (FEA) of the tubesheet unit cell. The heat transfer from the tube to the
tubesheet for the single tube was analyzed in details, while the heat flow from the rest of the
tubes to the tubesheet was approximated by volumetric heat fluxes. The heat transfer data for
the hot tube was obtained from a computational fluid dynamics (CFD) analysis performed by
NRC/RES, and those for the rest of the components were obtained from RELAP 5 model. First,
a thermal conduction analysis was conducted with FEA (ABAQUS). The temperature data from
the thermal conduction analysis were input into an elastic-plastic-creep structural FEA that
included the tube pressure, crevice pressure and the primary pressure acting on the lower
surface of the tubesheet. The analysis provided the contact pressure and interfacial gap
variation along the length of the tube as functions of time.
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Experimental Validation

Tube-to-collar test specimens were designed to simulate the contact pressures generated in a
real SG tube-to-tubesheet junction due to hydraulic expansion and thermal expansion mismatch
between the tube and the tubesheet. However, these tests were not designed to simulate the
more complex behavior of a real SG tube-to-tubesheet junction, such as, tubesheet bowing,
tube hole ovalization, etc. Twelve tube-to-collar specimens were fabricated by B&W, Canada.
ANL conducted pressure and leak rate tests at high temperatures, representative of thermal
transients under Case 8B severe accident conditions. The tubes and the leakage paths
(crevices) in the test specimens were independently pressurized. The tests showed a steady
decrease of leak rate with increasing temperature from room temperature. The leak rate
reduced to almost zero at =500°C. In tests where the crevice pressure was held constant and
the temperature of the specimen was increased continuously, leakage resumed at temperatures
between 670-690°C and increased at an increasing rate with temperature to high values (>5000
mg/min) until the test was stopped. However, if the tube-to-tubesheet crevice was kept mostly
depressurized and the crevice pressure increased only intermittently to measure the leak rates,
no such large leakage was observed. Thus, it was concluded that large leakage is not possible
unless the crevice is pressurized for a sufficiently long time to relax the contact pressure and
open a gap at the tube-to-collar interface by deforming the collar by creep. (A schematic of this
is shown in Fig. 44.)

Specimens with 1.9 mm (0.75 in.) diameter tubes behaved essentially the same way as 22 mm
(0.875 in.) diameter tubes. Also, specimens with three different heats of Alloy 600 tubes
behaved essentially the same way. The onset of large leakage during the temperature ramp
was delayed slightly with increasing leakage path length.

A test, in which the crevice pressure inlet was sealed off and a 0.8 mm (0.03125 in.) hole was
drilled in the tube wall, behaved essentially the same way as specimens whose tubes and
crevices were pressurized independently. It is thus likely that crevices in tubes containing
through-wall cracks within the tubesheet of a real SG will also be pressurized.

Results

The stress analysis result showed a significant variation of contact pressure and gap in the tube
circumferential direction, suggesting that circumferential flow would occur. However, since the
leak rate model is based on axisymmetric geometry and ignores any circumferential flow, leak
rates were calculated for four axial paths located 90° apart in the circumferential direction of the
tube. There was significant variation in the leak rates calculated for the four paths. The results

showed that the predicted path-averaged leak rate and cumulative leakage remain low (<1O'3
kg/min and 2x1 03 kg/tube) at 13,460 s, the mean ruPture time for the hottest tubes. Although
these results are based on a simplified description of the leakage flow, even if multiplied by a
factor of 5000, the resulting leak rates are too small to depressurize or alter the course of the
severe accident transient significantly.

A tube pullout analysis showed that the end cap loading acting on the hottest tube is insufficient

to overcome the fictional resistant force (using H*=0.45 m [17.75 in.]) and cause a pullout before
a free span crack of interest will rupture during the severe accident.
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1 INTRODUCTION

The purpose of the present study is to develop analytical models to predict the leakage that can
be expected from cracks within the tube-to-tube sheet junction at high temperature and
experimentally validate the models. It is recognized that the problem of predicting the leakage
from cracked tubes within the tube sheet (TS) during severe accidents is too complex to be
solved by either purely analytical or purely experimental means. In this study a combined
analytical-experimental approach was adopted. The experiments were designed to simulate
several key aspects of the TS behavior during severe accidents, but not all, and provide
validation of the model. The leak rate model parameters were developed from these
experimental tests. One important aspect of the problem that was not simulated in the tests is
the phenomenon of TS bowing; this was addressed analytically by finite element analysis.
Finally, the models are used together with finite element analyses to predict a range of leakages
that can be expected from through-wall cracks under the TS. The magnitudes of these leak
rates were compared with the RCP leak rates assumed in the RELAP 5 analysis. If the leak
rates were significant, they may materially influence the progress of the severe accident
transient, which in turn may affect the failure time sequence of the RCS components.

In NUREG-1570,[1] the NRC assessed the potential for containment bypass due to SG tube
rupture (SGTR) induced by severe accident conditions. One possible accident scenario is
thermally induced tube rupture following an unmitigated station blackout leading to core melt.
Such an accident can lead to a situation in which the hot leg and SG are filled with a single-
phase mixture of superheated steam and hydrogen. A counter-current natural circulation flow
pattern is established in the hot leg and it is during this time that the temperatures rise
significantly in the reactor coolant system. The specific scenario used for the analysis in this
report is referred to as Case 8B in Reference 3. Case 8B is a station blackout with a stuck
opened power-operated relief valve (PORV) on one SG. Thermal hydraulic analyses show that
the primary system pressure drops for the first 5,000 seconds due to the significant heat
removal from the primary system by the SGs as they are boiling dry. The SGs are completely
dry at approximately 6,000 seconds, which reduces their heat transfer capacity and the primary
system pressure begins to rise. After about 6500 seconds, the primary pressure rises to the
PORYV set point pressure and then oscillates around this pressure as the PORVs cycle between
opened and closed. The temperature of the fluid entering the SG is nearly constant for the first
9,173 seconds. The void fraction is 1.0 at 9,173 seconds, i.e., the fluid is only steam and
hydrogen, and at this time, the temperature starts to rise significantly above the temperatures
associated with design basis conditions. This is also close to the time when the counter-current
natural circulation flows are assumed to begin.

The current thermal hydraulic analyses of these transients assume various levels of leakage
from the reactor coolant pump (RCP), but do not currently consider the possible leakage from
cracks that may be present in the SG tube-to-tubesheet junction. Excessive leakage from
through-wall cracks within the tube-to-tubesheet junctions during severe accidents raises two
concerns. First, it may lead to containment bypass even without tube rupture, and second, it
may materially affect the thermal hydraulic response of the reactor coolant system (RCS) during
the progress of the severe accidents which the RELAP 5 calculations will fail to predict correctly
unless such leakages are explicitly taken into account. High temperature-induced creep,
expected to occur in the SG tubes and TS during the latter stages of severe accidents, could
significantly increase the leakage compared to that during main steam line break (MSLB)
because of two effects. First, cracks can open wider during severe accidents due to creep and
increase the leakage area and second, creep can relax the interfacial pressure at the tube-to-
tubesheet junction and reduce the resistance to leakage from cracks within the TS.






2 BACKGROUND

During postulated PWR severe accidents, there is a concern that effluents from a degraded
core may be allowed to bypass the containment if structural failures are experienced in the SG
tubes (SGTs). However, if other RCS components (e.g., hot leg or surge line) fail before the
SGTs, containment bypass may be averted. RCS component failure predictions will aid in
determining the related RCS thermal hydraulic response and the relative order of the RCS
failure sequences, the risk importance, and the associated uncertainties.

In order to predict structural failure times of various RCS components, the coolant temperature
and pressure histories during the severe accident transients are needed as inputs to the
structural analyses. The inputs for the structural analyses are generated from thermal hydraulic
(TH) analyses of various severe accident scenarios using the TH code RELAP 5.[2] Under
certain scenarios, the results of the TH analyses can depend critically on the reduction of
primary coolant inventory due to leakage through all available paths. In the recent series of
sensitivity analyses that was conducted by Information Systems Laboratories, RCP leakage was
considered as the only leakage path.[3] It is known that many of the currently operating
pressurized water reactor (PWR) SGs contain cracks in the tubes in the TS regions. Under
normal operating conditions such cracks may not leak, but at high temperatures leakage
through these cracks provides an additional path for loss of primary coolant and could
potentially influence the progress of the severe accident transient. The sensitivity calculations
suggest that a cumulative leak rate on the order of 1 kg/s (from all tube-to-tubesheet junctions)
may be the threshold beyond which such leak rates may make a difference. Using the
developed model, validated with experimental data, the following analyses and tests were
conducted to help estimate the possible range of leak rates from cracks located within theTS.

The leak rate from cracks in the SGTs under the TS during severe accidents will be controlled
by a large number of factors. The key to correctly predict the leakage lies in our ability to obtain
reasonable estimates of the resistance to leakage flow from all sources. The sources for
resistance to the leakage flow are as follows

(1) Debris carried from the reactor core with the coolant (which may clog the cracks).

(2) Turns in the coolant flow from inside the tube through the crack into the tube-to-
tubesheet annular interface.

(3) Flow resistance of the crack (crack opening area, roughness of crack, etc.).

(4) Flow resistance of the tube-to-tubesheet annular interface (depends on the contact
pressure, TS bowing, flow path length, surface roughness of the mating surfaces,
temperature, pressure, flow velocity, and potential oxidation of TS hole surface). This
resistance is influenced by the location of the crack relative to the top of TS (TTS) (if it
can be shown that cracks lying within the TS at a depth greater than a predetermined
distance will not leak, it might be possible to eliminate the need to inspect the fulldepth
of the TS for cracks.).

(5) Deposits at the top of the TS which may or may not effectively block the leakageflow.
(Recently leak tests were conducted at ANL on tube-to-tubesheet junction sections
removed from a retired SG; among two specimens, both with intact deposits at the
TTS and with through-wall circumferential cracks, one leaked while the other did not
when tested under the same pressure)

Of the five contributors to the total flow resistance listed above, the first and the last are the
most difficult to quantify because they vary greatly between SGs and even from tube to tube
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within the same SG. In this study, the contributions from these two factors to the flow resistance
were ignored, recognizing that such an assumption will tend to lead to overestimates of the
leakage. Also, it is estimated that the contributions from items 2 and 3 should be small
compared to those from item 4. Therefore, the contributions to flow resistance from items 2 and
3 were ignored, recognizing again that such an assumption will tend to lead to overestimates of
the leakage, and the experimental and analytical efforts were designed to quantify the flow
resistances due to item 4.

[

]a,c,e

Although varying somewhat, the critical dimensions such as the tubesheet thickness, solid rim
thickness, tube hole diameter and tube diameters are relatively constant. Since the testing was
conducted on [ ]2ce diameter tubes, the Model 51F and Model
D5 geometries were chosen for the detailed severe accident leakage analysis.



3 PROBLEM DESCRIPTION AND APPROACH

A review of the TS geometry of most of Westinghouse SGs showed that a typical TS is a
porous circular plate with a radius of ~ | ]#>¢ and thickness of ~ | J2ce
(Fig.3-1). The TS is welded to the SG shell at the top and to the hemispherical lower head at
the bottom. A divider plate [ ]¢e divides the space between the TS and
the lower head | ] thick)]>e¢into inlet and outlet plenums (Fig.). The SG shell[
12ee, TS, lower head and the divider plate are made out of carbon steel. The divider plate,
which is welded to both the TS and the lower head, adds a small bending stiffness to the TS.
The TS, which contains thousands of tube holes arranged either in a square or a hexagonal
array (Fig 3-1), has a significantly lower bending stiffness than a solid plate of the same
thickness. The hole diameters are generally slightly larger [ )]
than the SGT outer diameter. The SGTs in the old SGs are made of Alloy 600 while the newer
SGs have Alloy 690 tubes. During the fabrication of the SG, the tubes are expanded into the
TS hole either hydraulically or mechanically. In this report, the chosen source of leakage was
from SG tube cracks lying within the TS thickness in SGs with hydraulically expanded mill-
annealed Alloy 600 tubes arranged in a square array.

[
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Figure 3-1 Typical TS Geometry



Tube Lane

5G Tube

SG Shell

Solid Rim

Tubesheet

Lower Head

Divider Plate

Figure 3-2  Cut Away View of Model 51 SG

During the tube expansion process, great care is taken to ensure that while the portion of the
tube lying inside the TS is expanded, the rest of the tube lying outside the TS is unexpanded
(Fig. 3-3). Besides the large bending residual stresses in the tube wall itself, the expansion
process also introduces a significant contact pressure between the SGT outer surface and the
tube hole surface within the TS. The contact pressure distribution is relatively uniform after
fabrication at room temperature. Because of the tube internal pressure and a difference in the
thermal expansion coefficients of carbon steel and Alloy 600, the contact pressure increases
significantly during normal operation. The pressure difference between the primary and
secondary fluids causes the TS to flex (or bow) upwards, which leads to a non-uniform
distribution of the contact pressure in the axial direction of the tubes. During MSLB and severe
accidents, the secondary side is depressurized which causes additional bending (Fig.3-4) of the
TS and increased non-uniformity in the contact pressure distribution with the possibility of a
portion of the tubes lying within some distance from the top of TS to lose contact with the TS
hole surface. During latter stages of severe accidents when the temperature of the coolant
reaches levels where both the tube and the TS start to deform by thermal creep, the contact
pressure distribution changes as a function of time with the possibility of further loss of contact
between the tube and the TS.



Figure 3-3  Typical Deformation Profile of the SGT after Tube Expansion

Figure 3-4 TS and Divider Plate, Showing Displaced Shape of TS During MSLB and
Severe Accidents



The analytical prediction of the changing contact pressure with time, temperature and pressure
is a challenge. The problem is further complicated by the fact that there is no easy way to
experimentally measure the contact pressure and validate the calculations. Although utilities
have attempted to measure the contact pressure by conducting tube pullout tests at room
temperature, the results are often difficult to interpret because of Poisson’s contraction of the
tube during pullout. The interpretation of a few pullout tests that have been conducted by
industry at temperature is complicated by the change in the contact pressure brought about by
the differential thermal expansion between the tube and the TS. Since the ultimate objective is
to calculate leakage through the tube-to-tubesheet interfacial annulus, the plan was to validate
the overall models with leakage tests directly rather than try to first validate a model for
calculating contact pressure. Successful experimental validation of the overall leakage model,
with tests conducted on a range of specimen dimensions at a number of test pressures and
temperatures, will demonstrate that the models for calculating contact pressure reasonably
approximate the effects of pressure and temperature.

Conducting realistic leakage tests on tube-to-tubesheet joint specimens that include effects
such as TS bowing at high temperature would be very expensive and was outside the work
scope of the project. Historically, industry has conducted leakage tests on simpler tube-to-collar
specimens and carried out parallel analyses to demonstrate to NRC that leakage during design-
basis accidents from cracks lying deep within the TS is acceptably small. In an analogous
fashion, the leakage model developed in this project was validated through leakage tests on
tube-to-collar test specimens, although the tests were conducted at much higher temperatures
than have been done by industry so far. The validation included a series of ABAQUS FEAs to
calculate the changing contact pressure with time for each test. Successful validation will
provide confidence in the ability to carry out the next step, which is to calculate the contact
pressure in an actual tube-to-tubesheet junction as a function of time during severe accidentsby
FEAs that will take into account both creep deformation and TS bowing. The results from the
FEAs are then used in the leak rate model to estimate the leakage rate during severeaccidents.

To ensure that the tube-to-collar specimens have surface roughness and contact pressures that
are close to those in an actual SG, a subcontract was issued to Babcock and Wilcox, Canada
for the fabrication of the specimens using the hydraulic expansion procedures that theynormally
would use during fabrication of SGs for the utilities. The specimens included 19 mm (0.75 in.)
diameter as well as 22 mm (0.875 in.) diameter Alloy 600 tubes. The collar dimensions were
selected so that the computed contact pressures are comparable to those in tube-to-tubesheet
joints in a real SG after tube expansion.



4 MATERIALS PROPERTIES DATA

4.1 Physical Properties

411 Thermal Expansion Coefficients

Among the key properties that control the contact pressure at the tube-to-collar interface are the
coefficients of thermal expansion of Alloy 600 and A508 steel. Tube samples of Heat EX-82-1
of Alloy 600 and a block of A 508 were sent to two vendors — ANTER Corp. and PMIC Corp.
Data for Alloy 600 were measured by both vendors in air. To prevent oxidation from affecting
the data, the measurements for A508 steel were made by ANTER in argon environment and by
PMIC in vacuum. A repeat measurement on A508 (the same specimen) was made by PMIC in
air. The 6™ order polynomial fits to the expansion data for Alloy 600 and A508 are plotted in
Figs. 4-1 a-b, respectively. Although the expansion data as measured by the two vendors
appear to be close, the calculated thermal expansion coefficients for A508 as based on the
expansion data measured by PMIC in air has a kink, as shown in Fig.4-2. The mean thermal
expansion coefficients for all cases, except the PMIC data for A508 in air, were obtained from
the 6" order polynomial fits to the expansion data. The PMIC data for A508 in air was obtained
by smoothing the data as shown in Fig. 4-2.
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Figure 4-1 Thermal Expansion Strains Measured by ANTER Corp. and PMIC Corp

The mean thermal expansion coefficient data as measured by PMIC and ANTER for both
materials are plotted in Fig. 4-3. The data for each material as measured by the two vendors are
fairly close, except for the PMIC data on A508 in vacuum which fall significantly below those in
air at low temperatures. It should be noted that PMIC resorted to testing in vacuum after it was
unable to carry out the measurements in an argon environment. The data measured by ANTER
and PMIC are compared with those tabulated in the ASME Code Section Il in Fig. 4-4a-b. The
ASME Code data for both materials are higher than those measured by the two vendors. The
thermal expansion coefficient values for both materials as reported by Westinghouse are
compared with the ANTER data in Fig. 4-5.
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Thermal expansion coefficients of Alloy 600 and A508 as measured by ANTER Corp. are
compared with those reported by PMIC for Alloy 600 in air and for A508 in vacuum and air in
Figs. 4-4 a-b, respectively. The values of thermal expansion coefficients can have a significant
influence on the variation of contact pressure with temperature, as shown in Figs. 4-5a-b. The
leakage tests (to be discussed in Section 8.2.5) conducted at ANL suggest that the measured
leakage behavior is more in agreement with the predictions based on the PMIC vacuum data on
A508 modified by ANL at low temperatures (Fig. 4-6 a) than with those based on either the
PMIC data in air or the ANTER data in argon (Fig. 4.7 b).
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Tube-to-collar junction specimens were made with 22 and 19 mm (0.875 and 0.75 in.,
respectively) diameter Alloy 600 tubes. The chemical composition and tensile properties of the

Alloy 600 tubes are given in Tables 4-1 and 4-2, respectively. The 22 mm (0.875 in.) diameter
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tubes are from two heats, EX-82-1 and NX-8520. The 19 mm (0.75 in.) diameter tubes are from
heat NX-8524.
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Table 4-1 Elemental Analysis (wt. %) of 19 mm (0.75 in.) and 22 mm (0.875in.) Diameter
Alloy 600 Tubing Material
Element | Specifications NX8520 NX85242 NX8524° EX-82-1°
ASTM B163 0.875in.dia | 0.75in. dia 0.75in. dia 0.875in. dia
Ni 72.0 min. 75.63 - 75.77 | 74.66 74.95 75.05
Cr 14.0-17.0 15.28 - 15.40 | 15.21 14.84 15.21
Fe 6.0-10.0 7.96 - 8.03 9.16 9.11 8.30
Mn 1.0 max. 0.19 0.20 0.20 0.18
Cu 0.5 max. 0.02 <0.01 0.01 0.17
Cc 0.15 max 0.022 0.022 0.023 0.035
0.015 max. <0.001 <0.001 <0.001 0.001
Si 0.5 max. 0.18 - 0.21 0.20 0.17 0.23
Al d 0.21 0.24 0.22 0.15
Ti d 0.26 - 0.34 0.29 0.35 0.18
Co d 0.02 0.01 0.02 0.03
P d 0.004 0.003 0.005 0.009
B d 0.002 - 0.004 | 0.004 0.002 0.002
N d <0.01 <0.01 <0.01 0.004
@ Top of ingot
b Bottom of ingot
€ Check analysis for Tubing from PNNL with a label, EX-82-1/2675
4 Not specified.
Table 4-2 Room Temperature Tensile Properties of Alloy 600 Tubes Measured in the
Axial Direction
Heat No. | Diam. Yield UTS % Elongation
mm (in.) MPa (ksi) MPa (ksi)
8520L 22.2 (0.875) 293 (42.5) 696 (101) 36
8524 19.05 (0.75) 308 (44.7) 682 (99) 25
EX-82-1 | 22.2(0.875) 357 (51.8) 683 (99) 43
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4.2.1.1 Tensile Tests

Tensile tests were conducted at room temperature on double dogbone specimens fabricated from
tubes of the three heats of Alloy 600. Typical axial stress-strain curves of the Alloy 600 tubes are
plotted in Figs. 4-8 a-b.
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Figure 4-8 Room Temperature Stress-strain Curves of (a) 2.2 mm (0.875 in.) Diameter
Dogbone Specimens

Longitudinal slices were cut from the same set of tubes and flattened before tensile dogbone
sheet specimens were machined. The cold work introduced by the flattening process may have
elevated the flow stress. The stress-strain curves in the low strain regime are shown in Figs 4.9
a-b. Note that the yield strengths are slightly higher for the sheet specimens than for the double
dogbone specimens. The ultimate tensile strengths for the two types of specimens are close.
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Figure 4-9 Room Temperature Stress-strain Curves of (a) 22.2 mm (0.875 in.) Diameter
and (b) 19.05 mm (0.75 in.) Diameter Alloy 600 Tube Sheet Specimens
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4.2.1.2 Creep Tests

Sheet specimens of the Alloy 600 tubes were also tested for creep. The purpose of these tests
was to determine the early creep deformation behavior, which would have an influence on the
contact pressure relaxation of the tube-to-collar junction specimens during high temperature
testing. Therefore, these tests were interrupted after 100 hours if no rupture had occurred by
then. Creep strain vs. time plots for tests conducted at 15 and 172 MPa (25 ksi) at 550°C on
heats EX-82-1, NX 8520L and NX 8524 are shown in Figs. 4-10 a-c.
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Figure 4-10 Creep Strain vs. Time Plots for Tests Conducted at 550°C on Alloy 600
Heats (a) EX-82-1, (b) NX 8520L and (c) NX 8524

Similar plots for tests conducted at 69 and 138 MPa (10 and 20 ksi) at 650°C are shown in Figs.
4-11 a-c.
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Figure 4-11 Creep Strain vs. Time Plots for Tests Conducted at 650°C on Alloy 600 Heats
(a) EX-82-1, (b) NX 8520L and (c) NX 8524

Plots for all three heats tested at 93 MPa (13.5 ksi) at 732°C are shown in Fig. 4-12. The last
test conditions (temperature and stress) was selected because the INL reported data from a
different heat of Alloy 600 at the same conditions. Like the INL tests, these tests did not show
any primary creep. Figure 4-13 shows that the minimum creep rate for all three of our heats
were less than that exhibited by the INL heat. Unlike the other tests, the three tests at 732°C
were continued until rupture. The Larson-Miller parameter data for the creep rupture times ofthe
ANL tests are superimposed on the same plot for the INL tests in Fig. 4-13, which shows that
the ANL creep rupture time data for all three heats fall close to the best-fit line for the INL
tests.[4].
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Figure 4-12 Creep Strain vs. Time Plots for Tests Conducted at 732°C and 93
MPa (13.5 ksi) on Alloy 600 Heats EX-82-1, NX 8520L and NX 8524
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Figure 4-13 Larson Miller Plots for the Time to Rupture Data on Alloy 600 Conducted by
INL and ANL
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4.2.1.3  Creep Rate Equation

The creep curves were fitted with the following equations

E =£,t1E,

where g_, =primary creep and ¢, , =steady state creep,

s

and

BE

(1)

(2a)

(2b)

The parameters for the various heats are given in Table 4-3. The fitted curves are compared
with the measured curves in Figs. 4-14 — 4-16. Creep deformation at short times are fitted to
within a factor of 2. The predicted vs. observed steady state creep rates together with the +95%

confidence bounds are shown in Fig. 4-17
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Table 4-3  Parameters for Primary and Steady State Creep of Three Heats of Alloy 600

Tubes
Material Primary creep parameters Steady state creep parameters
NX 8520 Alloy A= A2=3.89x10°
600 1.35x10 for T =550°C
50 for T > 550°C n2=4.35
= | 2for T =550°C Q2=30897 K
0.03 for T > 550°C
Q1=7100 K
to=
{ 0.3 for T = 550°C
200 for T - 550°C
NX 8524 Alloy As= Ar=5.0x10%
600 5.0x107° for T = 550°C
0.09 for T > 550°C n2=2.91
ny=] 3for T=550°C Q2=26063 K
003 for T = 550°C
Q1=5015 K
to=
[ 0.1 for T = 550°C
EX-82-1 Alloy As= A2=9.5x10%
600 1.5x10° for T = 550°C
029 for T > 550°C n2=2.73
he | 2forT = s30°C Q2=26837 K
0.03 for T > 550°C
Q1=4937 K
to=
(12 for T = 550°C
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4.2.2

SA508 Steel

The SA508 steel was obtained from a large forging. The material test report showed that the
material is SA508 Class 1 Grade 3 (formerly Class 3). Following high temperature annealing, it
was water quenched at 870°C (1600°F) for 11 hours and tempered at 649°C (1200°F) for 15 h.
Histograms of the reported yield and ultimate tensile strengths are plotted in Figs 4-18

respectively.
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Figure 4-18 Histograms of Room Temperature (a) Yield and (b) Ultimate Tensile

4.2.2.1

The tensile tests were conducted on 6.35 mm (0.25 in.) diameter standard ASTM specimens

Strengths of SA508

Tensile Tests

1 640
i 560
H 480
0 400
H az0
H 240
0 160

fabricated from a block of A508 that was sent to ANL by a vendor. It had on it a 3-hr/1125°F
post weld heat treatment (PWHT), which is a standard heat treatment that is applied to all of

cladded tubesheets prior to drilling of holes. However, when the vendor fabricated the tube-to-

collar leak rate specimens for ANL, they gave the material an extra hour at 1125°F to help
machining the collars. ANL tested three specimens without the extra hour of PWHT. The stress-

strain curves are plotted in Figs. 4-19 a-c. ANL also tested a specimen with an additional hour

Room Temperature Ultimate Tensile Strength {MPa)

of PWHT,; the result is plotted in Fig. 4-19 d. The extra hour of PWHT appears to have minimal
effect on the stress-strain curve. However, Figs. 4-19 a-b and 4-19 a-c show that the 3 hour
PWHT does reduce the yield and ultimate tensile strengths significantly.
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Figure 4-19  Tensile Stress Strain Curves of A508 Specimens with (a)-(c) 3 hour PWHT and
(d) 4 hour PWHT at Room Temperature

4.2.2.2 Creep Tests

The creep tests were conducted on 6.35 mm (0.25 in.) diameter standard ASTM specimens
fabricated from the same block of A 508 that was used for the tensile tests. It had on it a 4-
hr/1125°F post weld heat treatment (PWHT). Creep strain vs. time plot for a test conducted at
103 MPa (15 ksi) at 550°C is shown in Fig. 4-20. Similar plots for tests conducted at 8 and
12.14 MPa (2 ksi) at 650°C and 5 and 12.14 MPa (2 ksi) at 750°C are shown in Figs. 4-21 a-b,
respectively. Note that primary creep was observed only for the test at 550°C. Like the tests
run by INL, the higher temperature tests did not display appreciable primary creep. [4]
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Figure 4-21 Creep Strain vs. Time Plots for Tests Conducted on A508 at (a) 650°C and

(b) 750°C

The Larson-Miller parameter data for the creep rupture times of the ANL tests are superimposed
on the same plot for the INL tests in Fig. 4-22, which shows that the ANL data fall consistently
below the best-fit line for the INL tests. [4] The shorter rupture times can be attributed to the
PWHT given to the ANL specimens.
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Figure 4-22 Larson Miller Plot for the Time to Rupture Data on A508 Conducted by
INL and ANL

4.2.2.3 Creep Rate Equation

The creep curves were fitted with the same equations used for Alloy 600 earlier
E £ ,tE (3)

where g_, —primary creep and ¢, —steady state creep,

£,= Aoc™ exp(— %] |:1 - exp(— é}] (4a)
and
£, = Ato™ exp(%] (4b)

The parameters are listed in Table 4-4. The fitted curves are compared with the measured
curves in Fig. 4-23. Creep deformation at short times is fitted quite well. The observed steady
state creep rates can be predicted to within very tight (95%) confidence bounds, as shown in
Fig. 4-24.
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Figure 4-23 Measured and Fitted Creep Strain vs. Time Plots for Tests Conducted on
A508 Steel

r

10-1 T L I'ITI'I'I! T 'I'I'I'TII'I'!' T T TIIIII!
+95% Qonfidence Bo(md

@ ANL Tests \

1 lllllﬂ

10?2

103

Best Fit

10 _________.—955/0 ConfidenceEBound

Observed Steady State Creep Rate (1/s)

10-5 1 L Illllli 1 L Illllli 1 1 Illllli 1 1 Illll|j
10 10 1073 102 101
Predicted Steady State Creep Rate (1/s)
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Table 4-4  Primary and Steady State Creep Parameters (Ksi, °C, H) for A508
Material Primary creep parameters Steady state creep
parameters
A 508 steel A1=0.102 A=3.0x10"3
n{= 2.285
Q1=8551 K n2=3.37
2 for T = 550°C Q2=40966 K

to= 1 0.21 for T = 650°C
0.27 for T =732°C
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5 LEAK RATE MODELS

5.1 Leak Rate Model

A leak rate model was developed and benchmarked aga