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1

ABSTRACT
.

The COBRA-NC computer program has been developed to predict the thermal-
hydraulic response of nuclear reactor components to thermal-hydraulic
transients. The code solves.the multicomponent, compressible three-
dimensional, two-fluid, three-field equations for two-phase flow. The three
fields are the vapor field, the continuous liquid field, and the liquid drop'

field. The code has been used to model flow and heat transfer within the
reactor core, the reactor vessel, the steam generators, and in the nuclear,

containment. This volume describes the finite-volume equations and the
numerical solution methods used to solve these equations. It is directed3

j
toward the user who is interested in gaining a more complete understanding of
the numerical methods used to obtain a solution to the hydrodynamic equations.
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NOMENCLATURE

A area
ALAT

area through which a vertical velocity convects transverse momentum
Cp specific heat at constant pressure

.Q deformation tensor

Q* deleted deformation tensor

; e internal energy
E error
F mass flow rate
E

total force due to viscous and turbulent shear stress
[ anisotropy tensor

FA flow area .for connection to the vessel
f mass fraction
g gravitational acceleration
H- heat transfer coefficient
h enthalpy
h enthalpy of vaporizationfg
i unit vector in the x direction
i unit vector in the y direction
K drag coefficient
k unit vector in the z direction
P. mixing length
AP. transverse length increment
n unit normal vector

,

NA number of connections to top of mesh cell
'

NB number of connections to bottom of mesh cell
NCA number of connections to top of transverse momentum cell

'NCB
number of connections to bottom of transverse momentum cell

NCH number of channels
NDX number of axial cells
NCON total number of connections to a cell
NKA number of connections to top half of vertical momentum cell

vii
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1

NKB number of connections to bottom half of vertical momentum cell

NKII number of transverse connections to the II face of a transverse
momentum cell |

NKJJ number of transverse connections to the JJ face of a transverse
momentum cell

NKK total number of transverse connections to a scalar mesh cell

NG number of transverse connections to a transverse momentum cell that
are orthogonal to the transverse momentum cell velocity

NVCONIL number of connections to the vessel in any one piping loop

P pressure

4 q interfacial heat flux
Q sensible heat

S width of transverse connection ,

S source

S net entrainment rate
T turbulent and viscous shear stress terms

JT
stress T= tensor

J Reynolds stress tensor

At time increment

U vertical velocity

V transverse velocity in Y direction

W transverse velocity in Z direction

Ax mesh vertical length increment

,

Greek Symbolsr

volume fractiona

6 linear variation of
f net rate of vapor generation

gap direction indicator; = +1 if channel is on upstream side of gapy
= -1 if channel is on downstream side of gap

thermal diffusivitye

turbulent thermal diffusivitye
i

turbulent mass diffusivitye
D

viii

!
- _ . _ . . . - - . . _ - -_ ,. - ._ .--. .. . . .



- -- . .. .- - . _- - - . . . - . - .

fraction of vapor generation coming from the entrained liquidg

p viscosity
Tp turbulent viscosity

p density

| g- fluid-fluid stress tensor
1

79 interfacial drag force

subscri.tso

B bulk property
C condensation
c continuity cell
CE entrained drop mass error
CL continuous liquid' mass error
CV vapor mass error
ce source of entrained 11guld mass

j ct source of continuous liquid mass
( cv source of vapor mass

f CONV convection area

| D deposition or de-entrainment
E evaporation or entrainment
e entrained drop phase
.et liquid energy source
ev vapor-energy source

'EL liquid energy error
EV vapor energy error
f saturated liquid
g saturated vapor
h energy mixing length
I counter on vertical stacks (channels) of computational mesh cells

t. 1 interfacial
IA counter on connections to top of transverse momentum cell
IB counter on connections to bottom of transverse momentum cell
II mesh cell on the upstream side of a transverse momentum cell

1
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a

|

J vertical level for scalar (mass, energy) mesh cell

j vertical level for vertical momentum mesh cell
'JJ mesh cell on the do,astream side of a transverse momentum cell

K counter on transverse connections between vertical stacks of mesh
cells

k phase k

KA counter on connections to top of mesh cell

KB counter on connections to bottom of mesh cell

KJ gap momentum cell average

L counter on transverse connections to a cell
E continuous liquid phase

LA counter on transverse connections to top of vertical momentum cell

LB counter on transverse connections to bottom of vertical momentum cell

m mixture property

m momentum mixing length

m momentum cell

me entrained liquid momentum source

mg combined steam and noncondensable gases

me continuous liquid momentum source

mv vapor momentum source

p pipe

r relative velocity

sink related to a pressure sink boundary condition

SCL subcooled liquid

SCV subcooled vapor

SHL superheated liquid

SHV superheated vapor

y vapor phase

ve drag between vapor and drops

vt drag between vapor and continuous liquid

w wall

p general phase subscript

i

x
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superscriots
n new time value
o old time value
T turbulent
t transpose
' per unit length

donor cell*

|

|
|
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COBRA-NC: A THERMAL-HYDRAULICS CODE FOR TRANSIENT ANALYSIS
OF NUCLEAR REACTOR COMPONENTS

VOLUME 2: COBRA-NC NUMERICAL SOLUTION METHODS

1.0 INTRODUCTION

The COBRA-NC computer program was developed to predict the thermal-hydraulic
response of nuclear reactor components to small and large break loss-of-coolant
accidents and other anticipated transients. It provides a two-component,
two-fluid, three-field representation of two-phase flow. The two-component
model allows the representation of water and its vapor as well as a
noncondensable gas mixture. The noncondensable gas mixture may consist of
any number of gas species. Each field is treated in three dimensions and is
compressible. Continuous vapor / gas mixture, continuous liquid, and entrained
liquid drop are the three fields. - The conservation equations for each of the
three fields and for heat transfer from and within the solid structures in
contact with the fluid are solved using either a semi-implicit or implicit
finite-volume numerical technique on an Eulerian mesh. COBRA-NC features
extremely flexible noding for both the hydrodynamic mesh and the heat transfer
solution. This flexibility provides the capability to model the wide variety,

of geometries encountered in vertical components of nuclear reactor primary
systems.

The code has been assessed against a variety of two-phase flow data from
experiments conducted to simulate important phenomena anticipated during
postulated accidents and transients in light water nuclear reactor components.4

The constitutive relations included in COBRA-NC comprise state-of-the-art
physical models for the interfacial mass transfer, the interfacial drag forces,
the 11guld and vapor wall drag, the wall and interfacial heat transfer, the
rate of entrainment and de-entrainment, and the thennodynamic properties of
water and noncondensable gases. In addition, a mixing length turbulence model
has been included as an option.

The documentation of the COBRA-NC program is presented in several volumes.
Volume 1 contains a description of the basic three-field conservation equations
and constitutive models used in the code.

Volume 2 contains a description of the finite-volume equations for the vessel
and the numerical techniques used to solve these equations. Volumes 3 through
5 are the Users' Manuals that contain line-by-line input instructions
for COBRA-NC and user guidance for application of the code. Volume 3 is the,

Users' Manual for General Two-Phase-Thermal Hydraulic Applications and explains
all of the input data required for general application of the code. Volume 4
is the Users' Manual for Containment Analysis. It contains an explanation of
the input data required for containment analysis only. It also provides
examples of containment modeling procedures. Volume 5 is the Users' Manual
for Flow Blockage and Hot Bundle Analysis and describes the input required
for performing such analysis.

1
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i

Volumes 6, 7, and 8 are the Assessment Manuals. They contain the results of
simulations run to assess the performance of the code in each of the areas
discussed above. Volume 9 is the Programmers Manual that explains COBRA-NC's
working parts from a programmer's viewpoint. The structure of the code is !
described, and a narrative description of the function of each variable and
subroutine in the code is given.

This volume, Numerical Solution Methods, describes the finite-volume equations
and the numerical solution methods used to solve these equations. The
finite-volume equations are presented in Sections 2.0 and 3.0. A semi-implicit
numerical solution method is described in Section 4.0, and an implicit scheme
is described in Section 5.0.
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2.0 THREE-FIELD CONCERVATION EQUATIONS

The three-field conservation equations for multidimensional flow in COBRA-NC
are presented in Volume 1 of this manual. The reader should refer to Volume
1 for a more complete discussion of these equations and a description of the
physical models required for their closure. The finite-volume form of these
equations will be presented here, and the term-by term correspondence between

~ he conservation equations and the finite-volume equations will be pointedt

out.

Two numerical solution methods are available in the code: a semi-implicit
method and an implicit method. The finite-volume equations shown in this
section are written in the semi-implicit form. The differences between this
-semi-implicit form of the equations and the implicit form of the equations areexplained in Section 4.0. When the semi-implicit form is used, the time step,At, is.llmited by the material Courant limit

at ( | A | (1)

where Ax is the mesh spacing and V is the fluid velocity. The implicit method
has no numerically imposed time step limitations.

The finite-volre equations are written such that they may be solved on
Cartesian coorainates, in lumped parameter form, or using the subchannel
formulation in which some of the convective terms in the transverse momentum
equations are neglected and idealistic assumptions are made concerning the
shape of the transverse momentum control volumes.

The computational mesh and finite-volume equations are described using the
generalized subchannel notations. These equations are equivalent to the
three-dimensional Cartesian equations when the limiting assumptions of the
subchannel formulation are not used and the mesh is arranged on a rectangular
grid (see Volume 1, Section 2.0). All momentum flux terms are set to zero when
the lumped parameter form is used.

2.1 Comoutational Mesh and Variable Placement

The equations are solved using a staggered-difference scheme where the
velocities are obtained at the mesh cell faces and the state variables such
as pressure, density, enthalpy, and void fraction are obtained at the cell
center. The mesh cell is characterized by its cross-sectional area, its height,
Ax, and the width of its connection with adjacent mesh cells, S. The basicmesh cell is shown in Figure 1. The basic mesh cell may be used to model any

3
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figure 1 Basic mesh cell

one , two., or three-dimensional region. The dimension'ality of the flow is
dependent upon the number of faces on the cell that connect with adjacent
resh cells.

.The size of a mesh cell used to model the flow field inside a reactor component
is generally quite large bccause the volume of rost reactor components is
very large and the cost of using a fine mesh in solving the two-fluid equations
for the whole component would be prohibitive. However, many important flow

~ paths and flow phenomena may be overlooked when a large mesh size is used in
some areas of the component. This can be minimized by allowing a variable,

mesh size within the component. A finer mesh can be used in areas where a
more detailed calculation of the flow field is required. The code has been
set up to allow such a variable mesh size. Examples of the flexibility this
allows in modeling various geometries are aiven in the users' manuals (Volumes
3 through 5) and the applications manuals { Volumes 6 through 8). The variable
mesh is formed by connecting two or more cells to any or all of the faces of
a mesh cell, as illustrated in Figure 2. A single mesh cell with area Al is
shown connected to four mesh cells above it with areas A2, A3, etc. These
four mesh cells may connect through transverse connections 52, S3, etc., to
allow transverse flow in that region, or they,may not connect to each other,
forming one or more one-dimensional flow paths that connect to mesh cell 1.
A more detailed discussion of the mesh is given in the users' manuals (Volumes
3through5). The mesh cells shown in Figure 1 and 2 represent the mesh for
the scalar continuity and energy equations. The momentum equations are solved

I
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Figure 2 Variable mesh

on a staggered mesh where the momentum mesh cell is centered on the scalar
mesh cell surface. The mesh cell for vertical velocities is shown in -

Figure 3, and that for transverse velocities in Figure 4.

The vertical velocities are subscripted with I and j where I identifies the
location of the mesh cell within the horizontal plane and j identifies its
vertical location. The mesh cells for the scalar equations carry the same
subscripts, but their mesh cell centers lie a distance Ax/2 below the mesh
cell center for the correspondingly subscripted velocity and are denoted by
the capital letter J in the discussion below.

Transverse velocities are subscripted with k and J where k identifies the
location of the mesh cell in the horizontal plane and J identifies its vertical
location. The node centers for the scalar equations and transverse momentum
equations lie in the same horizontal plane.

2.2 Finite-Volume Equations

In this section, the finite-volume equations are written in the semi-implicit
form using the subscripting conventions described here. Quantities that are
evaluated at the new time carry the superscript n and donor cell quantities
carry the superscript *. Those quantities that have the superscript * or no
superscript are evaluated at the old time and form the explicit portions of
the equations.

5
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The corresponding term in the conservation equation for each term in the
finite-volume equation is provided in the brackets below eact equation, along
with a verbal description of the term. The subscripts I and k are assumed to
be obvious and are not shown.

2.2.1 Mass Equations

Gas Mixture Mass Equation

NB

E("vFma) - I"v mg)Jle KB=1 V "9 9j-1 "j-1 KB
A =

At c AxJ 3

NA NKK

V"9}, 9^"j KA + L 1 1[( *p*9) V 3P S
-

L J
V9L (2)KA 1

( 3 AmgJ-1) Ax^"j-1
FNB

E("Pyg)j_1+ I 3E
D KBj-1 pvg3 pvg3_3 j-1KB=1

#mgJ+1NA
"9J "j,

(pV9 +1
~

KA 1 vg j D
j

J V9J d

n
NKK e

L1 vg D p
- EmgJJ S axmggy t J cgJ

'

h
t ygII pV9 J 3JJ

7
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1

Liauid Mass Eauation
NB NA, ,

EE EE
[(a p )" - (ag g)3] Agg p KB=1 J-1 "j-1 KB K =1 j j KA

=
At c Ax i

J y

n
S

NKK (I-9)I" S cE* J J

L F J Ax ~ Ax + Ax (3)+ E 7S E("E E) Ynl-
L=1 J J J

Entrained Liould Mass Eauation

NB NA ,,

KB - gf,g bF) A QeE j ,J[(a,py] - (a,p )Jl *E 'j -1 "j -1g KB=1
A =

At c Ax
J J

' n
S

NKK nt" S ee,

l Ax + Ax + Ax (4)+ E 7S E("eF) Y JL E e
L=1 g J J J

8

_ _ _ ..



_ .. . - - - . - . . _ . _ . - .

!

Vanor Mats Eauation
;

NB

( V V},("yFy)$ - ("vFy)J P ^
9 -1 "j-1 KBKB=1 JA =

At c a3 g

NA

E("vFv),U"ygA ]KA NKKj ,j,3

( V v),Y"g LJF 3+ 73
~

Ax LJ L1

NB Fv Fv A,

(PV9}d-I (FvgJ pV9
)U x KB (5)i KB=1 j-1

>

NA Fv +1 Fv A

J) j,3J
(Fvg)j (p -

D
yg yg Ax) KA

pK =1 j

1

n
.- NKK Fv Fv

I g(ap ) e ( g3 ) S Ax3+S
evig L n J- +-

L=1
vg LJ D

FV9II FV9JJ kJ Ax AxL J y

1

+

d
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Rate of change Mass efflux in the
of mass vertical direction

|

F U0*k k kB AA g (akek) " -

ax

-
-.-

-_

Mass efflux in Mass efflux due to Rate of creation Mass source Phase

the transverse turbulent diffusion of vapor mass due due to source

direction to phase change entrainment term

A*ak vg'DU * I + S' + S
- I (ak k k)L L

-F Y S F k k c

_._ _ _(3 terms) _ __

The reader should refer to the nomenclature list for the definition of each of
the variables. The mass efflux in the transverse direction is given as the net
mass leaving the cell through all transverse connections to all of the faces.
The total number of transverse connections to the cell is NKK. The mass efflux
in the vertical direction is given as the net mass leaving the cell through all
vertical connections to the top and bottom of the cell. The total number of
connections to the top of the cell is NA and the number of connections to the
bottom of the cell is NB.

The velocity in each of the convection terms is taken to be the new time value
while the convected quantity, in this case (appv)*, is taken at the old time.
The turbulent diffusion terms are all calculate 8 at the old time. The mass
creation term is evaluated at the new time. However, it consists of an implicit
and explicit part. The rate of mass generation due to phase change, r , isa

given by

b)
IJ"ISHV + ISHL + ISCV + ISCL

10



where

HA3gy (h - h )"y aISHV * Cp (h -h)y g g

HASHL (hE-h)"f
ISHL * Cpg (h -h)g g

HASCV (h - h )"y g
ISCV * Cp (h -h)y y f

HASCL (hg-h)"fISCL * Cpg (h -h)y f

The product of the interfacial area and heat transfer coefficient, the specific
heats, and the heat of vaporization are all evaluated at the old time value and
form the explicit portion of the mass creation term, while the enthalpies are
evaluated at the new time value forming the implicit portion. This term
is also multiplied by the ratio (1-a")/(1-a ) for vaporization or a"/ay y y y
for condensation. This is done to provide an implicit ramp that will cause the
interfacial area to go to zero as all of the donor phase is depleted. An
explicit ramp is also applied to the product (HA) to cause it to go to zero
as the volume fraction of the donor phase approaches zero. The entrainment
rate, S, is explicit and is also multiplied by implicit and explicit ramps
that force it to zero as the donor liquid phase is depleted.

The last term in the equations is the phase mass source term, and it is
evaluated at the new time. This term accounts for sources of phase mass that
are exterior to the vessel mesh. These sources include mass sources due to
chemical reaction, mass injection boundary conditions, and pressure boundary
conditions. These source terms will be defined in the Section 3.0.
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2.2.2 Fluid Energy Equations

Vapor Energy-Eauation

+p h(ph)yg = p h gyyy

{[a (ph)yg])" - [a (ph)yg]3}Ay y c
3 (7)"

At w

NB NA *

A 3 SE"v(ph)yg] U"g{[a (ph)yg],U"g -1 A ]}g
y m KB - EI j ,jj j-1 KA=1KB=1

Ax
3

7 9 O S" "v (P" - P)g cA
v v y

NKK *

+j7g{[a(ph)yg]V"g ]}g + 3x + Ax + Ax + Ax At
+5 y J

,

where

" h" + T h" + T h" + T h"r,y = TSHV SCV SHL SCL
,

12
;

_ - .. . .- - - , , , , - , - , - - . , , . . - , - -



. . . . - . _.,. -_ . _ _ . . _ - _. .--

..

Liauid Energy Eauation

t + a.)pt e]" - [(<, + a )pt t]3}A{[(a h hg c; J
"At

:-

1

i' NB
NA-f

(ELE} E ^"j
A E E PJ KB 1 j-1 "j -1 *EE KB -j-1 "j =1 j

.

.

NKK

E g)* U" A, ]KA) + h 7E("EEg)*V + (a,p h )* V" ]3+ ("e# h 3 F h, L gg
.

'|

1

3 * S"g * OI"E (P" - P)Jr,"g q"E O AE

- Ax + Ax 3 + A*J
ca+ g J

Ax Ax At (8)3 J 3 3

where
,

Iet " - I h hSHV g - TSCV f - T h hSHL g - TSCL f

,

b

(

}

,

d 'M . ;
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Rate of change Efflux of enthalpy |

of enthalpy in the vertical direction
'

Ahy(akkk) - ("k k k k)F hUF h "~

__.__- _

~ Efflux of enthalpy Energy source due to mass-~

in the transverse direction transfer between fields

E (ak k k k)L S
+ IF hY L- ek-

.

L _

Interfacial heat Heat addition Fluid conduction Work'

transfer from solid and turbulent term
heat flux

.

Ve[ak(3k*3k)3
+ "+ Q' ++ q'

.p _ _ _ _ __ - -
. _

!

Again, the energy efflux in the transverse direction is the sum of all
transverse connections on all faces of the cell; that in the vertical direction
is the sum of all connections to the top and bottom of the cell. New time

h which is evaluated using old
] velocities convect the donor cell (akFk k)*,ted in the phase change term.time values. New time enthalples are convec

The interfacial heat transfer term, like the vapor generation term, has an
implicit temperature difference and an explicit heat transfer coefficient and
interfacial area. The wall heat transfer is explicit. The energy source terms
corresponding to the mass source terms will be defined in Section 3.0. The

fluid conduction and turbulent heat fiux are explicit and will be expanded in
,

Section 3.0.

1
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2.2.3 Momentum Equations in the Vertical Direction

Vapor Phase,

!

Pyg * Pv + Pg

E("v vg yg)* Uyg]KB A*KBE("vFvg yg)) - (a pu y yg yg))]AU e um NB3"
At-

KB=1 Ax)

A [(apy yg yg) UU
yg , KA A" KA NKB

3
I E

1 ( V V9"V9}
~

PAx LB 2V9JKA=1
j LB 1

,

(9)

NKA S
(P +1 - P )"7E("vFvgvg),YU LA J J^

~ ("vFvg)J g A,j - a AvgJ+1 LA 2
j j ,-j3x y,1

k20 -U yg)A, "-K [2(U - U )3 - (U
~

-U))]A,v g yg yg g yg gj j j

K [2(U -D) - (U - V ))]A,j
-

ye yg e yg e

[FUC yg - (1-n)T UE g - nT U lEej,J+TT
"V

_

Ax Ax v
3 3 j

f
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Liauld Phase
NB ,

A"KBE("d[hj~("d[hA"j,KB=1 EEE E KBJ

At Ax)

NA ,

(
A"KA + NKB

S
E +1 KA

, LBJ=1 1( E LB 2~

Ax L 1 Jj

(10)

NKA S
LA1( ), V 3 ~ ("E E)j g A,g 2 F+

L =1 M

(P +1 - P )J J
"E ^m~

Axj j y

-U)]-(U - U ))] A,j-K (20 -Ug ) A, +K [2(U gg yg yg y

- T Uyj(1-ri) [f U ECy

Ax)
-

(SU ~ S Uy3 h3De E,
Ax

Ax) y 3

|
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- Entrained Liould Phase

NB *

E("eF[e)j-("eF[e)j]A"j"K8=1i
A"KB'J KB* *

At Ax
j

; .NA
E("e O e),U l AF e ,g KA m NKB S3 j

7("e#0e},V LB+-

Ax e LB 2
d dLB=1

(11)
.

,

,

NKA S
+

7[(rF[e),V -l
LA+ E

("eF)j g A,j
-

e +1 LA 2 Ee
LA=1 J

.
|

'(P +1 - P )"J 3
A!

-

Ax "e m
j j y

,

q .s

;

n[r U -rU,]3
| K,J (2u" - u,J ,J

c g
)A + K ,j [2(U - U,)3 - (U - U,)j]A ,j +

-

,J y y .gxy
: J
1

4

I-

.

S(SUD e - S U ))
]Ax

1
Eg |

,

_

Ax
3 3

i

.

I

t

i
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i_ _

Rate of change Efflux of momentum in
of vertical the axial direction
momentum =-

O("k k k) 8Fu
A A gx (ak k k k)F UU8t

-

= -
_ _ -

Efflux of momentum in Gravitational
the transverse direction force

E ("k k k k)L S "kek9F UY ~-

L
L

-- - = = - -
_

Pressure gradient Wall shear Interfacial shear

+7T + T
w i 9"k yg ve

-

_ _ __ _ _
-

_
_ _

MomentumsourceduE Momentum source term Viscous and turbulent
to mass transfer shear stress
between phases

T

V * [ak(fk+ Ik)3 ,_
TV + SU + S +

. _ , ,

The momentum efflux in the vertical direction is given as the net momentum
leaving the cell through all vertical connections. The total number of momentum 1

mesh cells facing the top of the cell is NA and the total facing the bottom
'

of the cell is NB. The momentum efflux in the transverse direction is given
as the net momentum leaving the cell through all transverse connections. The

total number of transverse connections to the top half of the momentum cell
is NKA. The total number of connections to the bottom half of the cell is
NKB. To achieve stability with this semi-implicit formulation of the momentum
equation, donor cell momentum, (akFk k)*, is convected by the velocities atU
the momentum cell face. A simple ITnear average between adjacent momentum
cell velocities is taken to obtain the velocity at momentum cell faces:

18
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d

:

.

U5+U3'

UJ." 2 (12)
; Likewise, linear averages are used to obtain other variables at locations where

they are not defined. The void fraction of the momentum cell is given as
)

*
a) = 2 (13)

,

i

and the density is given as
.

1 FJ + F +1J
Fj " 2

(14)
,

The momentum equations are solved for the phase flows (akFk kU A ). Velocities
are obtained from the flow by dividing it by the momentum ceT1 , density and
momentum cell area:,

f' ("k k k m)JF UA
U "

k (ak k ,)) M# Aj

The pressures in the pressure force term are taken at the new time, as are the
velocities in the wall shear and interfacial shear terms. The shear terms have

t

been weighted toward the new time velocity by differencing them in the formn
K(20 - U). All other terms and variables are computed using old time values.
The donor phase momentum f s convected during mass exchange between fields.
The explicit viscous and turbulent shear stresses will be expanded in

i Section 3.0.
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2.2.4 -Momentum Equations in the Transverse Directions

.Vanor Phase

NKII ,

F Y Y S3X7 ( V vg vg)J vgL L J
'[("yFyg ya)" - (a pyygyg)]J S axVV J J L1

"

At E g

NKJJ NG S

I 7[a.p_'V ) V S ] Ax I q[(a p V ), W - d] Ax
,

2 JL J Y V9 V9 d V9LV V9 V9 d V9L L=1L=1
E E

J J

NCANCB , ,

( V V9 V9} l
( V V9 V9}

P
V9IAP V IAIS

V9IB I =1 (16)IB=1 -

g AEg

(Pgg - Pyy)" S Ax"v
~ -K

g g
-V ) S AxJ~KvE[2(V -V)"(2V"yg yg g yg g- g y g

- V )g]S AxJ--(V g Jyg

[fY ~ (I ~ 9)I Y ~ 9I Y 3C E E
f

- K , [2(V --V")g - (V -V,)3]SA*J~ Axy yg yg J J

S

+ +T y

;
r 20
*

i
.
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~Liauld Phase

NKII- ,

ggg ggg g J- L1
-7 (" Y[(a p V )" - (a p V )]3 S ax J qL33A*J

"
At

W.3
'

NKJJ NG S, ,
L

_t[3 7E("dUhJ Y( S ]Ax 7 ("
J k 2-] AxL J J.,

L1
AL AL3 3

NCB NCA
[(a p V ), U

ALATIB] I [(aggy,UE ALAT 3ggg g g IA* IB=1 IB IA=1 IA
AL

-

AL3 3
(17),

g ' JJ - Pyy)" sax(P
' a

3 3
-K (2Y -YEj ) S A*J

-

AL E JJ J

+K [2(V - V )" - (V -Vyg]Saxyyg y g y j

[(1-n)TYC v - (I-9)I Y 3 "E IS V. , D , - S Y )JEEJ,AE J+TT Ee
At E AEJ J J J

(

t

!

21

. . - - . ... - - . - .. - .-.



. - -

Entrained Liauid Phase

NKII ,

(a pye) "- (a ppe)3 S Ax g[3 7E("aFUe)J Y S3Xe L J
e e 3 J 3 L

"
At AE.J

NKJJ NG S, ,
t

I 7E(sp[e)J Y S]Ax I q[(a,pg,)J W ~--] Ax
e e L 3 e 2 J

_ L-1 L ,L=1 L

AE AE.JJ

NCB NCA, ,

AW 3ALATIB) E E("e#Ue) U,IAE [(a,pg,) U,IB IA
_ IA=1,IB=1

AE AE
3 3

(18)

(PJJ - P77)" S axa g 3e
-

II-
(2V",J-Ve ) S Dxg-K JAt e JJ J

.

" -V)jl b Ax+K E2(v - V,)3 - (Vyg e J gve vgy

Ee De -SY)J- I Y )J ,AE**J _ (S Y(6 YCv ee
AEAEJ g g

l
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|

Rate of change Transverse Transverseof transverse momentum efflux momentum effluxmomentum by transverse convection by orthogonal
transverse convection

8(akekk)Y 0("k k k k ) !
F YvA 1

A "-

("k k k k ) NKat OL F YY-

NK

Transverse Pressure gradient Transversemomentum efflux force wall shearby vertical convection

hakekkk akAh - r A
+ UA -

wk
_

_
__ __

-..

Interfacial drag Interfacial drag
between vapor between vapor
and continuous and drops
liquid

+ r A + r Ag jgy ev
__ - - --

Transverse momentum Transverse momentun Viscous and turbulentsource due to mass source term shear stresstransfer between
phases

+ TH + SV + TS, V = [ak (# -k_ _. _. - -k + T )3
+

-

-

As in the vertical momentum equations, the pressures in the pressure force term
and the velocities in the wall and interfacial drag term are the new time
values, while all other terms and variables are computed using old time values.
The momentum efflux b
entering (or leaving)y transverse convection is given as the sum of the momentumthe cell through all transverse connections. Momentum
convected by transverse velocities (that are in the direction of the transverse

23
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l

velocity being solved for) is the sum of the momentum entering (or leaving)
through mesh cell faces connected to the face of the mesh cell for which the
momentum equation is being solved. NKII is the number of mesh cells facing
the upstream face of the mesh cell, and NKJJ is the number facing the downstream
face of the mesh cell. Momentum convected out the sides of the mest cell by
velocities that are orthogonal to the velocity to be solved for is given by
the sum of the momentum convected into (or out of) cells connected to the
sides of the transverse momentum mesh cell. The number of cells connected to
the mesh cell under consideration, whose velocities are orthogonal to its
velocity, is given by NG. The momentum convected through the top and bottom
of the mesh cell by vertical velocities is the sum of the momentum convected
into (or out of) cells connected to the top and bottom of the mesh cell and
depends on the number of cells connected to the top (NCA) and bottom (NCB) of
the mesh cell.

A simple linear average is used to obtain velocities at mesh cell faces:

V +Y
J J

(19)
V "

L 2
II

Linear averages also are used to obtain other variables at locations where
they are not defined. Velocities are obtained from the flows by dividing by
the momentum cell density and transverse momentum flow area:

(akek kV Sax)J M*
k (akekSAx)gg

Donor cell differencing is used for all convective terms, and the donor phase
momentum is convected in the mass transfer terms.

24
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3.0 SOURCE, VISCOUS, AND TURBULENCE TERMS

Terms not fully expanded in the presentation of the finite-volume equations
in Section 2.0 are presented in this section. These include the mass, energy,
and momentum source terms; the viscous shear stress tensors; the turbulent
shear stress tensors; the fluid conduction vector; and the turbulent heat flux
vector.

3.1 Mass. Energy. and Momentum Source Terms

Source terms are required for the mass, energy, and momentum finite-voin ,
equations to account for the arbitrary boundary conditions that may be specified
anywhere in the mesh.

Five basic types of boundary conditions may be specified within the mesh.
The first type allows the user to specify the pressure and the mixture enthalpy
in any cell. The normal momentum equations are then solved on the cell faces
to obtain flows into or out of the cell. Properties specified within the
cell are convected to surrounding cells if the flow is out of the cell.
Properties of surrounding cells are convected into the specified cell if the
flow is into the cell. However, because the properties of the cell are
specified, the pressure, temperature, and void fractions do not change
accordingly, so the pressure boundary condition can act as a mass, energy,
and momentum sink if flow is into the cell, or as a source if flow is out of
the cell.

The second type of boundary condition allows the user to specify the mixture
enthalpy, and pressure within the cell and the continuity mass flow rate at
the top of the cell. All three phases are assumed to have the same velocity
at the cell face. No momentum solution is performed at the top of the cell
for this case because the flow is specified. Otherwise, the boundary condition
behaves in the same way as the first type of boundary condition, acting as a
source (or sink) of mass, momentum, and energy, depending on the direction of
flow.

The third type of boundary condition sets the flow on any mesh cell face, and
therefore does not produce any mass, momentum, or energy sources.

The fourth type of boundary condition allows the user to specify a mass and
energy source in any computational cell without changing the computed fluid
properties within the cell. Again, all three phases are assumed to travel at
the mixture velocity, and the amount of flow is determined by the volume
fraction of each phase specified in the boundary condition. Momentum of this
source is added only if the flow is in the transverse direction and into the
mesh, or if flow is out of the mesh.

The final type of boundary condition allows the user to specify a pressure
sink to be connected to any cell. A simple momentum equation is solved between
the sink pressure and the cell pressure, and the resulting flow produces a mass,

25
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momentum, aad energy sink if flow is out of the mesh and a mass and energy
source if tia flow is into the mesh. The sink vapor momentum equation is

("vvv) SINK"("vvv)+h -P) (21)eYA e vA ASINK (PSINK J
SINK

- U ) SINK A -Kve (U - V ) SINK AU"y A -kyg(U- K g SINK y e SINKSINK yy

The energy and mass source terms for pressure boundary conditions use
semi-implicit velocities. All other boundary condition source terms are
explicit. Donor cell differences are used for all source terms. The donor cell
is determined by the sign of the boundary condition velocity. If flow is out

of the mesh, then mesh cell properties are used. If flow is entering the mesh,
then the specified boundary condition properties are used.

3.2 Viscous and Turbulent Shear Stress Tensors and Heat Flux Vectors

The viscous and turbulent shear stress represented in the finite-volume

equationgiveninSection2.0byTfareexpandedinthissection. This term
J

represents a particular component of the viscous and turbulent stress tensors,

E * [ak(fk + J )]. The viscous stress tensor may be written as

_ -

# ##
k k ky xy xz

ik " "k k "k (22)
yx yy 7

"k k "k
zx zy zz

-
-

T
may be written in a similar way. Further,TheturbulentstresstensorIk

26
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TV * [ak (fk + I )3 f E"L (#k k
+ T )3 + k I"k+Tk )3k

xx xx yx yx

+ag [ak ("k +T )3}i+(bI"k("k +Nd Mzx zx xy xy
,

+h["k("k )3+bI"k("k+T +T )l} 1k kyy yy zy zy

+ [g [ak ("k ) +
"k(#k N

+T ) + "k ("k bEzxz xz yz yz zz

The coordinate system used is shown in Figure 5.

RECTANGULAR COORDINATES VELOCITY
COMPONENTS

x m

"
u

9 "
k:

V ~

~ Z >W

v
Y

Figure 5 Coordinate system tnd nomenclature
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The first subscript on the shear stress denotes the face on which the stress
is acting; the second subscript denotes the direction in which the stress
acts. (For example, ok is the shear stress acting on face i in the

jj
j direction.)

The viscous and turbulent stresses are defined in terms of the bulk deformation
tensor, p , given by

gg
B

|

I

or
,

_

2 (au , av) 2 (Bu , aw)1 1Bu
By Ox Oz 0x0x

1 ( b + 01) 2 (OV + 0")
OV I

D =
2 By Ox ay az ay=k

B

au Dw 1 8v Bw Bw

1 (b , b 2 (5z + 09) Bi (25)
2g _

Eliminating the normal stresses such that the diagonal term is zero gives the
deleted bulk deformation tensor Q .

Neglecting the viscous contribution to the normal stresses and eliminating
the normal stress due to pressure already accounted for in the finite-difference
equation leaves

ek=2Q (26)

or

* *
ak kxy yx

ak "kxz zx
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)( +
(29)a "# =

k kyz

The turbulent stress tensor is given by

Jf=-Pf[k+2pkkO
B

T
'

P istheturbulentpressure,[istheanisotropytensor,whichisgenerally
Tassumed to be equal to the unit tensor, and p is the turbulent or " eddy"

viscosity. The turbulent stress tei.sor may be written in matrix form as

~

T (Bu + av) T (Bu + aw-)-P F Ek 57 Hi #k Bi Bik
XX

T
T (By , Bi)

Bu aw

T(5i+57)
av awIk" # -PFk k #kyy

T (51 + 5i)
Bu 8w

T(6i+by)
8v aw

-PFk k (31)Fk F
_ zz

_

The turbulent viscosity is given by

#k*Pk 00k Q[B (32):
B

C-

and the turbulent pressure by

Pf=pk
(2Q[B Q*k) (33):

B
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The double dot indicates a second-order tensor inner product resulting in a
scalar quantity. Here this gives

B
~

= (0" + 01)2 , (Du , 03)2 , (81 , h)2 (34)
2 Q*k 0 'B Dy- Ox az 0x az Dy'

Now that all of the terms for the viscous and turbulent shear stresses have
been expanded, the finite-difference form of the terms can be presented.
The total force resulting from viscous and turbulent shear stresses acting on
a mesh cell may be obtained using the divergence theorem:

E = Ill V * [ak (f + I )]dy = ll n * [ak(fk + I )]dsk k
vol surface (35)
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The finite-difference approximation for this total force is

E = 1 * {ak(#k )!+xAyaz - ak(#k }l-*+
xx xx xx xx xx

+ak(#k k )I+)Ax6z - ak(#
+

kyx yx yx yx -

+ "k(#k )!+zaxAz - ak(#k -z
+

zx zx zx zx

+ 1 * {ak(#k )!+xAyaz - ak(#k }l-*+ +
xy xy xy xy

+ ak(#k p )|,yaxaz - ak(#k k )!-y+T +T AxAz
yy yy yy yy

+ "k(#k k )!+zaxaz - ak(#k k )!-zaxaz}+I +
zy zy zy zy

+ k * {ak(#k )!+x Y "k(#k }l-*xz xz xz xz

+ a (# +Ik k k )!+y "k(#k k }l-Y+
yz yz yz yz

+ak(#k )I+zaxaz - ak(#k -zzz zz zz zz
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The stresses (ak I "Ed " "
kxx' yx' yx''

y
transverse momentum cells. For example, the stresses ar, ting in the vertical
direction on a vertical momentum cell are shown in Figure 6.

-The velocity gradients are calculated by taking differences between adjacent
cell velocities to obtain values for Au/Az and Aw/AE.on continuity cell edges.
This is illustrated in Figure 7.

.-

In Figure 7, the velocity gradient _at point A is given by -

u -w
(b + bi + ( 2 --u1,w2

1) (37)
Bz 8x'A AE. Ax

'

The derivatives for the other edges are computed in a similar' fashion and the
process is' repeated.for other cells. If a, solid surface bounds the cell in
the transverse direction, it is assumed that the velocity gradient is zero at
the wall. Velocity is assumed to be zero at the wall for solid surfaces that
bound the cell in a vertical direction.

The derivative at the mass cell center is obtained by taking a four-point
average of the derivatives on the cell edges:

-

e

1 UBu , h)A ,(au , h)B(M + h) cell center :::

Bz 8x Bz 8xBz 8x 4

+ (8u , h)C , (8_u , h) ] (38)
Bz 8x 8z 8x D

The same procedure is used to. find ( +h)and(h+h)atthemasscell
: at the cell center is calculated from

Thequantity2g(B gg?center.

Equation 34 using these averages derivatives. The turbulent viscosity and
turbulent pressure are tMn cal' 11ated at the cell center using Equations 32
and 33.

'

.

9
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The shear stress acting on the sides of the momentum cell is computed from
the appropriate velocity gradients calculated on that face. The fluid .

properties at these locations are computed using a four-point average of the l

properties in the surrounding four mass cells. |

The turbulent mass diffusivity for the mass cell is computed from the double
dot product of the deformation tensor and a specified momentum mixing length

D " b 00$ Ok (39)
E

k B B

Similarly, the turbulent thermal diffusivity for the mass cell center is'

computed from the double dot product of the deformation tensor

(40)= E ( BQy : Q[BE g
B

The sum of the conduction and turbulent heat flux between two mass cells is
then computed from

(9 +9k)!+x"-8('k+'k)k k Ax (41)J J J

The heat fluxes from all surrounding cells are summed to give the net heat
flux into cell J.
Because the viscous and turbulent shear stresses are computed explicitly, the
time step is limited by the criterion

- -

(42)At f min T2 (g+g ) ,u__
2 Ax

p Ax
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4.0 NUMERICAL SOLUTION

The algebraic equations shown in Sections 2.0 and 3.0 form a set that must be
solved simultaneously to obtain a solution for the flow fields involved. The
numerical scheme chosen to solve these equations must be as efficient as
possible to obtain a solution in a reasonable amount of computer time. Although
the equations can be solved directly by inversion of the matrix equation, the
computer time required for problems with many mesh cells would be prohibitive.
By locally reducing the number of equations and unknowns and applying an
iterative process to the remaining equations, the sparseness of the global
matrix can be utilized and a solution can be obtained in a reasonable amount
of computer time. The equations in Sections 2.0 and 3.0 have been greatly
simplified over the conservation equations they are intended to represent,
because they are written in a semi-implicit form. It is assumed that these
semi-implicit equations converge to the correct solution if a time-step size
smaller than that required by the Courant criterion is used. The methods
used to solve these equations will now be described.

4.1 Solution of the Momentum Equations

The momentum equations are solved first in the solution procedure using
currently known values for all of the variables, to obtain an estimate of the
new time flow. All explicit terms and variables in the momentum equation are
computed in this step and are assumed to remain constant during the remainder
of the time step. The semi-implicit momentum equations (Equations 9 through
11 and 16 through 18) have the form:

Liquid

FL=Ag+By AP + C Fgg+DFgy (43)

Vapor

j Fy=A2+B2 AP + C f2L+DF2V+Ef2E (44)

Entrained Liouid

FE=A3+B3 AP + 0 F3y+Ef3E (45)
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A , A , and A are constants that represent the explicit terms in the momentum
1 2 3

equations such as the momentum flux terms and the gravitational force. B

B , and B aretheexplicitportionofthepressuregradientforceterm,dn,d
3C and C are the explicit factors that multiply the liquid flow rate in the

2w 11 and interfacial drag terms. D , D , D ' E , and E are the corresponding
1 2 3 2 3

terms that multiply the vapor and entrained liquid flow rates. F, is the
liquid mass flow rate, F is the vapor mass flow rate, and F is the entrainedp
liquid mass flow rate. yThese equaticas may be written in matrix form as

, e ,- -

C -1 D 0 F -A -B AP
1 1 t 1 1

-A -B APC D -1 F =

2 2 2 y 2 2

AP0 D E -1 F -A3-B33 3 E

(46)- - %s ' s

Equation 46 is solved by Gaussian elimination to obtain a solution for the
phasic mass flow rates as a function of the pressure gradient across the
momentum cell, AP:

APF =G1+HgL

APFy=G2+N2

FE"03+N3 (47)AP

The mass flow rates given by Equation 47 are computed based on the mass of
each phase contained within the momentum control volume. Velocities may be
computed from these flow rates using Equation 15. Once the tentative velocities
have been obtained from the momentum equations, the continuity and energy
equations can be solved.

4.2 Linearization of the Mass and Energy Equations

If the right-hand side of each of the mass and energy equations is moved to
the left-hand side, the sum of the terms should be identically equal to zero
if the current values of all variables satisfy the equations. The energy and
mass equations will not generally be satisfied when the new velocities computed
from the momentum equations are used to compute the convective terms in these
equations. There will be some residual error in each equation as a result of
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the new velocities and changes in the magnitude of some of the explicit terms
in the mass and energy equations such as the vapor generation rate. The liquid
vapor mass equation, for example, has a residual error given by

[(a p )j - (a p )g]A "^ (" E} E ^d KA
gg gg c

J+ j
at AxK =1 J

[(a p )* ~gNB A ,y]KB NKKUgg j ,

E
-

E S 7E("E E) v3
-

L E J
-

KB=1 L=1

S
P CEJ J

+ 3i ~ Ax =E
CL (48)J J

All terms are computed using currently known values for each of the variables.
The ~ symbol over the velocities indicates that they are the tentative values
computed from the momentum equations (Equation 47). The gas mixture mass
equation, the mass equations for the vapor and entrained liquid phases, and
the two energy equations also have residual errors: ECG, ECV' ECE' EEV, and,

E The equations are simultaneously satisfied when EEL.
CG' CV, ECL, ECE, EEV'

and E f r all cells in the mesh simultaneously equal zero. The variationEL

of each of the independent variables required to bring the residual errors to,

) zero can be obtained using the block Newton-Raphson method (Ref. 2). This is
done by linearizing the equations with respect to the independent variables
aP , a , a h , (1-a )h , n , and P to obtain the following equation for eachg y yy y g e

cell of the form
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[R(X)]{6(X)} = {E} (49)

E OF BE BE 8E BE BE BE
CG CG CG CG CG CG CG CG

8P ,7 * * * BPyg y yy y g Oz, 8PBa P Ba 8a h 8(1-a ) h g i=NCONJ

BE 0 0 0 BE BE BE E
CL CL CL CL CL CL CL CL

8P ,1 * * * 8Pyg y yy y g Ba, BPBa P Ba Ba h 8(1-a ) h j i=NCONg

BE BE BE BE BE BE BE BE
EV EV EV EV EV EV EV EV

8P ,1 * * * BPyg y yy y g Ba, BPBa P 8a 8a h 8(1-a ) h j i=NCONJ

BE BE 0 BE BE 0 0 E
EL EL EL EL EL EL EL EL

[r(X)] = 8P ,1 , , , BP =NCONBa P Ba Ba h 8(1-a ) h Ba 8P j iyg y yy y g g 3

BE BE O BE BE BE BE BE
CE CE CE CE CE CE CE CE

BP ,1 * * * BP =NCONBa P Ba Ba h 8(1-a ) hyg y yy y g Ba, BP j iJ

BE BE BE CE BE BE BE BE
CV CV CV CV CV CV CV CV

BP ,7 * * * 8P =NC01Ba P Ba Ba h 8(1-a ) h Ba BP j iyg y yy y g e g
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em

0"v g EP
CG

0"v E
CL

6a h E :
yy EV

{6(x)} = 6)(1-a )h = {E} - Ey g EL

6a, E
CE

6PJ CV

6P ,3 '"j

:
.

#
1=NCON s

Det [R(X)] is the Jacobian of the system of equations evaluated for the set
of independent variables given by the vector X, 6 is the solution vector
containing the linear variation of the independent variables, and -E is a
vector containing the negative of the residual errors required to bring the
error for.each equation to zero. The matrix R(X) is composed of analytical
derivatives of each of the terms in the equations with respect to the
independent variables. The velocities are linearly dependent on the pressures,
so derivatives of velocities with respect to pressure may be obtained directly
from the momentum equations, Equation 47. The linear variation of velocity.
with respect to pressure is given by

j 6Vg=H{(6PJ - 6P +1)J

#vg = H2 (6P3 - 6P +1)J g

6V,=Hj(6PJ - 6P +1)J

The derivatives of the other dependent variables such as ph, p , py,h,h,g fh , and b are obtained from the thermal equations of stat g
g y
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pg = 'pg(P,h)g

p =py (P ,h ) (51)y y y

p =pg (P ,hq)g g
,

and from fundamental identities involving partial derivatives. For example,

the derivative of py with respect to the independent variable a h is given byyy

Op Op Bhy y y (52)
Ba h " Bh Ba hyy y yy

The derivative 8py/8h is obtained directly from the thermal equation of state,y

while the derivative Bh /8a h is obtained from the identityy yy

h"v y (53)b =
y ,v,

i

The term in the numerator is the independent variable with respect to which
derivative is being taken, and the denominator is the independent variable aFromEqualionwhich is assumed to be held constant while taking the derivative.
53 we obtain

;

I

Bh
(54).

=
Ba hvv v

Derivatives of the independent variables are obtained directly from Equation
48 and the comparable equations for the other four residual errors. For

example, the derivative of the temporal term of Equation 48 with' respect to
is given byay
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0(<y y) Ba 0Fy 0Fy dh 8pp

Ba " (e Bay + "v Ba ) * Fv + "v Sh
y y

(55)v da " Fv - hv Bh'

v v v v v v

Once all of the derivatives for the five equations have been calculated,
Equation 49 is reduced using Gaussian elimination to obtain solutions for the
independent variables of the form

NCON
E h 6P (56)6PJ=a6 + i=1 6 y

i

NCON

5 + # 6a, + g5#j+1[16a, = a h 6P
5 5 g (57)

9

NCON

6[(1-a )h ] = a4+e4 6[(1-a )h ] + f 6a, + g4&g + i=1E h 6Py g y g 4 4 j
1

(58)
NCON

6a h =a
6[(1=a )h ] + f 0"e + 9 #J + i=13+d3 yy 3

6a h +e E h 6Py g 3 3 3 9
yy

1

(59)

NCON
6a =a

+ d 0"v y + e 6[(1-a )h ] + f 0'e + 9 6Pg + i=12 + c 0"Y h E h 6P2 2 2 y g 2 2 2 jy
1

(60)

6a P =a1+bl yg 3 y i yy 1 6[(1-a)h,]6a P +C 6a +d 6a h +eyg y

NCON
+f 6a, + g1 6P E h 6P (61)g + i=13 1 g

1

The computer time required to solve Equation 49 is greatly reduced if the
nonlinear coefficients ak through h are assumed to remain constant during a
time step and a solution is obtaineb only for the linearized system of equations
(Equations 56 through 61). A substantial savings in computer time is realized
when-this is done because the matrix equation (Equation 49) is reduced only
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once per time step. Time step controls are then imposed to ensure that the
variation of the nonlinear terms between time steps remains within acceptable
limits so that a stable solution is obtained.

4.3 Solution of the System Pressure Matrix

The linear variation of the pressure in cell J as a function of surrounding
cell pressures is given by Equation 56. A similar equation may be derived
for each cell in the mesh. This set of equations for the pressure variation
in each mesh cell must be simultaneously satisfied. The solution to this
equation set may be obtained by direct inversicn for problems containing only
a few mesh cells or by using a Gauss-Siedel iterative technique for problems
containing a large number of mesh cells.

The efficiency of the Gauss-Siedel iteration is increased in two ways. First,

direct inversion is carried out over groups of contiguous mesh cells specified
by the user. The pressure variations for cells within the group are solved
simultaneously while the pressure variations in surrounding mesh cells are
assumed to have their last 1terate value. A Gauss-Siedel iteration is then
carried out over the groups of cells where the pressure variations of bounding
cells for each group are updated with their last iterate value. As far as
the iterative solution is concerned, solving groups of cells by direct inversion
has the effect of reducing a large multidimensional problem to a simpler problem
that has the same number of cells as the large problem has groups of cells.
Convergence difficulties that are typical of problems with large aspect ratios
(long, narrow cells) are also eliminated by placing cells with large aspect
ratios between them within the same solution group. The iteration is assumed
to have converged when the change in linear pressure variation between time
steps is below a specified limit.

The second method for increasing the efficiency of the iteration involves the
calculation of an initial estimate for the pressure variation in each cell.
This is done through a process called rebalancing. Rebalancing is simply the
process of reducing the multidimensional mesh to a one-dimensional mesh for
the vessel and then obtaining a solution for the pressure variation at each
level of the one-dimensional problem by direct inversion using the methods
described above. The one-dimensional solution for the linear pressure variation i

at each level is then used as an initial guess for the linear pressure variation
in each mesh cell on that level in the multidimensional problem. This process
greatly enhances the rate of convergence in many problems because the
one-dimensional solution generally gives a good estimate for the magnitude of
the linear pressure variation in the multidimensional problem. Rebalancing
is optional and must be specified by the user. If this option is not used,
then the initial guess for the linear pressure variation in each cell is zero.

4.4 Unfolding of Independent and Ocpendent Variables

Once a solution for the linear pressure variation in each cell has been
obtained, the linear variation in the other independent variables is unfolded
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using Equations 57 through 60. The new value for each of the independent,

-variables is then updated as follows:;

P" = P + 6P

a" = a L+ 6ay y

(62),_

* ~

= a, + Sa,a
,

.

(a h )" = a h + 6a hyy yy yy

[(1-a )h ]" = (1 - s )hg + 6(1 - a )hy g y y g

(a P )" = a P + Sa Pyg yg yg,

i

The new time liquid volume fraction is simply a" = 1.0 - a"y - a'.

The dependent variables P , h , and h are calculated as follows:g y g

("va)"P: n
P =

g n
"v

,

("v y)"h
n

h =
y ,

| "v
'

E(I-"v)h]"g
hng= n

(1-a)y

c"

h"g = h + d (h" - h ) (63)m mg
C"P

V V

y

43

-_ .- _ _ - . . - . . , . _ . . _ . . . . - . . . _ . . . . . _ . . . _ . . . _ . . _ . _ . _ _ - _ _ _ _ _ _ , _ _ _ _ _ _ - . _ - - . _ - _-



.

The new time steam pressure is obtained as follows:

P" = P" - P (64)g

The new time densities are then obtained from the equations of state

B" * Fy(P",h")

p" = p (P",h")g

F" * Pg (P",h")

The velocities are then updated by

V(=Vk+Uk (65)

where 6Vk is given by Equation 50.

4.5 Time Steo Control

checks are made on the value of each of the new time variables to ensure that
the variation of the new time variables from the old falls within reasonable
limits. If the new time variables have nonphysical values (e.g., void fractions

iless than zero or greater than 1.0) or if the variation of the new time variable
from the old is unreasonably large, then the solution is backed up to the
beginning of the time step, the variables are set to their old time value,
the time step is halved, and the time step is repeated. This is done so that
the linearized equations will be sufficiently representative of the nonlinear
equations to provide an acceptable level of accuracy in the calculation. The
time step size is also controlled by the rate of change of the independent
variables for the same reason. The stability of the solution is further
enhanced by using logarithmic damping between the old and new time values of
some of the explicit terms. In particular, the interfacial drag and heat
transfer coefficients are damped according to
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n , p(1,ex) , y (66)
ex

where ex is a user-specified damping exponent usually set to 0.7 f ex f 0.9,

i
!

I

i
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