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ABSTRACT

The COBRA-NC computer program has been developed to predict the thermal-
hydraulic response of nuclear reactor components to thermal-hydraulic
transients. The code solves the multicomponent, compressible three-
dimensional, two-fluid, three-field equations for two-phase flow. The three
fields are the vapor field, the continuous liquid field, and the liquid drop
field. The code has been used to model flow and heat transfer within the
reactor core, the reactor vessel, the steam generators, and in the nuclear
containment. This volume describes the finite-volume equations and the
numerical solution methods used to solve these equations. It is directed
toward the user who is interested in gaining a more complete understanding of
the numerical methods used to obtain a sulution to the hydrodynamic equations,
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NOMENCLATURE
A area

ALAT area through which a vertical velocity convects transverse momentum
Cp specific heat at constant pressure
0 deformation tensor

deleted deformation tensor

"o
»

internal energy
error
mass flow rate

total force due to viscous and turbulent shear stress
anisotropy tensor

Mm M Mmoo

-
>

flow area for connection to the vessel

mass fraction

gravitational acceleration

heat transfer coefficient

enthalpy

enthalpy of vaporization

unit vector in the x direction

unit vector in the y direction

drag coefficient

unit vector in the z direction

mixing length

transverse length increment

unit normal vector

number of connections to top of mesh cell

NB number of connections to bottom of mesh cell

NCA number of connections to top of transverse momentum cell
NCB number of connections to bottom of transverse momentum cell
NCH number of channels

NDX number of axial cells

NCON total number of connections to a cell

NKA number of connections to top half of vertical momentum cell
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NKB number of connections to bottom half of vertical momentum cell

NKII number of transverse connections to the II face of a transverse
momentum cell

RKJJ number of transverse connections to the JJ face of a transverse
momentum cell

NKK total number of transverse connections to a scalar mesh cell

NG number of transverse connections to a transverse momentum cell that
are orthogonal to the transverse momentum cell velocity

NVCONIL  number of connections to the vessel in any one piping loop

P pressure

q interfacfal heat flux

Q sensible heat

S width of transverse connection

S source

S net entrainment rate

T turbulent and viscous shear stress terms

IT stress T = tensor

1 Reynolds stress tensor

At time increment

) vertical velocity

N transverse velocity in Y direction

W transverse velocity in Z direction

Ax mesh vertical length increment

Greek Symbols

a volume fraction

6 linear variation of

r net rate of vapor generation

v gap direction indicator; = +1 if channel is on upstream side of gap

« -1 if channel is on downstream side of gap

€ thermal diffusivity

€ turbulent thermal diffusivity

€ turbulent mass diffusivity
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n fraction of vapor generation coming from the entrained Tiquid

" viscosity
pT turbulent viscosity
p density
g fluid-fluid stress tensor
T interfacial drag force
Subscripts
B bulk property
condensation
continuity cell
CE entrained drop mass error
cL continuous liquid mass error
cv vapor mass error
ce source of entrained liquid mass
ce source of continuous liquid mass
cy source of vapor mass
CONV convection area
deposition or de-entrainment
E evaporation or entrainment
e entrained drop phase
el liquid energy source
ey vapor energy source
EL liquid energy error
EV vapor energy error
f saturated liquid
g saturated vapor
h energy mixing length
I counter on vertical stacks (channels) of computational mesh cells
| interfacial
IA counter on connections to top of transverse momentum cell
1B counter on connections to bottom of transverse momentum cel)
I mesh cell on the upstream side of a transverse momentum cell

ix
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sink
SCL
SCV
SHL
SHV

vertical level for scalar (mass, energy) mesh cell
vertical level for vertical momentum mesh cell
mesh cell on the do. astream side of a transverse momentum cell

counter on transverse connections between vertical stacks of mesh
cells

phase k

counter on connections to top of mesh cell
counter on connections to bottom of mesh cell
gap momentum cell average

counter on transverse connections to a cell
continuous liquid phase

counter on transverse connections to top of vertical momentum cell
counter on transverse connections to bottom of vertical momentum cell
mixture property

momentum mixing length

momentum cell

entrained 1iquid momentum source

combined steam and noncondensable gases
continuous liquid momentum source

vapor momentum source

pipe

relative veloc'ty

related to a pressure sink boundary condition
subcooled liquid

subcooled vapor

superheated liquid

superheated vapor

vapor phase

drag between vapor and drops

drag between vapor and continuous liquid

wall

general phase subscript



Superscripts

- & - O 3

new time value
old time value
turbulent
transpose
per unit length
donor cell

xi



COBRA-NC: A THERMAL-HYDRAULICS CODE FOR TRANSIENT ANALYSIS
OF NUCLEAR REACTOR COMPONENTS

VOLUME 2: COBRA-NC NUMERICAL SOLUTION METHODS

1.0 INTRODUCTION

The COBRA-NC computer program was developed to predict the thermal-hydraulic
response of nuclear reactor components to small and large break loss-of-coolant
accidents and other anticipated transients. It provides a two-component,
two-fluid, three-field representation of two-phase flow. The two-component
model allows the representation of water and its vapor as well as a
noncondensable gas mixture. The noncondensable gas mixture may consist of

any number of gas species. Each field is treated in three dimensions and is
compressible. Continuous vapor/gas mixture, continuous liquid, and entrained
liquid drop are the three fields. The conservation equations for each of the
three fields and for heat transfer from and within the solid structures in
contact with the fluid are solved using either a semi-implicit or implicit
finite-volume numerical technique on an Eulerian mesh. COBRA-NC features
extremely flexible noding for both the hydrodynamic mesh and the heat transfer
solution. This flexibility provides the capability to model the wide variety

of geometries encountered in vertical components of nuclear reactor primary
systems.

The code has been assessed against a variety of two-phase flow data from
experiments conducted to simulate important phenomena anticipated during
postulated accidents and transients in light water nuclear reactor components.,

The constitutive relations included in COBRA-NC comprise state-of-the-art
physical models for the interfacial mass transfer, the interfacial drag forces,
the 1iquid and vapor wall drag, the wall and interfacial heat transfer, the
rate of entrainment and de-entrainment, and the theymodynamic properties of
water and noncondensable gases. In addition, a mixing length turbulence model
has been included as an option.

The documentation of the COBRA-NC program is presented in severa! volumes.
Volume 1 contains a description of the basic three-field conservation equations
and constitutive models used in the code.

Volume 2 contains a description of the finite-volume equations for the vessel
and the numerical techniques used to solve these equations. Volumes 3 through
5 are the Users' Manuals that contain line-by-line input instructions

for COBRA-NC and user guidance for application of the code. Volume 3 is the
Users' Manual for General Two-Phase-Thermal Hydraulic Applications and explains
all of the input data required for general application of the code. Volume 4
fs the Users' Manual for Containment Analysis. It contains an explanation of
the input data required for containment analysis only., It also provides
examples of containment modeling procedures. Volume 5 is the Users' Manual
for Flow Blockage and Hot Bundle Analysis and describes the fnput required
for performing such analysis,



Volumes 6, 7, and 8 are the Assessment Manuals. They contain the results of
simulations run to assess the performance of the code in each «f the areas
discussed above. Volume 9 is the Programmers Manual that explains COBRA-NC's
working parts from a programmer's viewpoint. The structure of the code is
described, and a narrative description of the function of each variable and
subroutine in the code is given.

This volume, Numerical Solution Methods, describes the finite-volume equations
and the numerical solution methods used to solve these equations. The
finite-volume equations are presented in Sections 2.0 and 3.0. A semi-implicit
numerical solution method is described in Section 4.0, and an implicit scheme
is described in Section 5.0.



THREE-FIELD CONZERVATION EQUATIONS

three-field conservation equations for multidimensional flow in

presented in Volume | of this manual. The reader should refer
r a more complete discuss f these equations

5 and a description o
Is required fo ir closure. The finite-volume form of
+ il

ns wil be presente« ar e term-by term

ical mode

corresponden:

-vo lume ns will be po

1Iservation equations

Iwo numerical solution metho?s are available

n he code: d Semi- ”I"Jll ].“ 1t
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method and an implicit method. The finite

ume equations shown in this

section are written in the semi-implicit form. The differences between this
semi-implicit form of the equations and the im
explained in Section 4.0.

vO

plicit form of the equations are
when the semi-implicit form is used, the time step,
At, is limited by the material Courant limit

|

Is the mesh spacing and V is the fluid velocity. The implicit meth
no numerically imposed time step limitations.

U

fhe finite-vol' e equations are written such that they may be solved on

Lartesian coorainates, in lumped paramete: form, or using the subchannel
formulation in which some of the convective terms in the transverse momentum
equations are neglected and idealistic assumptions are made concerning the
shape of the transverse momentum control volumes,

Ihe computational mesh and finite-volume equations are described using the
generalized subchannel notations. These equations are equivalent to the
three-dimensional Cartesian equations when the lfmiting assumptions of the
subchannel formulation are not used and the mesh is arranged on a rectangular
grid (see Volume 1, Section 2.0). Al) momentum flux terms are set

Y 0 Zero wher
the lumped parameter form is used.

Lomputational Mesh and Variable Placement
Ihe equations are solved using a staggered-difference scheme where the

velocitiies are obtained at the mesh cell face {

s and the state varifables sucl
as pressure, density, enthalpy, and void fraction are obtained at the cell
center. The mesh cell is characterized by its cross sectional
Ax, and the width of its connectior
mesh cel)

area, its height,
with !"“f"‘ ent mech ¢ < S. The basi

‘
1s shown in Figure 1. e basic mesh cell may be used to model any




Figure 1 Basic mesh cell

one-, two-, or three-dimensional region Te dimensionality of the flow is
dependent upon the number of faces on the cel'! that connect with adjacent
mesh cells,

The s{ze of a mesh cell used to model the ilow field inside a reactor componen
is generally quite large because the volume o' wnst reactor components is
very large and the cost of using a fine mesh in solving the two-fluid equations

for the whole component would be prohibitive. However, many important flow
naths and flow phenomena may be overlooked when a large mesh size is used in
some areas of the component. This can be minimized by allowing a variable
mesh size within the component, A finer mesh can be used in areas where a
more detailed calculation of the flow field is required, he code has been
set up to allow such a variable mesh size. Examples of the flexibility this
allows in modeling various geometries are given in the users' manuals (Voiumes
3 through 5) and the applications manuals (Volumes 6 *hrough 8). The variable
mesh is formed by connecting two or more ceils to any or all of the faces of

a mesh cell, as illustrated in Figure Z. A single mesh cell with area Al fis
shown connected to four mesh cells above it with areas A2, A3, etc. These
four mesh cells may connect through transverse connections 52, 53, etc., to
allow transverse flow in that region, or they may not connect to each other,
forming one or more one-dimensional flow paths that connect to mesh cell 1.

A more detailed discussion of the mesh is given in the users' manuals (Volumes
3 through 5). The mesh cells shown in Figure 1 and 2 represent the mesh for
the scalar continuity and energy equations. The momentum equations are solved




Figure 2 Variable mesh

on a sta?gered mesh where the momentum mesh cell is centered on the scalar
mesh cell surface. The mesh cell for vertical velocities is shown in
Figure 3, and that for transverse velocities in Figure 4,

The vertical velocities are subscripted with I and J where I identifies the
location of the mesh cell within the horizontal plane and j identifies its
vertical location. The mesh cells for the scalar equations carry the same
subscripts, but their mesh cell centers lie a distance Ax/2 below the mesh

cell center for the correspondingly subscripted velocity and are denoted by
the capital letter J in the discussion below.

Transverse velocities are subscripted with k and J where k identifies the
location of the mesh cel! in the horizontal plane and J identifies its vertical
location. The node centers for the scalar equations and transverse momentum
equations lie in the same horizontal plane.

2.2 Finite-Volume Equations

In this section, the finite-volume equations are written in the semi-implicit
form using the subscripting conventions described here. Quantities that are
evaluated at the new time carry the superscript n and donor cell quantities

carry the superscript *. Those quantities that have the superscript * or no

superscript are evaluated at the old time and form the explicit portions of
the equations.
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Figure 4 Mesh cell for transverse velocities



The corresponding term in the conservation equation for each te m in the
finite-volume equation is provided in the brackets below eact equation, along

with a verbal description of the term. The subscripts I and k are assumed to
be obvious and are not shown.

2.2.1 Mass Equations

Gas Mixture Mass Equation
NB
*
n I [(agp,) U A ]
[aypng)y - (ayppg)y) A . KBel v/mg ¥95-1 ™i-17 ks
At €, ExJ
NA . o NKK
-KAEI [CVPW) UngmJ]KA " Lfl SL "[(uvpmg) vng]J (2)
NB pmg pmg Am
Jels 401
* T [lepo)e € (—d - ) ]
KBe1  Tve'3-1 Dy, Pvgy Pug; , BX5-17*®
NA P P A
ST lapy)y 6 (0l M) 0y,
'Pvg ico p p Ax “KA
KA=1 J "vagy fvgy
n
P, S
NKK Pmgyy  Pagy; s ax, .-

= I ylap, ), € -
L=1 vg'u DL PVQII ’vgJJ AzLJ A"J



Liguid Mass Equation

NB " NA > =
Uy - £ [(app,) Uy A ]
[(agpp)y - (2pp),) KBe1 [{egpy) 2'J-IA'J-I]KB et 2 Yol
At . T B,
n S"l
NKK L (1-m) s, | ek -
C el Yol TR R TR
Entrained Liquid Mass Equation
NB 3 2 ia
A . " A ]
[(egpg)] - (wgpy) ] E [(eepy) ”e_j_1 mj_llxs kA=l [(xgpp) Ve An lka
At AcJ = Bx,
NKK A "rg SJ SZCJ (4)
C R L) Vo latw R TR



Yapor Ma‘'s Equation

NB
n I [(ap,) U Ixg
(ayp,)y - (e,p,)y A = KB=l W Y93- IA'J 1
At <y J
T [(a,p,)” ]
I a. p u"
KA=1 vFiy Vg m‘1 KA NKK
AX * Lfl B [eyp) vvg]LJ
NB v Py An
J J-1 j-1
+ I [(ap,,); , € ( )
A
NA v m
J+1 J
- £ («p,.); €n ( - ) ]
n
NKK Py Py S, Ax S ch
- L oep ) € | II. __u ) L J % J

L=1 vg LJ DL PVIrr  AVEy, AZLJ AxJ ij
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Rate of change
of mass

A g'{ ('kpk)

——-

=

o
Mass efflux in
the transverse
direction

3l (=2 Vi) St
L

—

=

Mass efflux in the
vertical direction

Seik
Sx

— -

Mass efflux due to
turbulent diffusion

Boaypy g€y

| (3 terms)

——

e

Rate of creation
of vapor mass due
to phase change

—

F;ss source Phase

due to source

entrainment term
S + Sc

The reader should refer to the nomenclature list for the definition of each of

the variables.

mass leaving the cell throug

The mass efflux in the transverse direction is given as the net
h all transverse connections to all of the faces.
The total number of transverse connections to the cell is NKK.

The mass efflux

in the vertical direction is given as the net mass leaving the cell through all

vertical connections to the top and bottom of the cell.

The total number of

connections to the top of the cell is NA and the number of connections to the

bottom of the cell

The velocity in each of the convection terms is take
while the convected quantity, in this case (aypy)

The turbulent diffusion terms are all calcu1a¥e5
creation term is evaluated at the new time.

and explicit part.
given by

is NB.

n
Fy = Touy * Tsue * Tsev * TscL

*
'

10

n to be the new time value
is taken at the old time.

at the old time.
However, it consists of an implicit
The rate of mass generation due to phase change, T,

The mass

is

(6)



where

n
HAgyy (h, = h.)

r B
SHV va (hg - hz

n
HAgy (hg - hy)

SHL ~ Cp, (hg - hy)

n
HAgey (R, = )

Fsey = Cp, Th, -ﬁ;)"

n
_MAser (hg - he)
SCL Epz (hv hff

The product of the interfacial area and heat transfer coefficient, the specific
heats, and the heat of vaporization are all evaluated at the old time value and
form the explicit portion of the mass creation term, while the enthalpies are
evaluated at the new time value forming the implicit portion. This term

is also multiplied by the ratio (l-ac)/(l-cv) for vaporization or aclcv

for condensation. This is done to provide an implicit ramp that wili cause the
interfacial area to go to zero as all of the donor phase is depleted. An
explicit ramp is aiso applied to the product (HA) to cause it to go to zero

as the volume fraction of the donor phase approaches zero. The entrainment
rate, S, is explicit and is also multiplied by implicit and explicit ramps

that force it to zero as the donor liquid phase is depleted.

The last term in the equations is the phase mass source term, and it is
evaluated at the new time. This term accounts for sources of phase mass that
are exterior to the vessel mesh. These sources include mass sources due to
chemical reaction, mass injection boundary conditions, and pressure boundary
conditions. These source terms will be defined in the Section 3.0.
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2.2.2 Fluid Energy Equations
Vapor Energy Equation

(Ph)yg = PPy * Png"'mg

(La, (p0) 1§ - Lo, (p0) gl A

NB * NA .
I (ley(ph)yg) Ug, Ae Jkg - I (ley(a)yg] UsngmJ]}KA

KB= ¥91.1 5.1 KA=
li
n n n
NKK _— Tev, v QvJ 52v ¢vJ (P" - P)JACJ

8 eI ygd Vg D BT BT E TRTTB
where

n n n n n

Fev = Tsuy Mg * Tscv My * Tsue Mg * TscL My
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Liquid Energy Equation

{[(’z_ » ‘e)chQ]S = [(.e + ‘Z)"lhl]J}AcJ
At 4

L { :B {(=ypphy) " U (@ pph,)" U ] 2‘ [(xppph,) " U7
T + (a - «
uamlﬁ%zzm%ﬂ e%lewwm e - Tefele qw

3 NKK , X
+ (agpphy) UszmJ]KA} * L My [agaghy) VEL + (agpghy) V:L]J

T n
n N Q n Q a (P -P),A
feo., %% & Se, 4, %Y AT

N + (8)
ij AxJ AxJ AxJ AxJ At

where

n
Tee * = Tsuye = Tseys = Tsuihe = TseLhy

13



- - o
Rate of change Effiux of enthalpy
of enthalpy in the vertical direction
Ad (aphy) - - Q  (aphiUy)
at ‘"kPx"k Bx ‘%kPx"k"k
— -l E: -3
Efflux of enthalpy 4 Energy source due to mass’|
in the transverse direction transfer between fields
e (Vi) St * | Tek
- g i =
o . i - [ -
Interfacial heat Heat addition Fluid conduction WOrkTT
transfer from solid and turbulent term
heat flux
+ g’ + Q¢ + [ Velay (q + qk)T] * o« °2
X - L J L R [ STt

Again, the energy efflux in the transverse direction is the sum of all
transverse connections on all faces of the cell; that in the vertical direction
is the sum of all connections to the top and bottom of the cell. New time
velocities convect the donor cell (ukpkhk)*, which is evaluated using old

time values. New time enthalpies are convected in the phase change term.

The interfacial heat transfer term, like the vapor generation term, has an
implicit temperature difference and an explicit heat transfer coefficient and
interfacial area. The wall heat transfer is explicit. The energy source terms
corresponding to the mass source terms will be defined in Section 3.0. The
fluid conduction and turbulent heat fiux are explicit and will be expanded in
Section 3.0,

14



2.2.3 Momentum Equations in the Vertical Direction
Yapor Phase

Pvg . PV » Pg
n *
[(“vpvguvg)j » (“v’vg )j]A NB [(“v’vguvg) UvgJ]KB AmKB
At v Kg 1 Ax
- J
NA [ (a.p ) e NKB
_— g vg Ve J+l ™ KA + T o ) V. ] LB
Bx; LB=1 e pyglyg vg;'LB 2"
KA=1 -
NKA $ia (P ~ P)"
+ J+1 J
Li-l 7[('v’vg ) V V834 ]LA 2 (‘vpvg j9 Am 8] ¢vJAnJ

n n
KvJ(ZUvgJ - UvgJ)Amj B sz.J [z(uvg B ul)j J (Uvg - ul)j]Amj

- xveJ [2(v,q - v )j - U,) ]Am
S
} [rcgﬁg_; (1-n)TeU, - U] oy X
AxJ ij vJ

15
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Liquid Phase

[(apppUy) " - (xpppU,) T [(ayppy)" Uy Jym A
2PV 3 zzz%ismq %) Yo ks P
At Ax
J
T )" ]
;3 a,p,U U A
B, ey e ey T

(10)

+

T al(eply) Yy A (appp) 5 9 A
1 ¢p — - cp g
ey Y g 2 2fe’5 9 P,

.1 Tl
ij lj mj

K, (2" -u, A+ K, [2(u, -Vt - (U, - U,) A
L ey Ty “mJ ve, 20 = Gly = B = Bl g,

(1-9) [[‘CUv - l‘EUd.1
AxJ

S
(SaU. - ScU,) me.
" D"e ER'4 % i j 4 TT

oy y 5
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Entrained Liquid Phase

[(uepz e epz e) ]A ) ngl [(CePte) UeJ]KB AMKB
At Ax
J
NA [
L a p Am
KA=1 el KA NKB *
- ij * L allegpply) Ve 11 —kﬁ
LB=1 "
(11)
NKA . S
(PJ+1 PJ)n
[+ 4
By ey
- 5 n(r U, - Teu,)
e, (zuej Uej)Amj * Ko, 1200, =0 Jj - Uy - U ]A“ ¥ XxJ 2
S
(Sple - Sel) , “me;
- AXJ » ij

17



- ~ =
r—Rate of change Efflux of momentum in
of vertical the axial direction
momentum = -
8(a,p U, )
kK k" k d
e o Adx (5pUYy)
- ! — s
— — — _‘1
Efflux of momentum in Gravitational
the transverse direction force
1} (@ U Vid L St = | %A I
b Il 2 3
Pressure gradient Wall shear Interfacial shean
P
« T + T + 7T
k Bx - W i, o
- . e - ST pat Rt
Momentum source due Momentum source term Viscous and turbulent
to mass transfer shear stress
between phases
I
ru + Su + |5, S * 3R (g (gt T)]

The momentum efflux in the vertical direction is given as the net momentum
leaving the cell through all vertical connections. The total number of momentum
mesh cells facing the top of the cell is NA and the total facing the bottom

of the cell is NB. The momentum efflux in the transverse direction is given
as the net momentum leaving the cell through all transverse connections. The
total number of transverse connections to the top half of the momentum cell

is NKA. The total number of connections to the bottom half of the cell is
NKB. To achieve stability with this semi-implicit formulation of the momentum
equation, donor cell momentum, (e« Ug)*, is convected by the velocities at
the momentum cell face. A simple f*near average between adjacent momentum
cell velocities is taken to obtain the velocity at momentum cell faces:

18



U, + U
by - S 12

Likewise, linear averages are used to obtain other variables at locations where
they are not defined. The void fraction of the momentum cell is given as

Ry 2 (13)

and the density is given as

AR
J Sale pwics (14)

The momentum equations are solved for the phase flows (¢kpku Am)° Velocities
are obtained from the flow by dividing it by the momentum ce*l density and
momentum cell area:

(2 Y Ap)
v, - ‘(‘"‘I;T“l 15
kJ Py j (15)

The pressures in the pressure force term are taken at the new time, as are the
velocities in the wall shear and interfacial shear terms. The shear terms have
beennweighted toward the new time velocity by differencing them in the form
K(2U" - U). A1l other terms and variables are computed using old time values.
The donor phase momentum is convected during mass exchange between fields.

The explicit viscous and turbulent shear stresses will be expanded in

Section 3.0.
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2.2.4 Momentum Equations in the Transverse Directions
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Liquid Phase
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Entrained Liquid Phase
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rhe viscous and turbulent shear stress represented in the finite volume
equation given in Section 2.0 by I are expanded in this section. This term

represents a particular component of the viscous and turbulent stress tensors,

may be written as

T‘] The viscous stress tensor i

J .




Ihe coordinate system used is shown in Figure 5.
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Now that al! of the terms for the viscous and turbulent shear stresses have
been expanded, the finite-difference form of the terms can be presented.
The total force resulting from viscous and turbulent shear stresses acting
a mesh cell may be obtained using the divergence theorem:




The finite-difference approximation for this total
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The shear stress acting on the sides of the momentum cell fis computed from
the appropriate velocity gradients calculated on that face. The fluid
properties at these locations are computed using a four-point average of the
properties in the surrounding four mass cells.

The turbulent mass diffusivity for the mass cell is computed from the double
dot product of the deformation tensor and a specified momentum mixing length

R
D, &y VszB le

(39)
Similarly, the turbulent thermal diffusivity for the mass cell center is
computed from the double dot product of the deformation tensor
"’ e ——
€ * tln VL F O (30)

The sum of the conduction and turbulent heat flux between two mass cells is
then computed from

(hgey - hy-y)

T T
(@ +a ), = - ple *+ €)
kJ kJ +X k' k k AxJ

(41)
The heat fluxes from all surrounding cells are summed to give the net heat
flux into cell J.

Because the viscous and turbulent shear stresses are computed explicitly, the
time step is limited by the criterion

At < min i (42)
Z_(EIf.l+u_.
p Ax2 Ax

34



4.0 NUMERICAL SOLUTION

The algebraic equations shown in Sections 2.0 and 3.0 form a set that must be
solved simultaneously to obtain a solution for the flow fields involved. The
numerical scheme chosen to solve these equations must be as efficient as
possible to obtain a solution in a reasonable amount of computer time. Al{hough
the equations can be solved directly by inversion of the matrix equation, the
computer time required for problems with many mesh cells would be prohibitive.
By locally reducing the number of equations and unknowns and applying an
fterative process to the remaining equations, the sparseness of the global
matrix can be utilized and a solution can be obtained in a reasonable amount
of computer time. The equations in Sections 2.0 and 3.0 have been greatly
simplified over the conservation equations they are intended to represent,
because they are written in a semi-implicit form. It is assumed that these
semi-implicit equations converge to the correct solution if a time-step size
smaller than that required by the Courant criterion is used. The methods
used to solve these equations will now be described.

4.1 Solution of the Momentum Equations

The momentum equations are solved first in the solution procedure using
currently known values for all of the variables, to obtain an estimate of the
new time flow. All explicit terms and variables in the momentum equation are
computed in this step and are assumed to remain constant during the remainder
of the time step. The semi-implicit momentum equations (Equations 9 through
11 and 16 through 18) have the form:

Liguid

FL = Ap + By 8P+ CF +DF, (43)
Yapor
Entrained Liquid

Fg = Ay + By AP + D,F, + EF, (45)
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the new velocities and changes in the magnitude of some of the explicit terms
in the mass and energy equations such as the vapor generation rate. The liquid
vapor mass equation, for example, has a residual error given by

[(appp)] - (qgpp)glhc WA [lagpy)” U Ak

it o AX

J

~

* ~
- I = LS l(app,) V, ]
KB=1 L] L R Ty
) Sczu )
PR S T 48
AxJ AxJ CL

All terms are computed using currently known values for each of the variables.
The ~ symbol over the velocities indicates that they are the tentative values
computed from the momentum equations (Equation 47). The gas mixture mass
equation, the mass equations for the vapor and entrained liquid phases, and
the two energy equations also have residual errors: ECG' ECV' ECE' EEV' and

EEL' The equations are simultaneously satisfied when ECG' ECV' ECL' ECE' E
and EEL for all cells in the mesh simultaneously equal zero. The variation

of each of the independent variables required to bring the residual errors to
zero can be obtained using the block Newton-Raphson method (Ref. 2). This is
done by linearizing the equations with respect to the independent variables

ch, ay, «hy, (1"v)hgv %e, and P to obtain the following equation for each

cell of the form

EV'
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bu,, EeL
ba b, Eev
{6(x)} = 6) (1-a )hy| = {E} - < EeL P
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5PJ ECV
¥4, >
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Det [R(X)] is the Jacobian of the system of equations evaluated for the set

of independent variables given by the vector X, & is the solution vector
containing the linear variation of the independent variables, and -E is a
vector containing the negative of the residual errors required to bring the
error for each equation to zero. The matrix R(X) is composed of analytical
derivatives of each of the terms in the equations with respect to the
independent variables. The velocities are linearly dependent on the pressures
so derivatives of velocities with respect to pressure may be obtained directly
from the momentum equations, Equation 47. The linear variation of velocity
with respect to pressure is given by

'

Sg = W (&, - &;,))

Syg = Hy (6P) - &Py,))

(50)

&V = Hy (6P - &P;,,)

The derivatives of the other dependent variables such as Ppr Pgr Pys hz, he,
hg, and h, are obtained from the thermal equations of stat%
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Py = Py (Pv'hv) (51)

and from fundamental identities involving partial derivatives. For example,
the derivative of p, with respect to the independent variable a,h, is given by

8p, : 8p, 8h,, (52)
a‘v“v SF; 5“v“v

The derivative 8p,/8h, is obtained directly from the thermal equation of state,
while the derivative 8h,/da,h, is obtained from the identity

a h
- . (53)

v lv

The term in the numerator is the independent variable with respect to which
derivative is being taken, and the denominator is the independent variable «
which is assumed to be held constant while taking the derivative. From Equa!ion

53 we obtain

(54)

Derivatives of the independent variables are obtained directly from Equation
48 and the comparable equations for the other four residual errors. For
example, the derivative of the temporal term of Equation 48 with respect to

a, s given by
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a(«vpv) B, 3p, 3p, dh, 3p,
Be, PBa, v E) AN B, de, A B, (55)

v

Once all of the derivatives for the five equations have been calculated,
Equation 49 is reduced using Gaussian elimination to obtain solutions for the
independent variables of the form

NCON
6Py = ag + I he &P, (56)
i=1 i
NCON
ba, = a + f56¢e + gséPJ + 151 hsisPi (57)
NCON
6[(1-¢v)h2J =a, te 6[(l-cv)h£] + f46¢e + g46PJ + 151 h416P1
(58)
NCON
5‘vhv =g+ d3 5‘v"v + e, 6[(1"v)h2J + f36«e + g36PJ + 151 h316P1
(59)
NCON
ba, = a, + c ba, + dyba h + ezs[(l-cv)hz] + fzsce + g 8P, + 151 h216P’
(60)
6¢ng =a, +b étng +Cy ba, + dl Sa h + e 6[(l-¢v)he]
NCON
+ fl Sa, + g, 6P, + 151 h11 &P, (61)

The computer time required to solve Equation 49 is greatly reduced if the
nonlinear coefficients a, through h are assumed to remain constant during a
time step and a solution is obtaineh only for the linearized system of equations
(Equations 56 through 61). A substantial savings in computer time is realized
when this is done because the matrix equation (Equation 49) is reduced only
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once per time step. Time step controls are then imposed to ensure that the
variation of the nonlinear terms between time steps remains within acceptable
limits so that a stable solution is obtained.

4.3 Solution of the System Pressure Matrix

The linear variation of the pressure in cell J as a function of surrounding
cell pressures is given by Equation 56. A similar equation may be derived
for each cell in the mesh. This set of equations for the pressure variation
in each mesh cell must be simultaneously satisfied. The solution to this
equation set may be obtained by direct inversicn for problems containing only
a few mesh cells or by using a Gauss-Siedel iterative technique for problems
containing a large number of mesh cells.

The efficiency of the Gauss-Siedel iteration is increased in two ways. First,
direct inversion is carried out over groups of contiguous mesh cells specified
by the user. The pressure variations for cells within the group are solved
simultaneously while the pressure variations in surrounding mesh cells are
assumed to have their last iterate value. A Gauss-Siedel iteration is then
carried out over the groups of cells where the pressure variations of bounding
cells for each group are updated with their last iterate value. As far as

the iterative solution is concerned, solving groups of cells by direct inversion
has the effect of reducing a large multidimensional problem to a simpler problem
that has the same number of cells as the large problem has groups of cells.
Convergence difficulties that are typical of problems with large aspect ratios
(1ong, narrow cells) are also eliminated by placing cells with large aspect
ratios between them within the same solution group. The iteration is assumed

to have converged when the change in linear pressure variation between time
steps is below a specified limit.

The second method for increasing the efficiency of the iteration involves the
calculation of an initial estimate for the pressure variation in each cell.

This is done through a process called rebalancing. Rebalancing is simply the
process of reducing the multidimensional mesh to a one-dimensional mesh for

the vessel and then obtaining a solution for the pressure variation at each
level of the one-dimensional problem by direct inversion using the methods
described above. The one-dimensional solution for the linear pressure variation
at each level is then used as an initial guess for the linear pressure variation
in each mesh cell on that level in the multidimensional problem. This process
greatly enhances the rate of convergence in many problems because the
one-dimensional solution generally gives a good estimate for the magnitude of
the linear pressure variation in the multidimensional problem. Rebalancing

is optional and must be specified by the user. If this option is not used,

then the initial guess for the linear pressure variation in each cell is zero.

4.4 Unfolding of Independent and Ngpendent Variables

Once a solution for the linear pressure variation in each cell has been
obtained, the linear variation in the other independent variables is unfolded

42



using Equations 57 through 60.
P" = p + &p
n
g = ¢ 5¢v
n
g = & * Sa,

n
(¢th) : ¢Vh\l * &th

[(1-a,)hp]" = (1 - a ), + 6(1 - «)h

n
(ang) = «ng + 6¢VPg

The new value for each
variables is then updated as follows:

of the independent

(62)

The new time 1iquid volume fraction is simply ¢2 = 1.0 - ac - ¢:.

The dependent variables Pg, h,, and ha are calculated as follows:

v

c"

v

h" 2 (- ¢v)h2]n
©a-d)

(63)



The new time steam pressure is obtained as follows:

n n n

The new time densities are then obtained from the equations of state

py =, (Pe.h])

pp = pp(P"hg)

n n .n

The velocities are then updated by
n

where &V, is given by Equation 50.
4.5 Time Step Control

Checks are made on the value of each of the new time variables to ensure that
the variation of the new time variables from the old falls within reasonable
limits. If the new time variables have nonphysical values (e.g., void fractions
less than zero or greater than 1.0) or if the variation of the new time variable
from the old is unreasonably large, then the solution is backed up %o the
beginning of the time step, the variables are set to their old time value,

the time step s halved, and the time step is repeated. This is done so that
the linearized equations will be sufficiently representative of the nonlinear
equations to provide an acceptable level of accuracy in the calculation. The
time step size is also controlled by the rate of change of the independent
variables for the same reason. The stability of the solution is further
enhanced by using logarithmic damping between the old and new time values of
some of the explicit terms. In particular, the interfacial drag and heat
transfer coefficients are damped according to
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X

n_ i(l,ex) 3 xex

(66)

where ex is a user-specified damping exponent usually set to 0.7 < ex € 0.9,
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