Georgia Power

POWER GENERATION DEPARTMENT
VOGTLE ELECTRIC GENERATING PLANS

TRAINING LESSON PLAN

TITLE: SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS

NUMBER:

LO-LP-39203-00

PROGRAM:

LICENSED OPERATOR TRAINING

REVISION:

0

AUTHOR:

R. SLOUGH

DATE:

8/1/86

APPROVED:

+sleet Bour

DATE:

8/4/16

INSTRUCTOR GUIDELINES:

1. OVERHEAD TRANSPARENCY MACHINE

2. WHITE BOARD AND MARKERS

MASTER COPY

I. PURPOSE STATEMENT:

TEACH THE STUDENT THE APPLICABILITY AND ACTIONS STATEMENTS OF SAFETY LIMITS AND L.S.S.S.

II. LIST OF OBJECTIVES:

- 1. Students will be able to determine if they are exceeding the core safety limit curve.
- 2. The students will be able to give the setpoints for the RCS pressure safety limit and all L.S.S.S.
- 3. The student will know the action requirements from memory for exceeding any safety limit.
- 4. The student should be familiar with the reactor core safety limit curve.
- SRO students should be able to explain the bases for each section of the reactor core safety limit curve.

REFERENCES:

- 1. TECHNICAL SPECIFICATIONS
 SECTION 2 SAFETY LIMITS & L.S.S.S
- 2. FSAR CHAPTER 15

NOTES

I. PRESENTATION

- A. Safety Limits
 - 1. Bases for safety limits in 10 CFR 50.3%
 - a) Protect barriers against release
 - 2. Core Safety Limits
 - a. Designed to protect fuel clad
 - b. Based on two characteristics
 - 1) Power level of fuel
 - Heat transfer capability of water
 - a) Temperature Tave
 - b) Pressure of RCS
 - c. Tech Spec. 2.1.1
 - 1) Combination of power pressure and Tavg
 not exceed limits

ados . Triz :

- d. T. S. 6.7.1
 - Reporting requirements for Safety Limit violation
- e. Bases for curve, Section 1
 - 1) Low power level of curve
 - a) Corresponds to TH at saturation
 - Delta-T is no longer valid indication of power
 - OPdeltaT and OTdeltaT no longer provide protection
- f. Bases for curve, Section 2
 - 1) DNBR of 1.30 at 15% quality
 - 2) Only limiting at high pressures

LO-TP-39203-00-001

NOTES

- 3) Ask why DNBR of 1.3 is bad
- 4) As long as DNBR is greater than or equal to 1.3
 - a) 95% of fuel is not experiencing DNB
 - b) At a 95% confidence level (95/100 tests)
- 5) DNB drives down heat transfer coefficient
 - a) Fuel temperature increases
 - b) Clad damage likely
- g. Bases for curve, Section 3

DNBR of 1.30

- h. Restrictions of curve
 - 1) Only applicable to 4 loop flow
 - a) P-8 based on staying within curve on RCP trip
 - b) Delta-I within the target band
- 1. Protection Provided
 - 1) S/G safeties protect at low powers
 - OTdeltaT and P.R. high flux protect at high powers
 - 3) OTdeltaT protects open area not protected by others
 - Lowers setpoint as delta-I exceeds band
 - b) Lowers setpoint as Tave increases
 - c) Lowers setpoint as pressure decreases
- 3. RCS Pressure Safety Limit
 - a. Designed to protect the RCS integrity
 - b. Based on limiting maximum RCS pressure

NOTES

10.

1.1 -

- c. Read 2.1.2 RCS Pressure Safety Limit
- d. Actions for Modes 3, 4, and 5 more restrictive
 - Brittle fracture more likely at low temperature
- e. Protection Provided
 - 1) Pressurizer code safety valves
 - a) Lift settings of 2485 psig
- B. Limiting Safety System Setpoints
 - 1. Purpose
 - Prevent reaching Rx core and RCS safety limits during:
 - 1) Normal operations
 - Design bases anticipated operational occurrences
 - b. Assist ESFAS in mitigating accidents
 - 2. Reactor Trip System Instrumentation
 - a. Manual reactor trip
 - Bases gives operator manual trip capability
 - b. Power Range neutron flux
 - - a) Allowable value < 111.1%
 - Low setpoint < 25%
 - a) Allowable value < 27.1%
 - 3) Bases
 - a) Low setpoint provide protection against a power excursion from low power levels.

- High setpoint provide protection against a power excursion from low power levels.
- c. Power Range neutron flux high positive rate
 - 1) Setpoint <5% / 2 seconds
 - 2) Allowable value < 6.3%/ 2 seconds
 - 3) Bases rod ejection accident
- d. Power range neutron flux high negative rate
 - 1) Setpoint < 5%/ 2 seconds
 - 2) Allowable value < 6.3% / 2 seconds
 - Bases prevent excessive local flux peaking resulting in DNBR < 1.3 for all single or multiple dropped rods.
- e. Intermediate Range High Flux -
 - 1) Setpoint < 25%
 - 2) Allowable value <30.9%
 - Bases uncontrolled rod withdrawal from subcritical condition
- f. Source Range High Flux
 - 1) Setpoint ≤ 1 x 10⁵ cps
 - 2) Allowable value < 1.4 x 10⁵ cps
 - 3) Bases same as IR
- g. Of delta I
 - 1) Setpoint variable
 - 2) Allowable value __ setpoint + 2.6%
 - Bases DNB protection for slow transients with pressure in band.

- h. OP delta T
 - 1) Setpoint variable
 - Allowable value ≤ setpoint + 3.6%
 - 3) Bases has three
 - a) Protect fuel integrity
 - b) Limits required range of OT delta T
 - c) Backup to PR High Flux high setpoint
- i. Pressurizer low pressure
 - 1) Setpoint > 1960 psig
 - Allowable value ≥ 1948 psig
 - 3) Bases DNB protection
- j. Pressurizer high pressure
 - 1) Setpoint < 2385 psig
 - Allowable value ≤ 2397 psig
 - 3) Bases protect RCS integrity
- k. Pressurizer high level
 - Setpoint
 < 92%
 - Allowable value ≤ 93.8%
 - Bases prevent water relief through Code Safeties.
- 1. Loss of flow
 - 1) Setpoint > 90% of design loop flow
 - 2) Allowable > 88.7% of design loop flow
 - 3) Bases DNB protection

- m. S/G low low level
 - 1) Setpoint > 17% N.R.
 - Allowable value ≥ 15.3% N.R.
 - 3) Bases prevent loss of heat sink
- n. RCP undervoltage
 - 1) Setpoint > 70% bus voltage (9660 vac)
 - Allowable value ≥ 69% bus voltage (9522 vac)
 - 3) Bases DNB protection
- o. RCP underfrequency
 - 1) Setpoint > 57.2 H,
 - 2) Allowable ≥ 57.1 H₂
 - 3) Bases DNB protection
- p. Turbine trip
 - 1) Setpoints
 - a) ETS Fluid low pressure > 600 psig
 - b) Turbine Stop Values closure > 97.6% open
 - 2) Allowable values
 - a) ETS fluid low pressure > 500 psig
 - b) Turbine stop values closure ≥ 97.6% open
 - 3) Bases initiate reactor trip, no other bases given
- q. SI input from ESF
 - 1) Bases backup to RPS on accident

- 3. Reactor Trip System Interlocks
 - a. P-6
 - 1) Setpoint __ lx10⁻¹⁰ Amps
 - 2) Allowable _ 6 x 10⁻¹¹ Amps
 - Bases allow manual block of SR high flux trip and deenergize SR detectors.
 - b. P-7
 - 1) Setpoints
 - a) Input from P-10
 - b) Input from P-13
 - Bases below setpoint, blocks five reactor trips.
 - a) Low flow in more than one loop
 - b) RCP undervoltage
 - c) RCP underfrequency
 - d) Pressurizer low pressure
 - e) Pressurizer high level
 - c. P-8
 - 1) Setpoint 47% power
 - 2) Allowable value = 49.2% power
 - Bases blocks low flow trip in more than one loop
 - d. P-9
 - 1) Setpoint 48% power
 - 2) Allowable 50.2 power
 - Bases Blocks reactor trip or turbine trip

NOTES

- e. P-10
 - Setpoint ≥ 10% power
 - Allowable value ≥ 1.8% power
 - 3) Bases blocks intermediate and power range low S.P. trips; input to P-7
- f. P-13
 - 1) Setpoint < 10% Turbine power
 - 2) Allowable ≤ 12,2% Turbine power
 - 3) Bases input to P-7

II. SUMMARY

- A. Core safety limits protect clad integrity.
- B. RCS safety limit protects RCS integrity.
- C. LSSS are designed to prevent reaching safety limits.
- D. Review objectives.

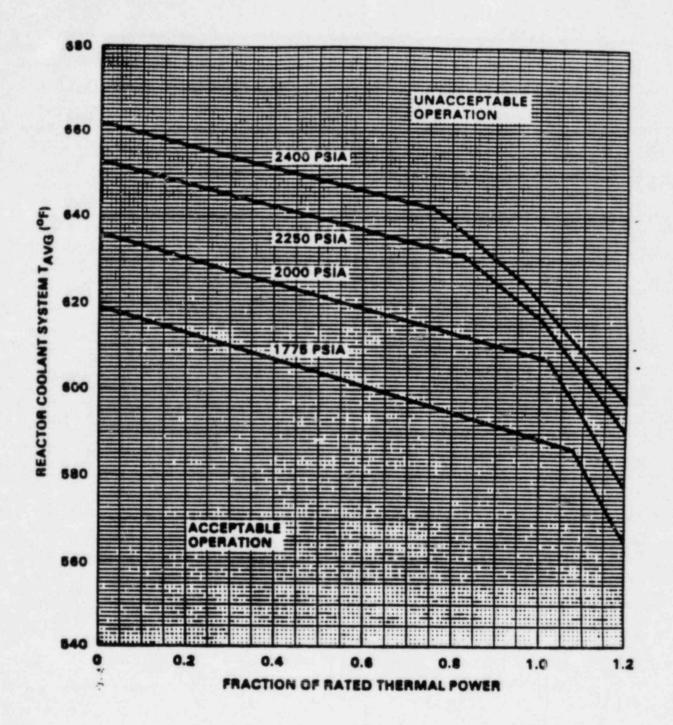
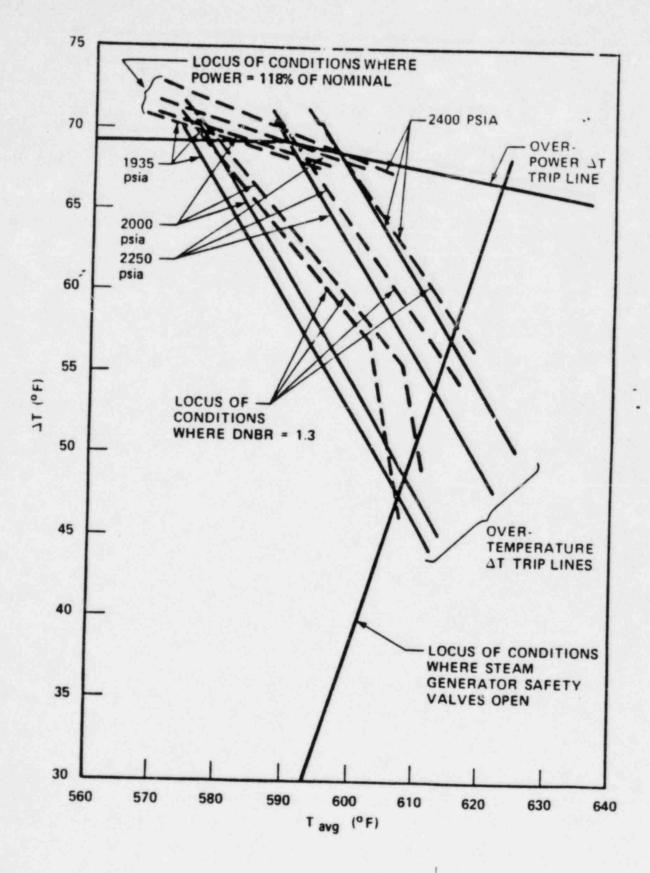



Figure 2.1-1. Reactor Core Safety Limits

VOGTLE-UNIT 1

LQ-TP-39203-00-001

LO-TP-39203-00-002