MPR ASSOCIATES. INC.

June 19, 1986

Dear Mr. Paulson:

Enclosed are six (6) copies of the viewgraphs used at the meeting among USNRC, the B&W Owners Group, and MPR on June 19, 1986.

Sincerely, Ua

H. Estrada, Jr.

Enclosure

Mr. Walter Paulson United States Nuclear Regulatory Commission Philips Building, Mail Stop P-214 7920 Norfolk Avenue Bethesda, MD 20814

VIA FEDERAL EXPRESS

cc: S. Rose, Duke Power L. Reed, Duke Power R. Skillman, GPU-N

> B606230135 360619 PDR TOPRP EMVBW C PDR

Gool

AGENDA

.

.

1.	OPENING COMMENTS	G. R. SKILLMAN
2.	GENERAL OBJECTIVES OF THE SENSITIVITY STUDY	MPR
3.	DESCRIPTION OF MODELS	MPR
4.	COMPARATIVE ANALYSIS MATRIX	MPR
5.	VERIFICATION PROCESS	MPR
6.	SCHEDULE FOR PEER REVIEW MEETINGS	CHARLES TURK
7.	CONCLUDING REMARKS	G. R. SKILLMAN

GENERAL OBJECTIVES OF THE SENSITIVITY STUDY

FOR B&W PLANTS VS. OTHER PWRs

•

0

- CHARACTERIZE RESPONSE
 - ** NORMAL CONDITIONS
 - •• UPSETS AND ACCIDENTS INCLUDING COMPOUND UPSETS NOT NORMALLY INCLUDED IN FSARs

EVALUATE SAFETY MARGINS:

- •• OVERPRESSURE
- •• DNBR
- °° KW/FOOT
- •• OTHER, IF APPROPRIATE

RECOMMEND CORRECTIVE MEASURES FOR B&W UNITS, IF

- UPSETS OF A SPECIFIC KIND ARE MORE LIKELY
- SAFETY MARGINS IN SPECIFIC UPSETS ARE SIGNIFICANTLY SMALLER

- O MARGINS
- O TIME TO REACH LIMITS
- O FREQUENCY OF OCCURRENCE

DESCRIPTION OF MODELS

UNITS ANALYZED

0

*

- TWO B&W UNITS

[MAY ADD A THIRD]

ONE CE UNIT, PRE-75

WILL EXAMINE DIFFERENCES WITH A POST-75 UNIT

4 .

ONE W UNIT, RECENT, D-TYPE RSGs

WILL EXAMINE DIFFERENCES WITH A PRE-75 UNIT ANALYSIS MATRIX: STUDY OF THE SENSITIVITY OF B&W PWRS VS. OTHER PWRS PRELIMINARY

TRA	TRANSIENTS ANALYZED			FSAR	FURPOSE	
1.	SMA	LL DISTURBANCES, WITHOUT CONTROLS				
	۸.	REACTIVITY STEPS	2			
		(1) HIGH POWER (2) LOW POWER	x			
	в.	STEAM FLOW STEPS			^o QUANTIFY TIME TO REACH	
		(1) KIGH POWER (2) LOW POWER	××		VARIABLES WITH THE "BARE" PLANT (NO CONTROLS) AS A QUANTITATIVE MEASURE OF SENSITIVITY FOR B&W, <u>W</u> AND CE PLANTS.	
	с.	FEED FLOW STEPS				
		(1) HIGH POWER (2) LOW POWER	××			
	D.	REACTIVITY IMPULSES				
		(1) HIGH POWER (2) LOW POWER	×			
	E۰	STEAM FLOW IMPULSES			* DETERMINE TRANSFER FUNCTIONS	
		(1) HIGH POWER (2) LOW POWER	××		PHASE VS. FREQUENCY) FOR PURPOSES OF CHARACTERIZING DIFFICULTY OF CONTROL.	
	F.	FEED FLOW IMPULSES				
		(1) HIGH POWER (2) LOW POWER	××			

이 방 비행은 감독을 위한 것으로 가지 않는 것이다.

			PRELIMINARY PAGE 2		
TRAN	ISIEN	TS ANALYZED	MODEL	FSAR	PURPOSE
2.	SIG	NIFICANT DISTURBANCES, WITHOUT COR	RECTIVE ACTI	ON	
	۸.	ROD DROPS			
		Small 8k	x	×	C ASSESS DIFFERENCES AMONG
		LARGE &K	×	x	THIS DISTURBANCE.
					"CALIBRATE" MODEL FOR SAFETY MARGIN ESTIMATION FOR DIS- TURBANCES OF THIS TYPE.
					VERIFY MODEL DYNAMICS FOR REACTIVITY DISTURBANCES.
	B •	TURBINE TRIP	x		^o Assess Differences among PWRS in safety margins for this Disturbance.
	c.	LOSS OF ONE FEED PUMP	x		ASSESS DIFFERENCES AMONG PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE.
	D.	LOSS OF ALL FEED PUMPS	x		ASSESS DIFFERENCES AMONG PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE.
	E۰	LOSS OF ONE COOLANT PUMP	x		
3.	SIG	NIFICANT DISTURBANCES, WITH CORRECT	IVE ACTION		
	Α.	ROD WITHDRAWAL ACCIDENT, HIGH POW	ER	x	Assess Differences among PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE.
	8.	TURBINE TRIP			
		(1) NORMAL STEAM RELIEF W/RX CUT	BACK X		* EVALUATE CAPABILITY OF PWRs TO WITHDSTAND LOAD REJECTION WITHOUT TRIP.
		(2) NORMAL STEAM RELIEF W/RX TRI	Р Х	x	ASSESS DIFFERENCES AMONG PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE.

ANALYSIS MATRIX: STUDY OF THE SENSITIVITY OF B&W PWRS VS. OTHER PWRS PRELIMINARY PAGE 2

ANALYSIS MATRIX: STUDY OF THE SENSITIVITY OF B&W PWRs VS. OTHER PWRs PRELIMINARY Page 3

.

TRAN	SIENTS	ANA	LYZED	MODEL	FSAR		PURPOSE
3.	SIGN	FICA	NT DISTURBANCES. WITH CORRE	CTIVE ACTION			
	в.	TURB	INE TRIP (CONTINUED)				
		(3)	STEAM RELIEF SYSTEM MALFUNCTIONS	x		o	EVALUATE SUSCEPTABILITY OF PWRS TO OVERCOOLING ON STEAM RELIEF CONTROL MALFUNCTION -
	c.	Loss	OF ONE FEED PUMP	x		ſ°	Assess differences among PWRs in safety margins for this disturbance.
						l	EVALUATE CAPABILITY OF PWRS TO WITHSTAND THIS DIS- TURBANCE WITHOUT TRIP.
	D •	Loss	OF ALL FEED PUMPS				
		Rx T	RIP				
		(1)	NORMAL EMERGENCY FEED	X	×	0	"CALIBRATE" MODEL FOR SAFETY MARGIN ESTIMATION FOR DIS- TURBANCES OF THIS TYPE.
		(2)	DELAYED EMERGENCY FEED	x		٥	ASSESS DIFFERENCES AMONG PWRs in safety margins for this disturbance.
		(3)	NO EMERGENCY FEED, BLEED-A FEED DECAY HEAT REMOVAL	ND- OTHER VERIFI THE PU	ANALYSES ED FOR RPOSE	۰	ASSESS DIFFERENCES AMONG PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE.
		(4)	Excessive Emergency Feed	x		ſ	ASSESS DIFFERENCES AMONG PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE -
						C	EVALUATE SUSCEPTABILITY OF PWRS TO OVERCOOLING ON THIS DISTURBANCE.

ANALYSIS MATRIX: STUDY OF THE SENSITIVITY OF B&W PWRS VS. OTHER PWRS PRELIMINARY Page 4

TRANSIENTS ANALYZED		MODEL	FSAR	PURPOSE		
3.	SIGNIFICANT DISTURBANCES. WITH CORRECTLY (CONTINUED)			YE ACTION		
	E.	Cont ICS (1)	TROL SYSTEM UPSETS POWER FAILURES® WITH VARYING FEED SYSTEM INITIAL CONDITIONS	x		Assess Differences among PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE. EVALUATE SUSCEPTABILITY OF
		(2)	Verying Fren Sverry		,	PWRS TO OVERCOOLING ON THIS DISTURBANCE.
		(2)	CONFIGURATIONS	×		
	F.	Loss	SES OF COOLANT FLOW			
		(1)	Loss of One Pump	x		S ASSESS DIFFERENCES AMONG PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE.
						[°] EVALUATE CAPABILITY OF PWRs TO WITHSTAND THIS DIS TURBANCE WITHOUT TRIP.
		(2)	LOSS OF ALL PUMPS	x	×	ASSESS DIFFERENCES AMONG PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE -
						"CALIBRATE" MODEL DYNAMICS FOR DISTURBANCES OF THIS TYPE.
						Assess DIFFERENCES AMONG PWRS IN SAFETY MARGINS FOR THIS DISTURBANCE.

* FOR PLANTS OTHER THAN B&W, PLAUSIBLE POWER SUPPLY FAILURES WILL BE EVALUATED ON AN AD HOC BASIS.

ANALYSIS MATRIX: STUDY OF THE SENSITIVITY OF B&W PWRS VS. OTHER PWRS PRELIMINARY PAGE 5

TRAI	TRANSIENTS ANALYZED		MODEL	FSAR	PURPOSE	
	G•	LOSSES OF COOLANT Spectrum of Break Sizes		x**	Assess differences among PWRs in safety margins for this disturbance.	
4.	CON	TROL SYSTEM ANALYSES AND OPERATIONAL	URDEN			
	۸.	Rx TRIP WITH AND WITHOUT (1) Securing steam loads	x	,	[°] Assess differences among PWRs in operator burden for a relatively frequent upset.	
		(2) INCREASING MAKEUP	x			
	8.	OPERATOR MANUAL CONTROL REQUIRE- MENTS IN RESPONDING TO SELECTED FAILURES OF AUTOMATIC CONTROL LOOPS	x		ASSESS DIFFERENCES AMONG PWRS IN BACKING UP AUTO- MATIC CONTROLS.	
5.	VER	IFICATION ANALYSES				
	Α.	B&W UNIT RESPONSES			^o Compare model predictions against actual plant responses for selected transients.	
		(1) TURBINE TRIP WITH RX TRIP	x			
		(2) LOSS OF ONE FEED PUMP	×			
		(3) TURBINE TRIP WITHOUT RX TRIP	x			
		(4) LOSS OF ALL MAIN FEED PUMPS	x			

** OTHER ANALYSES AND TEST DATA WILL BE USED IN THIS EVALUATION, AS APPROPRIATE.

ANALYSIS MATRIX: STUDY OF THE SENSITIVITY OF B&W PWRS VS. OTHER PWRS PRELIMINARY Page 6

TRANSIEN	TS ANALYZED	MODEL	FSAR	PURPUSE	
3.	CE UNIT RESPONSES				
с.	W UNIT RESPONSES				
	(1) PARTIAL LOAD REJECTION	x			
	(2) TURBINE TRIP WITH RX TRIP	x			
	(3) PARTIAL LOSS OF FEEDWATER	×			

\$

APPROACH TO VERIFICATION OF MODELS

ADD CUMPLEXITY AS REQUIRED

.

0

1

0

- °° BOUNDARY CONDITIONS
- °° CONTROLS AND PROTECTION DETAILS

ſ

ſ

°° MODELING SUPHISTICATION

PZR

- 1 GROUP KINETICS,
 L* = 0
- · DOPPLER COEFFICIENT
- MODERATOR COEFFICIENT
- ^o 1 Lump Fuel Energy Storage
- SINGLE NODE FUEL
 /COOLANT HEAT
 TRANSFER

HOT LEG ENERGY ° 1 EQUIVALENT SG STORAGE ° 1 "DUMMY" FOR

0

1, 2 PUMPS

· VARIABLE SP

- COLD LEG ENERGY ASYMMETRIC FLOW
- PROGRAMMABLE

MODELING APPROACH

- NEGLIGIBLE CHANGE IN VAPOR PHASE MASS STORAGE
- 100% Effective Separator

- CONSTANT HEAT
 ADDITION RATE IN
 TUBE BUNDLE REGION
- EQUAL STEAM AND LIQUID PHASE VELOCITIES

WS

- ^o THERMAL EQUILIBRIUM BETWEEN VAPOR AND LIQUID PHASES
- PROGRAMMED RISER FLOW WITH STEAMING RATE
 - CAN IMPLEMENT DYNAMIC MOMENTUM BALANCE
- Dynamically Constrained Downcomer Flow
- ^o 1 LUMP DYNAMIC ENERGY BALANCE AROUND EACH OF FOLLOWING:
 - DRUM
 - DOWNCOMER UPPER
 - DOWNCOMER LOWER

 1 LUMP DYNAMIC ENERGY BALANCE PRIMARY HEAT TRANSFER TO TUBE BUNDLE FLUID

MODELING APPROACH

OTSG

0

۱

(seconds)

F-62-27-3

Time (seconds)

CE PWR MODEL VERIFICATION RUN FEED PUMP/REACTOR/TURBINE TRIP - 73% POWER

din kara

