BRUNSWICK STEAM ELECTRIC PLANT UNIT NO. 2

REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST

MARCH 1988

14

CAROLINA POWER & LIGHT COMPANY

Prepared	by:	David B. Black
Reviewed	by:	R.E. Shirk
		ILRT Engineér
Approved	by:	Mark S. Blinger

8806290509	880624
PDR ADOCK	05000324
P	DCD

. .

TABLE OF CONTENTS

1

Item	Title	Page
	SYNOPSIS	1
	INTRODUCTION	2
	GENERAL, TECHNICAL, AND TEST DATA	3
3.1 3.2 3.3	GENERAL DATA TECHNICAL DATA TEST DATA	3 3 4
	ACCEPTANCE CRITERIA	5
	TEST INSTRUMENTATION	6
5.1 5.2 5.3 5.4 5.5 5.6 5.7	SUMMARY OF INSTRUMENTS SCHEMATIC ARRANGEMENT CALIBRATION CHECKS INSTRUMENTATION PERFORMANCE VOLUME WEIGHTING FACTORS SYSTEMATIC ERROR ANALYSIS SUPFLEMENTAL VERIFICATION	6 7 8 8 9 12
	TEST PROCEDURE	14
6.1 6.2 6.3	PRAREQUISITES GENERAL DISCUSSION TEST PERFORMANCE	14 14 16
	METHODS OF ANALYSIS	19
7.1 7.2	ABSOLUTE METHOD STATISTICAL EVALUATION	19 21
	DISCUSSION OF RESULTS	23
8.1 8.2 8.3 8.4	RESULTS AT P <u>a</u> SUPPLEMENTAL TEST RESULTS AS FOUND ANALYSIS TYPE B AND C TESTING	23 25 26 27
	REFERENCES	28
	Item 3.1 3.2 3.3 5.1 5.2 5.3 5.4 5.5 5.6 5.7 6.1 6.2 6.3 7.1 7.2 8.1 8.2 8.3 8.4	Item Title SYNOPSIS INTRODUCTION GENERAL, TECHNICAL, AND TEST DATA 3.1 GENERAL DATA 3.2 TECHNICAL DATA 3.3 TEST DATA ACCEPTANCE CRITERIA ACCEPTANCE CRITERIA TEST INSTRUMENTATION 5.1 SUMMARY OF INSTRUMENTS 5.2 SCHEMATIC ARRANGEMENT 5.3 CALIBRATION CHECKS 5.4 INSTRUMENTATION PERFORMANCE 5.5 VOLUME WEIGHTING FACTORS 5.6 SYSTEMATIC ERROR ANALYSIS 5.7 SUPPLEMENTAL VERIFICATION TEST PROCEDURE 6.1 PRAREQUISITES 6.2 GENERAL DISCUSSION 6.3 TEST PERFORMANCE METHODS OF ANALYSIS 7.1 ABSOLUTE METHOD 7.2 STATISTICAL EVALUATION DISCUSSION OF RESULTS 8.1 RESULTS AT Pa 8.2 SUPPLEMENTAL TEST RESULTS 8.3 AS FOUND ANALYSIS 8.4 TYPE B AND C TESTING REFERENCES

TABLE OF CONTENTS (Cont'd)

APPENDICES

*

1. 1

A	-	SCHEMATIC ARRANGEMENT OF TEST INSTRUMENTATION
В	-	REDUCED TEST DATA
С		LEAKAGE RATE TEST GRAPHS
D	-	COMPUTER RESULTS
E	-	TYPE B & C TESTING

1.0 <u>SYNOPSIS</u>

The Brunswick Steam Electric Plant Unit No. 2 reactor containment building was subjected to an integrated leak rate test during the period of March 26 to March 28, 1988. The purpose of this test was to demonstrate the acceptability of the building leakage rate at an internal pressure of 49.0 psig (P_a). Testing was performed in accordance with the requirements of 10CFR50 Appendix J, ANSI N45.4-1972, and Brunswick Steam Electric Plant Unit No. 2 Technical Specifications.

The Mass Point method of analysis resulted in a measured leakage rate of 0.307% by weight per day. The leakage rate at the upper bound of the 95% confidence interval was 0.312% by weight per day. A correction factor of 0.017% by weight per day for 12 penetrations which were not vented for the test must be added to the test results. Therefore, the leakage rate at the upper bound of the 95% confidence interval is 0.329% by weight per day which is below the allowable leakage rate of 0.375% by weight per day.

Using the minimum pathway leakage analysis to determine the "as found" reactor containment integrated leakage rate indicates that the acceptance criteria would have been exceeded. This was due to one penetration that could not be pressurized during local leakage rate testing and required maintenance to be performed.

The supplemental instrumentation verification test at P_a demonstrated an agreement between measured reactor containment building integrated leakage rates of 19.6%, using the Mass Point method which is within the 25% requirement of 10CFR50, Appendix J, Section III A.3.b.

Testing was performed by Carolina Power and Light Company with the technical assistance of United Energy Services Corporation. Procedural and calculational methods were witnessed by Nuclear Regulatory Commission personnel.

2.0 INTRODUCTION

The objective of the integrated leak rate test was the establishment of the degree of overall leak tightness of the reactor containment building at the calculated design basis accident pressure of 49.0 psig. The allowable leakage is defined by the design basis accident applied in the safety analysis in accordance with site exposure guidelines specified by 10CFR100. For Brunswick Steam Electric Plant Unit No. 2, the maximum allowable integrated leak rate at the design basis accident pressure of 49.0 psig (P_a) is 0.5% by weight per day (L_a).

Testing was performed in accordance with the procedural requirements as stated in Brunswick Steam Electric Plant Integrated Primary Containment Leak Rate Test Procedure PT-20.5. This procedure received two independent technical safety reviews and was approved by the Manager, Technical Support prior to the commencement of the test.

Leakage rate testing was accomplished at the pressure level of 50.8 psig for a period of 24 hours. The 24 hour period was followed by a 4 hour supplemental test for a verification of test instrumentation.

3.0 GENERAL, TECHNICAL AND TEST DATA

3.1 GENERAL DATA

Owner: Carolina Power & Light

Docket No. 50-324

Location: Southport, North Carolina

Type: Mark 1, BWR-4

Containment Steel lined, reinforced concrete, Description: 'light bulb' shaped drywell with torus shaped suppression chamber connected by a vent system. Vacuum breakers are provided between the suppression chamber and both the drywell and reactor building.

3

Date Test March 28, 1988 Completed:

3.2 TECHNICAL DATA

Containment Net Free Volume: 294,981 cubic feet

Design Pressure: 62 psig

Design Temperature:

: 300°F (drywell), 220°F (suppression chamber)

Calculated Accident Peak Pressure:

49.0 psig

Calculated Accident Peak Temperature: 297°F 3.3 TEST DATA

. .

Test Method: Absolute Data Analysis: Mass Point and Total Time Test Pressure: 65.5 psia Max Allowable Leakage Rate (La): 0.500 wt % per day Measured Leakage Rate: Mass Point 0.307 wt % per day Measured Leakage Rate at UCL: Mass Point 0.329 wt % per day Supplemental Test Flow Rate: 0.478 wt % per day Supplemental Test Measured Leak Rate: Mass Point 0.687 wt % per day Supplemental Test and Lam Agreement: Mass Point 19.6%

4

4.0 ACCEPTANCE CRITERIA

٤.

Acceptance criteria established prior to the test and as specified by 10CFR50, Appendix J, ANSI N45.4-1972 and the Brunswick Steam Electric Plant Unit No. 2 Technical Specifications are as follows:

1. The measured leakage rate (L_{am}) at the calculated design accident pressure of 49.0 psig (P_a) shall be less than 75% of the maximum allowable leakage rate (L_a) , specified as 0.5% by weight of the building atmosphere per day. The acceptance criteria is determined as follows:

> $L_a = 0.5\%/day$ 0.75 $L_a = 0.375\%/day$

2. The test instrumentation shall be verified by means of a supplemental test. Agreement between the containment leakage measured during the Type A test and the containment leakage measured during the supplemental test shall be within 25% of L_a.

5.0 TEST INSTRUMENTATION

3

.

. .

and and the second s

5.1 SUMMARY OF INSTRUMENTS

Test instruments employed are described, by system, in the following subsections.

6

5.1.1 <u>Temperature Indicating System</u>

Components:

J. Resistance Temperature Detectors:

hm

2. Digital Temperature Scanner/Printer:

Quantity	1
Manufacturer	Fluke
Туре	Model 2285B
Accuracy, ^o F	+/- 0.2
Repeatability, ^O F	+/- 0.1

5.1.2 Dewpoint Indicating System

1. Dewcell Elements:

Quantity	10
Manufacturer	Foxboro
Туре	Model 2781
Range, F	0 - 150 dewpoint
Accuracy, F	+/- 2
Sensitivity, F	+/- 0.5

2. Digital Temperature Scanner/Printer:

Quantity	1
Manufacturer	Fluke
Туре	Model 2285B
Accuracy, ^o F	+/- 0.2
Repeatability, °F	+/- 0.1

5.1.3 Pressure Monitoring System

Precision Pressure Gauges

Quantity	2
Manufacturer	Heise
Туре	Series 10 (with angular readout)
Range, psia	0 - 75
Accuracy, psia	0.0005% f.s.+0.0065% of reading
Sensor sensitivity, psia	0.001% of full scale
Repeatability, psia	0.0005% of full scale

5.1.4 Supplemental Test Flow Monitoring System

Flowmeter

Juantity	1
Manufacturer	Brooks
Гуре	Model 1110
Range, scfm	1.0 - 10.0
Accuracy	+/- 1% of full scale

5.2 SCHEMATIC ARRANGEMENT

The arrangement of the four measuring systems summarized in Section 5.1 is depicted in Appendix A.

Drybulb temperature sensors were placed throughout the reactor containment vessel volume to permit monitoring of internal temperature variations at 24 locations. Dewcells were placed at ten locations to permit monitoring of the reactor containment partial pressure of water vapor.

5.3 CALIBRATION CHECKS

Temperature, dewpoint, and pressure measuring systems were checked for calibration before the test as recommended by ANSI N45.4-1972, Section 6.2 and 6.3. The results of the calibration checks are on file at Brunswick Steam Electric Plant. A containment temperature survey was conducted which verified that there were no unmonitored regional temperature variations. The supplemental test at 50.8 psig confirmed the instrumentation acceptability.

5.4 INSTRUMENTATION PERFORMANCE

During the ILRT, one RTD exhibited abnormal behavior and was not used for the test. The remaining 10 dewcells, 23 RTDs, two precision pressure gauges, and flow meter performed satisfactorily throughout the performance of the integrated leak rate test and provided more than adequate coverage of the containment. A post test inspection revealed that the erratic RTD had fallen to the floor and was sensing metal temperature rather than air temperature.

5.5 VOLUME WEIGHTING FACTORS

Weighting factors were assigned to each drybulb temperature sensor and dewpoint temperature sensor based on the calculated volume of the reactor containment building each sensing device monitored. Drybulb and dewpoint temperature sensors elevation and weighting factors for the test were as follows:

Elevation/ Azimuth	Temperature Element	Weighting Factor
93/00	TE 1	.0528
93/180-	TE 2	. 0
78/2700	TE 3	.0187
78/90	TE 4	.0187
66/0	TE 5	.0115
66/1800	TE 6	.0115
54/270	TE 7	.0136
54/90	TE 8	.0136
46/3000	TE 9	.0194
46/00	TE 10	.0194
46/1800	TE 11	.0194
33/00	TE 12	.0500
33/1200	TE 13	.0500
33/2400	TE 14	.0500
16/00	TE 15	.0577
16/2700	TE 16	.0577
16/1800	TE 17	.0577
16/900	TE 18	.0577
Torus 0°	TE 19	.0701
Torus/60°	TE 20	.0701
Torus/120°	TE 21	.0701
Torus/180°	TE 22	.0701
Torus/240°	TE 23	.0701
Torus/300°	TE 24	.0701
93/2700	DPE 1	.0527
78/900	DPE 2	.0489
54/00	DPE 3	.0386
46/1800	DPE 4	0583

5.5 VOLUME WEIGHTING FACTORS (Continued)

Elevation/ Azimuth	Temperature Element	Weighting Factor
33/2700	DPE 5	.1502
16/900	DPE 6	.2309
Torus/0°	DPE 7	.1051
Torus/90°	DPE 8	.1051
Torus/180°	DPE 9	.1051
Torus/270°	DPE 10	.1051

5.6 SYSTEMATIC ERROR ANALYSIS

Systematic error, in this test, is induced by the operation of the temperature indicating system, dewpoint indicating system, and the pressure indicating system.

Justification of instrumentation selection was accomplished, using manufacturer's sensitivity and repeatability tolerances stated in Section 5.1, by computing the instrumentation selection guide (ISG) formula.

Containment leakage determined by the Absolute Method requires accurate measurement of small changes in containment pressure with suitable corrections for temperature and water vapor. Since the Absolute Method utilizes the change in a reading (i.e., pressure and temperature) to calculate leak rate, the repeatability, sensitivity, and readability of the instrument system is concern than the accuracy. To perform the ISG calculation, the sensitivity error of the sensor and the repeatability error of the measurement system must be used.

Sensitivity is defined as "the capability of a sensor to respond to change." Sensitivity is usually a function of the system measuring the sensor output. When the sensor energy state is raised or lowered an amount equal to the smallest value which the entire system will process, a change of indication will occur. To determine sensitivity for ILRT sensors, it is necessary to analyze the smallest value of the analog sensor output which will cause a one digit change in the digital display.

Repeatability is defined as "the capability of the measurement system to reproduce a given reading from a constant source."

5.6 SYSTEMATIC ERROR ANALYSIS (Continued)

1

Utilizing the methods, techniques, and assumptions in Appendix G to ANS 56.8-1981, the ISG formula was computed for the Absolute Method as follows:

1. Conditions:

SYSTEMATIC ERROR ANALYSIS (Continued) 3. Water Vapor Pressure: epv No. of sensors = 10Sensor sensitivity error $(E_{pv}) = +/- 0.5^{\circ}F$ Measurement system error $(\epsilon_{pv}) = +/- .1^{\circ}F$ At a dewpoint temperature of 80.5°F, the equivalent water vapor pressure change (as determined from steam tables) is 0.0168 $\rm psia/{}^{O}F$ $E_{pv} = +/- 0.5^{\circ}F (0.0168 \text{ psia}/^{\circ}F)$ $E_{pv} = +/- 0.00840 \text{ psia}$ $\varepsilon_{\rm DV} = +/- 0.1^{\circ} F (0.0168 \text{ psia}/^{\circ} F)$ $\epsilon_{pv} = +/- 0.00168 \text{ psia}$ $e_{pv} = +/- [(E_{pv})^2 + (\varepsilon_{pv})^2]^{1/2}/[no. of sensors]^{1/2}$ $e_{pv} = +/- [(0.00840)^2 + (0.00168)^2]^{1/2}/[10]^{1/2}$ $e_{pv} = +/- 0.00271$ psia 4. Temperature: em No. of sensors = 23 Sensor sensitivity error $(E_T) = +/- 0.1^{\circ}F = +/- 0.1^{\circ}R$ Measurement system error (ϵ_T) evoluting sensor $= +/- 0.1^{\circ}F = +/- 0.1^{\circ}R$ $e_T = +/- [(E_T)^2 + (E_T)^2]^{1/2} / [no. of sensors]^{1/2}$ $e_T = +/- [(0.1)^2 + (0.1)^2]^{1/2} / [23]^{1/2}$ $e_{T} = +/- 0.0294^{\circ}R$

1

5.6

11

5.6

SYSTEMATIC ERROR ANALYSIS (Continued)

5. Instrument Selection Guide (ISG):

ISG =
$$+/-\frac{2400}{t}$$
 [2($\frac{e_p}{p}$)² + 2($\frac{e_pv}{p}$)² + 2($\frac{e_T}{p}$)²] 1/2

$$ISG = + -\frac{2400}{24} \left[2\left(\frac{0.0006}{65.5}\right)^2 + 2\left(\frac{0.00271}{65.5}\right)^2 + 2\left(\frac{0.0294}{547.5}\right)^2 \right]^{1/2}$$

ISG = $+/-100[1.678 \times 10^{-10}+3.424 \times 10^{-9}+5.767 \times 10^{-9}]^{1/2}$

ISG = +/- 0.010 wt.%/day

The ISG value does not exceed 0.25 $\rm L_a$ (0.125 wt.%/day) and it is therefore concluded that the instrumentation selected was acceptable for use in determining the reactor containment integrated leakage rate.

5.7 SUPPLEMENTAL VERIFICATION

In addition to the calibration checks described in Section 5.3, test instrumentation operation was verified by a supplemental test subsequent to the completion of the 24 hour leakage rate test. This test consisted of imposing a known calibrated leakage rate on the reactor containment building. After the flow rate was established, it was not altered for the duration of the test.

5.7 SUPPLEMENTAL VERIFICATION (Continued)

During the supplemental test, the measured leakage rate was:

$$L_c = L_v' + L_o$$

Where:

- L_C = Measured composite leakage rate consisting of the reactor containment building leakage rate plus the imposed leakage rate
- Lo = Imposed leakage rate
- L_v' = Leakage rate of the reactor containment building during the supplemental test phase

Rearranging the above equation,

 $L_{v}' = L_{c} - L_{o}$

The reactor containment building leakage during the Supplemental test can be calculated by subtracting the known superimposed leakage rate from the measured composite leakage rate.

The reactor containment building leakage rate during the supplemental test $(L_{\rm y}')$ was then compared to the measured reactor containment building leakage rate during the preceding 24 hour test $(L_{\rm am})$ to determine instrumentation acceptability. Instrumentation is considered acceptable if the difference between the two building leakage rates is within 25% of the maximum allowable leakage rate $(L_{\rm a})$.

6.0 <u>TEST PROCEDURE</u>

6.1 PREREQUISITES

Prior to commencement of reactor containment building pressurization, the following prerequisites were satisfied:

- Proper operation of all test instrumentation was verified.
- All reactor containment building isolation valves were closed using the normal mode of operation. All associated system valves were placed in post-accident positions.
- 3. Portions of fluid systems, which under post-accident conditions become extensions of the containment boundary, were drained and vented to the extent possible or the Type C penalty taken as appropriate.
- Type B and C testing was completed with a leakage value less than 0.6 L_a.
- 5. Containment pressurization system was operational.
- 6. Potential pressure sources were removed or isolated from the containment.
- 7. An inspection of the accessible interior and exterior surfaces of the containment was completed.

6.2 GENERAL DISCUSSION

Following the satisfaction of the prerequisites stated in Section 6.1, the reactor containment building pressurization was initiated at a rate of approximately 6.0 psi per hour. After the containment was stabilized, leak rate testing was initiated at the 50.5 psig pressure level. For the duration of the 24 hour leak test and the 4 hour supplemental test, average internal containment temperature slowly increased due to the Residual Heat Removal (Shutdown Cooling) System temperature.

6.2 GENERAL DISCUSSION (Continued)

During the test the following occurred at 15 minute intervals (see Appendix B - Reduced Leakage Data):

- Readings indicated by the precision pressure gauges were recorded and entered into the computer.
- 2. Readings indicated by the 23 RTDs were recorded and entered into the computer. The computer program calculated the weighted average containment building drybulb temperature by use of a weighting factor that was assigned to each RTD. This value was subsequently converted to degrees Rankine for use in the ideal gas law equation to calculate containment building weight of air.
- 3. Readings indicated by the ten dewpoint temperature sensors were recorded and entered into the computer. The computer program converted the readings to dewpoint temperatures and then calculated the average containment dewpoint temperature by use of a weighting factor assigned to each sensor. This weighted average dewpoint temperature was then converted to a partial pressure of water vapor.

The use of water vapor pressure (P_{wv}) , temperature (T), and the total pressure (P_t) is described in more detail in Section 7.1.

Data was entered into an IBM AT Portable Computer located at the leak rate instrumentation room. The ILRT computer program utilized for the test had been previously checked with sample data of known results and certified prior to the test. The computer program then calculated the following at 15 minute intervals:

- 1. Total weight of containment air.
- 2. Mass point least squares fit leakage rate.
- 3. Mass point 95% upper confidence level leakage rate.
- 4. Observed total time leakage rate.
- 5. Total time mean leakage rate.
- 6. Total time least squares fit leakage rate.
- 7. Total time 95% upper confidence level leakage rate.

6.2 GENERAL DISCUSSION (Continued)

A plot of weighted average containment temperature, containment total pressure, containment average dewpoint temperature, and weight of air was performed for each 15 minute data set (see Appendix C).

Immediately following the 24 hour leak test, a superimposed leakage rate was established for a 4 hour test period. During this time, temperature, pressure, and vapor pressure were monitored as described above.

6.3 TEST PERFORMANCE

6.3.1 Pressurization and Stabilization Phase

Pressurization of the reactor containment building was started at approximately 1920 on March 25, 1988. The pressurization rate was approximately 6 psi per hour. When containment internal pressure reached 50.5 psig at 0443 on March 26, 1988, pressurization was secured. By 0900, on March 26, temperature stabilization criteria had been met.

6.3.2 Integrated Leak Rate Testing Phase

At 0900 on March 26, 1988, 15 minute frequency test data collection was initiated. Initial indications showed a slowly rising leakage rate of approximately 0.33% by weight per day. However, operations was experiencing problems in maintaining a steady residual heat removal (RHR) temperature which caused fluctuations in the reactor vessel level. This introduced some periodic perturbations in the observed containment mass weight points and in the corresponding mass point leakage rate. Additionally, due to the recent completion of the reactor vessel hydrostatic test, the RHR system temperature was fluctuating in the range of 125° F to 135° F. Since this was substantially higher than the containment ambient air temperature, a heat source existed inside containment. Additional influences on the test data were caused by an operational requirement for two loop RHR shutdown cooling when the reactor vessel level dropped below 200 inches and an increase in RHR flow from 5,000 gallons per minute to 7,500 gallons per minute. This caused an additional drop in reactor vessel level resulting in more perturbations of the containment leakage rate. Leak detection and identification teams were dispatched but no major source of containment leakage was

6.3.2 <u>Integrated Leak Rate Testing Phase</u> (Continued)

identified. Three minor packing leaks were identified on the RHR containment spray valve E11-F021A, containment vacuum breaker valve CAC-V17, and the feedwater B loop injection valve B21-F032B.

At this time (1230 on March 26), no repairs were made. By 1355, the containment leakage rate was 0.35% by weight per day and still increasing slowly. However, regression analysis of containment mass weights recorded between the perturbations caused by RHR temperature and reactor vessel level changes indicated a containment leakage rate of approximately 0.31% by weight per day.

At 0745 on March 27, 1988, a decision was made to terminate the integrated leakage rate test. The containment leakage rate had stabilized at approximately 0.39 to 0.40% by weight per day. Based on the regression analysis described above, it was felt that the actual containment leakage rate was lower than .39 to .40% per day and was probably on the order of 0.31% per day. However, due to the changes in RHR temperature and reactor vessel level, this could not be positively confirmed. By 1035 on March 27, reactor vessel level had been raised to 235 inches, single loop RHR shutdown r ing had been established, operations had aintaining better RHR temperature control and committe the par reaks on valves E11-F021A and CAC-V17 had been repai . Containment ambient air temperature changes had been continuously monitored and were still within the temperature stabilization criteria. Containment pressure was well above the required 49 psig criteria at approximately 50.3 psig.

The integrated leakage rate test was officially restarted at 1200 on March 27, 1988. The containment leakage rate exhibited a gradual increasing trend, reaching a maximum value of 0.39% per day at 1930 hours. Leakage detection and identification was again initiated but no areas of significant leakage were observed. From 1930 on March 27 to 1200 on March 28, the containment leakage rate showed a continual and gradual decreasing trend. The containment integrated leakage rate test was concluded at 1200 on March 28, 1988 with an acceptable measured mass point leakage rate value of 0.307% per day. The leakage rate at the upper 95 percent confidence level was 0.312% by weight per day.

6.3.3 Supplemental Leakage Rate Test Phase

Following completion of the 24 hour integrated leak rate test, a leakage rate of 4.36 scfm was imposed on the containment building through a calibrated flow meter at 1200 on March 28. After a fifteen minute stabilization period, leakage rate data was again collected at 15 minute intervals for a period of 4 hours. With an imposed leak rate of 0.478% per day, a measured composite leakage rate of 0.687% per day was obtained using the Mass Point method. This results in a containment building leakage rate agreement of 19.6% of L_a with the results of the 24 hour test. This value is within the acceptance limit of 25% of L_a .

6.3.4 Depressurization Phase

After all required data was obtained and evaluated, containment building depressurization to 0 psig was started. A post test inspection of the containment revealed no unusual findings. The RTD which exhibited erratic behavior (TE-2) was found to have fallen from its test location onto the floor. This explains the sudden and large increase in temperature readings from TE-2 since it was then measuring the floor temperature instead of the containment ambient air temperature.

7.0 METHODS OF ANALYSIS

7.1 ABSOLUTE METHOD

7.1.1 General

The Absolute Method of leakage rate determination was employed during testing at the 49.0 psig pressure level. The ILRT computer code calculates the percent per day leakage rate using both the mass point and total time methods.

7.1.2 Mass Point Analysis

The Mass Point method of computing leakage rates uses the following ideal gas law equation to calculate the weight of air inside containment for each 15 minute interval:

 $W = \frac{144 \text{ PV}}{\text{RT}} = \frac{\text{KP}}{\text{R}}$

Where:

W = Mass of air inside containment, lbm K = 144 V/R - $x 10^5 \frac{1 \text{bm} - ^{\circ}\text{R} - \text{in.}^2}{1 \text{bf}}$ P = Partial pressure of air, psia T = Average internal containment temperature, $^{\circ}\text{R}$ V = 294,981 ft³ R = 53.35 $\frac{1 \text{bf} - \text{ft}}{1 \text{bm} - ^{\circ}\text{R}}$

The partial pressure of air, P, is calculated as follows:

 $P = P_T - P_{WV}$

Where:

P_T = Total containment pressure

P_{wv} = Partial pressure of water vapor determined by averaging the nine dewpoint temperatures and converting to partial pressure of water vapor, psia

7.1.2 <u>Mass Point Analysis</u> (Continued)

The average internal containment temperature, T, is calculated as follows:

$$\mathbf{T} = \frac{1}{\sum_{i=1}^{\Sigma} \frac{\mathbf{V}_{fi}}{\mathbf{T}_{i}}}$$

Where:

V_{fi} = Volume fraction of the ith sensor

T_i = Absolute temperature of the ith sensor

The weight of air is plotted versus time for the 24 hour test and for the 4 hour supplemental test. The ILRT computer code fits the locus of these points to a straight line using a linear least squares fit. The equation of the linear least squares fit line is of the form $W = A_t + B$, where A is the slope in 1bm per hour and B is the initial weight at time zero. The least squares parameters are calculated as follows:

$$A = \frac{N(\Sigma t_{i} W_{i}) - (\Sigma t_{i})(\Sigma W_{i})}{S_{XX}}$$
$$B = \frac{(\Sigma t_{i}^{2})(\Sigma W_{i}) - (\Sigma t_{i})(\Sigma t_{i} W_{i})}{S_{XX}}$$

Where:

$$S_{XX} = N (\Sigma t_i^2) - (\Sigma t_i)^2$$

 $N = Number of data points$
 $W_i = Measured mass of containment air
 $t_i = Time interval$$

7.1.2 <u>Mass Point Analysis</u> (Continued)

The weight percent leakage per day can then be determined from the following equation:

$$L_{am} = \frac{-2400 \text{ A}}{B}$$

where the negative sign is used since A is a negative slope to express the leakage rate as a positive quantity.

7.2 STATISTICAL LVALUATION

7.2.1 General

After performing the least squares fit, the ILRT computer code calculates the limits of the 95 percent confidence interval for the mass point leakage rate (C_M) .

This statistical parameter is then used to determine that the measured leakage rate plus the 95 UCL meets the acceptance criteria.

7.2.2 Mass Point Confidence

The upper 95 percent confidence limit for the mass point leakage rate is calculated as follows:

 $C_{M} = 2400 t_{95} (S_{A}/B)$

Where:

SA

- C_M = Upper 95 percent confidence limit
- t₉₅ = Student's t distribution with N-2 degrees of freedom
- SA = Standard deviation of the slope of the least squares fit line
- B = Intercept of the least squares fit line

The standard deviation of the slope of the least squares fit line (S_A) is calculated as follows:

$$[N(\Sigma t_{i}^{2}) - (\Sigma t_{i}^{2})^{2}]^{1/2}$$

7.2.2 <u>Mass Point Confidence</u> (Continued)

Where:

. .

.

- S = Common standard deviation of the observed weights from the weights on the least squares fit line
- N = Number of data points

ti = Time interval of the ith data point

The common standard deviation (S) is defined by:

$$S = \frac{\Sigma (W_1 - W)^2}{N-2}$$
 1/2

Where:

W_i = Observed mass of air

W = Least squares calculated mass of air

The ILRT computer code calculates an upper 95 percent confidence leakage rate as follows:

 $UCL = L_{am} + 2400 t_{95} (S_A/B)$

This UCL value is then used to determine that the measured leakage rate at the upper 95 percent confidence limit meets the acceptance criteria.

8.0 DISCUSSION OF RESULTS

8.1 RESULTS AT Pa

The method used in calculating the Mass Point leakage rate is described in Section 7.1.1. The results of this calculation is a mass point leakage rate of 0.307%/day (see Appendix D).

The 95 percent confidence limit associated with this leakage rate is 0.005% per day. Thus, the leakage rate at the upper bound of the 95 percent confidence level becomes:

UCL = .307 + .005UCL = 0.312%/day

Additional leakage rates must be applied to the measured leakage rate at the upper 95 percent confidence level to account for penetration paths not exposed to the test pressure and for changes in the net free volume of the containment due to water level changes. Penetration paths not exposed to the test pressure and the corresponding leakage rates based on analysis of minimum pathway local leakage rate testing are as follows:

System	Containment Isolation Valves	Minimum Pathway Local <u>Leakage Rate (SCFH)</u>
Drywell Drains	2-G16-F003/F004	0
Drywell Drains	2-G16-F019/F020	0
Feedwater (RCIC Injection Line B)	2-B21-F032B, 2-E51-V88, 2-B21-F010B,	0
Feedwater (HPCI Injection Line A)	2-B21-F032A, 2-E41-F006, 2-B21-F010A,	0
Reactor Building Cooling Water	2-RCC-V28/V52 RXS-SV1222B/C	0
CRD Purge to Reactor Recirc	2-B32-V24/V22, V30	0
Pumps	2-B32-V32/V22, V30	6.35

8.1 RESULTS AT Pa (Continued)

System	Containment Isolation Valves	Minimum Pathway Local <u>Leakage Rate (SCFH)</u>
Electrical Penetration	101A	0
Recirc Sample	2-B32-F019/F020	0
RHR Suction	2-E11-F008/F009	0
Reactor Water Cleanup	2-G31-F001/F004	2.49

The total applicable local leakage rate is 8.84 sofh which is equivalent to a leakage rate of 0.017%/day.

Water level changes in the containment during the 24 hour integrated leakage rate test are summarized below:

Reactor Vessel Water Level:

1200	3-27-88	235	inches
1200	3-28-88	232	inches

Torus Water Level:

1200	5-19-87	-28.5	inches
1200	5-19-87	-28.5	inches

During the test, no makeup water was introduced into the reactor vessel. Therefore, the volume change associated with the change in reactor vessel water level showed an increase in the net free volume of 64.8 cubic feet. This corresponds to a reduction in the measured containment leakage rate of 0.022% per day. However, it is conservatively assumed that the water level decrease in the reactor vessel was not lost out of containment and therefore no change in net free volume occurred. 8.1 RESULTS AT Pa (Continued)

The total containment leakage rate at the upper 95 percent confidence level (UCL) is calculated as follows:

UCL = L_{am} + 95 percent confidence limit + Type C leakage + changes in net free volume

 $UCL = 0.307 \frac{day}{day} + 0.005 \frac{day}{day} + 0.017 \frac{day}{day} + 0.000 \frac{day}{day}$

UCL = 0.329%/day

This value is below the acceptance criteria leakage rate of 0.375%/day (.75L_a).

Therefore, the reactor containment building leakage rate, based on the mass point method analysis, at the calculated design basis accident pressure (P_a) of 49.0 psig is acceptable.

8.2 SUPPLEMENTAL TEST RESULTS

After conclusion of the 24 hour test at 49.0 psig (P_a) , the flowmeter was placed in service and a flow rate of 4.36 scfm was established. This flow rate is equivalent to a leakage rate of 0.478% per day. After the flow rate was established it was not altered for the duration of the supplemental test. The measured leakage rate (L_c) during the supplemental test was calculated to be 0.687% per day using the Mass Point method of analysis.

The building leakage rate during the supplemental test is then determined as follows:

Mass Point

 $L_y = L_c - L_0$ $L_y = 0.687 - 0.478$ $L_v = 0.209 \frac{3}{day}$ 25

8.2 SUPPLEMENTAL TEST RESULTS (Continued)

Comparing this leakage rate with the building leakage rate measured during the 8 hour test yields the following:

Mass Point = $\frac{L_{am} - L_{v}}{L_{a}}' = \frac{.307 - .209}{0.5} = 0.196$

The building leakage rates agree within 19.6% of L_a using the Mass Point method which is below the acceptance criteria of 25%.

Using the formulation of ANS 56.8-1981,

 $(L_0 + L_{am} - 0.25L_a) \le L_c \le (L_0 + L_{am} + 0.25L_a)$ (0.478 + 0.307 - 0.125) $\le L_c \le (0.478 + 0.307 + 0.125)$ 0.660 $\le L_c \le 0.910$

Since L_c was measured to be 0.687%/day, this value falls within the acceptable range of 0.660% to 0.910% per day. Therefore, the acceptability of the test instrumentation is considered to have been verified.

8.3 AS FOUND ANALYSIS

To determine the as-found containment leakage rate, an analysis was performed to evaluate any leakage savings from repairs or maintenance to containment isolation barriers. Leakage savings are realized when containment isolation barrier repairs result in a lower minimum pathway leakage than that which existed prior to the repair or maintenance.

The results of the analysis are presented in Appendix E. The total leakage savings due to performing Type B and C tests prior to the Type A test indicates that the acceptance criteria (L_a) would have been exceeded due to one penetration (Feedwater B Loop Injection) that could not be pressurized.

The total as left Type B and C leakage rate is 35.275 scfh which is equivalent to a combined leakage rate of 0.066% per day. This is well below the allowable value of 0.6 L_a or 0.300% per day.

8.4 TYPE B AND C TESTING

The results of the Type B and Type C tests conducted during the 1988 Unit 2 refueling outage are shown on Appendix E. Additional Type B and C tests which were conducted subsequent to the last Type A test on May 5, 1986 are listed below.

Date	Item	Leakage Rate (scfh)
05/19/86	CRD Hatch	0
05/23/86	Electrical Penetration X102H	0
06/01/86	N. Torus Hatch	0
06/03/86	Airlock	8.927
06/19/86	CAC-X20A/CAC-V16	0
06/23/86	CRD Hatch	0
07/11/86	B32-F019/B32-F020	0
07/13/85	G31-F001/G31-F004	1.039
10/13/86	CAC-SV-4410-4	0
10/13/86	CAC-SV-4410-3	0
10/13/86	CAC-SV-4410-2	0
10/14/86	CAC-V7 ("O" rings)	0
10/14/86	CAC-V5 ("O" rings)	0
10/14/86	CAC-V16 ("O" rings)	. 0
10/16/86	CAC-SV-4409-2	0
10/16/86	CAC-SV-4409-3	0
10/16/86	CAC-SV-4409-4	0
10/19/86	B32-F019/B32-F020	WNP
10/19/86	E51-F031	0
10/19/86	E51-F062/E51-F066	1.158
10/19/86	CAC-V9 ("O" ring ,	0
10/19/86	E51-F019	0
10/23/86	B32-F019/F32-F020	0
10/24/86	N. Torus Hatch	0
10/24/86	CRD Hatch	0
10/27/86	N. Torus Hatch	0
11/05/86	Personnel Airlock	8.753
06/02/87	E21-F001A	9.035
06/17/87	Personnel Airlock	2.558

WNP = Would Not Pressurize

9.0 <u>REFERENCES</u>

- 1. PT-20.5, Integrated Primary Containment Leak Rate Test.
- 2. Brunswick Steam Electric Plant Unit No. 2 Final Safety Analysis Report.
- Code of Federal Regulations, Title 10, Part 50, Appendix J.
- ANSI N45.4-1972, Leakage Rate Testing of Containment Structures for Nuclear Reactors, American Nuclear Society (March 16, 1972).
- 5. ANS-56.8-1981, "Containment System Leakage Testing Requirements", American Nuclear Society.
- 6. ILRT Computer Code, Gilbert/Commonwealth, Inc.
- Steam Tables, American Society of Mechanical Engineers, 1967.
- BN-TOP-1, "Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants", Revision 1, November 1, 1972.

APPENDICES

APPENDIX A

SCHEMATIC ARRANGEMENT OF TEST INSTRUMENTATION

* NOT USED FOR TEST

TE - TEMPERATURE ELEMENT (RTD) DPE - DEWPOINT ELEMENT (DEWCELL)

PCLRT SCHEMATIC ARRANGEMENT (NOT TO SCALE)

APPENDIX A

APPENDIX B REDUCED TEST DATA

REDUCED ILRT TEST DATA

,d

HDIJM SSAM	DVAT	6MA	PAAG	TIME	
17 20570	0.C.A. A.G.	6181 B	622 199	1010-01	
4 1 1000P6	145.48	0.4319	192.02	SIRE I	
10 10810	1.04.48	658t N	292 29	0221	
10 100000	847.48	1784.6	8.4.5 . 3.9	2021	
10 10000	218.48	788¢ 0	887.38	002.	
00 26816	196 98	GEBP 0	101129	G121	
11 16806	6.20 30	2681 *0	-1+ 99	Q. 7. 1	
21 68846	SS1 \$8	6684.0	\$76*\$9	6421	
02,28849	A42.88	1104.0	QCP.03	0011	
21 62615	162 * 98	1194.0	学艺作"留学	51101	
02 52875	261'58	2164.0	201 · 159	1920	
88.72849	170 58	- 2260 °Ø	844,84	Steps	
02 07800	WZG 198	2260 * Ø	Sat Sa	0031	
30 07876	14's \$8	1264 0	924 29	SISI	
CG 133070	627 58	8667 0	044.64	ØS.S I	
C4 *CC0+	707 20	120V 10	PAP 23	in D in 1	
Ch*ICOL	100 100	2708.0	246.34	Q(Q) 9 1	
00.00000	124 30	2000 W	07V 59	5191	
NG *75000	122100	766630	120 27	02.71	
05-02010	120 20	100000	240 5	2091	
00160000	100 40	Later CV C	S2V 59	0041	
GA *870HL	100 20	000000	228 37	2121	
NG*070+4	1 7 7 4 1 1 1	0407 0	848 59	Without I	
fra 12044		2761 B	085.29	Stat	
AU SIGNA	C44 *00	0307 0	180 59	0/08 1	
BR SIRHA	1/20100	004110	601 217	1312	
EC *ADEEA	203100	1 6014 M	200 27	0181	
TR'90864	4.78.400	C201 0	287 SV	8161	
SH 170044	711100	760 0	486.34	0001	
00 · LE/42	371 70 351 133	676710	985 39	-161	
- 14 · 01/21	COX 70	676V 0	184.35	02.61	
10 00210	216 70	67.64.0	881 59	Stel	
00 · 00/01	GLG 70 	0.0000	687.29	2000	
40° /07 44	276 70	0.4260	681.29	S102	
CE ECCEC	1986 YB	2768.0	004.33	0202	
57 722VO	1012 YE	1961.0	065.39	STOC	
DE GELVE	862.98	8264.8	161.35	0012	
61 67176 62 77776	192.78	6265 0	264.89	2112 112	
88 17400	042-98	1864.0	264.20	5120	
10 17470 00 17674	162.78	1001.0	261.27	S#12	
NG 1346.945	024.48	2664.0	26t S7	5500	
CS VELVO	820 98	2005.0	161.20	5122	
10 65200	250.98	6005°0	564.24	5520	
86 67216	084.38	1002.0	E64.ES	St22	
20.7070F	964.96	2002.0	960 99	5200	
Sec. 1. Street	· · · · · · · · · · · · · · · · · · ·				

-

.

ø

DATE

REDUCED ILRT TEST DATA

. .

DATE	TIM	PAVG	PWV	TAVU	MASS WEIGHT
3-27-38		65.497	0.5003	85.517	94744.77
		45.497	0.5001	86.536	94741.70
		65.197	0.5005	36.585	94737.88
		55.498	0.5011	96.577	91731.21
	1	55.498	0.5009	86.221	94732.61
	30	65.499	0.5010	26.615	74729.00
	45	6月,499	0.5011	86,635	94726.75
	100	\$5.500	0.5017	86.656	94722.85
	113	35.501	0.5021	86.670	94720.95
	1.0	45.501	0.5021	86.691	94717.22
	145	65,501	0.5013	86.713	94715.77
	200	65.502	0.5027	85.729	94712.02
	215	65.502	0.5030	86.749	94708.00
	2.76	15.503	0.5034	84.770	94704.93
	245	45.504	0.5030	84.787	94703.74
	7002	45.504	0.5045	86.808	01498.55
	5 4 FF	45,505	0.5017	84.828	94497.09
	770	45.505	0.5044	94,949	91497 79
	3.4%	45.504	0.5037	84,840	04407 OF
	ama	45.507	0 5047	94.005	01100 00
	415	45.508	0 5047	94, 989	01404 77
	430	45.500	0.5050	94,920	DALQA 10
	443	45.500	0.5004	QL 070	01107 41
	500	45.510	0.5051	QL QL1	0AL70 70
	515	45 511	0.5010	24 077	01470 10
	570	LE 511	0.5050	00.774 04.007	04676 23
	14	18 810	0 = 0002 0 = 0 = 7	07 010	01170121
	400	人間 肥金市	A SASA	07.017	740/L.00
	415	LE E11	0.5040	07,000	740/1.07
	4.70	25.514	0. E0.E0	07.01	74007.10
	615	100.014 10. 01.0	0.0000	07,000	7400/+20
	700	25.512	0.50001	07.1000	74004.17
	715	00,010 45 517	0.0000	07,100	74002.22
	770	200.017	0.0004	07.120	74000.02
	748		0.00/4	07.100	74606.74
	000	00.010 /E E10	0.00/0	07.100	74800.02
	040	20.017	0.00/7	07 100	94601.19
	010	03.320	0.3037	87.177	74648.47
	0.00	00.022	W. 2086	07.210	94647.89
	040	60.020	0.0037	87.238	74546.25
	7 60 63	60.029	0.0094	87.253	94644.23
	710	63.325	0.5090	87.273	94642.98
	7.342	00.026	0.0292	87.292	94639.93
	743	65.52/	0.3097	87.309	94637.30
	1000	65.527	0.5101	87.326	94634.84
	1015	65.528	0.5095	87.346	94633.25

REDUCED ILRT TEST DATA

. .

DATE	TIME	PAVG	PWV	TAVG	MASS WEIGHT
3-29-88	1030 1045 1100 1115 1130 1145 1260	45.529 45.529 45.530 45.532 45.532 45.532 45.533 45.533	0.5105 0.5099 0.5110 0.5110 0.5109 0.5116 0.5116	87.367 87.383 87.404 87.425 87.444 87.460 87.482	94629.27 94628.00 94624.43 94622.39 94620.33 94620.33 94617.69 94615.91

VERIFICATION TEST DATA

1215	65.533	0.5117	87.503	94609.49
1230	65.530	0.5118	87.518	94602.85
1245	55.529	0.5121	87.541	94596.48
1300	65.526	0.5125	87.558	94589.63
1315	65.524	0.5130	87.576	24582.49
1330	55.522	0.5131	97.604	94574.14
1345	65.520	0.5123	87.619	94570.11
1400	65.510	0.5127	87.640	94545.21
1415	65.516	0.5140	87.662 .	94554.80
1430	65.514	0.5137	87.685	94549 50
1445	65.512	0.5140	87.700	44540 30
1500	65.510	0.5143	87.722	01979 70
1515	65.508	0.5153	87.743	94507 15
1330	65.506	0.5144	87.743	94500 00
1545	65.504	0.5153	87.784	QA51A 47
1608	65.502	0.5149	87.800	04500 E1
1615	65.501	0.5157	87.828	94500.68

APPENDIX C LEAKAGE RATE TEST GRAPHS

.

24 HOUR TEST

÷

4

ST 6

21/2

-

INTEGRATED LEAK RATE TEST RESULTS by GILBERT/COMMONWEALTH INC.

1.1

CURRENT DATE : 04-06-1988 CURRENT TIME : 13:06 TIME OF LAST READING : 1200

*** MASS POINT ANALYSIS ***

\$

TIME	UBS. WEIGHT	GBS. MIN.	CALC.
INTERVAL.		(L.B.)	
2)	94895.64	5.005141	
. 25	94895.17	7.566677	
	94894.84	12.25884	
	94894.21	12.35631	
	94893.53	15.01691	
1.25	94892	16.51894	
1.5	94891.13	18.67123	
1.75	94889.13	19.70152	
2	94682.2	15.80211	
25 - 25	94879.13	15.7699	
2.5	94875.31	14.97206	
2.75	94867.88	10.58047	
3	94864.78	10.50919	
3.25	94860.05	8.805102	
3.8	94855.93	7.7182	
3,75	94851.45	6.271924	
4	94846.8	4.645959	
4.25	94842.84	3.723119	
4.5	94838.8	2.70653	
4.75	94834.58	1.518065	
5	94828.95	-1.076649	
5.25	94825.5	-1.499489	
5.5	94821.44	-2.531704	
5.75	94815.79	-5.149856	
	94813.88	-4.02582	
5.25	94809.34	-5.542409	
6.5	94806.82	-5.027749	
6. 75	94802.48	-6.341214	
	94799.81	-5,982803	
7.25	94796.47	-6.288456	
2.5	99792.09	-7.640982	
7.75	94788.84	-7.860697	
8	94787.64	-6.025724	
8.25	94784.45	-6.182939	
8.5	94780.23	-7.371403	
3.75	94776.62	-7.958305	
	94772.38	-9.170207	
7.25	94769.32	-9.194609	
7.5	94765.88	-9.609636	
7.75	94761.91	-10.54029	

10	99757.7	-11.72875
10.25	94754.2	-12.19847
12.5	94752.41	-10.94943
10.75	94749.28	-11.05196
11	94747.26	-10.04511
11.25	94744.77	-9,499201
11.5	94741.7	-9.54704
11.75	94737.88	-10.32925
12	94734.24	-10.93959
12.25	99732.61	-9.542121
12.5	94729.8	-9.324336
12.75	94726.75	-9.340925
312 (11) (11) (11)	94722.95	-10.20908
13.25	91720.95	-9.085042
13.5	74717,22	-9.781319
13.78	94715.77	-8.204159
34	94712.02	-8.91606
14,25	91708	-9.909212
14.5	94704.93	-9.94924
14.75	24703.74	-8.106454
15	94698.85	~10.27148
15.25	94697.09	-8.694321
(5.5	94693.38	-9.374972
15.75	94693.85	-5.875937
16	74689.2	-7.494089-
16.25	94686.73	-6.932554
16.5	94684.18	-6.456956
144.75	94683.56	-4.043858
17	94679.79	-4.78701
17.25	94679.18	-2.366099
17.5	94676.22	-2.296752
17.75	94672.68	-2.805529
18	94671.59	8611806
18.25	94669.1	3230827
18.5	94667.2	.8087553
18.75	94664.17	.8078008
19	94662.22	1.884961
19,25	94550.02	2.719934
19.0	94656.94	2.364282
19. '5	94653,32	2.07738

20	94651.19	2.974853
20.25	94648.47	3.286388
20.5	94647.39	5.738549
20.75	94646.26	7.136022
21	94644.23	8.14287
21.25	94642.98	9.923156
21.5	94639.93	9.998753
21.75	94637.31	10.30404
22	94624.84	10.87339
22.23	94633.25 .	12.30992
22.5	94629.27	11.35583
22.75	94628	13,12049
23	77624.43	12,58047
25.25	94622.39	13.57159
23,8	94620.73	14,53947
23.75	94617.69	14,92914
24	94615.91	16,17817

WØ = 94890.63548351041 LB W1 = -12.12114182818746 LB/HR

1.1

.

LEAKAGE RATE = .3065713 % PER DAY UPPER LIMIT OF THE 95% CONFIDENCE LEVEL = 5.684446E-03 % PER DAY UPPER LIMIT OF THE 95% CONFIDENCE LEVEL = .3122557 % PER DAY (INCLUDES LEAKAGE RATE) 4 HOUR VERIFICATION

6

.

INTEGRATED LEAK RATE TEST RESULTS by GILBERT/COMMONWEALTH INC.

14

.

CURRENT DATE : 04-06-1988 CURRENT TIME : 13:14 TIME OF LAST READING : 1615

*** MASS POINT ANALYSIS ***

TIME	OBS. NEIGHT	OBS. MIN. CALC
INTERVAL	(LB)	(に見)
10 S	94609.49	1482843
. 25	94602.85	-2.054611E-02
.5	94596.48	. 3806296
.75	94589.63	.2896178
1	94582.49	-7.483149E-02
1.25	94574.16	-1.642406
1.5	94570.11	1.079082
1.75	94563.21	.9490081
2	94554.91	-,6888787
2.25	94548.52	209578
2.5	94542.31	.3478477
2.75	94535.28	9.2773446-02
3	94527.45	9669884
3.25	94522	. 3482499
3.5	94514.42	4615119
3.75	94509.51	1.392789
<i>A</i>	94500.68	6669731

WØ = 94609.64047181373 LB W1 = -27.07345281862745 LB/HR

LEAKAGE RATE = .686783 % PER DAY UPPER LIMIT OF THE 95% CONFIDENCE LEVEL = 6.942185E-03 % PER DAY UPPER LIMIT OF THE 95% CONFIDENCE LEVEL = .6937252 % PER DAY (INCLUDES LEAKAGE RATE)

		TY	PE B ANAL	YSIS	MINIMU	M PATH	ANALYSIS		
Pen	Valves	As Found	As Left	As Left Pen Leakage	As Found	As Left	Savings	NOTES	
100A	ELECTRICAL	0	0	0	0	0	0		
100B	ELECTRICAL	0	0	0	0	0	0		
100C	ELECTRICAL	0	0	0	0	0	0		
103A	ELECTRICAL	0	Ő	õ	0	0	0		
100D	ELECTRICAL	0	0	0	0	0	0		
104A	ELECTRICAL	1.616	0	0	1.616	0	1 616		
102A	ELECTRICAL	0	0	0	0	0	1.010		
104B	ELECTRICAL	0	Ő	Ő	0	0	0		
102B	ELECTRICAL	0	0	0	0	0	0		
101A	ELECTRICAL	0	0	ő	0	0	0	1	
101C	ELECTRICAL	0	Ő	0	0	0	0	(a)	
105D	ELECTRICAL	0	0	Ő	õ	0	0		
105E	ELECTRICAL	0	0	0	0	0	0		
102C	ELECTRICAL	0	Ő	0	ő	0	0		
104C	ELECTRICAL	0	õ	Ő	0	0	0		
105H	ELECTRICAL	0	õ	0	0	0	0		
105G	ELECTRICAL	0	0	0	0	0	0		
102E	ELECTRICAL	0	0	0	0	0	0		
104E	ELECTRICAL	0	0	0	0	0	0		
100F	ELECTRICAL	0	Ő	õ	0	0	0		
100E	ELECTRICAL	0	0	0	0	0	0		
100G	ELECTRICAL	0	0	Ő	0	0	0		
100H	ELECTRICAL	0	0	0	0	0	0		
102F	ELECTRICAL	0	0	0	0	0	0		
104F	ELECTRICAL	0	0	0	0	0	0		
103B	ELECTRICAL	0	0	0	0	0	0		
104G	ELECTRICAL	0	0	0	0	0	0		
102H	ELECTRICAL	0	0	0	0	0	0		

		TY	PE B ANAI	YSIS	MINIMU	M PATH	ANALYSIS		
Pen	Valves	As Found	As Left	As Left Pen Leakage	As Found	As Left	Savings	NOTES	
105J	ELECTRICAL	0	0	0	0	0	0		
105K	ELECTRICAL	0	0	0	õ	0	0		
101F	ELECTRICAL	0	0	0	0	0	0	and the second	
101D	ELECTRICAL	0	0	0	0	0	0		
105C	ELECTRICAL	0	0	õ	Ő	0	0		
105B	ELECTRICAL	0	0	Õ	0	õ	0		
232B	ELECTRICAL	0	0	0	0	0	0		
232C	ELECTRICAL	0	0	0	õ	Ő	0		
232A	ELECTRICAL	0	0	0	0	0	0		
232D	ELECTRICAL	0	0	0	0	Ő	0		
1	EQPT HATCH	0	0	0	0	0	0		
2	LINER SEAL	0	0	0	0	õ	0		
3	DW HD BLANK	0	0	0	0	0	0		
4	DW HD HATCH	0	0	0	0	0	0		
6	CRD HATCH	0	0	0	õ	0	0		
200A	S. TORUS	0	0	0	0	0	0		
200B	N. TORUS	0	0	0	0	0	0		
-	HEAD SEAL	WNP	0	0	0	0	0	(h)	
3B	V49-0 RING	0	0	0	0	0	0	(5)	
205	V5-0 RING	0	0	0	0	0	0		
25	V6-0 RING	0	0	0	0	0	0		
220	V7-0 RING	0	0	0	0	0	0		
26	V9-0 RING	0	0	0	0	0	0		
205	V16-0 RING	0	0	0	0	0	0		
205	V17-0 RING	0	0	0	0	0	0		

		TY	PEC ANAL	YSIS	MINIM	UM PATH	ANALYSIS	
Pen	Valves	As Found	As Left	As Left Pen Leakage	As Found	As Left	Savings	NOTES
3B	CAC-49	0	0					
	CAC-50	0	0	0	0	0	0	
7A	B21-F022A				~~~~			
	B21-F028A	16.45	9.53	9.53				Con Note 2
7B	B21-F022B							see Note 3
	B21-F028B	7.763	7.763	7.763				Case Notes 2
7C	B21-F022C							See Note 3
	B21-F028C	19.848	9.558	9.558				Coo Noto 3
7D	B21-F022D							see Note 3
	B21-F028D	47.697	9.594	9.594				Coo Note 2
8	B21-F016							See Note 3
	B21-F019	19.829	0	0	9,915	0	0 015	marked in the second
	B21-F010A	WNP	0		5.515	0	5.515	Tested in parallel
9A	B21-F032A							
	E41-F006	4.269	4.269	0	4.269	4 269	0	
	B21-F010B	WNP	0		1.203	4.209	0	
	B21-F032B							
9B	E51-V88	WNP	0	0	WND	0	Indotorminata	· · · · · · ·
	E51-F013			U U	mut	U	indecerminate	See Note (c)
	G31-F042	0	0					
10	E51-F007	and the second second from the second second						
	E51-F008	16.62	0	0	8 31	0	9 21	marte 2 / 22 2
11	E41-F002				. 0. 51	0	0.51	Tested in parallel
	E41-F003	3.138	0	0	1 569	0	1 560	marked in 12.2
12	E11-F008				1.505	0	1.509	Tested in parallel
	E11-F009	0	0	0	0	0	0	m
13A	E11-F015A	0	1.32	~	V	0	0	Tested in parallel
	E11-F017A	0	0	1.32	0	1.32	0	
and the second second	the second se	the second s	the second se	and the second se	0	1 4 3 2	0	

		TY	PE C ANAL	YSIS	MINIMU	IM PATH A	NALYSIS	
Pen	Valves	As Found	As Left	As Left Pen Leakage	As Found	As Left	Savings	NOTES
13B	E11-F015B	0	0					
	E11-F017B	0	0	0	0	0	0	
14	G31-F001				0	0	0	
	G31-F004	. 364	2.49	2 49	182	1 25	0	
16A	E21-F004A	0	0	2.15	.102	1.25	0	Tested in parallel
	E21-F005A	0	.820	820	0	820	0	
16B	E21-F004B	0	0	.020		.020	0	
	E21-F005B	0	0	0	0	0	0	
17	E11-F022			V	0	0	0	
	E11-F023	0	0	0	0	0	0	Maghad is 11.1
18	G16-F003				~~~~~		0	lested in parallel
	G16-F004	0	0	0	0	0	0	Tracted in analla
19	G16-F019						0	lested in parallel
	G16-F020	0	0	0	0	0	0	Mostod in secolar
23	RCC-V52			~~~~~	~		0	lested in parallel
& 24	RCC-V28	0	0		0	0	6	Tootod is sould.
	CAC-V6, V15						0	rested in parallel
	V-4,V-5	9.849	9.82	9.82	4.925	4 91	015	Torted in parallal
	CAC-V17						.015	rested in parallel
	Х20В	43.146	1.91	1.91	1.91	0	1 91	
25	CAC-V16							
8	X20A	WNP	0	0 -	0	0	0	Son Noto (d)
205	160, 162, 170	1.428	1.428	1.428	1.428	1.428	0	see Noce (d)
	171, 163, 161	0	0	0	0	0	0	
	55, 56	.824	.824	.824	.824	824	0	
26	CAC-V9					.021	· · · · · · · · · · · · · · · · · · ·	
	CAC-V10							
1.1.1	CAC-V23	34.44	1.422	1.422	17.22	0.711	16 509	Tacted in parallal
35A	TIP-V1	0	0	0	0	0	0	rested in parallel
35B	TIP-V2	0	0	0	0	0	0	

								rallel		rallel												rallel									
		NOTES					Thorton in a	lested in pa	E - 400E	Tested in pa											Tottod in	lested in pa									
ALYSTS		Savings	0	0	0	0	0	>	0	0	307 1	(71.1	0	0	0	0	0	0		0	0	~	0	0	0		0	10 001	102.21	>	
PATH AN	As	Left	0	0	0	0	0	>	0	>	0	>	0	1 174	E	207	100.	0	0	>	C	>	0		0	0	>	0	>		
MUMINIM	As	Found	0	0	0	~	0		0		1.725		0	1.174		307		0	0		0		0	0	0	0	>	12.981			
SIS	As Left Pen	Leakage	0	0	0		0		0		1.22	.825		1.174		.307		0	0		0		. 0	0	0	0	>	6.35			
E C ANALYS	As	Left	0	0	0		0		0	0	1.22	.825	0	1.174	.307	.307	0	0	0		0	0	0	0	0	0	0	6.35	0	0	and the second se
TYP	AS	Found	0	0	K 0		0		0	1.725	19.81	.825	0	1.174	.307	.307	0	0	0		0	34.522	0	0	0	0	34.522	12.981	0	0	the second
	1.1.1.	valves	TIP-V3	TIP-V4	TIP-Ničrogen Ch	E11-F016A	E11-F021A	E11-F016B	E11-F021B	C41-F006	C41-F007	CAC-SV-1200B	CAC-SV-1261	IA-SV-5253	CAC-SV-1211E	CAC-SV-3439	CAC-SV-1211F	CAC-SV-1261	IA-SV-5262	B32-F019	B32-F020	B32-V22	B32-V24	IA-SV-5261	RXS-SV-1222B	RXS-SV-1222C	B32-V30	B32-V32	IA-SV-5251	RXS-SV-4186	
	Dom	Len	 350	35D	35E	39A		39B		42		49B		52A	54E		54F		55	56E		62A		71	77B	77C	78A		83D	209	and the second sec

..... 1

	TY	FE C ANAL	YSIS	MINIMU	M PATH ANA	ALYSIS	
Valves	As Found	As Left	As Left Pen Leakage	As Found	As Left	Savings	NOTES
RXS-SV-4188	0	0					
RXS-SV-4189	0	0		0	0	0	
E11-F027A							
E11-F028A	0	0	0	0	0	0	Tested in parallal
E11-F027B						~~~~	resceu în parallei
E11-F028B	1.320	1.320	1.320	.660	.660	0	Tested in parallo?
E51-F062							resteu în paraller
E51-F066	1.493	1.493	1.493	.747	.747	0	Tested in parallel
E41-F075							resceu in paratter
E41-F079	0	0	0	0	0	0	Tested in parallel
CAC-V2?	1.121	1.121					resteu în paratiei
CAC-V172	.411	.411					
CAC-V7							
CAC-V8	1.02	1.02	2.552	.921	.921	0	Tested in parallel
	Valves RXS-SV-4188 RXS-SV-4189 E11-F027A E11-F027B E11-F027B E11-F028B E51-F062 E51-F066 E41-F075 E41-F075 E41-F079 CAC-V22 CAC-V172 CAC-V7 CAC-V8	TY As Valves Found RXS-SV-4188 0 RXS-SV-4189 0 E11-F027A 0 E11-F028A 0 E11-F028B 1.320 E51-F062 0 E51-F066 1.493 E41-F075 0 CAC-V22 1.121 CAC-V7 .411 CAC-V8 1.02	As As Valves Found Left RXS-SV-4188 0 0 RXS-SV-4189 0 0 E11-F027A 0 0 E11-F027A 0 0 E11-F028A 0 0 E11-F028B 1.320 1.320 E51-F062 0 0 E41-F075 0 0 E41-F075 0 0 CAC-V22 1.121 1.121 CAC-V7 .411 .411 CAC-V8 1.02 1.02	RXS-SV-4188 0 0 RXS-SV-4188 0 0 RXS-SV-4189 0 0 E11-F027A 0 0 E11-F027B 0 0 E11-F028B 1.320 1.320 E51-F062 0 0 E51-F066 1.493 1.493 E41-F075 0 0 E41-F079 0 0 CAC-V22 1.121 1.121 CAC-V7 1.02 2.552	TYFE C ANALYSIS MINIMU As Left As Left As As Pen As Valves Found Left Leakage Found RXS-SV-4188 0 0 0 0 RXS-SV-4189 0 0 0 0 E11-F027A E11-F028A 0 0 0 0 E11-F028B 1.320 1.320 1.320 .660 E51-F062 E51-F066 1.493 1.493 .747 E41-F075 0 0 0 0 CAC-V22 1.121 1.121 .747 CAC-V7 1.02 1.02 2.552 .921	TYFE C ANALYSIS MINIMUM PATH ANALAS Left As As As Pen As As Valves Found Left Leakage Found Left Second RXS-SV-4188 0 0 0 0 0 0 0 RXS-SV-4189 0 0 0 0 0 0 0 E11-F027A E11-F028A 0 0 0 0 0 0 E11-F028B 1.320 1.320 1.320 1.320 .660 .660 E51-F062 E51-F066 1.493 1.493 1.493 .747 .747 E41-F075 E41-F079 0 0 0 0 0 0 CAC-V22 1.121 1.121 .2121 .2121 .2121 .2121 CAC-V7 CAC-V8 1.02 1.02 2.552 .921 .921	As As As As As Valves Found Left Leakage Found Left Savings RXS-SV-4188 0 0 0 0 0 0 0 RXS-SV-4188 0 0 0 0 0 0 0 E11-F027A 1 0 0 0 0 0 0 E11-F027B 1.320 1.320 1.320 .660 .660 0 E51-F062 1.493 1.493 1.493 .747 .747 0 E41-F075 0 0 0 0 0 0 0 CAC-V22 1.121 1.121 .747 .747 0 CAC-V172 .411 .411 .411 .747 .747 0 CAC-V7 .411 .411 .411 .411 .411 .411 .421 .921 0

General

4.

- All values are given in scfh.
- 2. The MPL assignment to penetrations that have valves tested in parallel is 1/2 the Type C value unless otherwise noted.
- 3. Leakage from Main Steam Isolation Valves (MSIV) is considered a separate source term from containment leakage in the accident analyses. Technical specification acceptance criteria for MSIV's is 11.5 scfh per valve. These valves are not included in the as found analysis.

NOTES

Specific

- a. Tubing and pressure gauge from test connection on electrical penetration 101A damaged. Connection plugged for performance of ILRT.
- b. Visual inspection of seals indicated damage to outer seal but no damage observed to inner seal. Further visual inspection and testing of seals indicated integrity of inner seal was maintained.
- c. As found leakage could not be quantified. Therefore, leakage is assumed to be greater than L_a and the as found ILRT leakage would be greater than L_a .
- Maintenance performed on CAC-V16 only.