

Back-up Slides

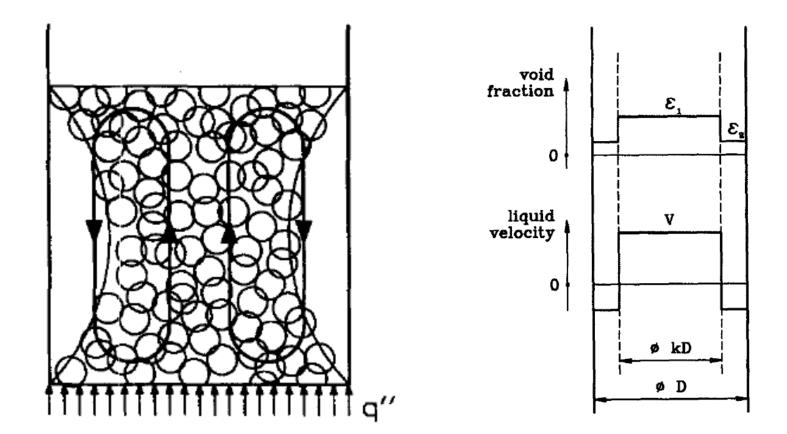
RES Slides for ACRS Meeting 7/21-22/2020

SET / IET Overview

- Hibiki and Ishii
- Boesmans and Berghmans
- LINX
- CCTF
- SCTF
- PKL

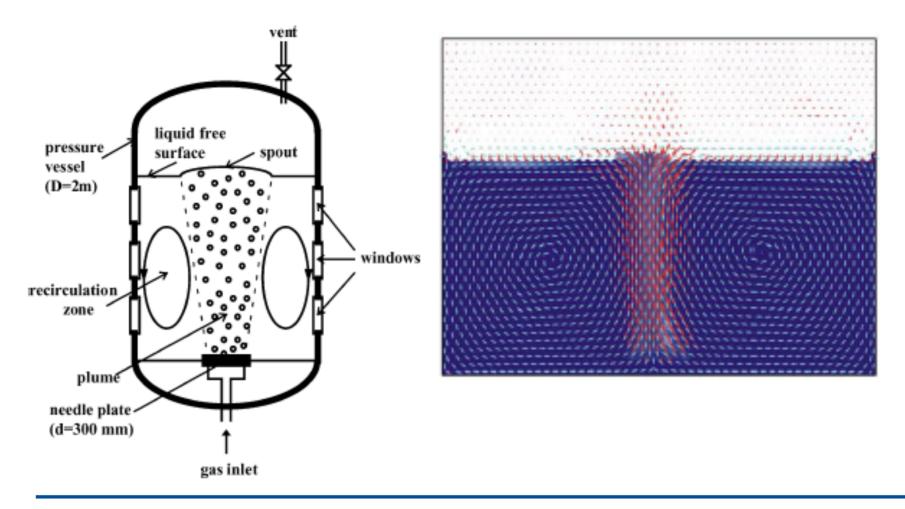
Literature Review

- Hibiki and Ishii summarized findings over many experimental campaigns that internal recirculation occurs near pool boiling conditions in large pipe geometries and bundle geometries
 - A key process that affects the 3D flow field is channeling of voids into a central column
- At LINX facility, voiding in adiabatic conditions drove internal recirculation
- At CCTF, radial power differences enhanced internal recirculation
- At PKL facility, internal recirculation homogenized the axial and radial boron distribution

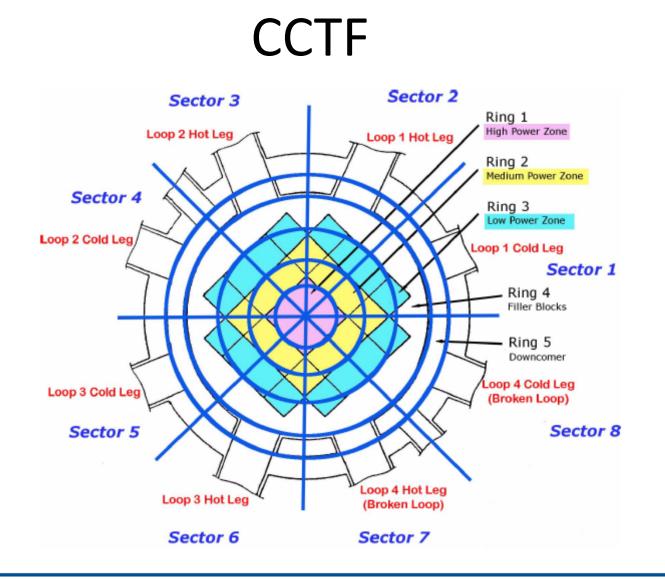


Hibiki-Ishii Review

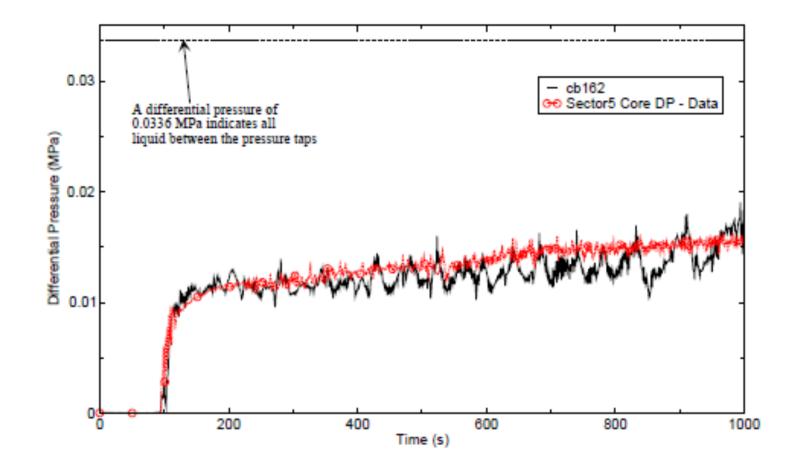
Investigator	Fluid system	Pipe diameter D (m)	Number of data	Superficial gas velocity $\langle j_g \rangle$ (m/s)	Superficial liq- uid velocity $\langle j_f \rangle$ (m/s)	Mixture volu- metric flux $\langle j \rangle$ (m/s)	System pres- sure P (MPa)	Bubble injec- tion method
Hibiki and Ishii [21,25]	Nitrogen-water	0.0508, L/D = 108	73	0.0320-0.484	0.00-0.596	0.0320-1.02	0.1	No horizontal section
Hibiki and Ishii [21]	Nitrogen-water	0.102, L/D = 53.9	59	0.0373-0.286	0.0109-0.387	0.0482-0.655	0.1	No horizontal section
Hibiki and Ishii [22]	Nitrogen-water	0.102, L/D = 53.9	12	0.0349-0.146	0.0389-0.198	0.0754-0.336	0.1	Horizontal section
Hills [7]	Air-water	0.150, L/D = 70.0	301	0.040-0.62	0.0-0.50	0.040-0.85	0.1	Low flow data
Hills [7]	Air-water	0.150, L/D = 70.0	93	0.10-3.5	0.0-2.6	0.10-6.1	0.1	High flow data
Hashemi et al. [16]	Air-water	0.305, L/D = 9.41	16	0.0100-1.16	0.0-0.060	0.0300-1.22	0.1	No horizontal section
Hirao et al. [11,12]	Steam-water	0.102, L/D = 55.3	23	N/A	N/A	0.720-3.43	0.1, 0.5, 1.5	Vertical and L-shaped pipes
Ohnuki and Akimoto [18]	Air-water	0.480, L/D = 4.2	32	N/A	N/A	0.0284-1.01	0.1	Sinter inlet
Ohnuki and Akimoto [18]	Air-water	0.480, L/D = 4.2	73	N/A	N/A	0.0114-1.02	0.1	Nozzle inlet

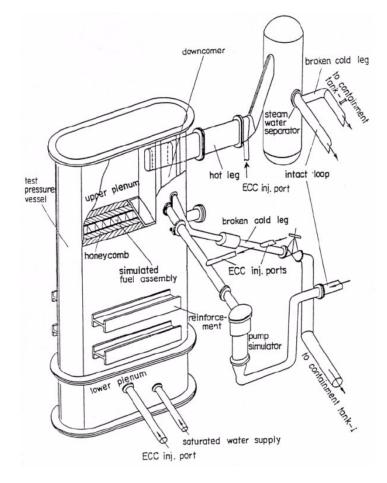


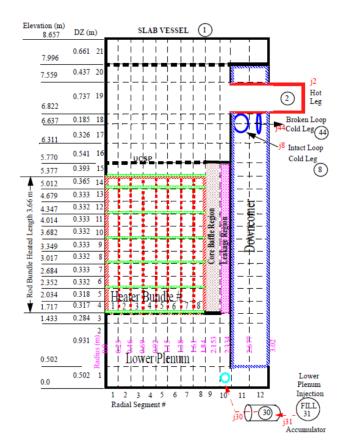
Boesmans and Berghmans

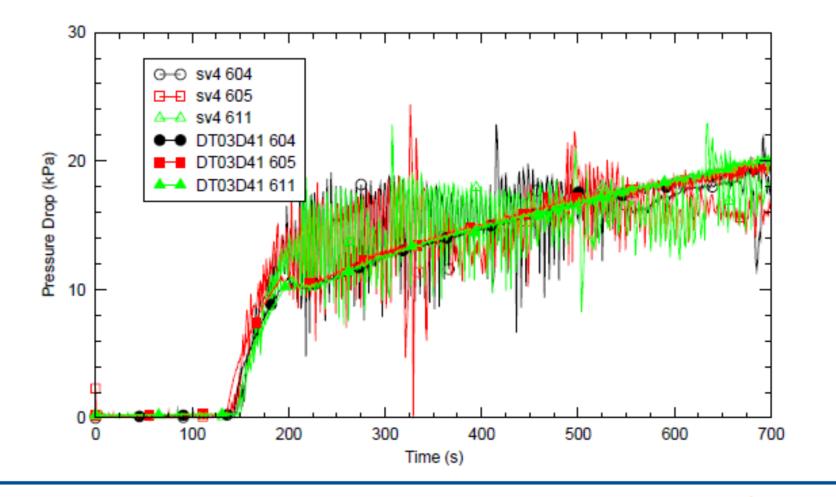


LINX

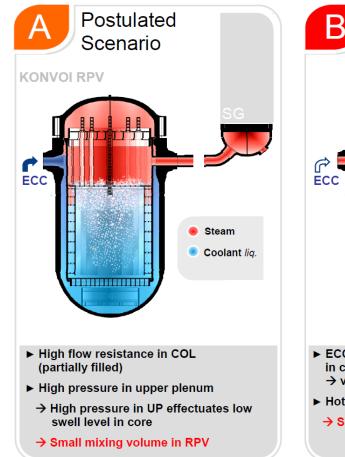


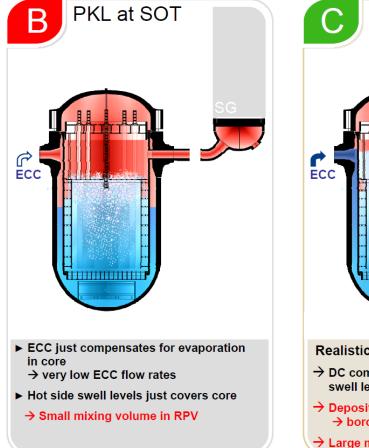


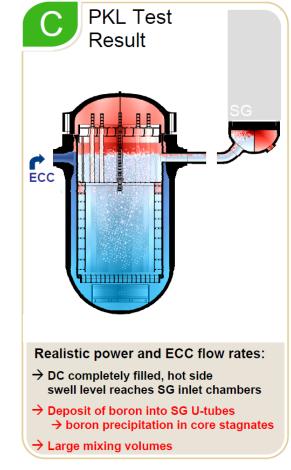

CCTF


SCTF

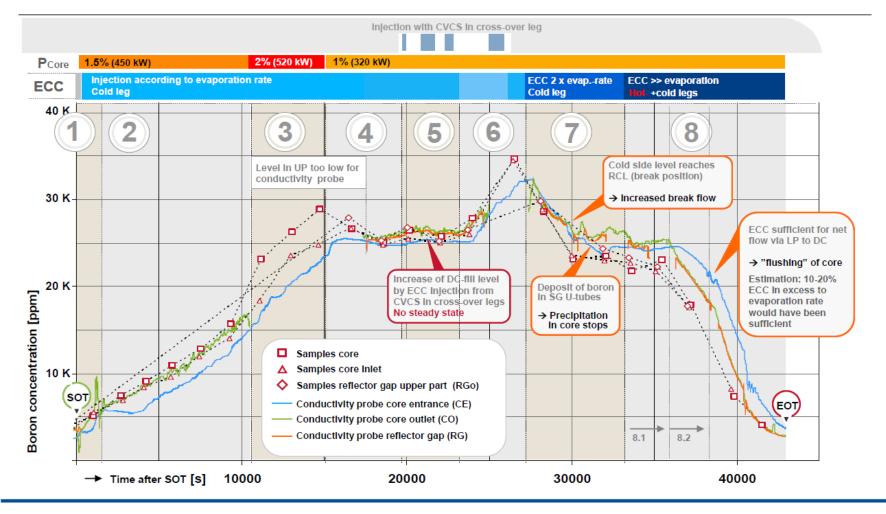
SCTF






Primärkreislauf Primary Circuit Reactor Coolant System (PKL) Information Follows

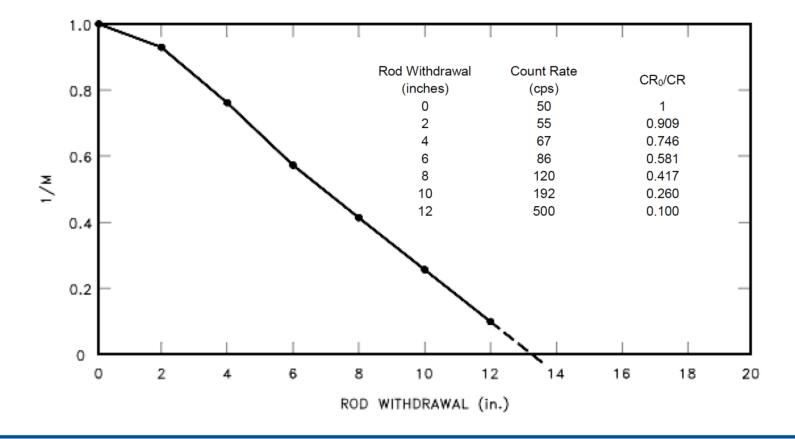
PKL



PKL

SET/IET References

- Hibiki, T. and Ishii, M., "One-dimensional Drift Flux model for Two-phase Flow in a Large Diameter Pipe," Intl. Journal of Heat and Mass Transfer 46 (2003) pp.1773– 1790.
- Staedke, H., Franchello, G., Worth, B., Graf, U., Romsedt, P., Kumbaro, A., et al., "Advanced Three-dimensional Two-phase Flow Simulation Tools for Application to Reactor Safety (ASTAR)," Nucl. Engr. And Design, 235 (2005) pp. 379-400.
- Bosemans, B and Berghmans, J., "Level swell in pool boiling with liquid circulation," Intl. Journal of Heat and Mass Transfer **38** (1995) pp.989-998.
- NUREG/IA-0127, "Reactor Safety Issues Resolved by the 2D/3D Program," July 1993 (ADAMS Accession No. ML062560279)
- "Analysis Report on SCTF Core-I and II Reflood Test," prepared by Japan Atomic Energy Research Institute, JAERI-Memo-01-348.
- TRACE V5.0 Assessment Manual Appendix C: Integral Effects Tests
- PKL III G5.1 Test Report PTCTP-G/2011/en/0004 Rev. B, "Investigation on Boron Precipitation following a Large Break LOCA," March 2011 (ADAMS Accession No. ML14099A208).



Monitoring Subcritical Margin

- Similar to startup procedures, ex-core nuclear instrumentation can be used to monitor subcritical margin.
- Subcritical multiplication monitoring is used with 1/M plots typically to predict critical rod position.

1/M Plot (from DOE Fundamentals Handbook)

Timing of Downcomer Dilution

Time of ECCS Actuation	Approximate DC Concentration post-ECCS	Reactor Power	Steaming Rate	Time to reach 100 ppm	Time to reach 10 ppm
seconds	ppm	%RTP	kg/sec	days	days
1700	1000	1.0	0.74	0.96	10.3
2800	900	1.0	0.74	0.86	9.3
3300	800	1.0	0.74	0.77	8.3
1700	1000	0.5	0.37	1.89	20.6
2800	900	0.5	0.37	1.70	18.5
3300	800	0.5	0.37	1.49	16.5
1700	1000	0.2	0.15	4.70	51.5
2800	900	0.2	0.15	4.19	46.3
3300	800	0.2	0.15	3.68	41.1

