Docket No.: 50-412

DISTRIBUTION
Docket File
NRC PDR
Local PDR
Local PDR
PAD#2 Rdg

BEAVER VALLEY UNIT 2

SUBJECT: SUMMARY OF MEETING ON MARCH 4, 1986: FIRST PROGRESS REPORT

J. Partlow

L. Rubenstein

The subject meeting was held to discuss with Duquesne Light Company (DLC) its progress in the WHIPJET program. The program was described in some detail in DLC's submittal dated October 10, 1985. Prior to this progress report meeting, other meetings have been held with the applicant to address use of the leak-before-break assumption to balance-of-plant piping. On March 3, 1986, the staff issued a letter to the applicant, formally stating that the approach has merit, and describing the associated legal concerns.

Enclosure 1 is the meeting attendee list. Enclosure 2 is the agenda of the meeting.

Duquesne Light Company's presentation on the present status of WHIPJET is summarized in the viewgraphs (Enclosure 3). During the presentation and after a caucus, members of the NRC staff raised a number of questions; these are summarized in Enclosure 4. Duquesne Light personnel were requested to respond to these questions in the next meeting.

The next progress report meeting has been scheduled for March 13, 1986.

Peter S. Tam, Project Manager PWR Project Directorate #2 Division of PWR Licensing-A Office of Nuclear Reactor Regulation

P. Tam

E. Jordan

B. Grimes

ACRS (10)

NRC Participants

OFID

cc: See next page

FACILITY:

PM:PAD#2 PTam:hc 937 3/12/86 Mr. J. J. Carey Duquesne Light Company

cc: Gerald Charnoff, Esq. Jay E. Silberg, Esq. Shaw, Pittman, Potts & Trowbridge 1800 M Street, N.W. Washington, DC 20036

Mr. C. W. Ewing, Quality Assurance Manager Quality Assurance Department Duquesne Light Company P.O. Box 186 Shippingport, Pennsylvania 15077

Mr. E. J. Woolever, Vice President Special Nuclear Projects Duquesne Light Company P.O. Box 4 Shippingport, Pennsylvania 15077

Mr. T. J. Lex Westinghouse Electric Corporation Power Systems P.O. Box 355 Pittsburgh, Pennsylvania 15230

Mr. P. RaySircar Stone & Webster Engineering Corporation P.O. Box 2325 Boston, Massachusetts 02107

Mr. Glenn Walton U.S. NRC P.O. Box 181 Shippingport, Pennsylvania 15077

Mr. Thomas E. Murley, Regional Admin. U.S. NRC, Region I 631 Park Avenue King of Prussia, Pennsylvania 15229

Mr. John P. Thomas, Manager Engineering Beaver Valley Two Project Duquesne Light Company P.O. Box 328 Shippingport, Pennsylvania 15077 Beaver Valley 2 Power Station

Mr. Roger Martin, Manager Regulatory Affairs Beaver Valley Two Project Duquesne Light Company, P.O. Box 328 Shippingport, PA 15077

Director, Pennsylvania Emergency Management Agency Room B-151 Transportation & Safety Building Harrisburg, Pennsylvania 17120

Mr. Thomas Gerusky
Bureau of Radiation Protection
PA Department of Environmental
Resources
P.O. Box 2063
Harrisburg, Pennsylvania 17120

BVPS-2 Records Management Supervisor Duquesne Light Company Post Office Box 4 Shippingport, Pennsylvania 15077

John A. Lee, Esq.
Duquesne Light Company
1 Oxford Centre
301 Grant Street
Pittsburgh, Pennsylvania 15279

Attendee List

Name

Peter S. Tam

Ron Gamble

Walt Mikesell Douglas Marris

ROBERT E. ROEMER

WILLIAM L. SERVER

LOGER E. MARTIN

JOHN P. THEMAS

James Szy Slow Sti

SANSIB K MUKHERJEE

Ted Sillivan

AKRAM ZAHOOR

LETTH WICHMAN

Pei-Ying Chen

BARRY ELLIOT

Jum 5 Lee

GOUTAM BAGGHI

BOB BOSNAK

Frank Cherry

H.L. BRAMMER

Bill Lo Fave

E. Aossi (Part time attend.)

C. y. Cheng N A GOLDSTON

Organization

NRC Licensing Project Manager

NOVETECH

Robert L Cloud Assoc

EPRI

STONE & WEBSTER

ROBERT L. CLOUD ASSOC.

DUQUESNE LIGHT

DUQUESNE LIGHT CO.

Duquesna LIGHT CO.

DURVENE LIGHT CO.

NRR/PWR-A/EB

NOVETECH CORPORATION

NRR/PWE-B/EB

NRR / PWR-B / ISAPD

NRR/PWR-A/EB NRR/PWR-A/EB

EB/PWR-A/NER NRR/OSRO/EIB

NER/DSRO/EIB

NRC / PWR.A /EB

NRR/PWR. A/PSB

NER PUR-B/GB

STONE & WEBSTER

BEAVER VALLEY UNIT 2

MEETING ON

WHI PJET PROGRESS

March 4, 1986

Part A

Opening Statements (P. Tam et al.)

Part B

Duquesne Light Company Presentation:

I. OVERVIEW (Rager Martin)

- A. OBJECTIVE ALTERNATE TO PIPE RUPTURE POSTULATION
 - 1. REDUCE NUMBER OF PIPE BREAK POSTULATIONS
 - 2. REDUCE HARDWARE
 - 3. NO CHANGE IN NON-MECHANISTIC CONSIDERATION
 - 4. IMPROVE CONSTRUCTION AND MAINTENANCE FACTORS
- B. REGULATORY BACKGROUND/HISTORY
- C. AFFECTED SYSTEMS
 - 1. SYSTEM DESCRIPTION
 - 2. PIPE SIZE RANGE AND MATERIALS
- D. WHIPJET SCHEDULE
 - CONSTRUCTION/OPERATION SCHEDULE LINKAGE
 - 2. FINAL SUBMITTAL TO MRC DEC 86
 - 3. REQUIRE SER RESPONSE FEB 87
 - 4. RESOLUTION OF 10CFR50.12[a]
 - 5. IMPORTANCE OF MRC AGREEMENT AT THIS TIME
- II. PROGRAM DESCRIPTION (Walt Mikesell)
 - A. FLOW CHART
 - 1. SCREENING/FATIGUE ANALYSIS
 - 2. FRACTURE ANALYSIS/TESTING
 - B. MRC REVIEW OF RESULTS
 - 1. MEETINGS SCHEDULED AT FREQUENT INTERVALS

III. SCREENING PROCESS (N.A. Goldstein)

- A. THERMAL TRANSIENTS
 - 1. PROCESS
 - 2. PROGRESS TO DATE
- B. INITIAL SCREENING
 - 1. METHODOLOGY
 - 2. PROGRESS TO DATE
 - a. PASSED SYSTEMS (CUF -0.1)
 - b. FAILED SYSTEMS (CUF +0.1)
- C. WATER HAMMER
 - 1. METHODOLOGY
 - a. MUREO 0582
 - b. ARBITRARY INTERMEDIATE BREAK STUDY
 - c. SYSTEM REVIEW
 - 2. PROGRESS TO DATE
- D. CORROSION
 - METHODOLOGY
 - a. A.I.B. STUDY
 - b. SITE SPECIFIC DATA
 - 2. PROGRESS TO DATE
 - . PRIMARY SYSTEMS
 - b. SECONDARY SYSTEMS
- E. EQUIPMENT SUFFORTS
 - METHODOLOGY
 - a. ASME III RECONCILIATION
 - b. HAZARDS REVIEW
 - c. CLASS 4 PIPE REVIEW
 - 2. PROGRESS TO DATE
- IV. FATIGUE ANALYSIS (W. Server)
 - A. METHODOLOGY
 - 1. DEFINE GEOMETRY AT BREAK LOCATION
 - 2. ASME III EQUATION II EVALUATION
 - B. PROGRESS TO DATE

V. FRACTURE ANALYSIS

- A. METHODOLOGY
 - 1. PIPE MATERIAL SELECTION (STAINLESS, CARBON STEEL)
 - 2. ANALYSIS TECHNIQUES
- B. PROGRESS TO DATE
 - 1. TECHNICAL REPORT (LEAKAGE AND CRACK STABILITY)

VI. FRACTURE TESTING

- A. METHODOLOGY
 - 1. PIPE SELECTION (MATERIAL, SIZE)
 - 2. TESTING TECHNIQUES
- 3. PROGRESS TO DATE
 - 1. TEST PLAN
 - 2. MATERIAL ALLOCATION

VII. LEAK DETECTION

Part C

NRC caucus

Part D

Summary .

Most of these view graphs were also used in DLC's presentation to the ACRS, hence this designation.

PRESENTATION FOR FEBRUARY 27,
1986 MEETING WITH ACRS
SUBCOMMITTEES ON STRUCTURAL
ENGINEERING, SEISMIC DESIGN OF
PIPING, AND METAL COMPONENTS

- INTRODUCTION (MARTIN)
- REVIEW OF WHIPJET (MIKESELL)
- GOLDSTEIN)
- RLCA PROGRESS (SERVER)
- EPRI PROGRESS
- SUMMARY (MIKESELL)

EVENTS TO DATE

- O MEETING WITH NRR:
 WHIPJET SCOPE 8/27/85
- O SUBMITTAL TO NRR:
 WHIPJET PROGRAM
 DESCRIPTION 9/6/85
- O MEETING WITH ACRS
 SUBCOMMITTEE:
 PROGRAM DESCRIPTION 9/24/85
- O SUBMITTAL TO NRR:
 ACCEPTANCE CRITERIA
 DOCUMENT 10/10/85

EVENTS TO DATE (CONT)

- O PRESENTATION TO
 ACRS SUBCOMMITTEE
 ON BVPS-2:
 PROGRAM DESCRIPTION 11/1/85
- O PRESENTATION TO
 FULL ACRS COMMITTEE
 ON BVPS-2:
 PROGRAM DESCRIPTION 11/8/85
- O CONVERSATIONS WITH

 NRR:

 TECHNICAL

 CONSIDERATIONS 12/85 1/86
- O MEETING WITH NRR: PLAN FORMAL REVIEW 1/22/86

UTILITY CONSIDERATIONS

- O CONSTRUCTION AND LICENSING TIME CONSTRAINTS
- O NRR REVIEW OF CRITERIA
 DOCUMENT
- O BROAD SCOPE RULE RESOLUTION
- DURING 1986
- O WHIPJET FINAL REPORT: DEC 86
- REQUIRE SAFETY EVALUATION

REVIEW OF WHIPJET

- WHAT WHIPJET WILL DO
- WHIPJET PROCEDURE
- WHAT WHIPJET IS NOT

INTENDED TO DO

WHAT WHIPJET WILL DO

- 1. SATISFY DEGB POSTULATION
 WITH ENGINEERING ANALYSIS
 SHOWING A DETECTABLE LEAK
 BEFORE BREAK IS ASSURED.
- 2. REDUCE HARDWARE IN THE
 - MINIMIZE PLANT COST
 - FACILITATE ACCESS FOR INSERVICE INSPECTION
 - PERFORMING INSPECTIONS

 AND MAINTENANCE THUS

 ENHANCING ALARA POSITION
- THROUGH MORE COMPLETE

 KNOWLEDGE OF PROPERTIES AND

 CAPABILITIES.

WHIPJET PROCEDURES

- 1. DEMONSTRATE APPLICABILITY
 - STRESS CORROSION
 - WATER HAMMER
 - FATIGUE CUMULATIVE USAGE FACTOR
 - EQUIPMENT SUPPORTS
- 2. IMPLEMENT LBB PROGRAM
 - A. MATERIALS TESTING
 - ACTUAL PLANT MATERIALS
 - O BASE MATERIALS (TYPES 304, 316, AND A106 GR B)
 - O WELDMENTS MADE FROM
 - TENSILE TESTS
 - FULL SECTION FRACTURE TOUGHNESS TESTS

WHIPJET PROCEDURES (CONT)

- B. CUMULATIVE USAGE

 FACTOR AND CRACK

 PROPAGATION ANALYSIS
- C. LEAK-BEFORE-BREAK
 ANALYSIS
- 3. LEAK DETECTION PROGRAM
 - A. LEAK RATE CALCULATION
 - B. LEAK DETECTION METHODS

WHAT WHIPJET IS NOT

INTENDED TO DO

(BASED ON Q & A AT 1/22/86 MTG)

- 1. AFFIRM OR AUGMENT OTHER'S
- 2. CHANGE THE USE OF DEGB FOR ESTABLISHING DESIGN
 CRITERIA FOR ECCS AND CONTAINMENT.
- 3. CHANGE REQUIREMENTS FOR EQUIPMENT QUALIFICATION
- 4. ADDRESS THE FAILURE MODE ENCOUNTERED AT MOHAVE AND MONROE.

WHIPJET-An Alternative to Pipe Rupture Postulation

The following table is a summary of the scope of the WHIPJET program. It will list the piping systems(all high energy) involved, their building location, the total number of breaks to be considered, and the expected number of protective devices(either restraints or jet shields) required should WHIPJET not be implemented.

- SYSTEM	-	BREAKS	-	BREAKS		PROTECTIVE	DE	VICES	-
	-	IC	-	oc	-	EXISTING	-	PLANNED	-
- AUXILIARY STEAM(ASS)	-	0	-	54	-	0	-		_
- STM GEN. BLOWDOWN (BDG)	-	12	-	46	-	0	-	17	-
- BORON RECOVERY(BRS)	-	0	-	51	-	0	-	0	-
- CHEM/VOL CONTROL(CHS)	-	92	-	48	-	0	-	14	-
- HYDROGENATED DRAIN(DGS)	-	42	-	0	*	0	-	0	-
- AUX. FEEDWATER(FWE)	-	6	-	0	-	0	-	0	-
- GASEOUS NITROGEN(GNS)	-	0	-	9	-	0	-	0	-
- MAIN STEAM(MSS)	-	6	-	3	**	13	-	0	-
	_	272	-	0	-	14	-	25	-
- FEEDWATER (FUS)	**	6	-	27		22	***	5	
- RESIDUAL HEAT RMVL(RHS)	-	7	-	0	-	1	-	1	-
- SAFETY INJECTION(SIS)	-	104	-	25	-	10	-	12	-
		547		263		60		81	
			81	0					

The above table does not include the LOOP breaks and restraints nor the A.I.B. breaks and restraints.

IC-inside containment OC-outside containment

WHIPJET - SCOPE OF HARDWARE REDUCTION

NEW RESTROR SHIELD

EXISTING RESTRAINTS

- SYSTEM	- P	IPE SIZE RANGE -	PIPE MATERIAL	-
-		INCHES -	SS CS	-
ANUTT TABLE CEPTAGIAGE		15 2 2 4 4	A106B	
- AUXILIARY STEAM(ASS) - STM GEN. BLOWDOWN(NDC		1.5, 2, 3, 4, 8	TP316 A106B	-
- BORON RECOVERY(BRS	-	1.5, 3, 4, 8	TP304	-
- CHEM/VOL CONTROL(CHS)	-	1.5, 2, 3, 4	TP316/304	-
- HYDROGENATED DRAINIDG	(5)-	2	TP316	-
- AUX. FEEDWATER(FWE)	-	4	A106B	-
- GASEOUS NITROGEN (GNS)	-	1.5	A106B	-
- MAIN STEAM(MSS)	-	32	A106C/A	1155-
- REACTOR COOLANT(RCS)	-	1.5, 2, 3, 4, 6, 8, 14	TP316	-
- FEEDWATER (FWS)	-	6, 16	A106B	-
- RESIDUAL HEAT RMVL(RH	15)-	10, 12	TP316	-
- SAFETY INJECTION(SIS)	-	2, 3, 4, 6, 12	TP316/304 -	

1

1.1

WHITE OF I KOOKOC. PLOWCHAKI

FATIGUE SCREENING RESULTS TO DATE

- SYSTEM	-	BREAKS	EVALUATED	HARDWARE	REQ'MIS	-
	-	PASS	FAIL	EXISTING	PLANNED	
- AUXILIARY SIEAM(ASS)	-	29	25	0/0	3/7	-
- SIM GEN BLOWDOWN (BDG)	-	9	49	0/0	17/17	
- BORON RECOVERY(BRS)	-			0/0	0/0	-
- CHEM/VOL CONTROL(CES)		103	37	0/0	9/12	-
- HYDROGENATED DRAIN(DGS)	-	42	0	0/0	0/0	-
- AUX. FEEDWATER(FWE)	-			0/0	0/0	-
- GASEOUS NITROGEN(GNS)	-			0/0	0/0	-
- MAIN STEAM(MSS)	-	9	0	0/13	0/0	-
- REACTOR COOLARI (RCS)	-	272	0	0/14	0/25	-
- FEEDWATER(FWS)		0	33	22/22	5/5	-
- RESIDUAL HEAT RMVL(RHS)	-	7	. 0	0/1	0/1	
- SAFETY INJECTION(SIS)	-	129	. 0	0/10	0/12	-
		600	144	22/60	34/81	

TOTAL CLASS 2, 3, AND WAS BREAK LOCATIONS TO BE EVALUATED - 325 TOTAL CLASS 1 BREAKS LOCATIONS (ALL PASS 1.0 CUF CRITERIA) - 485

HARDWARE REQUIREMENTS . ACTUAL REQUIRED/ESTIMATED REQUIRED.

CUF . CUMULATIVE USAGE FACTOR AS DEFINED IN ASME 3

- 56 PROTECTIVE DEVICES REQUIRED BY WHIPJET
- 85 PROTECTIVE DEVICES ELIMINATED BY WHIPJET

OF THE 85 DEVICES ELIMINATED, 61 ARE ASSOCIATED WITH CLASS 1 BREAKS

(EXTRA SCREENING)

- D POSTULATE PTC GREATER THAN
 SECTION XI ACCEPTANCE
 STANDARDS
- O EVALUATE FOR SIGNIFICANT
 GROWTH
- TYPICAL LINE(S) WITH
- O CLASS 1 -- EVALUATE CASE-BY-CASE

MATERIALS TESTING PROGRAM

- O STAINLESS STEEL DATA BASE
 - IS ADEQUATE
 - TYPE 304
 - TYPE 316
 - SMAW
- O FERRITIC STEEL TESTS
 - PLANNED
 - ONE HEAT OF A106C
 - (4" PIPE) OR A106B
 - (3" PIPE)
 - TWO HEATS OF A106B
 - (6" & 8" PIPE)
 - THREE HEATS OF SMAW
 - (3" DR 4", 6", AND
 - B" PIPE) .

FERRITIC STEEL TEST MATRIX (3 HEATS BASE & 3 HEATS WELD)

0 J-R CURVE 2 @ 550 F

PIPE BEND 1 @ 200-300 F

18 TESTS TOTAL

O TENSILE 3 @ 550 F

STRESS-STRAIN 1 @ 200-300 F

24 TESTS TOTAL

(NORMAL OPERATING LOADS)

- O USE EPRI PICEP COMPUTER
 CODE
- PRESSURIZER SPRAY LINE

 (TYPE 316SS, 6" DIA)

 CIRCUM TWC: 4.9" = 5 GPM
- IS AT LEAST 1 GPM

LEAK DETECTION SAFETY MARGIN

(INSTABILITY FOR NORMAL

+ SSE LOADS)

- REQUIRE RATIO OF

 INSTABILITY CRACK SIZE TO

 LEAKAGE CRACK SIZE > 2
- CIRCUM TWC @ 5 GPM: 2.04

STABILITY CHECKS

- MARGIN ON J_{IC} (FOR NO

CRACK GROWTH) IS > 2

D LEAKAGE SIZE CRACKS STABLE

AT EXCESSIVELY HIGH LOADS

-- 1.41 X (NORMAL + SSE)

-- MARGIN ON INSTABILITY

> 1.9

Enclosure 4

QUESTIONS TO BE ADDRESSED BY DLC ON WHIPJET

- Tests on pipes to determine J-R curves may turn out to have significantly higher results than from compact specimens, depending upon the computational techniques. Differences arise from the crack associated displacements. DLC should discuss the techniques they intend to use.
- The staff would like to have a presentation on a step by step example of fatigue crack growth analysis methods and results.
- 3. The staff would like to have a presentation on the methodology followed by DLC to determine the susceptibility of each high energy piping system to waterhammer. This presentation should reflect the findings in NUREG-0927, Rev. 1, since NUREG-0582, which was referenced by DLC, is outdated.
- 4. The staff would like to hear a presentation describing the procedures DLC will use to detect leakage from a cracked pipe. These procedures should be illustrated by discussion of a typical scenario. The discussion should also include licensee action upon detection of leakage.
- 5. The staff would like to review a verification package for the PICEP code as pertains to leakage calculations. This information should show both analytical and experimental verification to the extent possible.

- 6. The staff would like to have a presentation on the methodology followed by DLC to determine the susceptibility of each high energy line to stress corrosion cracking. This presentation should address both ferritic and stainless steel piping.
- 7. The staff would like to have DLC present the justification for the flaw size used for fatigue crack growth studies and for using their material data for the tearing stability analyses for the non-nuclear high energy piping. This question is asked in view of the differences between nuclear and non-nuclear piping with respect to fabrication, examination, and design.
- DLC should confirm whether there are any cast fittings in the BOP piping.
- DLC should discuss whether the Section III Fatigue calculations
 accounted for flow stratifications. Specifically did any of the
 calculations resulting in CUF < 0.1 involve piping with flow
 stratification.
- 10. The testing program for J-R curves is for ferritic piping. DLC is planning to rely on stainless steel data base rather than testing. DLC should provide the NRC with austenitic weld data for our review prior to beginning their testing program.

Questions 11-16 were discussed with the applicant in a phone conversation -3-after the meeting (Three were not questions asked in the meeting):

- 11. The austenitic weld data base and ferritic weld tests should represent the weld metal with the limiting fracture properties. To justify this conclusion for each weld joint for which a break will no longer be postulated indicate:
 - a) Type of weld: full penetration, socket, etc.
 - b) Weld process
 - c) Electrode type and size
 - d) Weld procedure
 - e) Post weld heat treatment
 - f) Inspection required following fabrication

Based on these parameters, DLC should justify the conclusion that the austenitic weld data base and ferritic weld tests represent the limiting fracture properties for each weld joint for which a break will no longer be postulated.

- 12. Will J-R tests be performed under static or dynamic conditions? Why?
- 13. Which lines have positive displacement pumps? How do you account for vibration fatigue from positive displacement pumps?
- 14. What is the fracture properties of ferritic heat affected zone (HAZ) material that has not been post weld heat treated (PWHT)? How does your leak-before-break evaluation consider post HAZ cracks?

- 15. How does your leak-before-break evaluation account for residual weld stresses in welds, which have not been PWHT? (Resolved with our consultant)
- 16. What is the minimum fluid temperature in each line when the line is performing its normal operation and its failure could result in a safety concern? What are the fracture properties for the ferritic materials at the minimum fluid temperature? Will tests confirm this?