#### BASES

.

## 3.4.10.1 PRIMARY CONTAINMENT INTEGRITY

The requirement for PRIMARY CONTAINMENT INTEGRITY is not applicable during the period when open vessel tests are being performed during the low power PHYSICS TESTS.

## 3/4.10.2 ROD WORTH MINIMIZER

In order to perform the tests required in the technical specifications it is necessary to bypass the sequence restraints on control rod movement. The additional surveillance requirements ensure that the specifications on heat generation rates and shutdown margin requirements are not exceeded during the period when these tests are being performed and that individual rod worths do not exceed the values assumed in the safety analysis.

## 3/4.10.3 SHUTDOWN MARGIN DEMONSTRATIONS

Performance of shutdown margin demonstrations with the vessel head removed requires additional restrictions in order to ensure that criticality does not occur. These additional restrictions are specified in this LCO.

## 3/4.10.4 RECIRCULATION LOOPS

This special test exception permits reactor criticality under no flow conditions and is required to perform certain startup and PHYSICS TESTS while at low THERMAL POWER levels.

#### 3/4.10.5 OXYGEN CONCENTRATION

Relief from the oxygen concentration specifications is necessary in order to provide access to the primary containment during the iditial startup and testing phase of operation. Without this access the startup and test program could be restricted and delayed.

#### 3/4.10.6 TRAINING STARTUPS

This special test exception permits training startups to be performed with the reactor vessel depressurized at low THERMAL POWER and temperature while controlling RCS temperature with one RHR subsystem aligned in the shutdown cooling mode in order to minimize contaminated water discharge to the radioactive waste disposal system.

3/4.10.7 RESERVED - CURRENTLY NOT USED

LIMERICK - UNIT 1

9906160260 990609 PDR ADOCK 05000352 PDR B 3/4 10-1

# Amendment No. 17, 33, 133

FEB 1 1 1999

#### BASES

## 3/4.10.8 INSERVICE LEAK AND HYDROSTATIC TESTING

This special test exception permits certain reactor coolant pressure tests to be performed in OPERATIONAL CONDITION 4 when the metallurgical characteristics of the reactor pressure vessel (RPV) or plant temperature control capabilities during these tests require the pressure testing at temperatures greater than 200°F and less than or equal to 212°F (normally corresponding to OPERATIONAL CONDITION 3). The additionally imposed OPERATIONAL CONDITION 3 requirements for SECONDARY CONTAINMENT INTEGRITY provide conservatism in response to an operational event.

Invoking the requirement for Refueling Area Secondary Containment Integrity along with the requirement for Reactor Enclosure Secondary Containment Integrity applies the requirements for Reactor Enclosure Secondary Containment Integrity to an extended area encompassing Zones 1 and 3. Operations with the Potential for Draining the Vessel, Core alterations, and fuel handling are prohibited in this secondary containment configuration. Drawdown and inleakage testing performed for the combined zone system alignment shall be considered adequate to demonstrate integrity of the combined zones.

Inservice hydrostatic testing and inservice leak pressure tests required by Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code are performed prior to the reactor going critical after a refueling outage. The minimum temperatures (at the required pressures) allowed for these tests are determined from the RPV pressure and temperature (P/T) limits required by LCO 3.4.6, Reactor Coolant System Pressure/Temperature Limits. These limits are conservatively based on the fracture toughness of the reactor vessel, taking into account anticipated vessel neutron fluence. With increased reactor fluence over time, the minimum allowable vessel temperature increases at a given pressure. Periodic updates to the RCS P/T limit curves are performed as necessary, based upon the results of analysis of irradiated surveillance specimens removed from the vessel.

MAY 0 6 1999

LIMERICK - UNIT 1

B 3/4 10-2

Amendment No. 188 ECR 99-00864

#### BASES

#### 3/4.10.1 PRIMARY CONTAINMENT INTEGRITY

The requirement for PRIMARY CONTAINMENT INTEGRITY is not applicable during the period when open vessel tests are being performed during the low power PHYSICS TESTS.

## 3/4.10.2 ROD WORTH MINIMIZER

In order to perform the tests required in the technical specifications it is necessary to bypass the sequence restraints on control rod movement. The additional surveillance requirements ensure that the specifications on heat generation rates and shutdown margin requirements are not exceeded during the period when these tests are being performed and that individual rod worths do not exceed the values assumed in the safety analysis.

#### 3/4.10.3 SHUTDOWN MARGIN DEMONSTRATIONS

Performance of shutdown margin demonstrations with the vessel head removed requires additional restrictions in order to ensure that criticality does not occur. These additional restrictions are specified in this LCO.

#### 3/4.10.4 RECIRCULATION LOOPS

This special test exception permits reactor criticality under no flow conditions and is required to perform certain startup and PHYSICS TESTS while at low THERMAL PCWER levels.

## 3/4.10.5 OXYGEN CONCENTRATION

Relief from the oxygen concentration specifications is necessary in order to provide access to the primary containment during the initial startup and testing phase of operation. Without this access the startup and test program could be restricted and delayed.

## 3/4.10.6 TRAINING STARTUPS

This special test exception permits training startups to be performed with the reactor vessel depressurized at low THERMAL POWER and temperature while controlling RCS temperature with one Rnd subsystem aligned in the shutdown cooling mode in order to minimize contaminated water discharge to the radioactive waste disposal system.

## 3/4.10.7 SPECIAL INSTRUMENTATION - INITIAL CORE LOADING

This special test exception permits relief from the requirements for a minimum count rate while loading the first 16 fuel bundles to allow sufficient source-to-detector coupling such that minimum count rate can be achieved on an SRM. This is acceptable because of the significant margin to criticality while loading the initial 16 fuel bundles.

LIMERICK - UNIT 2

B 3/4 10-1

AUS 2 5 1929

#### BASES

## 3/4.10.8 INSERVICE LEAK AND HYDROSTATIC TESTING

This special test exception permits certain reactor coolant pressure tests to be performed in OPERATIONAL CONDITION 4 when the metallurgical characteristics of the reactor pressure vessel (RPV) or plant temperature control capabilities during these tests require the pressure testing at temperatures greater than 200°F and less than or equal to 212°F (normally corresponding to OPERATIONAL CONDITION 3). The additionally imposed OPERATIONAL CONDITION 3 requirements for SECONDARY CONTAINMENT INTEGRITY provide conservatism in response to an operational event.

Invoking the requirement for Refueling Area Secondary Containment Integrity along with the requirement for Reactor Enclosure Secondary Containment Integrity applies the requirements for Reactor Enclosure Secondary Containment Integrity to an extended area encompassing Zones 2 and 3. Operations with the Potential for Draining the Vessel, Core alterations, and fuel handling are prohibited in this secondary containment configuration. Drawdown and inleakage testing performed for the combined zone system alignment shall be considered adequate to demonstrate integrity of the combined zones.

Inservice hydrostatic testing and inservice leak pressure tests required by Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code are performed prior to the reactor going critical after a refueling outage. The minimum temperatures (at the required pressures) allowed for these tests are determined from the RPV pressure and temperature (P/T) limits required by LCO 3.4.6, Reactor Coolant System Pressure/Temperature Limits. These limits are conservatively based on the fracture toughness of the reactor vessel, taking into account anticipated vessel neutron fluence. With increased reactor fluence over time, the minimum allowable vessel temperature increases at a given pressure. Periodic updates to the RCS P/T limit curves are performed as necessary, based upon the results of analysis of irradiated surveillance specimens removed from the vessel.

## LEFT INTENTIONALLY BLANK

LDUERICE - UNIT 2

·...

..

. 8 3/4 2-3

Amendment No. 7

AUG 1 4 1987

#### BASES

## 3/4.2.3 MINIMUM CRITICAL POWER RATIO

The required operating limit MCPRs at steady-state operating conditions as specified in Specification 3.2.3 are derived from the established fuel cladding integrity Safety Limit MCPR, and an analysis of abnormal operational transients. For any abnormal operating transient analysis evaluation with the initial condition of the reactor being at the steady-state operating limit, it is required that the resulting MCPR does not decrease below the Safety Limit MCPR at any time during the transient assuming instrument trip setting given in Specification 2.2.

To assure that the fuel cladding integrity Safety Limit is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which result in the largest reduction in CRITICAL POWER RATIO (CPR). The type of transients evaluated were loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease.

The evaluation of a given transient begins with the system initial parameters shown in FSAR Table 15.0-2 that are input to a GE-core dynamic behavior transient computer program. The codes used to evaluate transients are discussed in Reference 2.

The MCPR operating limits derived from the transient analysis are dependent on the operating core flow and power state (MCPR(F), and MCPR(P), respectively) to ensure adherence to fuel design limits during the worst transient that occurs with moderate frequency (Ref. 6). Flow dependent MCPR limits (MCPR(F)) are determined by steady state thermal hydraulic methods with key physics response inputs benchmarked using the three dimensional BWR simulator code (Ref. 7) to analyze slow flow runout transients.

Power dependent MCPR limits (MCPR(P)) are determined mainly by the one dimensional transient code (Ref. 8). Due to the sensitivity of the transient response to initial core flow levels at power levels below those at which the turbine stop valve closure and turbine control valve fast closure scrams are bypassed, high and low flow MCPR(P), operating limits are provided for operating between 25% RTP and 30% RTP.

The MCPR operating limits specified in the COLR are the result of the Design Basis Accident (DBA) and transient analysis. The operating limit MCPR is determined by the larger of the MCPR(F), and MCPR(P) limits.

JUN 0 3 1999

\*.

. .

## LIMERICK - UNIT 1

## B 3/4 2-4

Amendment No. 7, 19, 30, 37, 66 ECR LG 99-01138

#### BASES

## 3/4.2.3 MINIMUM CRITICAL POWER RATIO

The required operating limit MCPRs at steady-state operating conditions as specified in Specification 3.2.3 are derived from the established fuel cladding integrity Safety Limit MCPR, and an analysis of abnormal operational transients. For any abnormal operating transient analysis evaluation with the initial condition of the reactor being at the steady-state operating limit, it is required that the resulting MCPR does not decrease below the Safety Limit MCPR at any time during the transient assuming instrument trip setting given in Specification 2.2.

To assure that the fuel cladding integrity Safety Limit is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which result in the largest reduction in CRITICAL POWER RATIO (CPR). The type of transients evaluated were loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease.

The evaluation of a given transient begins with the system initial parameters shown in FSAR Table 15.0-2 that are input to a GE-core dynamic behavior transient computer program. The codes used to evaluate transients are discussed in Reference 2.

The MCPR operating limits derived from the transient analysis are dependent on the operating core flow and power state (MCPR(F), and MCPR(P), respectively) to ensure adherence to fuel design limits during the worst transient that occurs with moderate frequency (Ref. 6). Flow dependent MCPR limits (MCPR(F)) are determined by steady state thermal hydraulic methods with key physics response inputs benchmarked using the three dimensional BWR simulator code (Ref. 7) to analyze slow flow runout transients.

Power dependent MCPR. limits (MCPR(P)) are determined mainly by the one dimensional transient code (Ref. 8). Due to the sensitivity of the transient response to initial core flow levels at power levels below those at which the turbine stop valve closure and turbine control valve fast closure scrams are bypassed, high and low flow MCPR(P), operating limits are provided for operating between 25% RTP and 30% RTP.

The MCPR operating limits specified in the COLR are the result of the Design Basić Accident (DBA) and transient analysis. The operating limit MCPR is determined by the larger of the MCPR(F), and MCPR(P) limits.

JUN 0 3 1999

LIMERICK - UNIT 2

## BASES

## 3/4.2.3 MINIMUM CRITICAL POWER RATIO

The required operating limit MCPRs at steady-state operating conditions as specified in Specification 3.2.3 are derived from the established fuel cladding integrity Safety Limit MCPR, and an analysis of abnormal operational transients. For any abnormal operating transient analysis evaluation with the initial condition of the reactor being at the steady-state operating limit, it is required that the resulting MCPR does not decrease below the Safety Limit MCPR at any time during the transient assuming instrument trip setting given in Specification 2.2.

To assure that the fuel cladding integrity Safety Limit is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which result in the largest reduction in CRITICAL POWER RATIO (CPR). The type of transients evaluated were loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease.

The evaluation of a given transient begins with the system in tial parameters shown in FSAR Table 15.0-2 that are input to a GE-core dynamic behavior transient computer program. The codes used to evaluate transients are discussed in Reference 2.

The MCPR operating limits derived from the transient analysis are dependent on the operating core flow and power state (MCPR(F), and MCPR(P), respectively) to ensure adherence to fuel design limits during the worst transient that occurs with moderate frequency (Ref. 6). Flow dependent MCPR limits (MCPR(F)) are determined by steady state thermal hydraulic methods with key physics response inputs benchmarked using the three dimensional BWR simulator code (Ref. 7) to analyze slow flow runout transients.

Power dependent MCPR limits (MCPR(P)) are determined mainly by the one dimensional transient code (Ref. 8). Due to the sensitivity of the transient response to initial core flow levels at power levels below those at which the turbine stop valve closure and turbine control valve fast closure scrams are bypassed, high and low flow MCPR(P), operating limits are provided for operating between 25% RTP and 30% RTP.

The MCPR operating limits specified in the COLR are the result of the Design Basis Accident (DBA) and transient analysis. The operating limit MCPR is determined by the larger of the MCPR(F), and MCPR(P) limits.

LIMERICK - UNIT 2

B 3/4 2-4

JUN 0 3 1999

Amendment No. 4, 48-ECR LG 99-01138

## BASES

## 3/4.2.3 MINIMUM CRITICAL POWER RATIO

The required operating limit MCPRs at steady-state operating conditions as specified in Specification 3.2.3 are derived from the established fuel cladding integrity Safety Limit MCPR, and an analysis of abnormal operational transients. For any abnormal operating transient analysis evaluation with the initial condition of the reactor being at the steady-state operating limit, it is required that the resulting MCPR does not decrease below the Safety Limit MCPR at any time during the transient assuming instrument trip setting given in Specification 2.2.

To assure that the fuel cladding integrity Safety Limit is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which result in the largest reduction in CRITICAL POWER RATIO (CPR). The type of transients evaluated were loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease.

The evaluation of a given transient begins with the system initial parameters shown in FSAR Table 15.0-2 that are input to a GE-core dynamic behavior transient computer program. The codes used to evaluate transients are discussed in Reference 2.

The MCPR operating limits derived from the transient analysis are dependent on the operating core flow and power state (MCPR(F), and MCPR(P), respectively) to ensure adherence to fuel design limits during the worst transient that occurs with moderate frequency (Ref. 6). Flow dependent MCPR limits (MCPR(F)) are determined by steady state thermal hydraulic methods with key physics response inputs benchmarked using the three dimensional BWR simulator code (Ref. 7) to analyze slow flow runout transients.

Power dependent MCPR limits (MCPR(P)) are determined mainly by the one dimensional transient code (Ref. 8). Due to the sensitivity of the transient response to initial core flow levels at power levels below those at which the turbine stop valve closure and turbine control valve fast closure scrams are bypassed, high and low flow MCPR(P), operating limits are provided for operating between 25% RTP and 30% RTP.

The MCPR operating limits specified in the COLR are the result of the Design Basis Accident (DBA) and transient analysis. The operating limit MCPR is determined by the larger of the MCPR(F), and MCPR(P) limits.

JUN 0 3 1999

12.

Amendment No. 4, 48-ECR LG 99-01138

## LEFT INTENTIONALLY BLANK

LIMERICK - UNIT 2

. . .

1

B 3/4 2-3 Amendment No. 14 MAY 06 1991

## BASES

## 3/4.2.3 MINIMUM CRITICAL POWER RATIO

The required operating limit MCPRs at steady-state operating conditions as specified in Specification 3.2.3 are derived from the established fuel cladding integrity Safety Limit MCPR, and an analysis of abnormal operational transients. For any abnormal operating transient analysis evaluation with the initial condition of the reactor being at the steady-state operating limit, it is required that the resulting MCPR does not decrease below the Safety Limit MCPR at any time during the transient assuming instrument trip setting given in Specification 2.2.

To assure that the fuel cladding integrity Safety Limit is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which result in the largest reduction in CRITICAL POWER RATIO (CPR). The type of transients evaluated were loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease.

The evaluation of a given transient begins with the system initial parameters shown in FSAR Table 15.0-2 that are input to a GE-core dynamic behavior transient computer program. The codes used to evaluate transients are discussed in Reference 2.

The MCPR operating limits derived from the transient analysis are dependent on the operating core flow and power state (MCPR(F), and MCPR(P), respectively) to ensure adherence to fuel design limits during the worst transient that occurs with moderate frequency (Ref. 6). Flow dependent MCPR limits (MCPR(F)) are determined by steady state thermal hydraulic methods with key physics response inputs benchmarked using the three dimensional BWR simulator code (Ref. 7) to analyze slow flow runout transients.

Power dependent MCPR limits (MCPR(P)) are determined mainly by the one dimensional transient code (Ref. 8). Due to the sensitivity of the transient response to initial core flow levels at power levels below those at which the turbine stop valve closure and turbine control valve fast closure scrams are bypassed, high and low flow MCPR(P), operating limits are provided for operating between 25% RTP and 30% RTP.

The MCPR operating limits specified in the COLR are the result of the Design Basis Accident (DBA) and transient analysis. The operating limit MCPR is determined by the larger of the MCPR(F), and MCPR(P) limits.

JUN 0 3 1999

Amendment No. 4, 48 ECR LG 99-01138