

FIGURE 2.1.1b Unit 2 REACTOR CORE SAFETY LIMITS

FIGURE 2.1-1b
Unit 2 REACTOR CORE SAFETY LIMITS

TABLE 2.2-1 (Continued)

TABLE NOTATIONS

NOTE 1: Overtemperature N-16

$$N = K_2 = K_2 = K_2 = \frac{1 + \tau_1 S}{1 + \tau_2 S} T_c - T_c^{\circ} + K_3 (P-P^1) - f_1 (\Delta q)$$

Where:

N Q_{setpoint} = Measured N-16 Power by ion chambers Overtemperature N-16 trip setpoint.

T_c = Cold leg temperature, °F,

T_c° = 560.5°F for Unit 1, 560.8 560.6°F for Unit 2 - Reference T_c at RATED THERMAL POWER.

 $K_1 = 1.150$,

 $K_2 = 0.0148/^{\circ}F$ for Unit 1 $0.0138/^{\circ}F$ for Unit 2

 $\frac{1+\tau_1S}{1+\tau_2S}$ = The function generated by t_1 —lead-lag controller for t_2 T_c dynamic compensation.

 $\tau_1,~\tau_2$ = Time constants utilized in the lead-lag controller for $T_c,~\tau_1 \geq 10s,~\text{and}~\tau_2 \leq 3s,$

 $K_3 = 0.00080/psig$ for Unit 1 0.000720 0.000770/psig for Unit 2

TABLE 2.2-1 (Continued) TABLE NOTATIONS (Continued)

NOTE 1: (Continued)

For Unit 2

- (I) for q_t q_b between 65% and +7.5% +5.1%, $f_1(\triangle q)$ = 0, where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and q_t + q_b is total THERMAL POWER in percent of RATED THERMAL POWER.
- (ii) for each percent that the magnitude of q_t q_b exceeds -65%, the N-16 Trip Setpoint shall be automatically reduced by 0.0%* of its value at RATED THERMAL POWER, and
- (iii) for each percent that the magnitude of q_t q_b exceeds +7.5% +5.1%, the N-16 Trip Setpoint shall be automatically reduced by 2.00% 2.28% of its value at RATED THERMAL POWER.
 - * No setpoint reduction is required for the span of the $\triangle I$ indication.
- NOTE 2: The channel's maximum Trip Setpoint shall not exceed its computed Trip Setpoint by more than 1.72% of span for Unit 1 or 1.66% 2.82% of span for Unit 2.

ATTACHMENT 4 to TXX-98240

ITS TECHNICAL SPECIFICATION MARKUP

Figure 2.1.1-1 Page 2 of 2 Table 3.3.1-1 Page 8 of 9

Figure 2.1.1-1 (page 2 of 2)
Reactor Core Safety Limits (Unit 2)

Figure 2.1.1-1 (page 2 of 2)
Reactor Core Safety Limits (Unit 2)

Table 3.3.1-1 (page 8 of 9) Reactor Trip System Instrumentation

Note 1: Overtemperature N-16

The Overtemperature N-16 Function Allowable Value shall not exceed the following setpoint by more than 1.72% of span for Unit 1, or 1.66% 2.82% of span for Unit 2.

Qsetpoint =
$$K_1 - K_2 \left[\frac{(1 + \tau_1 s)}{(1 + \tau_2 s)} T_C - T_C^o \right] + K_3 (P - P^1) - f_1(\Delta q)$$

Where:

No setpoint = Measured N-16 Power by ion chambers Overtemperature N-16 trip setpoint

 $K_1 = 1.150,$

 $K_2 = 0.0148/^{\circ}F$ for Unit 1

= 0.0138/°F 0.0147/°F for Unit 2

 $K_3 = 0.00080/psig$ for Unit 1

= 0.000720/psig 0.000770/psig for Unit 2

T_c = Measured cold leg temperature

To = Reference To at RATED THERMAL POWER

= 560.5°F for Unit 1

= 560.8°F 560.6°F for Unit 2

P = Measured pressurizer pressure, psig

P1 = Nominal RCS operating pressure

≥ 2235 psig

s = the Laplace transform operator, sec-1.

T₁ ≥ 10 sec

 $T_2 \le 3 \, \text{sec}$

 $f_1(\Delta q) =$

 $0.00 \cdot \{(q_t - q_b) + 65\%\}$ when $(q_t - q_b) \le -65\%$ RTP

Unit 1: 0% when -65% RTP < $(q_t - q_b)$ < 5.0% RTP

 $2.15 \cdot \{(q_t - q_b) - 5.0\%\}$ when $(q_t - q_b) \ge 5.0\%$ RTP

 $0.0 \cdot \{(q_t - q_b) + 65\%\}$ when $(q_t - q_b) \le -65\%$ RTP

Unit 2: 0% when -65% RTP < $(q_t - q_b)$ < 7.5% 5.1% RTP

 $2.00 \cdot \{(q_t - q_b) - 7.5\% \cdot 5.1\%\}$ when $(q_t - q_b) \ge 7.5\% \cdot 5.1\% \cdot RTP$