South Carolina Department of Health Due 7/29 and Environmental Control

2600 Bull Street Columbia, S.C. 29201

Commissioner Michael D. Jarrett

Board Moses H. Clarkson, Jr., Chairman Oren L. Brady, Jr., Vice-Chairman Euta M. Colvin, M.D., Secretary Harry M. Hallman, Jr. Henry S. Jordan, M.D. Toney Graham, Jr. M.D.

June 29, 1988

Donald A. Nussbaumer Assistant Director for State Agreements Program US Nuclear Regulatory Commission Washington, DC 20555

Dear Mr. Nussbaumer:

In regard to the report "Review of the Structural Design of Polyethylene High Integrity Containers" by S.A. Silling, the Department has several comments and guestions.

- Please verify the use of secant modulus instead of Young's Modulus. Secant modulus is usually used for metals.
- Assumption's that are based purely on tensile data cannot be considered adequate. Although there is little data on HDPE, most of the loads experienced by the containers are compressive.
- 3) The tests performed by BNL were done to establish a baseline stress value. These tests would be more adequate than the data given by Silling since Silling's data are for linear HDPE in pure tensile loads.
- 4) Silling states that HDPE cannot be designed to overcome creep buckling. The statement totally neglects the idea that HDPE may have a threshold stress below which containers could be designed using HDPE. Soo, in his Brookhaven report, also believes that a threshold value exists as it does with most all structural materials.
- The report totally neglects real world situations by taking into account backfill and percent filling of the containers.
- 6) We do agree that data for these specific applications is limited. Perhaps BNL should continue its research in the structural analysis of HDPE and take into account compressive loads, radiation, and the crosslinking of Marlex CL 100 specifically.

8811280084 881115 PDR FOIA RESNIKO88-470 PDR

15 17

June 29, 1988 Page 2

Although many questions have been raised concerning the adequacy of HDPE for HIC's, the Department does not feel that Silling's report confirms this inadequacy. We will continue to research this area of concern in the future. Please provide responses to the above mentioned concerns.

Should there be any questions, please contact Mr. Virgil R. Autry at (803) 734-4633.

Very truly yours,

Kyword J. Stealy

Heyward G. Shealy, Chief Bureau of Radiological Health

OTP/ac

REVIEW OF THE STRUCTURAL DESIGNS OF POLYETHYLENE HIGH INTEGRITY CONTAINERS

Stewart A. Silling

Assistant Professor of Engineering Brown University

presented to U.S. Nuclear Regulatory Commission Advisory Committee on Nuclear Waste June 28, 1988

GENERIC HIC

Typical geometry:

- Cylindrical shell
- Torospherical dome
- Rotationally molded Marlex CL-100

-Cross-linked high-density polyethylene (HDPE)

0.5 inch thickness

MAGNITUDE OF LOADS

- · Loads are from overburden
- · Affected by
 - -Depth
 - -Soil conditions
 - -Burial configuration

-Arching (Unequal stiffnesses of structure and soil influence load)

• Orders of magnitude (25 ft depth):

-Vertical pressure $p_v pprox 21$ psi

-Lateral pressure $p_\ell pprox 7$ psi

Total load on generic HIC is 19 tons

CRFEP: Definition

Uniaxial test at constant load - responses:

• Elastic

-Instantaneous

-Fully recoverable strain

• Plastic '

-Instantaneous

-Nonrecoverable strain

-Only important above the yield stress

• Creep

-Time-dependent

-Sometimes recoverable

-No threshold stress in general

-Time scales vary widely

(Microseconds to centuries, e.g. glaciers)

5 = (030

CREEP IN POLYMERS

- Elastic/plastic in short term
- Creep is the main long-term mode of deformation
 - -Marlex CL-100 low-stress creep properties are largely unknown

-Next slide shows Phillips data

-Result: at 500 psi (low stress),

total strain \approx 6 times elastic strain

DESIGN UNDER CONDITIONS OF CREEP

If the loads are constant:

• Define secant modulus (effective Young's modulus at time t)

$$E_s(t) = \sigma/\varepsilon(t)$$

where $\sigma = \text{stress}, \varepsilon(t) = \text{strain}$ in uniaxial creep test.

Marlex CL-100 after 1 hour (Phillips):

$$E_s = 16,700 \ psi$$

Vendors generally ignored creep, used

 $E = 100,000 \ psi$

-which is the (elastic) Young's modulus

• Effect of creep: reduced stiffness, increased deflections, different failure modes.

SIGNIFICANCE OF LARGE DEFORMATION EFFECTS IN HICs

Likely effects of creep:

Large shape changes will alter the stress distribution
 Small-deflection analysis probably invalid

-This is why flexible structures are hard to design

• Example: Torospherical dome under load

-Small-deflection analysis: load is supported by small compressive membrane stresses ("egg stresses")

-Large-deflection analysis: shape change leads to large bending stresses

FAILURE OF HDPE

Strongly affected by:

- Strain rate (higher strength at higher rates)
- Radiation
- Age (ductile/brittle transition)
- Chemical environment
- Temperature
- Exact material composition
- Molecular weight and cross-linking
- Microscopic defects
- Fabrication and processing methods

SHORT-TERM/LONG-TERM FAILURE OF HDPE

Time to failure depends on stress

- High stress (above ≈ 2500 psi):
 - -Rupture at "ultimate strength"
 - -Failure due to excessive plastic strain
 - -Time scale: seconds to minutes
 - -Only failure mode considered by vendors
- Moderate stress (1000 to 2500 psi):
 - -Ductile creep rupture
 - -Time scale: hours to weeks
- Low stress (below ≈1000 psi):
 - -Brittle failure
 - -Time scale: months to years
- 20-year test results (Graube) on next slide
 - -Hostalen GM 5010 Linear HDPE, unirradiated
 - -Extruded pressurized pipe
 - -20 degC, extrapolated from high temperature data
 - -Marlex CL-100 may behave differently

Failure of an unirradiated HDPE

RADIATION EFFECTS ON POLYMER MATERIAL STRENGTH

General effects, moderate dose

- Increases hardness and plastic strength
 Not relevant to HICs
- Creep rate may increase or decrease
 - Depends on dose rate
 - Scission may increase creep
 - Cross-linking decreases creep
- Embrittlement
 - Failure by crack propagation

RADIATION EMBRITTLEMENT OF MARLEX CL-100

• U-bend tests (Soo)

- -Radiation-induced cracks at constant strain
- -Cracking is in spite of stress relaxation

-Strains comparable to buckled HICs

• Uniaxial test: decreased elongation at break (Soo)

-Effect is sensitive to dose rate

CREEP BUCKLING

• Buckling: Large deflection occurring at a critical compressive load

- Creep strongly affects critical load
 - -Approximation: critical load proportional to material stiffness (secant modulus $E_s(t)$) for a given geometry
 - -Thus the critical load is a function of time
 - -Not considered by vendors
- Both vertical and lateral loads are important
- Soil and waste will have an unknown but helpful effect

Generic HIC buckling loads

TESTS SO FAR MEANINGLESS in regard to buckling

- Typical "compression test" by vendor:
 - -Container filled with water, sand, etc.
 - -Load is applied at ends only (no lateral loads)
 - -Test is run for a short time (up to ≈ 1 day)
- Meaningless because:
 - -Contents will prevent buckling
 - -Small lateral loads can cause buckling
 - -Creep buckling may be slow to develop

IMPORTANCE OF BUCKLING

Buckling means collapse

-Waste supports load

Excessive strains in kinks

-Radiation causes cracks in strained HDPE in spite of stress relaxation

- Integrity of seals cannot be assured
- Little is known about post-buckling in shells

SUMMARY Problems identified

- Uncertainty in long-term creep properties
- Creep ignored in the designs

-No design limits on deformation

• Brittle failure modes, including radiation embrittlement, were not considered

• Creep buckling appears unavoidable

PROSPECTS FOR REDESIGN

• HDPE is a poor material from a structural mechanics point of view

-Problems with HDPE are of a fundamental nature

• None of the following is well understood:

-Creep buckling

-Post-buckling behavior

-Long-term properties of polymers

-Design of flexible structures

• Composite materials a possibility

RADIATION EMBRITTLEMENT OF MARLEX CL-100

• U-bend tests (Soo)

- -Radiation-induced cracks at constant strain
- -Cracking is in spite of stress relaxation

-Strains comparable to buckled HICs

Test strip

Cracks after irradiation

Uniaxial test. decreased elongation at break (Soo)

-Effect is sensitive to dose rate

CREEP BUCKLING

• Buckling: Large deflection occurring at a critical compressive load

- Creep strongly affects critical load
 - -Approximation: critical load proportional to material stiffness (secant modulus $E_s(t)$) for a given geometry
 - -Thus the critical load is a function of time

-Not considered by vendors

- Both vertical and lateral loads are important
- Soil and waste will have an unknown but helpful effect

Generic HIC buckling loads

TESTS SO FAR MEANINGLESS in regard to buckling

• Typical "compression test" by vendor:

-Container filled with water, sand, etc.

-Load is applied at ends only (no lateral loads)

-Test is run for a short time (up to ≈ 1 day)

• Meaningless because:

-Contents will prevent buckling

-Small lateral loads can cause buckling

-Creep buckling may be slow to develop

IMPORTANCE OF BUCKLING

- Buckling means collapse
 - -Waste supports load
- Excessive strains in kinks
 - -Radiation causes cracks in strained HDPE in spite of stress relaxation
- Integrity of seals cannot be assured
- Little is known about post-buckling in shells

SUMMARY Problems identified

- Uncertainty in long-term creep properties
- Creep ignored in the designs

-No design limits on deformation

• Brittle failure modes, including radiation embrittlement, were not considered

• Creep buckling appears unavoidable

PROSPECTS FOR REDESIGN

• HDPE is a poor material from a structural mechanics point of view

-Problems with HDPE are of a fundamental nature

• None of the following is well understood:

-Creep buckling

-Post-buckling behavior

-Long-term properties of polymers

-Design of flexible structures

• Composite materials a possibility

NRC STAFF PRESENTATION TO THE ACNW

SUBJECT: UPDATE ON STATUS OF CEMENT WASTE FORM SOLIDIFICATION ISSUES.

DATE: JUNE 28,1988

44

PRESENTER: DR. MICHAEL TOKAR

PRESENTER'S TITLE/BRANCH DIV .:

SECTION LEADER / TECHNICAL BRANCH / LOW-LEVEL WASTE MANAGEMENT DIVISION

PRESENTER'S NRC TEL NO .: (301) 492-0590

SUBCOMMITTEE: ACNW

TO BE USED ALL PRESENTATIONS TO THE ACNW BY NRC EMPLOYEES

UPDATE ON

STATUS OF CEMENT

WASTE FORM SOLIDIFICATION

ISSUES

Dr. Michael Tokar ACNW Meeting June 28, 1988

LAST DISCUSSION (On March 17, 1988)

- * GENERIC ISSUES
- * TMI-2 WASTE LINER EVENT
- * STATUS OF (4) VENDOR TOPICAL REPORT RE."EWS
- * MISCELLANEA

SUBJECTS FOR DISCUSSION TODAY

- * WEST VALLEY CEMENT SOLIDIFICATION SYSTEM (CSS)
- * STATUS OF 4 CEMENT VENDOR TR REVIEWS

WEST VALLEY LLW ACTIVITIES

- · SOLIDIFICATION OF 39 WEIGHT PERCENT SUPERNATANT
- EXTRACTION OF CS-137 FROM HIGH-LEVEL SUPERNATANT
- 600,000 GALLONS OF WASTE
- 15,000 DRUMS OF WASTE

CEMENT FORMULATION - WV

INITIAL FORMULATION

-- FOAMING

-- LOW COMPRESSIVE STRENGTHS

CAUSE -- HIGH SHEAR MIXING

MODIFIED FORMULATION

-- SLOW SETTING

-- BLEED WATER

CAUSE -- ORGANICS

FINAL FORMULATION

-- INCLUDES ADDITIVES - CALCIUM NITRATE, ANTIFOAM AGENT & SODIUM SILICATE

WV CEMENT WASTE FORMS - TESTING

NRC - ADDITIONAL QUALIFICATION TESTING - APRIL 1988

DOE - HOT CHECKOUT TESTING

300 DRUMS PRODUCED

CONSIDERING FULL-SCALE TESTING

DEVELOPING LONG-TERM (5 Year) TEST PROGRAM

CHEM-NUCLEAR RESPONSE

- WITHDREW 2 EXISTING CEMENT TOPICAL REPORTS.
- SUBMITTED 3 NEW TOPICAL REPORTS (GPOUPED BY SOLIDIFICATION BINDER TYPE.)
 - 1) PMC BINDER
 - 2) POZZOLANIC BINDER
 - 3) CEMENT BINDER
- REVIEW SCHEDULES FOR THE NEW TOPICAL REPORTS ARE BEING PREPARED.
LN TECHNOLOGY RESPONSE

COMPRESSIVE STRENGTH AFTER IMMERSION VS. CURE TIME

- LN IS PERFORMING TESTING ON BEAD RESIN WASTE FORMS TO DETERMINE IF THE WASTE FORMS RETAIN STRENGTH WITH EXTENDED CURE TIME.
- * THE POST-IMMERSION COMPRESSIVE STRENGTH OF WASTE, CURED FOR VARIOUS TIMES, IS BEING MEASURED.
- * WASTE FORMS: CATION BEAD RESIN MIXED BED BEAD RESIN
- * CURE TIME (days): 14, 28, 42, 56, 70, 84
- IMMERS: JN MEDIA: DEMINERALIZED WATER
 SYNTHETIC SEA WATER
- · IMMERSION TIME: 90 DAYS
- * REDUCED WASTE LOADINGS

RESPONSES TO NRC LETTER - STOCK

- JANUARY 8, 1988 STOCK REQUESTS INFO ON STATUS OF BTP & 3NL REPORT.
 - MARCH 1, 1988 NRC RESPONDS TO STOCK LETTER & REFEATS REQUEST FOR INFO.
- MARCH 31,1988 STOCK DISCUSSES NUMARC REPORT.
- JUNE 6, 1988 LAST RESPONSE RECEIVED
- RESPONSE INADEQUATE
- SIGNIFICANT DEFICIENCIES WITH CERTAIN WASTE STREAMS
 DRAMATIC LOSS IN COMPRESSIVE STRENGTHS
- NRC NOTIFIES STOCK OF PLANS TO DISCONTINUE JUNE 1988

RESPONSES TO NRC LETTER - HITTMAN

- MEETING MAR_H 28, 1988
- AGREEMENT ON SCOPE OF ADDITIONAL TESTING APRIL, 1988
- TESTING DURATION JULY 1988 TO JANUARY 1989
- MONTHLY SUMMARY LETTER REPORTS
- RESUBMITTING REVISED TOPICAL REPORT

TOPICAL REPORT REVIEW STATUS SUMMARY

* *

SOLIDIFIED WASTE FORM and HIGH INTEGRITY CONTAINERS (HICs)

June 30, 1988

Vendor	Docket No.	Type	Disposition
Waste Chem General Electric U.S. Gypsum Chichibu Nuclear Packaging Nuclear Packaging DOW	WM-90*** WM-88 WM-51*** WM-81 WM-85 WM-85*** WM-82***	Solidification (bitumen) Solidification (polymer) Solidification (gypsum) HIC (poly impreg/concrete) HIC (ferralium/FL-50) HIC (ferralium/family) Solidification (polymer)	Approved. Approved. Approved. Approved. Approved. Approved. Approved.
ATI VIKEM Stock	WM-91*** WM-13 WM-92***	Solidification (bitumen) Solidification/oil (cement) Solidification (cement)	Discontinued. Discontinued. Discontinued.
Nuclear Packaging LN Technologies Chem-Nuclear Chem-Nuclear Chem-Nuclear Hittman	WM-71 WM-57 WM-47 WM-19*** WM-96*** WM-79***	Solid/Encap (cement/gypsum) HIC (polyethylene) HIC (fiberglass/poly) Solidification (cement) Solidification (cement) Solidification (SG-95)	Withdrawn. Withdrawn. Withdrawn. Withdrawn. Withdrawn.
Chem-Nuclear Chem-Nuclear Chem-Nuclear LN Technologies Hittman Chem-Nuclear Hittman TFC Nuclear Packaging LN Technologies Bondico Babcock & Wilcox	TBD TBD TBD WM-20 WM-20 WM-20 WM-20 WM-20 WM-20 WM-20 WM-20 WM-20 WM-28 WM-93 WM-93 WM-94 WM-95	Solidification (cement #1) Solidification (cement #2) Solidification (cement #3) Solidification (cement) Solidification (cement) HIC (polyethylene) HIC (polyethylene) HIC (polyethylene) HIC (316-stainless) HIC (stainless/poly) HIC (fiberglass/poly) HIC (coated carbon steel)	Under review. Under review.

* Approved for single waste stream for one year.

** Approved pending satisfactory completion of thermal cycling tests.

*** Actions completed in Calendar Year 1988.

TOPICAL REPORT REVIEW STATUS SUMMARY

SOLIDIFIED WASTE FORM and HIGH INTEGRITY CONTAINERS (HICs)

June 30, 1988

Actions Completed in Calendar Year 1988

Vendor	Docket No.	Туре	Disposition
Waste Chem U.S. Gypsum Nuclear Packaging DOW ATI Stock Chem-Nuclear Chem-Nuclear Hittman	WM-90 WM-51 WM-85 WM-82 WM-91 WM-92 WM-19 WM-19 WM-79	Solidification (bitumen) Solidification (gypsum) HIC (ferralium/family) Solidification (polymer) Solidification (bitumen) Solidification (cement) Solidification (cement) Solidification (cement) Solidification (SG-95)	Approved. Approved *. Approved. Discontinued. Discontinued. Withdrawn. Withdrawn. Withdrawn.

1

* Approved for single waste stream for one year. ** Approved pending satisfactory completion of thermal cycling tests.

Actions Completed Before Calendar Year 1988

Nuclear Packaging WM-45 VIKEM WM-13 Nuclear Packaging WM-71 LN Technologies WM-57 Chem-Nuclear WM-47	Solidification/oil (cement) Solid/Encap (cement/gypsum) HIC (polyethylene) HIC (fiberglass/poly)	Discontinued Withdrawn. Withdrawn. Withdrawn.
--	---	--

NRC STAFF PRESENTATION TO THE ACNW

SUBJECT: HIGH DENSITY POLYETHYLENE (HDPE) HIGH INTEGRITY CONTAINER (HIC) REGULATORY ISSUES.

DATE: JUNE 28,1988

PRESENTER: DR. MICHAEL TOKAR

PRESENTER'S TITLE/BRANCH DIV .:

SECTION LEADER / TECHNICAL BRANCH / LOW-LEVEL WASTE MANAGEMENT DIVISION

PRESENTER'S NRC TEL. NO.: (301) 492-0590

SUBCOMMITTEE: ACNW

TO BE USED ALL PRESENTATIONS TO THE ACNW BY NEC EMPLOYEES

HIGH DENSITY POLYETHYLENE (HDPE)

HIGH INTEGRITY CONTAINER (HIC)

REGULATORY ISSUES

Low-Level Technical Branch June / 1988

CURRENT SITUATION

* HDPE HICS HAVE BEEN ACCEPTED FOR SEVERAL YEARS AT THE BARNWELL LLW DISPOSAL FACILITY (See list of certificates of compliance).

 NRC IS REVIEWING 3 TOPICAL REPORTS (from CNSI, TFC-Nuclear, & W-Hittman) ON HDPE HIC DESIGNS.

NRC CONSULTANTS AT BNL AND BROWN UNIVERSITY HAVE
 RAISED QUESTIONS CONCERNING ABILITY OF HDPE HICS TO PROVIDE
 LONG-TERM (300 yr.) STRUCTURAL STABILITY AS REQUIRED BY
 10 CFR PART 61.

Certificates of Compliance

State of South Carolina

HIC Certificates of Compliance

.

.....

۰.

Issued to :	Essued what:	Issued when:
Adwin Equipment Company	55-gallon HIC	5/29/84
Chem-Nuclear	HOPE HICS (x 14)	5/26/81
Cham-Nuclear	FRP HIC	2/23/82
Chem-Nuclear	Overpack HICs (x3)	4/8/83
Philadelphia Electric Comp.	PECO-HIC-1	9/28/81
Hittman	Eadlok-55 HIC	6/17/82
Hittman	Radlok-100 HIC	6/17/82
Hittman	Radlok-200 HIC	5/5/83
Hittman	Radlok-500 HIC	9/31/85
LN Technologies	Barrier-55 HIC	9/1/83
TFC	NUHIC-120 HIC	11/1/83
NUPAC	HDPE 142 HIC	8/20/84
NUPAC	FL-50 HIC	9/26/85
Chichibu	Concrete HICs (x2)	8/12/86
Vermont Yankee	HOPE HIC	10/10/83

SUMMARY

- * HDPE USE BEGAN IN EARLY 80s IN S.C.
- NRC IMPLEMENTS PART 61 STABILITY REQUIREMENTS 1983.
- * VENDORS SUBMIT TR's FOR HDPE 1984.
- * TECHNICAL PAPER CRITICAL OF HDPE 1986.
- * BNL/MRC DEVELOPS METHODOLOGY & CRITERIA 1987.
- * VENDORS HAVE TROUBLE MEETING CRITERIA.
- * INDEPENDENT REVIEW BY S. SILLING.
- * STAFF POSITION TO BE DEVELOPED BY LATE SUMMER 1988.

SCHEDULE FOR HDPE HIC REPORT ACTIONS

ACTION

1

COMPLETED BY

	NRC requests study on HDPE HICs from Consultant Silling	3-11-88
	Draft HDPE HIC Report received from Silling	5-12-88
	Peer review of Draft HDPE HIC Report completed	6- 6-88
	Final HDP5 HIC Report received from Silling	6-13-88
•	Letters sent transmitting HDPE HIC Report HDPE HIC vendors - Hittman Nuclear - Chem-Nuclear Systems, Inc. - TFC Nuclear Associates, Inc. Advisory Committee on Nuclear Waste (ACNW) South Carolina DHEC	6-15-88
	Meeting with South Carolina DHEC	6-20-88
	ACNW Meeting that includes discussion on HDPE HIC Report	6-28-88
	Comments on HDPE HIC Report received from wendors	7-15-88
	Meetings with Vendors on HDPE HIC Report	Summer 88
	Final Decisions on HDPE HIC issues	Summer 88

REVIEW OF THE STRUCTURAL DESIGNS OF POLYETHYLENE HIGH INTEGRITY CONTAINERS

Stewart A. Silling

Assistant Professor of Engineering Brown University

presented to U.S. Nuclear Regulatory Commission Advisory Committee on Nuclear Waste June 28, 1988

GENERIC HIC

Typical geometry:

- Cylindrical shell
- Torospherical dome
- Rotationally molded Marlex CL-100
 - -Cross-linked high-density polyethylene (HDPE)
- 0.5 inch thickness

MAGNITUDE OF LOADS

- Loads are from overburden
- Affected by:
 - -Depth
 - -Soil conditions
 - -Burial configuration
 - -Arching (Unequal stiffnesses of structure and soil influence load)
- Orders of magnitude (25 ft depth):
 - -Vertical pressure $p_v \approx 21$ psi
 - -Lateral pressure $p_\ell pprox 7$ psi
- Total load on generic HIC is 19 tons

CREEP: Definition

Uniaxial test at constant load - responses:

• Elastic

- -Instantaneous
- -Fully recoverable strain
- Plastic
 - -Instantaneous
 - -Nonrecoverable strain
 - -Only important above the yield stress
- Creep
 - -Time-dependent
 - -Sometimes recoverable
 - -No threshold stress in general
 - -Time scales vary widely
 - (Microseconds to centuries, e.g. glaciers)

CREEP IN POLYMERS

- Elastic/plastic in short term
- Creep is the main long-term mode of deformation
 - -Marlex CL-100 low-stress creep properties are largely unknown

-Next slide shows Phillips data

-Result: at 500 psi (low stress),

total strain \approx 6 times elastic strain

Marlex CL-100 creep test (25 degC, air) Phillips data

DESIGN UNDER CONDITIONS OF CREEP

If the loads are constant:

• Define secant modulus (effective Young's modulus at time t)

$$E_s(t) = \sigma/\varepsilon(t)$$

where $\sigma = \text{stress}, \varepsilon(t) = \text{strain in uniaxial creep test.}$

• Marlex CL-100 after 1 hour (Phillips):

$$E_s = 16,700 \ psi$$

• Vendors generally ignored creep, used

 $E = 100,000 \ psi$

-which is the (elastic) Young's modulus

• Effect of creep: reduced stiffness, increased deflections, different failure modes.

SIGNIFICANCE OF LARGE - DEFORMATION EFFECTS IN HICs

Likely effects of creep:

Large shape changes will alter the stress distribution

 Small-deflection analysis probably invalid
 This is why flexible structures are hard to de

sign

• Example: Torospherical dome under load

-Small-deflection analysis: load is supported by small compressive membrane stresses ("egg stresses")

Large-deflection analysis: shape change leads to large bending stresses

large bending stress

FAILURE OF HDPE

Strongly affected by:

- Strain rate (higher strength at higher rates)
- Radiation
- Age (ductile/brittle transition)
- Chemical environment
- Temperature
- Exact material composition
- Molecular weight and cross-linking
- Microscopic defects
- Fabrication and processing methods

SHORT-TERM/LONG-TERM FAILURE OF HDPE

Time to failure depends on stress

- High stress (above ≈2500 psi):
 - -Rupture at "ultimate strength"
 - -Failure due to excessive plastic strain
 - -Time scale: seconds to minutes
 - -Only failure mode considered by vendors
- Moderate stress (1000 to 2500 psi):
 - -Ductile creep rupture
 - -Time scale: hours to weeks
- Low stress (below ≈1000 psi):
 - -Brittle failure
 - -Time scale: months to years
- 20-year test results (Graube) on next slide
 - -Hostalen GM 5010 Linear HDPE, unirradiated
 - -Extruded pressurized pipe
 - -20 degC, extrapolated from high temperature data
 - -Marlex CL-100 may behave differently

Failure of an unirradiated HDPE

RADIATION EFFECTS ON POLYMER MATERIAL STRENGTH

General effects, moderate dose

- Increases hardness and plastic strength
 Not relevant to HICs
- Creep rate may increase or decrease
 - Depends on dose rate
 - Scission may increase creep
 - Cross-linking decreases creep
- Embrittlement
 - Failure by crack propagation

TECHNICAL REPORT WM-3291-8

LOW-LEVEL WASTE PACKAGE AND ENGINEERED-BARRIER STUDY

QUARTERLY PROGRESS REPORT

APRIL - JUNE 1988

P. Soo J. H. Clinton L. Millan

AUGUST 1988

NUCLEAR WASTE AND MATERIALS TECHNOLOGY DIVISION

DEPARTMENT OF NUCLEAR ENERGY, BROOKHAVEN NATION & LABORATORY UPTON, NEW YORK 11973

¢915\$184

Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Contract No. DE-AC02-76CH00016

NOTICE

-. 1 ٧

đ

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or States Government. Neither the United States Government nor any agency thereof, or any of their employces, makes any v xranty, expressed or implied, or assumes any legal lishility or responsibility for any third party's use, or the results of such use, of any inform stion, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this report are not necessarily those of the U.S. Nuclear Regulatory Commission.

0

1

winds. 0

, ú

2

1

1

.

-

æ

LOW-LEVEL WASTE PACKAGE AND ENGINEERED-BARRIER STUDY

QUARTERLY PROGRESS REPORT

APRIL - JUNE 1988

P. Soo J. H. Clinton L. Milian

Nuclear Waste and Materials Technology Division Department of Nuclear Energy Brookhaven National Laboratory Upton, New York 11973

August 1988

NC ICE: This document contains preliminary information and was prepared primarily for interim use. Since it may be subject to revision or correction and does not represent a final report, it should not be cited as reference without the expressed consent of the author(s).

> Prepared the U.S. Regulatory Commission latory Research D2-76CH00016 91

ABSTRACT

The sulfate-attack tests for various Portland cement based mortars were completed this reporting period. It is believed that the poor performance of a mortar containing silica fume cannot be attributed to the larger number of big pores in this material. Some other unidentified mechanism appears to be responsible.

Creep tests are continuing on Marlex CL-100 high density polyethylene which is being used as a high-integrity container material. In-test gamma irradiation in air at 5 x 10^3 rad/h is beneficial at higher stress levels since it leads to a slower creep rate and a higher ductility compared to non-irradiated material. At lower stresses (≤ 10.34 MPa, 1500 psi) irradiation appears to be detrimental.

CONTENTS

- 14	-			
			-	-
	~	-		-
		<u> </u>	C.2 (
		-	-	- C
				_

ABST	RACT							•				,		•																	111
F121	I UF I	100	RES	• •	۰.				۰.			*	٠	٠					*	*		٠	٠					*	*	*	V11
LIST	OF	TABL	ES.	. *					۰.																					*	1 X.
ACKN	NOWLED	GME	NTS	•	٠	٠	•		•	*	*	٠	٠	٠	*		٠	*		*	*	٠	٠	•		٠	٠	*	٠	٠	×1
1.	INTRO	DUC	TIC	N.		•	•			•				•	•	•			•	•	•				•		•		•	•	1
2.	MECH	ANIC	AL	AND) (HE	MI	CA	L	ST	A	311	.11	TY	01	F	CEN	ME	NT	- B	ASI	ED	S	TRI	JCI	TUR	RAL				
	MATER	RIAL	s.							•	×													*			•			٠	3
	2.1	Su1	fat	:e-/	Att	ac	k	Te	st	s	•	,														•			•		3
3.	DEGR	ADAT	ION	ME	ECH	IAN	IS	MS	I	N	н	Cł	1-1	DEM	NS.	IT	YI	POI	LY	ETI	HYI	LE	NE	()	HDF	E).	÷			7
	3.1	Ove	rvi	ew	01	R	es	ea	an	h	Ac	t	ivi	it	ie	s.	-			Gal									•	•	7
	3.6	Enu	inc	ATT .					an	4		-	a.	94.	* * *	on			~			u - :									7
		Lav	114	2rmine	ent	• •	*	1.	1.	*	÷.,	.*.	*	:	÷.			÷.							•	*	*	۰.	*	•	0
	3.3	Uni	axi	al	C	ee	P	1.4	na	A1	01		in	26	1	ec	ce	a	En	¥1	ro	nm	en	CS.	٠.	٠	*	٠.	٠	٠.	
	3.4	irr	adi	at	101	10	re	ep	B	en	a	110	br	٠							٠	٠	٠	٠	٠		٠	٠	٠		20
	3.5	Tes	tir	ng f	Pro	oto	CC)]	fo	r	H)91		٠	٠		•		•	٠		٠		٠	٠	٠	٠	٠	٠		33
4.	REFE	RENC	ES.						÷																			1			37

LIST OF FIGURES

.

Title

Figure	2.1	Pore structure in Portland I cement mortar bars after 115 wet-dry cycles in deionized water (A) and sulfate solution (B). Mag. 2X
Figure	2.2	Pore structure in Portland V cement mortar bars after 105 wet-dry cycles in deionized water (A) and sulfate solution (B). Mag. 2X
Figure	2.3	Pore structure in OHCM bars after 100 wet-dry cycles in deionized water (A) and sulfate solution (B). Mag. 2X
Figure	3.1	Appearance of Type I (a), Type II (b), and Type III (c) Marlex CL-100 HDPE U-bend specimens gamma irradiated to 2.1 x 10 ⁶ rad (A), 1.3 x 10 ⁷ rad (B), and 6.7 x 10 ⁸ rad (C). Individual unirraliated Type I, Type II, and Type III control specimens are shown at the bottom of the figure. Mag. 0.8X
Figure	3.2	Crack patterns in as-prepared Type I Marlex CL-100 HDPE U-bend samples. Specimens are unirradiated controls
Figure	3.3	Crack patterns in unirradiated Type I Marlex CL-100 HDPE U-bend samples held at 10°C for 530 d in air 11
Figure	3.4	Crack patterns in as-prepared Type I Marlex CL-100 HDPE U-bend samples prior to gamma irradiation at 1.4 x 10^3 rad/h
Figure	3.5	Crack patterns in Type I Marlex $CL-100$ HDPE U-bend samples after gamma irradiation to 1.3 x 10 ⁷ rad at a dose rate of 1.4 x 10 ³ rad/h
Figure	3.6	Crack patterns in as-prepared Type I Marlex CL-100 HDPE U-bend samples prior to gamma irradiation at 8.4 x 10 ³ rad/h
Figure	3.7	Crack patterns in Type I Marlex CL-100 HDPE U-bend samples after gamma irradiation to 9.5 x 107 rad at a dose rate of 8.4 x 107 rad/h
Figure	3.8	Crack patterns in as-prepared Type I Marlex CL-100 HDPE U-bend samples prior to gamma irradiation at

Page

LIST OF FIGURES (continued)

ĥ

.0

30

Title

.

Ť

ļ

۲. .

.

Fi

ż

Figure 3.9	Crack patterns in Type I Marlex CL-100 HDPE U-bend samples after irradiation to 3.1 x 10 ⁹ rad at a	Page
Figure 3.10	O Stress-rupture results for Marlex CL-100 HDPE	17
Figure 3.11	Elongations at failure for Marlex CL-100 HDPE	22
Figure 3.12	Effect of removing the oxidized and the non- oxidized surface layers or the stress rupture	23
Figure 3.13	Effect of removing the oxidized and the non- oxidized surface layers on the stress runture of Marlex CL-100 HDPE in liquid scintillation	24
Figure 3.14	Effect of in-test gamma irradiation at 5 x 10^3 rad/h	5
figure 3.15	Effect of in-test gamma irradiation on the creep of (1500 psi).	3
igure 3.16	Effect of in-test gamma irradiation on the creep of Marie: CL-100 HDPE at a stress of 11.03 MPa	
gure 3.17	Effect of in-test gamma irradiation on the creep of Marlex CL-100 HDPE at a stress of 11.72 MPa	
gure 3.18	Effect of in-tost gamma irradiation on the creep of Marlex CL-100 HDPE at a stress of 12.58 MPa	

-5

0

LIST OF TABLES

.

Title

Table	2.1	Length increase measurements on cement mortar bars exposed to alternate wet-dry cycling in 2.1% Na ₂ SO ₄ solution or deionized water
Table	3.1	Test matrix for crack-propagation studies on irradiated Marlex CL-100 miniature U-bend specimens
Table	3.2	Crack initiation and propagation in Type I HDPE U-bend specimens exposed to gamma irradiation
Table	3.3	Creep test data for Marlex CL-10C HDPE tested in air and deionized water at room temperature 20
Table	3.4	Creep test data for Marlex CL-100 HDPE tested in various environments at room temperature
Table	3.5	Irradiation-creep test matrix for HDFE
Table	3.6	Irradiation-creep data for Marles CL-100 HDPE 27
Table	3.7	Available tests for evaluating failure/degradation 34

Page

ACKNOWLEDGMENTS

The authors gratefully acknowledge Ms. A. Lopez for the preparation of this report.

1. INTRODUCTION

Since the publication of NRC Rule 10 CFR 61, "Licensing Requirements for Land Disposal of Radioactivity Wastes," and the NRC Technical Position on Waste Form, there has been action by industry to develop improved low-level waste forms, containers, and engineered barriers. Over the last several years the NRC received a large number of Topical Reports for review as a part of license applications for waste forms, containers, and engineered barriers. During review of the reports, it was recognized that the data provided by the vendors are usually insufficient or questionable. It was also recognized that conventional test methods, such as ASTM test procedures, may not be applicable to certain waste package materials and that analytical procedures have not been established to interpret the test data with respect to the performance objectives in the regulation.

The objective of this research project is to develop an adequate data base for performance review of low-level waste package materials identified in vendors' topical reports and to provide a basis for technical guidance to States and applicants. This project will also review and improve, if needed, the existing tests methods for application to materials and to the design of waste packages and engineered barrier concepts. Methods will be developed to extrapolate short-term test data to long-term performance of waste packages as required in the regulation.

To date, five research tasks have been specified by NRC and BNL. They include:

- Task 1: Development of Work Plan.
- Task 2: Mechanical and Chemical Stability of Concrete-Based Structural Materials.
- Task 3: Degradation Mechanisms in High-Density Polyethylene (HDPE).
- Task 4: Biodegradation of Ion-Exchange Media.
- Task 5: Development of HDPE Testing Protocol.

Task 1 has been completed. Work in Task 2 is at an advanced stage, but will be significantly curtailed after this reporting period because of reduced funding. Task 3 is continuing on the long-term creep behavior of HDPE. Data from this study will be used in Task 5 which began this quarter. Experimental work in Task 4 has been completed and a Topical Report is being printed.

1

2. MECHANICAL AND CHEMICAL STABILITY OF CEMENT-BASED STRUCTURAL MATERIALS

Three types of cementitious material were prepared for this study, including Portland I and V, and a formulation prepared from information received from Ontario Hydro. This is designated Ontario Hydro-type cement mortar (OHC'1), although it should be stated that such laboratory-sized specimens may not accurately simulate the actual material. These materials are used for both sulfate-attack and gamma-irradiation tests. Details of specimen preparation and testing were given in a previous quarterly report (WM-3291-5, 1987).

2.1 Sulfate - Attack Tests

These are accelerated tests to determine the susceptibility of cementitious barrier materials to deterioration from sulfates which are present in soils in contact with the cement or from sulfate-containing waste. The BNL procedure is based on that developed by Kalousek (1976). He showed that sulfate attack effects could be accelerated by a factor of eight if alternate wet-dry cycling of samples was adopted in place of continuous immersion in sulfate solution. The drying cycle evaporates water in the cement matrix and allows fresh sulfate solution to enter during reimmersion. Without the drying period, sulfate would penetrate more slowly into the cement pores by a diffusional process. Four replicate mortar bars were used for both the sulfate-attack tests and their corresponding controls.

The BNL immersion/drying cycle is:

- Step 1: Immersion of specimens in 2.1% Na₂SO₄ solution (or deionized water for the control tests) at room temperature for 16 h.
- Step 2: Forced-air drying of the specimens for 7 h 40 min at 54 + 1°C.

Step 3: 20 min cooling of the specimens in still air.

Step 4: Repeat Step 1 through 4.

All testing begins with an immersion cycle with specimens (measuring 25.4 x 2.54 x 2.54 cm) placed in plastic containers of Na SO, solution (or deionized water). Glass rods are placed on the bottoms of the containers to assure solution contact on all sides of the test bars. During weekends the samples are left in the immersion cycle and they accumulate 64 h of soaking during this period. Sulfate-induced deterioration of concrete is caused by sulfate interacting with tricalcium aluminate in the cement paste to form a constituent with a larger volume. This causes volume increases in the cement and leads to cracking and failure of the concrete. Length-change measurements are typically used to estimate the degree of sulfate attack. Table 2.1, taken from the last quarterly report, shows that sulfate is most deleterious to the OHCM type formulation which is surprising since it is specially designed to provide resistance to this form of degradation. It was speculated that increased porosity in the cement matrix could be on explanation based on easier access of sulfate to the interiors of the test bars (WM-3291-7, 1988). Photographs of cross-sections of the concrete test bars were taken after the cyclic immersion tests had been completed to check whether there were major

Specimen	Tes: Solution	Test Time(d)	Number of Cycles	Initial Dial Gage Reading (in)	Final Dial Gage Reading (in)	Length Change(in)	% Change ⁽¹⁾	
Portland 1								
1 2 4 5	WIQ WIQ WIQ	71 71 71 71	48 48 48 48	0.1810 0.1785 0.1770 0.1740	0-1820 0.1790 0.1775 0.1745	0.0010 0.0005 0.0005 0.0005	0.01 0.01 0.01 0.01	
1 2 4 5	UIW UIW DIW	180 180 180 180	115 115 115 115	0.1810 0.1785 0.1770 0.1740	0.1820 0.1795 0.1780 0.1745	0.0010 0.0010 0.0010 0.0005	0.01 0.01 0.01	
8 9 10 11	Na 250. Na 250. Na 250. Na 250.	71 71 71 71	48 48 48 48	0.0470 0.0335 0.1780 0.1800	0.0715 0.0580 0.2000 0.2010	0.0245 0.0245 0.0220 0.0210	0.25 0.25 0.22 0.21	
8 9 10 11	Na 250. Na 250. Na 250. Na 250.	180 180 180 180	115 115 115 115	0.0470 0.0335 0.1780 0.1800	0.2480 0.2320 0.3730 0.3710	0.2010 0.1985 0.1950 0910	2.01 1.99 1.95 1.91	
Portland V								
1 2 3 4	WIQ WIQ WIQ	69 69 69	45 45 45	0.1605 0.1625 0.0470 0.0340	0.1595 0.1615 0.0460 0.0330	-0.0010 -0.0010 -0.0010 -0.0010	-0.01 -0.01 -0.01 0.01	
1 2 3 4	DIW DIW DIW DIW	166 166 166	5 105 105 105	0.1605 0.1625 0.0470 0.0340	0.1610 0.1630 0.0475 0.0340	0.0005 0.0005 0.0005 0	0.01 0.01 0.01 0	
5 6 7 8	Na 250. Na 250. Na 250. Na 250.	69 69 69	45 45 45	0.1845 0.1790 0.0270 0.0550	0.1895 0.1835 0.0335 0.0605	0.0050 0.0045 0.0065 0.0055	0.05 0.05 0.07 0.06	
5 6 7 8	Na 250. Na 250. Na 250. Na 250.	166 166 166	105 105 105	0.1845 0.190 0.0270 0.0550	0.2190 0.2125 0.0745 0.0990	0.0335 0.0335 0.0475 0.0440	0.34 0.34 0.48 0.44	
Ontario Hyd	ro Type							
2456	WIQ WIQ WIQ	74 74 74 74	44 44 44	0.1710 0.0445 0.1600 0.1525	0.1770 0.0515 0.1665 0.1580	0.0060 0.0070 0.0065 0.0055	0.06 0.07 0.07 0.06	
2456	WIQ WIQ WIQ WIQ	159 159 159 159	100 100 100	0.1710 0.0445 0.1600 0.1525	0.1815 0.0565 0.1720 0.1630	0.0105 0.0120 0.0120 0.0105	0.11 0.12 0.12 0.11	
7 8 9 11	Na 2 SO Na 2 SO Na 2 SO Na 2 SO	74 74 74 74	44 44 44	0.0250 0.0410 0.1565 0.0300	0.0690 0.0875 0.1900 0.0800	0.0430 0.0465 0.0335 0.0500	0.43 0.47 0.34 0.50	
7 8 9 11	Na 2 SO Na 2 SO Na 2 SO Na 2 SO	159 159	100 100	0.0250 0.0410 0.1565 0.0300	0.3030 _(2) 0.3915 _(2)	0.0278	2.78	

Table 2.1 Length increase measurements on cement mortar bars exposed to alternate wet-dry cycling in 2.1% $\rm Na_2SO_4$ solution or deionized water.

.

۲

-

**

.

Note

à

-

(1) Based on an effective gagelength of 10.00 in.

 $(2)_{No}$ measurement performed because mortar bar fractured during immersion/oven transfer.

.

Figure 2.1 Pore structure in Portland I cement mortar bars after 115 wet-dry cycles in deionized water (A) and sulfate solution (B). Mag. 2X.

Figure 2.2 Pore structure in Portland V cement mortar bars after 105 wet-dry cycles in deionized water (A) and sulfate solution (B). Mag. 2X.

Figure 2.3 Pore structure in OHCM bars after 100 wet-dry cycles in deionized water (A) and sulfate solution (B). Mag. 2X.

variations in porosity among the three i erials. Figures 2.1 through 2.3 show these results for test bars that were immersion cycled in deionized water and bars cycled in the sulfate test sole ons. Portland I and V cement mortars show very similar types of porosity, viz., very small pores with a number of much larger pores distributed throughout the section. For the OHCM the pore structure is similar but the larger pores are slightly more numerous and larger than those for Portlands I and V cement mortars. However, they are not interconnected and do not appear to provide rapid flow pathways for sulfate solution. Thus, excessive porosity in the OHCM samples does not offer a satisfactory explanation for the poor resistance to sulfate attack. In fact, there is evidence that air entrainment in cement could be beneficial with respect to sulfate attack (Lea, 1971). At this time there is no satisfactory explanation for the poor performance of the OHCM. Additional work will not be expended in this effort because of lack of funding.

3. DEGRADATION MECHANISMS IN HIGH-DENSITY POLYETHYLENE (HDPE)

3.1 Overview of Research Activities

High-density polyethylene is currently being used as a high-integrity container material for low-level wastes. Because of the need for such containers to maintain their structural integrity for at least 300 years (NRC Technical Position on Waste Form) potential failure/degradation modes must be determined for a range of environmental conditions. These include consideration of mechanical stress, gaseous/liquid environments within and external to the container, and the gamma radiation field. In some instances it is necessary to test under conditions more aggressive than those anticipated under shallow-land burial conditions so that failure or degradation modes can be more quickly identified and their relative importance assessed.

A combination of simple inexpensive tests (stressed U-bend samples) and more sophisticated uniaxial creep tests are being used to define the ranges of conditions for which mechanical failure/degradation is important. The creep test environments include Igepal CO-630, turbine oil and liquid scintillation fluid as well as air and deionized water (DIW), the control environments. Igepal CO-630 is a surfactant specified in standard ASTM tests for environmental stress cracking. Turbine oil is a possible constituent of low-level waste generated at reactor power plants, and is used in the current tests because of its known detrimental behavior to many types of plastic. Liquid scintillation fluids are not likely to be disposed of in burial sites at this time because of more stringent controls on their disposal. However, they are being evaluated here because they are representative of the class of organic solvents containing toluene and xylene. As such they will give valuable insights regarding a type of potential failure or degradation mode of HDPE.

In addition to the above-mentioned creep tests, the effect of gamma irradiation on mechanical properties is being studied. U-bend samples of HDPE are being irradiated in the BNJ gamma irradiation test facility to check for crack initiation and propagation, and the creep of in-test-irradiated HDPE was recently initiated to quantify creep behavior.

A description of the various subtasks is given below.

3.2 Crack Initiation and Propagation in a Gamma-Radiation Environment

Crack initiation and propagation is important in stressed HDPE containers because of the anticipated embrittlement by gamma irradiation. A simple inexpensive test was developed at BNL involving the use of static "U-bend" samples exposed to air and gamma radiation. It involved the evaluation of miniature U-bends manufactured from HDPS strips measuring 10.2 x 1.27 x 0.32 cm (4" x 0.5" x 0.125"). Holes were drilled at distances of 1.27 cm (0.5") from each end of the strips so that nuts and bolts could be used to hold the ends of the strip together when the U-bends were made. The specimens were prepared with the outer surfaces of the U-bends in three different conditions:

Type I - the as-received oxidited condition, which will have "natural" cracks present, as a result of bending,

- Type II as above, but with 10 mils of the oxidized surface removed with emery paper prior to bending. No cracks were formed during bending,
- Type III the as-received "non-oxidized" surface which also does not crack during bending.

Table 3.1 shows the cast matrix for the U-bend irradiation tests.

Table 3.1 Test matrix for crack-propagation studies on irradiated Marlex CL-100 miniature U-bend specimens.

1.11.1.1	Outer Surface Condition of U-Bend				
Gamma Dose Rate (rad/h)	Uxidized Surf. Present (Type I)	Oxidized Surf. Removed (Type II)	Non-Oxidized Surf. Present (Type III)		
$ \begin{array}{c} 0 \\ 1.4 \times 10^{3} \\ 8.4 \times 10^{3} \\ 4.4 \times 10^{5} \end{array} $	8 ⁽¹⁾ 8 8 8	8 8 8 8 8	3 8 8 8		

Figure 3.1 shows the U-bend specimens mounted on aluminum frames to facilitate irradiation. At the time the photograph was taken, the batches of specimens (A, B, and C) had accumulated 2.1 x 10^6 rad. 1.3 x 10^7 rad, and 6.7 x 10^8 rad, respectively. At the time of examination this reporting period, the doses have reached 1.3 x 10^7 rad, 9.5 x 10^7 rad, and 3.1 x 10^9 rad, respectively. Figures 3.2 through 3.9 show sketches of cracks in the apex regions of Type I specimens for the various irradiation conditions. Crack patterns immediately after specimen bending are shown together with the patterns after the given irradiation doses. To obtain statistical data on the cracking behavior, the number of cracks in Type I specimens were counted. The results are given in Table 3.2. Large cracks are defined as those with a length greater than one-half of the specimen width (i.e., >0.64 cm). A small crack is one with a length less or equal to one-half of the specimen width. The number of cracks given in Table 3.2 are the totals for each batch of 8 replicate specimens.

The numbers of small starting cracks in the unirradiated control batch were higher than for the other three batches. The majority of these cracks were present in Specimens 46 and 48 and, probably, were caused by small differences in the bending technique for these two specimens during fabrication into U-bend configurations. Nevertheless, the data given in Table

Figure 3.1 Appearance of Type I (a), Type II (b), and Type III (c) Marlex CL-100 HDPE U-bend specimens gamma irradiated to 2.1 x 10⁶ rad (A), 1.3 x 10⁷ rad (B), and 6.7 x 10⁸ rad (C). Individual unirradiated Type I, Type II, and Type III control specimens are shown at the bottom of the figure. Magnification 0.8 X.

a

Figure 3.2 Crack patterns in as-prepared Type I Marlex CL-100 HDPE U-bend samples. Specimens are unirradiated controls. Specimen numbers given above each sketch.

Figure 3.3 Crack patterns in unirradiated Type I Marlex CL-100 HDPE U-bend samples held at 10 C for 530 d in air. Specimen numbers given above each sketch.

Figure 3.4 Crack patterns in as-prepared Type I Marlex CL-100 HDPE U-bend samples prior to gamma irradiation at 1.4 x 10^3 rad/h. Specimen numbers given above each sketch.

-

Figure 3.5 Crack patterns in Type I Marlex CL-100 HDPE U-bend samples after gamma irradiation to 1.3 x 10⁷ rad at a dose rate of 1.4 x 20³ rad/h. Specimen numbers given above each sketch.

Figure 2.6 Crack patterns in as-prepared Type I Marlex CL-100 HDPE U-bend samples prior to gamma irradiation at 8.4 x 10³ rad/h. Specimen numbers given above each sketch.

1

.

C

-

Figure 3.7 Crack patterns in Type I Marlex CL-100 HDPE U-bend samples after gamma irradiation to 9.5 x 10⁷ rad at a dc-e rate of 8.4 x 10⁷ rad/h. Specimen numbers give above each sketch.

-

Ι,

1

.

-

.

C

C

0.

. .

.

.

.

.

Figure 3.9 Crack patterns in Type I Marlex CL-100 HDPE U-bend samples after irradiation to 3.1 x 10⁹ rad at a dose rate of 4.4 x 10⁵ rad/h. Specimen numbers given above each sketch. Table 3.2 Crack initiation and propagation in Type I HDPE U-bend specimens exposed to gamma irradiation.

	Gracks	Before Ir	radiation	Gracits	After Irr	adiation	22	cent Chan bers of Cr	er te acts		
Dose	Large	III	Total	Large	Stall	Total	Large	Ī	Total	Cracks	Penet. Cracks
Unirradiated Controls	2	=	8	8	15	110	n	*	16	0	0
1.3 x 10 ⁷ rad at 1.4 x 10 ⁸ rad/h)		•	z	16		100	8	•	15	1	-
9.5 x 10 ⁷ rad at 8.4 x 10 ³ rad/h)	8	~	8	8		102	21	8	82	2	-
3.1 x 10 ⁹ rad at 4.4 x 10 ⁵ rad/h)	69	-	и	8	•	8	12	•	61	1	0

3.2 for the numbers of large and small cracks in Type I specimens, irradiated at different dose rates, show well-defined trends. For example:

- The full-penetration cracks which completely fracture the U-bend specimens into two pieces occur almost exclusively in the low and intermediate gamma dose rate environments.
- Unirradiated specimens show the smallest increase in the total numbers of cracks (16 percent) and no deep cracks were observed.
- The intermediate dose rate (8.4 x 10³ rad/h) gives the large percent increase in the total number of cracks.

These irradiation tests are continuing. However, in the future, there may be slower changes in crack densities in the Type I specimens since a large number of specimens have completely fractured, leading to losses in the tensile stresses which are responsible for crack initiation and propagation. Future studies will mainly be focused or type II and Type III specimens which, to date, only show fine cracking (WM-5291-6, 1988).

3.3 Uniaxial Creep Behavior in Selected Environments

Creep tests are continuing at a test temperature of 20°C (68°F) using a simple dead-load system. Strains are measured using LVDTS (linearly variable differential transducers). Rates of creep, ductility-at-failure, and weight increase in the specimens caused by the absorption of the test liquids during creep are all measured. Tables 3.3 and 3.4 show the results accumulated to date. The data for the "old HDPE" were obtained from an earlier batch of material, and the remainder are for a newer supply purchased about 2 years ago. Current work is on the newer material, except for the irradiation-creep study which is described in Section 3.4.

Figures 3.10 and 3.11 show the latest stress-rupture and creep-ductility plots for tests in air, deionized water, scintillation fluid, turbine oil and Igepal. There appears to be reasonably well-defined threshold stresses below which failure should not occur in the latter three environments, but for air and water ionger-term testing will be needed to define this threshold. Note in Figure 3.11 that at the lowest stress levels (less than 8 MPa) the ductility of the HDPE is low and apparently approaching an embrittlement regime. This is not the case, however, for scintillation fluid for which ductilities in the range of 90-110 percent are observed.

Figures 3.12 and 3.13 show the beneficial effects of removing the oxidized surface layer from HDPE. In Igepal the rupture times are increased at all stress levels compared to as-received material. The threshold stress for creep is also increased by about 1.2 MPa (175 psi). In the case of scintillation fluid, removal of the oxidized layer mainly increases the threshold stress. The failure times at the higher stress levels are quite similar for non-oxidized and as-received HDPE.

Indition Is rec. Is	Environment Air Air Air Air Air Air Air Air Air Air	(MPa) 13.79 13.79 13.10 13.10 12.76 12.41 12.41 12.41 12.10 11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.34 10.34	(ps1) 2000 2000 1900 1900 1850 1800 1800 1750 1600 1600 1600 1575 1540 1540 1500 1500 1500	Time (h) 4.0 0.98 6.8 5.4 41.0 11.3 52.5 80.3 28.5 457 212 166 502 662 761	Break (\$ 56.0 56.6 56.8 46.6 46.2 74.6 50.0 79.6 50.0 79.6 56.0 79.7 85.4 72.9 55.0 61.6
IS PEC. IS	A1r A1r A1r A1r A1r A1r A1r A1r A1r A1r	13.79 13.79 13.10 13.10 12.76 12.41 12.41 12.41 12.10 11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34	2000 2000 1900 1850 1800 1800 1750 1690 1690 1600 1575 1540 1540 1540 1500	4.0 0.98 6.8 5.4 41.0 11.3 52.5 80.3 28.5 457 212 166 502 662 761	56.0 56.6 56.8 46.6 46.2 74.6 50.0 74.6 50.0 79.6 56.0 79.7 85.4 72.9 55.0 61.6
IS FEC. IS	A1r A1r A1r A1r A1r A1r A1r A1r A1r A1r	13.79 13.10 12.76 12.41 12.41 12.10 11.72 11.65 11.03 10.86 10.62 10.34 10.34 10.1;	2000 1900 1800 1800 1750 1700 1600 1575 1540 1540 1540 1500	0.98 6.8 5.4 41.0 11.3 52.5 80.3 28.5 457 212 166 502 662 761	56.6 56.8 46.6 46.2 74.6 50.0 76.0 79.6 55.0 79.7 85.4 72.9 55.0 61.6
IS PEC. IS	A1r A1r A1r A1r A1r A1r A1r A1r A1r A1r	13.10 13.10 12.76 12.41 12.41 12.10 11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.1;	1900 1900 1850 1800 1750 1690 1690 1690 1575 1540 1540 1540 1500	6.8 5.4 41.0 11.3 52.5 80.3 28.5 457 212 166 502 662 761	56.8 46.6 46.2 74.6 50.0 76.0 79.6 55.0 79.7 85.4 72.9 55.0 61.6
IS PEC. IS	A1r A1r A1r A1r A1r A1r A1r A1r A1r A1r	13.10 12.76 12.41 12.41 12.10 11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.1;	1900 1850 1800 1750 1700 1690 1690 1575 1540 1540 1540 1500	7.8 5.4 41.0 11.3 52.5 80.3 28.5 457 212 166 502 662 761	46.6 46.2 74.6 50.0 75.0 79.6 5€.0 79.7 85.4 72.9 55.0 61.6
IS rec. IS	A1r A1r A1r A1r A1r A1r A1r A1r A1r A1r	12.76 12.41 12.41 12.10 11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.1;	1850 1800 1750 1700 1690 1575 1540 1540 1540 1500	5.4 41.0 11.3 52.5 80.3 28.5 457 212 166 502 662 761	46.2 74.6 50.0 79.6 5€.0 79.7 85.4 72.9 55.0 61.6
IS FEC. IS	A1r A1r A1r A1r A1r A1r A1r A1r A1r A1r	12.41 12.41 12.10 11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.1;	1800 1800 1750 1690 1690 1575 1540 1540 1540 1500	41.0 11.3 52.5 80.3 28.5 457 212 166 502 662 761	74.6 50.0 76.0 79.6 5€.0 79.7 85.4 72.9 55.0 61.6
IS PEC. IS PEC.	A1r A1r A1r A1r A1r A1r A1r A1r A1r A1r	12.41 12.10 11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.1;	1800 1750 1700 1690 1575 1540 1540 1540 1500	11.3 52.5 80.3 28.5 457 212 166 502 662 761	50,0 76,0 79,6 5€,0 79,7 85,4 72,9 55,0 61,6
IS PEC. IS PEC.	A1r A1r A1r A1r A1r A1r A1r A1r A1r	12.10 11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.1;	1750 1700 1690 1600 1575 1540 1540 1500 1500	52.5 80.3 28.5 457 212 166 502 662 761	76.0 79.6 5€.0 79.7 85.4 72.9 55.0 61.6
S rec. S rec.	A1r A1r A1r A1r A1r A1r A1r A1r A1r	11.72 11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.1;	1700 1690 1500 1575 1540 1540 1540 1500	80.3 28.5 457 212 166 502 662 761	79.6 5€.0 79.7 85.4 72.9 55.0 61.6
IS PEC. IS PEC.	A1r A1r A1r A1r A1r A1r A1r A1r	11.65 11.03 10.86 10.62 10.62 10.34 10.34 10.1;	1690 1600 1575 1540 1540 1500 1500	28.5 457 212 166 502 662 761	5€.0 79.7 85.4 72.9 55.0 61.6
IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC.	A1r A1r A1r A1r A1r A1r A1r	11.03 10.86 10.62 10.34 10.34 10.1;	1600 1575 1540 1540 1500 1500	457 212 166 502 662 761	79.7 85.4 72.9 55.0 61.6
IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC. IS PEC.	Air Air Air Air Air Air	10.86 10.62 10.34 10.34 10.1;	1575 1540 1540 1500 1500	212 166 502 662 751	85.4 72.9 55.0 61.6
s rec. s rec. s rec. s rec. s rec. s rec. s rec. s rec. s rec.	Air Air Air Air Air	10.62 10.62 10.34 10.34 10.1;	1540 1540 1500 1500	166 502 662 751	72.9 55.0 61.6
s rec. s rec. s rec. s rec. s rec. s rec. s rec.	Air Air Air Air	10.62 10.34 10.34 10.1;	1540 1500 1500	502 662 751	55.0
s rec. s rec. s rec. s rec. s rec. s rec.	Air Air Air	10.34	1500	662	61.6
s rec. s rec. s rec. s rec. s rec.	A1r A1r A1r	10.34	1500	1 761	
s rec. s rec. s rec. s rec.	Air	10.1;		104	58.Z
s rec. s rec. s rec.	Alr	10.00	14/5	4023	60.4
s rec.	A10	10.00	1450	3821	55.1
s rec.		10.00	1450	2455	66.8
	Alr	9,83	1425	5173	53.5
a rec.	Alr	9.65	1400	5378	36.6
s rec.	All	9.31	1350	1819	71.9
s rec.	Air	9.13	1325	2610	38.9
s rec.	Alr	8,90	1300	3100	37.0
a rec.	AIF	8.90	1300	2808	33.7
s rec.	Air	8.27	1200	1 7740	16.2
s rec.	Air	7.93	1150	>5400	-
a rec.	Air	7.24	1050	>14400	
(1)	Air	13.79	2000	>5092	>673
(1)	Air	12.41	1800	>5257	>598
(1)	Air	11.03	1600	2319	585
(1)	Air	10.34	1500	7704	248.9
(1)	Air	8.27	1200	Ongoing	*
s rec.	DIW	11.03	1600	112	58.6
s rec.	DIW	10,69	1550	57	54.5
s rec.	DIW	10.34	1500	2027	95.5
s rec.	DIW	9.65	1400	5854	54.5
s rec.	DIW	8.27	1200	Ongoing	
(1)	DIN	11.03	1600	206	221.6
(1)	DIN	10.34	1500	452	85.2
lis	DIW	8.27	1200	Ongoing	
(2)	0.14	10.14	1000		
2	OIN	9,65	1400	\$264	53.5
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	S rec. Air S rec. Air S rec. Air (1) Air S rec. DIW S rec. DIW S rec. DIW S rec. DIW (1) DIW (1) DIW (2) DIW	Air 0.96 s rec. Air s rec. Air s rec. Air (1) BIW (2) DIW (2) DIW (2) DIW	Air 0.96 1300 S rec. Air 8.96 1300 S rec. Air 8.27 1200 S rec. Air 7.93 1150 (1) Air 7.24 1050 (1) Air 12.41 1800 (1) Air 12.41 1800 (1) Air 10.34 1500 (1) Air 10.34 1500 (1) Air 10.34 1500 (1) Air 8.27 1200 (1) Air 10.34 1500 (1) Air 8.27 1200 (1) Air 10.34 1500 (1) Air 9.65 1400 S rec. DIW 10.34 1500 S rec. DIW 9.65 1400 S rec. DIW 9.65 1400 (1) DIW 10.34 1500 (1) DIW 10.34 1500 (1) DIW 9.65 1400 <td>A1r 0.96 1300 3100 S rec. A1r 8.96 1300 2808 S rec. A1r 8.27 1200 7740 S rec. A1r 7.93 1150 >5400 (1) A1r 7.24 1050 >14400 (1) A1r 13.79 2000 >5092 (1) A1r 12.41 1800 >5257 (1) A1r 10.34 1500 7704 (1) A1r 10.34 1500 7704 (1) A1r 10.34 1500 7704 (1) A1r 8.27 1200 Ongoing (1) A1r 8.27 1200 0ngoing (1) A1r 8.27 1200 0ngoing (1) A1r 8.27 1200 0ngoing (2) DIW 10.34 1500 2027 (1) DIW 9.65 1400 584 (1) DIW 10.34 1500 452 (1)</td>	A1r 0.96 1300 3100 S rec. A1r 8.96 1300 2808 S rec. A1r 8.27 1200 7740 S rec. A1r 7.93 1150 >5400 (1) A1r 7.24 1050 >14400 (1) A1r 13.79 2000 >5092 (1) A1r 12.41 1800 >5257 (1) A1r 10.34 1500 7704 (1) A1r 10.34 1500 7704 (1) A1r 10.34 1500 7704 (1) A1r 8.27 1200 Ongoing (1) A1r 8.27 1200 0ngoing (1) A1r 8.27 1200 0ngoing (1) A1r 8.27 1200 0ngoing (2) DIW 10.34 1500 2027 (1) DIW 9.65 1400 584 (1) DIW 10.34 1500 452 (1)

Table 3.3 Creep test data for Marlex CL-100 HDPE .ested in air and deionized water at room temperature.

Test Number	Specimen Condition	Test Environment	(HPa)	ess (psi)	Failure Time (h)	Elong. at Break (%)	Weight Change (% per test day)
370 305 345 348 352 325	As rec. As rec. As rec. As rec. As .c. As .sc.	011 011 011 011 011 011 011	11.03 10.34 8.96 8.96 8.62 8.27	1600 1500 1300 1300 1250 1200	45.9 128 102 168 198 1502	92.1 60.3 43.4 51.1 54.5 36.3	0.19 0.06 0.02 0.04 0.01
39.6 379 378 37 36 309 341 333 383 394	As rec. As rec.	LSF LSF LSF LSF LSF LSF LSF LSF	12.41 11.72 11.38 11.03 10.34 9.65 8.27 7.24 6.89 6.72	1800 1700 1650 1600 1500 1400 1200 1050 1606 975	7.9 9.6 10.5 33.1 14 35 50 340 1602 Ongoing	35.0 94.8 49.3 89.9 83.5 98.0 98.5 95.8 111.4	0.72 1.47 0.34 0.25 0.15 1.40 0.02
330 332 331	$\binom{1}{\binom{1}{1}}$	LSF LSF LSF	9.65 8.27 7.24	1400 1200 1050	29 85 Ongoing	76.0 216.0	Ē
313 311	(2) (2)	LSF LSF	10.34 9.65	1500 1400	12 31	55.0 77.0	0.28 0.21
42 55 62	01d HOPE 01d HOPE 01d HOPE	LSF LSF LSF	10.34 9.65 8.27	1500 1400 1200	12 35 280	86.1 37.8 100.7	:
392 393 401 171 303 304 346 324 389	As rec. As rec. As rec. As rec. As rec. As rec. As rec. As rec. As rec.	Igepal Igepal Igepal Igepal Igepal Igepal Igepal Igepal	12.41 11.72 11.72 11.03 10.34 9.65 8.96 8.27 8.10	1800 1700 1700 1600 1500 1400 1300 1200 1175	3.1 17.7 20.7 45.6 65 106 128 1194 Ongoing	52.3 51.8 49.1 54.7 49.1 54.8 47.3 22.0	0.27 0.23 0.13 0.06 0.03 0.02
106 105 107 108 72 113 114 84	OID HOPE OID HOPE OID HOPE OID HOPE OID HOPE OID HOPE OID HOPE	I gepal I gepal I gepal I gepal I gepal I gepal I gepal	12.41 12.41 11.72 10.34 10.34 10.34 10.34	1800 1800 1700 1700 1500 1500 1500 1500	8 9 50 47 216 366 372 95	74.8 69.2 87.4 54.6 68.7 62.2 79.2 115.3	
340 329 328	$\binom{1}{1}$	Igepal Igepal Igepal	10.34 9.65 9.29	1500 1400 1350	312 476 12778	97.3 59.4 31.2	0.04
314 312	(2) (2)	Igepal	1. 34 9.65	1500	56 130	71.4	0.09

Table 3.4 Creep test data for Marlex CL-100 HDPE tested in various environments at room temperature.

Figure 3.10 Stress-rupture results for Marlex CL-100 HDPE tested at 20 C in various environments.

Figure 3.11 Elongations at failure for Marlex CL-100 HDPE tested at 20 C in various environments.

Figure 3.13 Effect of removing the oxidized and the non-oxidized surface layers on the stress rupture of Marlex CL-100 HDPE in liquid scintillation fluid.

3.4 Irradiation-Creep Behavior

A new series of uniaxial creep tests was started this quarter to determine the effects of in-test gamma irradiation on the creep rate and ductility of HDPE. Some earlier preliminary studies carried out at BNL were inconclusive since one indicated that the creep rate was increased by irradiation, whereas the other seemed to show the opposite (NUREG/CR-3898, 1984; NUREG/CR-4607, 1986). Very few tests were carried out and no definite conclusions could be drawn. Table 3.5 shows the basic test matrix for the new series of tests which cover the ranges for the earlier programs. The material used in this effort was from the "old batch" of HDPE used in the earlier work. Table 3.6 shows results to data from the irradiation-creep work. Some of the non-irradiated tests were conducted much earlier in this program and, therefore, the data cover a broader range of stress conditions than the four stresses listed in Table 3.5.

Figure 3.14 shows stress-rupture data for the in-test irradiated HDPE together with esults from unirradiated controls. At the higher stress levels the failure times are significantly larger for irradiated samples. At lower stress levels, gamma irradiation appears to become detrimental, and the failure time begins to decrease below that for unirradiated controls.

	Str		
Test Medium	(MPa)	(psi)	y Flux (rad/h)
Air	12.58	1825	0
Air	12.58	1825	5 x 10 ³
Air	12.58	1825	3 x 10 ⁴
Air	11.72	1700	0
Air	11.72	1700	5 x 10 ³
Air	11.72	1700	3 x 10 ⁴
Air	11.07	1600	0
Air	11.07	1600	5 x 10 ³
Air	11.07	1600	3 x 10 ⁴
Air	10.34	1500	0
Air	10.34	1500	5 x 10 ³
Air	10.34	1500	3 x 10 ⁴

Table 3.5 Irradiation-creep test matrix for HDPE

-	Material	Dose	Str	ess	Failure	Elong.
Test	Cond.	Rate(rad/h)	(psi)	(MPa)	time(h)	(%)
405	As fab.	5 x 10 ³	1825	12.58	27.5	206.1
403	As fab.	5 x 10 ³	1700	11.72	209.7	326.2
406	As fab.	5 x 10 ³	1600	11.03	119.8	8.7
404	As fab.	5 x 10 ³	1500	10.34	Ongoing	
384	As fab.	0	2000	13.79	1.8	67.6
368	As fab.	0	1900	13.10	5.3	46.6
375	As fab.	0	1850	12.76	18.6	(3)
351	As fab.	0	1825	12.58	5.8	82
344	As fab.	0	1700	11.72	47	127.6
343	As fab.	0	1600	11.03	127	92.0
342	As fab.	0	1500	10.34	2544	96.3
317	As fab.	0	1500	10.34	7514	93.4
31°	As fab.	0	1400	9.65	>15300	
386	As fab.	0	1200	8.27	>6300	· .
	13.11.23	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

Table 3.6 Irradiation-creep data for Marlex CL-100 HDPE

ų

Examination of the creep curves measured for various stress levels show in detail the effects of irradiation (Figures 3.15 through 3.18). At lower stress levels 10.34 and 11.03 MPa (1500 and 1600 psi) the irradiated specimens show a far lower creep rate (Figures 3.15 and 3.16). For the three failed specimens, the ductility values fell between about 80-95 percent. On the other hand, at stresses of 11.72 and 12.58 MPa (1700 and 1825 psi) the irradiation-creep curves show a final very fast rate of creep, associated with high creep strain, before failure occurs. Examination of the specimens while they are creeping shows that this stage of creep is converted with "necking" of the HDPE (local thinning of material in the gagelength). Usually, necking causes intense local plastic deformation leading t failure. In the case of these irradiation-creep specimens, material in the necked regions becomes

Figure 3.14 Effect of in-test gamma irradiation at 5 x 10^3 rad/h on the stress-rupture behavior of Marlex CL-100 HDPE.

.

6

. 9

Figure 3.17 Effect of in-test gamma irradiation on the creep of Harlex CL-100 H9PE at a stress of 11.72 MPa (1700 psi).

.

6

31

.

Figure 3.18 Effect of in-test gamma irradiation on the creep of Marlex CL-100 HDPE at a stress of 12.58 MPa (1825 psi).

(%)

Strain

hardened and the rate of additional plastic deformation decreases. New deformation is forced to spread to areas adjacent to the neck, giving an extended necked region. Over a period of time elongations of several hundreds of percent may be achieved.

Clearly, in-test gamma irradiation at a level of 5 x 10^3 rad/h is beneficial to the creep of HDPE. It decreases the creep rate and, at the higher test stresses used in this program, essentially triples the rupture ductility compared to unirradiated controls.

In the next reporting period, new irradiation-creep tests will be initiated for the higher dose rate of about 3 x 10^4 rad/h specified in Table 3.5.

3.5 Testing Protocol for HDPE

To determine failure modes and failure behavior of HDPE, a series of tests will be required. Several applicable tests have been formalized by ASTM and are in general use. New or modified procedures (such as the BNL U-bend test) may be used to study special aspects of plastics behavior.

Table 3.7 is a list of testing protocols for identifying and quantifying mechanical failure/degradation modes in HDPE. Some of them have been used in the current program and others are of obvious benefit in characterizing the mechanical behavior of HDPE. A more detailed description of their usage will be given in the next report for this effort.

Failure/Degradation Mode	Test Methods	Scope of Test Method
Environmental Stress-Cracking	ASTM D 1693	General scoping test to deter- mine susceptibility of material to cracking under the action of a local multiaxial stress and a surface-active liquid (Igepal CO-630).
	ASTM D 2552	More quantitative test than D 1693 to determine failure time of material under a given stress and a surface-active agent (Igepal CO-630)
	BNL U-bend test	General scoping test, similar to ASTM D 1693, but designed to quantify crack initiation and propagation in surface oxidized material under a static tensile stress. Various test environments may be used.
Irradiation Embrittlement	BNL U-bend test	General scoping test to deter- mine crack initiation and pro- pagation in material under a static tensile stress.
	ASTM D 638	Standard tensile test to measure tensile strength (at yield or break), elongation (at yield or break), and the modulus of elasticity. Comparison of properties for non-irradiated and pre-irradiated material will quantify degree of embrittlement
	ASTM D 2990	Standard tensile, compressive, and flexural creep test to quantify creep rates and ductilities. Effects of irradiation may be quantified by comparing properties of non- irradiated and pre-irradiated material or, more preferably, comparing properties of in-test irradiated material and corre- sponding non-irradiated methods.

Table 3.7 Available tests for evaluating failure/degradation modes in HDPE

Failure/Degradation Mode	Test Methods	Scope of Test Method
Ductile Failure	ASTM D 638	Stan and tensile test to measure strength and ductility. May be used to test in various environ- ments.
	ASTM D 790	Standard test to measure flexural (bending) properties of bar specimens. Test continued until fracture or until 5% ximum fiber strain is reached.
	ASTM D 2990	Standard test for creep under tensile, compressive, or flexural conditions. May be used to test in various environ- ments.
Low-Stress Creep Embrittlement	ASTM D 2990	Standard test that can be used to evaluate low-ductility creep failure under tensile and flexural conditions for various environments. Depending on test conditions, very long-term testing may be required. Higher temperatures may possibly be used to accelerate time fo failure, so that failure times and ductilities may be extra- polated to service conditions.
	ASTM D 2991	Standard test for stress relax- ation at constant strain level. This test is useful to evaluate crack initiation/propagation under low stress conditions. In particular, it will show how temperature, environment, and irradiation influence the rate of change in residual stresses in a plastic.
Impact Embrittlement	ASTM D 3029	Standard test to determine energy to fracture plastic by high speed falling weight. It is a valuable procedure when

Table 3.7 Available tests for evaluating failure/degradation modes in HDPE (Continued)

-

-

Failure/Degradation Mode	Test Methods	Scope of Test Method
		used to measure low-temperature impact energy since it is a good indication of the degree of crosslinking.
Liquid Absorpsion	ASTM D 570	Test specifically developed to measure amount of water absorbed by plastic in a given time at a given temperature. It should be very useful for a range of liquids pertinent to HDPE usage.

Table 3.7 Available tests for evaluating failure/degradation modes in HDPE (Continued)

19

Ф

a. --

...

.

4. REFERENCES

Lea, F.M., The Chemistry of Cement and Concrete, Third Edition, Chem. Publishing Co., Inc., 1971, p. 632.

NUREG/CR-3898, "An Evaluation of the Effects of Gamma Irradiation on the Mechanical Properties of High Density Polyethylene," Brookhaven National Laboratory, 1984.

NUREG/CR-4607, "The Effects of Environmental and Gamma Irradiation on the Mechanical Properties of High Density Polyethylene." P. Soo, and others, Brookhaven National Laboratory, 1986.

WM-3291-5, "Low-Level Waste Package and Engineered-Barrier Study," P. Soo, and others, Brookhaven National Laboratory, 1987.

WM-3291-6, "Low-Level Waste Package and Engineered-Barrier Study," P. Soo, and others, Brookhaven National Laboratory, 1988.

WM-3291-7, "Low-Level Waste Package and Engineered-Barrier Study," P. Soo, and others, Prookhaven National Laboratory, 1988.