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ABSTRACT 

Adaptive automation (AA) is the dynamic, real-time change in the degree of automation (DOA) 
triggered by conditions such as poor task performance and high operator workload.  AA has 
been discussed in the literature as a promising means of mitigating human performance issues 
that often arise in highly automated systems, such as loss of situation awareness, complacency, 
and degrading of manual skills.  The purpose this study is to define the current state-of-the-art in 
AA research and application and to examine its use in the commercial nuclear industry.  We 
reviewed published literature and obtained information from automation subject matter experts.  
We also conducted a site visit to a nuclear plant designer that is developing AA systems.  The 
results were organized into the following topics:  Effects of AA on performance, human-
automation interaction and human-system interfaces (HSI), and human factors engineering 
(HFE) guidance for designing and evaluating AA systems.  In general, we found that AA 
improved task performance and the operator’s understanding of automation.  While the 
research is limited, AA also supported operator recognition of automation failure and recovery.  
The design of HSI for AA systems is a key consideration.  An important aspect of HSIs is the 
design of how AA interacts with operators.  AA systems are more effective when they follow 
rules of etiquette similar to those used by human crewmembers in the operational environment.  
There is limited HFE guidance available to support designers and reviewers of AA systems.  
While standards and guidelines acknowledge AA as a design option, relatively few guidelines 
are available to support the function allocation process or the detailed design of the key aspects 
of AA systems.  Based on our findings, we have identified future research and development 
needs.  
 
This RIL should be used as a companion piece to a previous report by O’Hara & Higgins, 2017 
(Technical Report No. D0013-2-2017), with the same title, that was developed into RIL 2020-06.  
The results of this report were used heavily in the conclusions for RIL 2020-06.    
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1    INTRODUCTION 

1.1  Automation and Human Performance in Complex Systems 

Technology has been used to replace humans performing tasks since the beginning of the 
industrial revolution.  Early efforts to automate these tasks focused on the physical aspects 
while the scope of more modern automation has expanded to include the cognitive aspects of 
tasks as well.  Parasuraman and Riley (1997) defined automation as “the execution by a 
machine agent (usually a computer) of a function that was previously carried out by a human.”  
This definition is often cited and has been adopted in human factors engineering (HFE) 
standards (e.g., the Federal Aviation Administration’s Human Factors Design Standard) 
(Ahlstrom et al., 2003).  
 
In NUREG-0700, Revision 3, “Human-System Interface Design Review Guidelines,” (O'Hara & 
Fleger, 2020) the U.S. Nuclear Regulatory Commission (NRC), uses a variation on this 
definition – “Automation is a device or system that accomplishes (partially or fully) a 
function/task.”  The reference to activities “formerly carried out by a human” has been removed 
in acknowledgment of the fact that modern systems often have functions or tasks that have 
been specifically designed for automation with no expectation that human operators would ever 
perform them as the control system does.   

 
There are numerous reasons for the trend towards increased automation.  Historically, one of 
the compelling reasons has been to improve performance by applying automation to tasks that 
are difficult for operators to do.  The emergence of digital feedwater controls in nuclear plants 
was just such an application.  More recently, automation has been used to achieve a level of 
performance, control, or precision that is not possible with humans in the loop.   
 
Automation is also introduced to make the human’s job easier by lowering human workload.  It 
was believed that by automating difficult, tedious, and time-consuming functions/tasks (F/Ts),0F

1 
operator workload would be reduced.  Lowering workload was viewed to enable operators to 
focus more on overall system performance and improving situation awareness (SA). 
 
Another reason to automate a F/T is to minimize human error.  As the design of human-machine 
systems became more complex, designers often viewed the human as the “weak link;” an 
unreliable and unpredictable aspect of the system.  The solution to making systems more 
operationally reliable was automation.  A prevailing philosophy emerged to automate all F/Ts 
that could be automated from a technological point of view, leaving people to manage what 
could not be automated.  Automation was viewed to make system performance safer and more 
reliable.   
 
Another motivation to use automation is to reduce the number of humans needed to operate 
and maintain a facility.  For example, one of the goals of new nuclear power plant (NPPs) 
designs, such as small modular reactors (SMRs) is to make them more economical in 
comparison to current plants by reducing operations and maintenance (O&M) cost.  O&M costs 
are significant, and labor is over 50% of that cost (Thomas, 2012).  Thomas noted: 

 
1 While allocation is typically discussed at the level of functions (e.g., function allocation) functions are 

hierarchical and can be decomposed into the tasks necessary to perform the function. The allocation of 
responsibilities to human and automation agents can be at the level of an entire function or the tasks to 
be performed. To simplify the language, what is allocated is referred to as a function/task (F/T). 
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Nuclear power could be at a considerable disadvantage if it continues to rely on an 
operating model that requires a large plant staff. The largest component of a typical nuclear 
plant’s operating and maintenance (O&M) cost is labor, representing well over 50% of the 
cost structure. Labor will continue to be a rising cost over time while technology will 
generally be a falling cost. Thus, generation sources that are more technology-based could 
significantly erode the cost advantage that the nuclear power industry has enjoyed.  Digital 
technology provides the opportunity to transform the operating model of the nuclear power 
plants (NPPs) from one based on a large staff performing mostly manual activities to an 
operating model based on highly-integrated technology operated by a smaller staff. (p. 883) 

 
One approach to achieving Thomas’ vision is by increasing automation.  O&M costs can be 
significantly reduced if fewer personnel are needed to achieve production and safety goals.  
SMR designs are following this approach.1F

2   
 
Therefore, there are many reasons designers strive to increase automation employed in 
complex systems in general and particularly in NPPs. 
 
Modern automation is based on digital technology, advances rapidly, and is increasingly 
capable.  The result being the amount of automation employed in NPPs is increasing and is 
more broadly applied than it was previously: 
 

• greater use of automation for normal operations, such as plant startup in addition to 
safety responses 

• application to operator aids and decision support, such as to support procedure use and 
management 

• support for interface management, such as automatic display retrieval 
 

Because automation has become ubiquitous in modern control rooms, there are few F/Ts 
involved in plant operations that are not influenced by it.   
 
With such advances in automation, one might ask whether a need remains for human 
involvement in day-to-day plant operations.  A more suitable role for humans could be high-level 
supervision and administration of plant functions.  While the capabilities of automation may 
suggest such an evolution of operator roles, in fact, humans are still needed for several 
reasons.  The following are examples of what technology cannot accomplish: 
 

• F/Ts that have such significant consequences, human judgement should be involved  
• F/Ts that are too difficult or too expensive to automate 
• F/Ts that do not have the technological infrastructure to support automation (e.g., 

sensors needed to support automation are not available) 
 
Second, humans are needed to handle unplanned and unanticipated events (i.e., situations that 
arise that were not foreseen by automation/system designers).  Third, humans are needed as 
the last line-of-defense in the face of automation degradations and system failures.  With 

 
2 It should be noted that the reduction in SMR plant staffing, whether through automation or other means, 

has been identified as a potential safety issue by the NRC following an Issue Identification and Ranking 
Program used to independently assess and identify potential technical and regulatory issues (Smith & 
Moore, 2009) and subsequently in the NRC’s report to Congress on advanced reactor licensing (NRC, 
2012). 
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respect to these latter two reasons for maintaining human involvement, the ability to manage 
situations that are unforeseen by automation designers is seen as providing systems with 
necessary resilience (Woods & Cook, 2006). 
 
Therefore, humans are still needed for day-to-day operations and to provide overall supervision 
of plant operation and safety.   
 
1.2  Human Performance Challenges in Highly Automated Systems 

With the focus on automation technology, what often gets lost is the human role in the system.  
Automation designers have not always considered that role, nor have they designed the human-
automation interaction to support integrated system performance.   
 
In part, this situation is the result of the approaches used to allocate F/Ts to human and 
automation agents.  At worst, designers take a technological approach to allocation (i.e., they 
determine where automation can be feasibly applied and cost effective) and whatever is not 
automated becomes a human responsibility by default.  The result is an ad hoc set of F/Ts for 
operators to perform that may not be suited to their overall responsibilities for system 
performance and safety or their capabilities.   
 
When human capabilities are considered, they are often evaluated using a “Fitts List” (Fitts, 
1951); lists of relative human and automation capabilities.  F/Ts are considered in terms of what 
abilities are needed for a successful performance.  The list is then consulted and the F/T 
allocated to the most capable agent. Such lists are limited because they tend to be overly 
simplistic and frequently outdated as the capabilities of technology rapidly evolve.  Section 7.1 
provides a more detailed discussion of Fitts List approaches to function allocation. 
 
Issues associated with failing to account for the human role in highly automated systems were 
identified in several key papers in the early 1980s (e.g., Bainbridge, 1983; Wiener & Curry, 
1980).  As research and operating experiences accumulated, it revealed that simply considering 
whether humans or machines were more capable agents for performing a specific F/T was not 
sufficient.  For example, issues associated with loss of SA became apparent.  Endsley (1996) 
suggested that people are not well suited to monitoring automation.  Automation impacts SA in 
three ways: (1) changes in vigilance and complacency, (2) passive rather than an active role 
and, (3) changes in the quality of feedback to human operator. Automation’s complexity 
challenges SA, even when personnel attempt to monitor it.   
 
The general issues encountered with highly automated systems are summarized in Table 1-1. 
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Table 1-1  Human Performance Issues in Highly-Automated Systems 
 

Issue Key Findings 
Human role change • The notion of simply substituting automation for humans is a myth 

• Role change is not always for the better (e.g., passive monitoring 
rather than active control)  

Added complexity 
 

• Operator’s understanding of automation is incomplete due to 
increased complexity and its activities were not visible 

Monitoring, vigilance, and 
complacency  
 

• Confidence in automation can lead to complacency and vigilance 
decrements 

Out-of-the-loop unfamiliarity • Removal from the control loop lowers the operator’s situation 
awareness and alertness 

• Automation surprises 
Skill degradation and loss 
 

• Lack of skills use causes degraded performance 
 

New sources of workload 
 

• Configuring automation 
• Transitions to manual control 

New types of human error 
 

• Mode errors 
• Errors of commission and omission related to improper assessment 

of automation’s capabilities 
 
In addition to the failure of the F/T allocation process to properly account for the human role in 
system operations, studies also have shown that a significant contributing factor to the 
difficulties operators encounter in highly-automated systems is the poor design of the human-
system interfaces (HSIs) between operators and automation making it difficult for operators to 
monitor automation activities and performance (Billings, 1997; Endsley, 1996; Funk & Lyall, 
2000; Hollnagel, 1999; Lyall & Funk, 1998; Parasuraman, Sheridan, & Wickens, 2000; 
Parasuraman & Riley, 1997; Thurman et al., 1977; Wiener & Curry, 1980).   
 
Therefore, the human performance challenges of highly automated systems are well known and 
have been at least since the early 1980s.  It is reasonable to consider whether these issues 
have been resolved in modern systems (i.e., whether lessons learned from research and 
operating experience over the past 40 years has led to improvements in human-automation 
interaction to mitigate the negative effects).  However, they have not, and automation still 
challenges operators.  Some recent examples of failures of human-automation interaction 
illustrate this conclusion.   
 
The 2009 crash of Air France 4472F

3 typifies many of the problems the crews faced with 
automation. Airspeed sensor failures led to failure of the autopilot requiring the pilots to take 
over manual control of the aircraft.  The takeover was unsuccessful, and the aircraft crashed in 
the Atlantic Ocean resulting in the loss of 228 lives. 
 
The official accident report pointed to out-of-the-loop unfamiliarity at the point of manual 
takeover and a failure to recover SA as the key factors in the crews’ failure to manage to 
situation.  In addition, concerns over degradation of manual flying skills in such situations were 
also noted.  The accident report stated: 

 
3 https://spectrum.ieee.org/riskfactor/aerospace/aviation/air-france-flight-447-crash-caused-by-a-

combination-of-factors  

https://spectrum.ieee.org/riskfactor/aerospace/aviation/air-france-flight-447-crash-caused-by-a-combination-of-factors
https://spectrum.ieee.org/riskfactor/aerospace/aviation/air-france-flight-447-crash-caused-by-a-combination-of-factors
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The occurrence of the failure in the context of flight in cruise completely surprised the 
pilots of flight AF 447. The apparent difficulties with aeroplane handling at high altitude in 
turbulence led to excessive handling inputs in roll and a sharp nose-up input by the PF 
[pilot flying]. The destabilisation that resulted from the climbing flight path and the 
evolution in the pitch attitude and vertical speed was added to the erroneous airspeed 
indications and ECAM [electronic centralized aircraft monitor] messages, which did not 
help with the diagnosis. The crew, progressively becoming de-structured, likely never 
understood that it was faced with a “simple” loss of three sources of airspeed 
information. In the minute that followed the autopilot disconnection, the failure of the 
attempts to understand the situation and the de-structuring of crew cooperation fed on 
each other until the total loss of cognitive control of the situation. (BEA, 2012, p. 199) 

 
Degradations of manual flying skills in highly-automated aircraft has become such a significant 
concern that the Federal Aviation Administration (FAA) has issue a Safety Alert for Operators to 
address it (FAA, 2013). The safety alert summarized the concern as follows: 
 

Modern aircraft are commonly operated using autoflight systems (e.g., autopilot or 
autothrottle/autothrust). Unfortunately, continuous use of those systems does not 
reinforce a pilot’s knowledge and skills in manual flight operations. Autoflight systems 
are useful tools for pilots and have improved safety and workload management, and 
thus enabled more precise operations. However, continuous use of autoflight systems 
could lead to degradation of the pilot’s ability to quickly recover the aircraft from an 
undesired state. 
 
Operators are encouraged to take an integrated approach by incorporating emphasis of 
manual flight operations into both line operations and training (initial/upgrade and 
recurrent). Operational policies should be developed or reviewed to ensure there are 
appropriate opportunities for pilots to exercise manual flying skills, such as in non-RVSM 
[Reduced Vertical Separation Minimum] airspace and during low workload conditions. In 
addition, policies should be developed or reviewed to ensure that pilots understand 
when to use the automated systems, such as during high workload conditions or 
airspace procedures that require use of autopilot for precise operations. Augmented 
crew operations may also limit the ability of some pilots to obtain practice in manual flight 
operations. Airline operational policies should ensure that all pilots have the appropriate 
opportunities to exercise the aforementioned knowledge and skills in flight operations. 

 
Another example of how failures of the human-automation interaction have safety 
consequences is the 2009 Washington Metropolitan Area Transit Authority Metrorail accident in 
Washington DC (NTSB, 2010)3F

4.  The accident occurred when an inbound Metrorail train, 
number 112, struck the rear of stopped inbound train 214.  Nine people aboard train 112 were 
killed, including the train operator.   
 
The accident had both mode error and degraded system implications.  Some of the key findings 
from the National Transportation Safety Board (NTSB) accident report illustrate these issues: 
 

• The operator’s decision to operate train 214 (the struck train) in manual mode during the 
evening rush hour period was in violation of Metrorail rules, but track circuit B2-304 was 

 
4 http://www.washingtonpost.com/wp-dyn/content/article/2009/06/28/AR2009062802481.html  

http://www.washingtonpost.com/wp-dyn/content/article/2009/06/28/AR2009062802481.html
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failing to detect trains, regardless of whether they were operating in manual or automatic 
mode. 

• Because train 214, which was being operated in manual mode, was traveling at a much 
slower speed than the authorized speed commands it was receiving, train 214 stopped 
completely within the faulty B2-304 track circuit when its detection was lost, and it 
received a 0 mph speed command. 

• The Metrorail automatic train control system stopped detecting the presence of train 214 
(the struck train) in track circuit B2-304, which caused train 214 to stop and also allowed 
speed commands to be transmitted to train 112 (the striking train) until the collision. 

• On the day of the accident, parasitic oscillation in the track circuit modules for track 
circuit B2-304 was creating a spurious signal that mimicked a valid track circuit signal, 
thus causing the track circuit to fail to detect the presence of train 214. 

 
Automation complexities and the resulting mode confusion it created were at the center of the 
factors contributing to the crash of Asiana Airlines Flight 214 on July 6, 2013.  The Boeing 777-
200ER struck a seawall while attempting to land at San Francisco International Airport4F

5. Three 
of the 291 passengers were killed, many others were seriously injured, and the aircraft was 
destroyed.  NTSB (2014) found that the complex design of the automatic flight control system 
(AFCS) contributed to the pilot’s confusion over the failure of the selected mode to control air 
speed.  The pilots believed that the autothrottle was engaged and controlling air speed.  
However, it was in "hold" mode.  Therefore, neither the pilots nor the automation was controlling 
the airspeed.  Thinking the AFCS was controlling air speed, the pilots did not properly monitor 
the aircraft’s airspeed.  When they finally realized they needed to abort the landing and initiate a 
go-around maneuver, the airspeed was not high enough to do so and the crash resulted. The 
NTSB noted that inadequate training in the complexities of the AFCS and its behavior in 
different operational modes also contributed to the accident.   
 
The issues identified in these relatively recent accident investigations, such as loss of SA, mode 
confusion, and skills degradation, are well known and have been for many years.  Yet 
automation systems are still challenging to operators and when issues arise, the consequences 
to safety can be significant.  A similar conclusion was reached in a recent FAA study of flight 
management systems (Flight Deck Automation Working Group, 2013), leading FAA’s Office of 
Inspector General to recommend increased FAA oversight to reduce issues associated with 
increased automation (FAA, 2016).  While automation technology and capability has rapidly 
advanced, the technology for human-automation interaction has not kept pace.  In all high-risk, 
high-reliability domains, there is concern as to whether the increased automation will achieve its 
benefits and minimize potential negative effects on performance and safety 
 
1.3  Prior NRC Research on Human-Automation Interaction 

1.3.1  Importance of Automation in the Commercial Nuclear Industry 

The importance of human performance in highly automated systems has been recognized in the 
commercial nuclear industry.  In 2007, the Department of Energy (DOE) published a study 
providing a technology roadmap on instrumentation, control and human-machine interface to 
support DOE advanced NPP programs (Dudenhoeffer et al., 2007).  Seven areas of research 
were identified as essential elements for advancing these technologies in NPPs.  Of those 
elements, one area of research identified was “Human-System Interaction Models and Analysis 
Tools:”  

 
5 http://aviationweek.com/awin/asiana-crash-puts-focus-training-automation  

http://aviationweek.com/awin/asiana-crash-puts-focus-training-automation
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This topic addresses the development of new models of human-automation interaction 
based on emerging control technologies, such as automation that adapts to operator 
workload. Models should be defined and methods of analysis for allocation of functions, 
including dynamic allocation, should be formalized. The user interface requirements for 
each model should be specified. A test program should be included to evaluate 
concepts.  

 
In 2008, the NRC conducted a study to identify human performance research issues associated 
with the implementation of new technology in NPPs (O’Hara et al., 2008a & 2008b).  To 
accomplish this, current industry developments and trends were evaluated in the areas of 
reactor technology, instrumentation and control technology, human-system integration 
technology, and human factors engineering (HFE) methods and tools.  Sixty-four issues were 
identified.  Each of the issues was rated on its safety significance and how soon guidance on 
the issues was needed to support NRC reviews.  The ratings were made by 14 independent 
subject matter experts representing vendors, utilities, research organizations and regulators. 
Using the ratings, the issues were organized into four categories with the top category being the 
most important issues.  Twenty of the 64 issues were categorized into the top category, 
including two related to automation: 
 

• Levels of Automation – pertaining to the increased use of automation for normal and 
safety operations and its application beyond process control to all aspects of plant 
operations 

• Interfaces to Automation – pertaining to the human-system interfaces used by operators 
to monitor, configure, interact with and control automation 

 
In 2012, the NRC published a study outlining the human-performance issues related to the 
design and operation of SMRs (O’Hara, Higgins & Pena, 2012).  Two automation-related issues 
were identified.  One issue, “High Levels of Automation for All Operations and its 
Implementation,” similarly concluded the levels of automation issue identified in the earlier 
study.  The second issue, “Function Allocation Methodology to Support Automation Decisions,” 
addressed the fact that function allocation methodologies have not kept pace with automation 
technology, thus there is a need for improvements in the methods available to designers for 
making automation decisions.   
 
Human-automation interaction was also identified in the NRC’s report to Congress (NRC, 2012) 
on advanced reactor licensing and identified research needed to support licensing: 
 

The future designs will generally rely on passive rather than active safety features and 
may involve concurrent control of multiple modules from a common control room. In 
general, these designs will employ digital I&C [instrumentation and control] technology 
as opposed to the predominantly analog I&C technology used in the current fleet of 
operating nuclear plants. These systems will provide the capability for increased 
automation that makes greater use of interactions between personnel and automatic 
functions. Automation can change the operators’ role in monitoring, detection, and 
analysis of off-normal conditions, situation assessment, and response planning. 
Research is needed to determine the effect of these changes on operator safety 
performance and on plant safety.  
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Therefore, the nuclear industry, from both the designer and regulatory perspectives, have 
identified issues related to human-automation interaction as significant in the development of 
future commercial NPPs. 
 
As a new generation of NPPs emerge and existing plants are modernized with advanced I&C 
and automation technology, it is imperative that the design of automation is based on sound 
scientific and engineering principles that support human-automation collaboration, efficient 
performance, and safety.  Despite its importance, there is very little HFE guidance available to 
designers to support the implementation of these technologies or to regulator reviewers who 
must evaluate their safety.  
 
1.3.2  Automation Support for Tasks Involving Specific Human-System Interfaces (HSIs) 

Operators engage in generic tasks, such as monitoring and situation assessment, to accomplish 
plant safety and production goals.  Operators perform these tasks with the aid of the HSIs in the 
control room and in other operations locations in the plant.  Through the alarms, displays, 
computerized operator support systems (COSSs), procedures, and controls, HSIs provide 
information about the plant in order for operators to take actions to start, control, and stop plant 
systems and equipment (see Figure 1-1).  The NRC conducted several studies examining the 
automation support for specific tasks and the HSIs used to perform them (e.g., the use of 
computer-based procedures for performance of response planning and procedure management 
tasks (O'Hara, Higgins, Stuble & Kramer, 2000) and the use of advanced alarm systems for 
monitoring and detection tasks (O'Hara, Brown, Higgins & Stubler, 1994).  These studies 
developed guidance for the review of these specific HSIs which were integrated into NUREG-
0700 (O'Hara & Fleger, 2020).  
 

 
 

Figure 1-1  Operator task performance using HSIs 
 
In 1994, the NRC published a study examining potential improvements to plant alarm systems.  
In most complex human-machine systems like NPPs, the operator’s monitoring and detection 
tasks can easily be overwhelmed due to the large number of individual parameters and 
conditions involved (O'Hara, Brown, Higgins, & Stubler, 1994).  Therefore, support is generally 
provided for these activities by an alarm system.  The alarm system is one of the primary means 
by which abnormalities and failures come to the attention of the personnel.  An "alarm system" 
is essentially an automated monitoring/detection system. 
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One of the major challenges facing NPP operators is the sheer volume of alarms that come into 
the control room following a plant transient.  While some improvements were put into effect 
following the Three-Mile Island accident, they did not do enough to address the alarm avalanche 
problem.  A primary focus of the O’Hara et al., 1994 research was on alarm processing 
techniques.  Generally, these are techniques that process “raw” alarm information to determine 
if new alarm information is valid and presents new information to operators.  Two general 
classes of alarm processing techniques were discussed: (1) signal processing and (2) condition 
processing.  When instrumentation failures occur, such as a failed sensor, biased or false 
signals are generated.  The use of these signals by the alarm system may result in the 
presentation of either false or nuisance alarm messages.  Such alarm messages are misleading 
and may interfere with the operator's situation assessment or reduce the crew's confidence in 
future alarm messages.  Signal validation is a set of techniques by which signals from 
redundant or functionally related sensors are automatically evaluated to determine whether a 
true alarm condition exists.  An example is to analyze normal signal drift and noise signals to 
eliminate those that momentarily exceed the setpoint limits but are not indicative of a true alarm 
condition.  Alarm conditions that are not eliminated by the alarm signal processing may be 
evaluated further by alarm condition processing.  Thus, spurious alarms are not presented to 
operators. 
 
Alarm condition processing refers to the rules or algorithms that are used to determine the 
operational importance and relevance of alarm conditions.  This is done to determine whether 
the alarm messages that are associated with these conditions should be presented to the 
operator.  Four classes of processing techniques were defined: (1) nuisance alarm processing, 
(2) redundant alarm processing, (3) significance processing, and (4) alarm generation 
processing.  Each processing technique changes the resulting information provided to 
operators.  The research into alarm processing techniques represents an application of 
automation to the evaluation of individual alarms much as an operator might cognitively do if 
such a capability were not available.   
 
In 1994, the NRC also developed some general guidance for COSSs that were typically 
operator aids that supported situation analysis and decision-making (O'Hara, 1994).  COSSs 
are “knowledge-based” aids that provide assessments of plant conditions and typically do not 
involve controls.  An example of a COSSs is a decision aid for NPP operators that identifies 
severe accidents and makes mitigation response recommendations (Hur et al., 2015).  The 
guidance addressed the functional requirements of such systems, such as explanation and 
simulation features, and the desirable characteristics of their user interfaces.  The review 
guidance was derived mainly from existing HFE guidance from the U.S. Department of Defense 
(DOD, 1990). 
 
Another study focused on automation as applied to plant procedure use and its management 
(O'Hara, Higgins, Stubler, & Kramer, 2000).  Plant procedures are instructions to guide 
operators in monitoring, decision making, and controlling NPPs.  While plant procedures 
historically have been paper-based, computer-based procedures (CBPs) were being developed 
to support procedure use.  One of the key outcomes of this study was the application of a 
“levels of automation” concept to individual procedure functions.  Table 1-2 illustrates this 
concept.  The table identifies the procedure functions in the first column, organized by the 
primary generic tasks. The remaining columns show that the function can be performed by 
operators alone (manual), performed by automation and provided as suggestions to operators 
(advisory), performed by both operators and automation (shared), or by automation alone 
(automatic).  
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Table 1-2  Levels of Automation of Procedure Functions 
 
Procedure Functions Level of Automation1 

Manual Advisory Shared Automatic 
Monitoring and Detection 
  Process parameter values     
  Operator actions     
Situation Assessment 
  Procedure entry conditions     
  Resolution of procedure step logic     
  Step status (incomplete or completed)     
  Procedure history     
  Context sensitive step presentation     
  Assessment of continuous, time, and parameter steps     
  Assessment of cautions     
  High-level goal attainment and procedure exit conditions     
Response Planning 
  Selection of next step or procedure     
  Procedure modification based on current situation     
Response Implementation 
  Transition from one step to the next     
  Transition to other procedures     
  Control of plant equipment     

Note: Source is NUREG/CR- 6634 (O'Hara, Higgins, Stubler, & Kramer, 2000), Table 4-1  
 
1.3.3  General Human-Automation Interaction 

The NRC studies described above focused on specific tasks and HSIs rather than automation 
systems in general.  Therefore, no general characterization of automation defining the important 
dimensions of automation that impact operator performance were developed.  The studies also 
did not lead to general review guidance applicable to any human-automation interaction and 
supporting HSIs. 
 
The first major study to address general human-automation interaction was published in 2010 
(O’Hara & Higgins, 2010).  The purpose of the study was to develop guidance for the general 
aspects of human-automation interaction that is applicable to the review of any automated 
system.  The methodology is depicted in Figure 1-2. 
 

 
 

Figure 1-2  Automation review guidance development methodology 
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A characterization of plant automation that describes the design aspects of automation systems 
that are important to human performance was first developed.  Existing or planned automated 
systems for several new plant designs, as well as systems outside the nuclear industry were 
reviewed.  Six dimensions of automation were defined: adaptability, generic tasks, levels, 
processes, modes, and reliability.  Each dimension is described below.   
 
Adaptability 
 
A system can be designed such that the human or automation agent responsible for performing 
an activity is always the same (i.e., static allocation).  Alternatively, the allocation can change 
dynamically based on situational considerations, such as the operator’s overall workload.  This 
is adaptive automation (AA), and the factors that cause changes in allocation are called 
“triggering conditions.”  
 
Generic Tasks  
 
Generic tasks refer to the cognitive functions where automation has been applied.  The 
classification that has been used is the basis for many NRC HFE guidance efforts (O’Hara et al., 
2008a).  It includes the following functions: 

• monitoring and detection - are activities involved in extracting information from the 
environment to check the state of the plant and determine whether it is operating 
correctly 

• situation assessment - is evaluating current conditions to assure their acceptability or 
determining the underlying causes of any abnormalities  

• response planning - is deciding upon a course of action to address the plant’s current 
situation  

• response implementation - is undertaking the actions specified by response planning 
• interface management - pertains to activities such as navigating or accessing 

information at workstations and arranging various pieces of information on the screen  
 

Levels  
 
The level of automation (LOA) is the degree to which an activity is automated, extending from 
manual (i.e., performed by personnel without automation) to fully automated (i.e., performed 
with little to no personnel involvement).  Many taxonomies have been defined, and fitting NPP 
automation applications to a levels-of-control framework were sought.  Five levels were 
designated (see Table 1-3).  
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Table 1-3  Levels of Automation for NPP Applications 
 

 

Processes  
 
Automation uses input from the plant (and perhaps the operator) and processes the information 
to accomplish a goal.  These processes are an important aspect of automation in that they are 
the means by which automation performs its tasks.  Automation processes can include control 
algorithms, decision logic5F

6, and virtually any other type of information processing routine suited 
to its tasks.  
 
Modes  
 
Automated systems may have different modes of operation.  Modes define sets of mutually 
exclusive behaviors that describe the relationship between input to the automation and the 
response to it (Jamieson & Vicente, 2005).  A system can have multiple modes, but only one is 
active at a time.  Modes do not imply differing levels of automation; rather, they involve 
performing the same function in different ways.  Modes are beneficial in providing the capacity 
for a system to do different tasks, or to accomplish the same task using different strategies 
under changing conditions.   
 
Reliability 
 
All engineered systems have less than perfect reliability.  Automatic systems can fail in whole or 
in part and thus compromise their ability to achieve their intended function.  When an automatic 
system has a simple, well-defined task to accomplish, its reliability is easy to quantify (e.g., as 
the probability the system will correctly perform its function).  When its functions and tasks are 
complex, as is the case for many COSSs, defining the measures of reliability is more difficult.  
Further, it may be important to distinguish different aspects of an automatic system’s functions.  
Therefore, for an alarm system, reliability can be expressed in terms of misses (not alarming 
when alarm conditions exist) and false positives (alarming when an alarm condition does not 

 
6 An example is the use of Boolean logic. 

Level Automation Functions Human Functions 
1. Manual  

Operation 
No automation Operators manually perform all 

functions and tasks 
2. Shared  

Operation 
 

Automatic performance of some 
functions or tasks 

Manual performance of some 
functions/tasks 

3. Operation by 
Consent 

Automatic performance when 
directed by operators to do so, under 
close monitoring and supervision 
 

Operators monitor closely, approve 
actions, and may intervene to 
provide supervisory commands that 
automation follows 

4. Operation by 
Exception 

Essentially autonomous operation 
unless specific situations or 
circumstances are encountered 

Operators must approve of critical 
decisions and may intervene 

5. Autonomous 
Operation 

 

Fully autonomous operation.  System 
or function cannot normally be 
disabled, but may be started 
manually  

Operators monitor performance and 
perform backup if necessary, 
feasible, and permitted 
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exist).  Further, automation’s reliability may differ across different contexts of use, or modes of 
operation. 
 
This is a generic characterization of automation that defines the design envelope wherein any 
specific application of automation can be designed.  That is, any automation system will be 
applied to specific generic tasks, using a specific LOA, using either static or dynamic 
adaptability, with specific process and modes, at a specific level of reliability.   
 
These dimensions are important because, in addition to identifying adaptability as a dimension 
that describes that aspect of automation design pertaining to AA, the others are important to the 
understanding of how automation can change to provide adaptive support.   
 

To determine the effects of automation’s dimensions on performance, dimensions of 
performance are needed as well.  Performance can be characterized into three broad 
categories.  The first is integrated system performance that includes measures such as 
mission/function performance and process task performance.  The next category is cognitive 
task performance, with measures such as situation awareness and workload.  Finally, the last 
category is teamwork, which includes measures such as trust, communication, and 
coordination.   
 
Reviews of operating experience and evaluations of relevant literature in HFE, automation, and 
control, to develop models of the effects of the automation’s dimensions on performance were 
conducted.  In the early stages of research such models are descriptive.  When sufficient 
information is obtained the models can become mathematical to quantify the relationships.   
 
For example, Figure 1-3 depicts a model relating the relationship between automation’s 
reliability and the operator’s trust.  When the operator’s perceptions accurately match the 
automation’s reliability, trust is “well-calibrated” and operators use it appropriately.  When the 
operator’s trust does not match automation’s reliability, the “miscalibrated” trust leads to 
problems in how operators use automation.  When operator trust is high despite low automation 
reliability, automation is misused (i.e., continues to be used when it should be abandoned).  
When operator trust is low despite high automation reliability, operators inappropriately stop 
using automation (disuse) when they should not.   

 

 
Figure 1-3  Effect of automation’s reliability on operator trust and use of automation 
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Another example is illustrated in Figure 1-4.  This figure shows that operators are sensitive to 
the variations in automation’s reliability (although their perceived reliability is not necessarily 
accurate).  As automation becomes less reliable, task performance declines to a point where 
automation is abandoned.  Task performance can rebound a little as the operator shifts 
cognitive resources from dealing with the automation back to performing the task. 
 

 
 

Figure 1-4  Effect of automation’s reliability on task performance 
 
The research for each of the six automation dimensions to model its relationship to performance 
were reviewed.  This information formed a technical basis that was used to develop design 
review guidance for human-automation interactions (O’Hara & Higgins, 2010).  The guidance 
was updated and revised prior to its integration into NUREG-0700, Revision 3 and is discussed 
in Section 7.2 of this report. 
 
In addition to guidance development, the research identified several emerging issues, one of 
which was AA.   As noted above, the automation dimension of adaptability encompasses AA.  
AA is viewed as a potential means of improving the human-automation interaction and providing 
a means to mitigate some of the human performance issues associated with highly automated 
systems (Table 1-1).  The purpose of the current study is to look specifically at AA and define 
the state-of-the-art in AA research and application in operational systems in general as well as 
those in the commercial nuclear industry. 
 
1.4  Organization of This Report 

Section 2 describes the study’s objectives and methodology.  In Section 3, a definition and 
characterization of AA are provided, and the potential benefits of AA are discussed.  In Section 
4, AA applications in the commercial nuclear industry are identified.  
 
Section 5 presents the results of the research on the effects of AA on performance, including 
both normal operations and the management of degraded conditions.   Human-automation 
interaction is discussed in Section 6.  Topics include the modeling of human-automation 
interaction and teamwork, the design of HSIs to support that interaction, and the application of 
adaptive approaches to the design of the HSIs themselves. 
 
In Section 7, the HFE guidance available for designing and evaluating AA systems were 
reviewed.  The guidance addresses function allocation, the detailed design of AA, and its 
evaluation and validation.   
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The results are discussed in Section 8.  The lessons learned from this research are summarized 
and approaches to improving human-automation Interaction are recommended.  Potential 
applications of AA in commercial nuclear plants were also examined.  Finally, research and 
development needs are presented along with final conclusions. 
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2    OBJECTIVES AND METHODOLOGY 

The need for guidance related to human-automation interaction has been made in the general 
HFE literature (Sebok et al., 2009 & 2010) and for NPP design in particular (Dudenhoeffer et al., 
2007).  The need for such guidance to support NPP reviews was recognized by NRC RES 
(O’Hara et al., 2008a; O’Hara & Higgins, 2010; O’Hara, Higgins, & Pena, 2012); an NRC User 
Need (NRC-NRO, 2012); and NRC report to Congress (NRC, 2012).  Research on adaptive 
automation is an extension of this need for improved guidance on automation in general.  In 
addition, this research was specifically requested by the Office of New Reactors (now the Office 
of Nuclear Reactor Regulation).  The methodology used to provide an improved technical basis 
for human-AA interaction is described in this section. 
 
2.1  Objectives 

The objective of this research is to perform a scoping study to extend the NRC’s understanding 
of the application of AA to NPP operations by developing a characterization of AA systems and 
a technical basis consisting of current research and experience with them.  As a scoping study, 
the aim is to develop an AA characterization and a technical basis that can serve as the 
foundation for review guidance, which if needed, can be developed as part of a future project.  
Specifically, the research will address the following topics: 
 

• applications for AA in operating systems, including NPPs 
• performance benefits and safety implications of AA applications 
• triggering conditions used and their relative advantages and disadvantages 
• measures of system, operator, and crew performance that are needed to implement AA 

for the identified potential applications and the associated challenges with obtaining and 
using such measures 

• HSI design considerations for implementing AA (e.g., communicating and negotiating re-
allocation of functions) 

• challenges AA applications present to the NRC’s existing regulatory review 
framework/processes 

 
2.2  Methodology 

In this section, a brief overview of the methodological steps undertaken are provided.  Figure 2-
1 is an overview of the main steps in the project’s methodology.   
 

 
 

Figure 2-1  Major steps in the project’s methodology 
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Topic Characterization 
To develop a technical basis, a characterization of AA needs to be developed.  The 
characterization describes the design aspects of AA systems that are important to performance.  
The characterization must be sufficiently robust to accommodate the review of a diversity of 
systems that designers may employ.  Characterization is important because it affords a structure 
for developing and organizing review guidance.  Also, it gives the reviewer a framework for 
performing the design safety reviews.  To develop the characterization, existing AA systems 
from both the general literature as well as the nuclear industry were reviewed.  The AA 
characterization is discussed in Section 3 of this report. 
 
Technical Basis Development 
Once the characterization was completed, research to determine the effects of AA on human 
and integrated system performance was conducted.  The research was used to identify issues 
and best practices for supporting performance.  Information from a variety of sources was used 
(see Figure 2-2). 
 
Existing HFE standards and guidance documents were reviewed.  However, little guidance is 
provided for the design of for AA in most HFE standards and guidelines.  There are a few 
exceptions (e.g., the Federal Aviation Administration’s Human Factors Design Standard (HFDS) 
(Ahlstrom et al., 2003)), and these standards and guidelines are discussed in Section 7.   
 
Chapters in HFE handbooks offering sound analyses and syntheses of existing literature (e.g., 
Cong, 2009) were sought.  Such documents are invaluable in that they constitute a review of 
research and operational literature by knowledgeable experts.  Literature, consisting of papers 
from research journals (e.g., Miller & Parasuraman, 2007) and technical conferences (e.g., 
Calhoun, Ward & Ruff, 2011) describing work in the nuclear as well as other industrial domains 
were reviewed and formed the bulk of the technical basis.  
 
Nuclear industry experience also was obtained from interviews and communications with 
vendors, researchers, and consultants with knowledge of NPP automation and a site visit to an 
NPP design organization. 
 
The information to identify consistent findings and lessons learned were reviewed.  These 
reviews, findings, and lessons learned formed the technical basis of information on AA.  The 
results of this effort are described in Sections 4 through 7. 
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Figure 2-2  Technical basis and guidance development 
 
When a technical basis for a topic is developed, typically additional research issues are 
identified as well.  These are aspects of the topic for which insufficient information is available in 
the literature to derive clear findings and lessons learned.  Several research issues for AA were 
identified and summarized in Section 8 of this report. 
 
Regulatory Guidance Assessment 
Once the technical basis is established, the results will be considered with respect to the 
challenges AA applications may present to the NRC’s existing regulatory framework/processes.  
The main focus of this evaluation will be the detailed guidance in NUREG’s 0700 and 0711.  
However, other NRC review guidance will be assessed as well.  The results of this assessment 
are published in a separate report (O’Hara, 2017). 
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3    CHARACTERIZATION OF ADAPTIVE AUTOMATION 

3.1  Defining Adaptive Automation (AA) 

AA is referred to in slightly different ways in the literature.  Some common terms include:  
adaptable automation, adaptive systems, collaborative automation, adjustable autonomy, 
dynamic task allocation, dynamic function allocation, cooperative control, mixed-initiative 
systems, and adaptive aiding.  Some of these terms encompass more than AA exclusively. 
 
This section defines AA and how it differs from other types of automation.  Several definitions of 
AA can be found in the literature: 
 

• “the dynamic, real-time allocation of tasks to the operator or automated system in a 
flexible manner in order to improve system and operator performance and to minimize 
performance degradations” (Arciszewski et al., 2009)  

• “the real time allocation of tasks to the user or automated system in a flexible manner, 
changing the automation to meet current situational demands” (Ahlstrom et al., 2003) 

• “the technological component of joint human–machine systems that can change their 
behavior to meet the changing needs of their users, often without explicit instructions 
from their users” (Feigh et al., 2012) 

 
These definitions capture two key characteristics of AA that make it different from other types of 
automation.  First, AA is characterized by F/Ts that are allocated dynamically, rather than 
statically.  Typically, allocations are statically defined as part of the design process.  For 
example, designers decide what LOA is best for a particular automatic system.  Once designed, 
it functions in that manner and the LOA does not change.  By contrast, AA systems are 
designed to be flexible such as to offer different degrees of automation.  As a result, AA 
systems have more than one configuration, where a configuration is a defined set of 
responsibilities for automation and the human crew.   
 
The second key characteristic of AA is that the dynamic changes in allocation are triggered 
based on changes to current situations (e.g., changing events, plant conditions, or operator 
states).  This reflects a goal of AA, to provide just the right amount of automation at all times 
(i.e., less when operator workload is low and more when operator workload is high).  By 
providing just the right amount of automation, the goal of AA designers is to optimize overall 
system and operator performance and minimize some of the negative aspects of highly 
automated system
 
With these two key characteristics in mind, AA is defined as the dynamic, real-time change in 
the degree of automation (DOA) in response to situational changes: 
 

• DOA changes (i.e., changes in automation’s configurations) can include adaptions such 
as increasing or decreasing the LOA and the reallocation of specific tasks to/from 
operators and automated systems  

• situational changes (i.e., triggering conditions) include changing events, plant conditions, 
or operator functional states 

 
A more detailed discussion of automation configurations and triggers is contained in Section 3.3 
below. 
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3.2  Potential Benefits of Adaptive Automation 

There are reasons why operators may want higher or lower levels of automation at different 
times.  Operators may wish to have more automation when the pace of the task/event makes it 
difficult to proceed in a step-by-step manner and increasing the DOA can help speed overall 
progress.  Operators may also want to increase automation when they need to perform other 
F/Ts.  AA systems provide the opportunity to delegate ongoing F/Ts to the automation thereby 
freeing operators to focus on other F/Ts. 
 
Operators may want to lower the levels of automation and involve themselves more directly in 
overall F/T performance.  This is desirable when the situational context is important to 
interpreting task steps.  For example, operators may know that a particular piece of equipment 
is about to become available due to maintenance activities while such information may not be 
available to the automation.  More generally, operators may wish to lower automation levels to 
ensure high SA of task details and increase workload during periods of low workload where 
boredom and complacency are concerns.  Finally, operators may want to lower the levels of 
automation in order to maintain manual task skills. 
 
AA may benefit users by enabling them to remain in active control of the system instead of 
becoming passive observers.  Specific benefits are expected to include the following 
(Bindewald, et al., 2014; Parasuraman & Wickens, 2008):  
 

• Improved task performance – improve F/T performance by increasing the DOA when 
manual performance is not at acceptable levels 

• Improved SA - keeping operators in the loop and vigilant or increasing operator 
responsibilities if SA is low. Farrell and Lewandowsky (2000) suggest that improved 
operator knowledge and memory for automation’s behavior may result from intermittent 
adaptive reallocation of responsibilities. 

• Improved workload management – workload can be maintained at acceptable levels (not 
too high, low, or variable) 

• Improved management of automation failures and degraded conditions – improved 
detection of automation failure and management of recovery, including the maintenance 
of the skills needed to perform tasks   

 
3.3  Key Dimensions 

Earlier, AA was defined as the dynamic, real-time change in the DOA in response to situational 
changes.  These two characteristics are linked to two key design aspects of AA:  configurations 
and triggering conditions.  Configurations describe how the relative role and responsibilities of 
humans and automation change as F/Ts are dynamically allocated.  Triggering conditions 
describe the initiators that cause changes in configurations in response to situational changes.   
A third key design aspect of AA is the HSIs crews use to monitor, configure, and interact with 
AA systems and functions.   
 
The description of key AA design characteristics presented in this section reflect both the 
definition of AA and the identification of an important dimension that emerged from the research 
discussed in sections that follow.  The characterization at this point is presented because it 
provides a standardized means to discuss various aspects of AA that are not always defined 
consistently in the literature. 
 



 

21 
 

3.3.1  Configurations 

A configuration is a DOA that defines the roles and responsibilities of both operators and 
automation.   As stated above, AA configurations are often described in terms of changes in the 
LOA (e.g., as operator workload rises, the LOA increases).  However, configuration changes 
can be more complex and involve other automation dimensions, such as the generic tasks that 
are automated (Pararuraman, Barnes, & Cosenzo, 2007).  Feigh et al., (2012) identified four 
different types of configuration changes, which the authors called “adaptations:” 
 

• Function allocation – a change in who performs an F/T, human or automation agent (this 
type encompasses Wickens’ DOA) 

• Task scheduling – a change in when tasks are performed, including their duration and 
priority 

• Interactions – a change in how the AA interacts with human agents 
• Content – a change in what information is presented to human agents 

 
These examples illustrate the diverse ways AA configurations can dynamically change.        
 
Wickens used the term DOA to refer to the combination of the LOA and generic task dimensions 
of automation (Onnasch, Wickens, Li & Manzey, 2014; Wickens, Li, Santamaria, Sebok, & 
Sarter, 2010).6F

7  The higher the LOA and generic task, the higher the DOA.  For example, this 
can include changes in the levels of automation, generic tasks performed by automation, 
specific tasks performed by automation, the processes automation uses to perform its F/Ts, or 
the modes of automation.    
 
Since AA configurations can involve changes in individual automation dimensions, which have 
separate effects on human performance, lessons learned about each should guide the design of 
the configurations.  
 
Thus, configurations reflect changes in the relative roles of human and automation agents.  
There are several design considerations when implementing AA configurations: 
  

1. Configuration Definition - Should the configurations be predefined or defined in real 
time?  

 
2. DOA Change Selection - What type of DOA changes should be used to support operator 

task performance?   
 
3. Number of Configurations - How many individual configurations should be designed?   
 
4. Configuration Timing - What is the minimum length of time configurations should remain 

in effect?  
 
First, should the configurations be predefined or defined in real time?  That is, should they be 
defined by designers and built into the AA system or should operators be given the flexibility to 
define role changes in real time.  There is a tradeoff between these options (i.e., when 
predefined, operator and automation roles can be clearly defined, and when operators can be 
trained for each configuration).  Further, the DOA configuration options can be designed into the 
HSI so they can be easily changed.  However, the configurations will be somewhat general and 

 
7 Note that generic tasks are called “stages of automation” in Wickens’ framework. 



 

22 
 

may not be exactly tailored to the current situation.  Providing operators the flexibility to define 
changes in real time would enable such precise tailoring.  However, the workload to do so might 
be high and training on the changes in operator responsibilities would not address every 
possible configuration change.  
 
The second consideration is the type of DOA changes that should be used to support operator 
task performance.  The DOA can change along different automation dimensions, such as the 
LOA and the tasks performed by automation.  An example of the former is authorizing 
automation to take action without operator approval when workload increases.   
 
The third consideration is how many configurations are available.  Can too many configurations 
lead to potential issues, such as those identified in studies of flight management systems where 
it becomes difficult for operators to keep track of the different modes of operations and the 
relative responsibilities when each is in effect (Flight Deck Automation Working Group, 2013)?  
Mode transition research has shown that (Mosier et al., 2013): 
 

• operators do not monitor automation’s mode transitions well 
• operators often do not know a mode change has taken place 
• systems with multiple modes are particularly problematic and increase the probability of 

automation-related errors 
 
The fourth consideration is the length of time a specific configuration remains in effect.  
Configurations are operative for a period of time and stay in effect until another trigger either 
changes the configuration or terminates the automation.  The question arises as to how long 
configurations should remain in effect.  It is likely that too many rapid changes will be confusing 
and lead to difficulty keeping track of the relative responsibilities of all agents.  Configurations 
should be long enough to not be confusing to operators.   
 
3.3.2  Triggering Conditions 

Triggers are the conditions that initiate changes in AA configurations.  Note, there is a distinction 
that is sometimes made between configuration changes requested by the operator and changes 
made by the system without operator request.  Some authors refer to the former as “adaptable” 
automation and the latter as “adaptive” automation (e.g., Kidwell et al., 2012).  The term 
“adaptive” is simply used and consider human control of AA configuration changes as one type 
of trigger.  This is consistent with most of the literature (Feigh et al., 2012). 
 
There is a tradeoff between operator-requested configuration changes and non-operator 
requested triggers (Kaber, 2012).  Operator initiated triggers increase workload because 
operators must take an action for a change to take place.  This workload increase may come at 
a time when operators want to initiate automation because their workload is already high, thus 
the requested change only serves to further increase workload.  As prior research has shown, 
operators sometime decide not to take such actions as part of their overall workload 
management strategy (O’Hara & Brown, 2002). Therefore, when operator-requested triggers 
are used, designers should seek to minimize the workload associated with it.  The cognitive cost 
of initiating automation cannot outweigh its benefits or operator will not use it (Parasuraman et 
al., 2009). 
  
Non-operator requested triggers do not impose additional operator workload.  However, 
operators may become disoriented or distracted by the initiation of automation change.  This 
disorientation may cause transient performance decrements.  When non-operator requested 
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triggers are used, designers should seek to design strategies to alert operators to the change in 
a manner that minimizes distractions and interruptions. 
 
Feigh et al., (2012) identified five categories of triggers: 
 

• operator-based triggers – changes in AA configuration can be made based on the 
operator directly or by a system assessment of the operator state 

• system-based triggers – changes in AA configuration can be made based on current or 
predicted system states  

• environment-based triggers – changes in AA configuration can be made based on states 
of the environment or events external to the system and its operators  

• task- and mission-based triggers – changes in AA configuration can be made based on 
mission goals and tasks  

• spatiotemporal triggers – changes in AA configuration can be made based on time and 
location 

 
Focusing on non-operator requested configuration changes, Parasuraman et al., (1992) and 
Yoo (2012) identified five main categories of techniques:  
 

• critical events – events that will change demands on operators, such as an emergency 
operating procedure initiator 

• operator performance measurement – measuring operator task performance 
• operator physiological assessment – measuring physiological parameters to assess 

conditions such as high workload 
• operator modeling – models of operators that “incorporate rule bases on operator 

resources, strategies and intentions” 
• hybrid methods – combining one or more of the above 

 
Parasurman’s trigger categories focus on changes to the operator.  Since there are relative 
benefits and disadvantages to each type of techniques, the use of hybrid methods helps to 
ensure that automation is initiated (or changed) when it should be (Parasuraman et al., 1992; 
Sheridan & Parasuraman, 2005).  Parasuraman et al., contend that hybrid triggers may lead to 
a more robust, resilient system that is less subject to potential problems or errors of individual 
triggers. 
 
For the purposes of this report, the following categories of triggers appropriate to potential NPP 
applications of AA were identified:   
 

• operator commanded – a configuration change is made when commanded by the 
operator.  Plant start-ups and mode changes are typically performed in this manner 

• operator functional state – a configuration change is made when an operator state 
threshold is reached (e.g., high workload level, low SA, and fatigue).  This class of 
triggers requires monitoring of operator state (e.g., using physiological measures). 

• operator performance – a configuration change is made based on a change in operator 
task performance, such as when an operator fails to perform a task or when 
performance falls below a threshold for acceptability 

• system state – a configuration change is made when a system state change is detected 
or needed based on the current configuration (encompasses Feigh’s mission triggers) 

• event based – a configuration change is made when specific situations are detected 
(encompasses Feigh’s “spatiotemporal” and “environment-based” triggers) 
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• hybrid – more than one class of the above triggers is used, such as when a configuration 
change is made when specific situations are detected 

 
Parasuraman et al., included a category of modelling techniques.  Such techniques can 
contribute to the development of triggers for operator state, operator performance, or system 
state.  Therefore, a separate category for those were not included. 
 
In addition to operator commanded triggers, the primary focus is on triggers that relate to task 
performance and operator functional states (i.e., operator conditions such as high workload 
level, low SA or fatigue) that may impact their ability to accomplish their roles and 
responsibilities, and perform their tasks.  The other triggers, such as changes in plant conditions 
or events, can be surrogates for changes in operator functional states.  For example, a change 
in plant state may be expected to alter operator workload and, therefore, give rise to a situation 
where increased automation is warranted.  A change in automation made in response to the 
presence of a compromised functional state can be requested by the operator or made by the 
system upon detection of a triggering condition. 
 
There is an advantage when automation can be triggered both by operators and the system 
itself.   This is referred to as “co-agency” (Inagaki & Sheridan, 2012).  Even when operators 
have accurate SA, it does not necessarily mean that an unwanted situation can be avoided.  
Operators may not have sufficient time to respond, may fail to take the response, or may give 
an improper response.  In such situations, it is reasonable to authorize automation to respond if 
it can detect the operator’s failure to respond appropriately.   
 
Inagaki and Sheridan (2012) identified two types of errors that can be detected by automation.  
In an alpha error, an operator response is needed, but not taken.  In a beta error, automation 
detects an inappropriate response to a situation.  These possible situations are illustrated in 
Table 3-1.  With respect to automation’s monitoring of operator behavior, automation can 
respond by providing a warning about the impending error or it can provide support for the 
action.  In the latter situation, the potential error can act as a triggering condition for automation 
to respond, if the operator fails to respond to the warning.   
 

Table 3-1  Automation Monitoring of Operator Action 
 

Automation 
Judgment 

Operator Response 
Response appropriate Response not 

appropriate 
Response detected correct response beta error 
Response not 
detected 

alpha error correct non-response 

Note: Table adapted from Inagaki and Sheridan (2012) 
 
Designers need to assess how automation should respond and whether it is appropriate for 
automation to take an action or prevent an operator action based on the specific system and the 
consequences of each type of error.  Inagaki and Sheridan (2012) suggested that operators can 
accept machine-initiated trading of authority if automation is addressing what they are unable to 
do or fail to do.  However, operators may be reluctant to accept the machine-initiated trading of 
authority if automation is preventing operators from doing what they want to do. 
 
Designers need to assess whether machine initiators are acceptable for a specific application 
and how automation will respond when they occur, either by warning or by action. 
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An important consideration in the design of triggers is when the trigger specifically causes a shift 
in AA’s configuration (i.e., a shift in the DOA).  This is referred to as the ‘invoking threshold” (de 
Visser & Parasuraman, 2011; Rusnock & Geiger, 2013).  To illustrate the issues, consider an 
adaptive system using task performance as a trigger.  The configuration is changed based upon 
predefined performance setpoints.  If performance is drifting above and below this setpoint 
every few seconds, the automation configuration would be shifting every few seconds.  This 
could be very distracting to the operator and disruptive to performance.  The issue can be even 
more significant with physiological measures.  Human physiological parameters can rise and 
lower rapidly which, if they cross the setpoints established to trigger configuration changes, can 
lead to rapid changes in the DOA.  Methodologies to use measures associated with triggering 
conditions to set appropriate invoking thresholds is an important consideration in the design and 
the review of AA systems. 
 
There are two decisions that are important to the design of triggers: 
 

1. Appropriateness of Trigger Categories - Which category of trigger or combination of 
categories is appropriate for the specific AA system?  

 
2. Invoking Thresholds - When should the trigger cause a shift in AA’s configuration, the 

“invoking threshold?” 
 
To summarize, AA is characterized by different automation configurations that change the DOA 
based upon triggering conditions.  Individual configurations may be in effect for varying lengths 
of time and changed when the invoking thresholds associated with triggering conditions are 
reached or when automation is terminated.  Triggering conditions can be defined based on a 
wide range of factors from operator request, to operator functional state, to plant state, to 
detection of key events.  Figure 3-1 illustrates the relationship between configurations and 
triggers. 
 
 

 
Figure 3-1  Dynamic changes in automation over time 
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3.3.3  HSIs 

HSIs provide the link between operators and automation. HSIs are made up of the alarms, 
displays, controls, and interaction functions used by operators to monitor, control, and 
communicate with AA systems and functions.    
 
Monitoring is a key task plant operators perform using control room HSIs.  They monitor overall 
plant performance as well as systems and subsystems supporting that performance.  A long-
standing issue operators have in highly automated system is the monitoring of automation.  One 
factor contributing to this issue is poorly designed HSIs (O’Hara & Higgins, 2010).  With respect 
to AA, monitoring may be more significant because the roles and responsibilities of both 
operators and automation will change, unlike the case with static automation.  Ensuring operator 
awareness of the current configuration and when configuration shifts are triggered are key 
considerations in the design of HSIs for AA systems. 

An important consequence of monitoring is that operators may be less likely to be aware of 
automation degradations and failures.  HSIs provide alerts, alarms, and displays to support 
monitoring but how well HSIs support SA and the detection of degraded conditions is a 
significant consideration in the review of an AA system. 
 
HSIs also provide controls for all operator interactions with automation (e.g., to configure 
automation and control what it does).  AA has some unique control considerations: 
 

• change AA’s current configuration (an operator-commanded trigger)  
• override a configuration change triggered by a non-operator commanded trigger 
• interactions with functions provided by delegation-type interfaces 
• some AA system may also have controls to modify configurations in real time   

 
Operator interaction with automation can also impose on workload.  A key consideration is how 
this workload is managed.  If automation control is simple and imposes minimum workload, 
operators are likely to use it effectively.  If the control of automation is cumbersome and 
imposes high workload, operators may refrain from interacting with it to manage overall 
workload.  
 
AA systems are likely to be more interactive with operators compared to static automation and 
can be viewed a part of a multi-agent system.  Despite the absence of a comprehensive 
teamwork model to guide the design of how automation agents interact with their human 
teammates, a key consideration for any team is communication.  Communications should be 
timely with respect to the importance of the information and not distracting and disruptive to the 
crew’s ongoing task performance.  The designer’s challenge is to design communication to 
ensure that it is effective, yet minimally disruptive given the importance of the information to be 
communicated.  This issue is not unique to AA systems.  AA systems differ from other forms of 
automation because of the amount of communication that is likely.  Since AA systems may 
dynamically change DOA configurations in real-time, it can be expected that they will require 
more communication between human and automation agents. 
 
The general concerns with designing user interfaces to automation relate to some of the classic 
human-automation interaction concerns such as loss of SA and increased workload.  AA can 
exacerbate these concerns because of its potential for an increased need for interaction and a 
loss of awareness about what AA is doing and what the current agent roles and responsibilities 
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are as AA configurations change. Workload is an important consideration because operators 
may fail to use automation properly if too much effort is required to do so.  
 
There are several decisions that are important to the design of HSIs that have potential 
consequences for human performance; hence they should be addressed in an HFE safety 
review: 
 

1. Monitoring - How is SA and the detection of degraded conditions supported?  
 
2. Control - How do operators configure and control automation and how is workload 

managed? 
 
3.   Communication - How is communication between operators and automation fostered?   
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4    APPLICATIONS OF AA IN COMMERCIAL NUCLEAR PLANTS 

While the commercial nuclear industry has developed some AA design applications, there has 
been very little research on AA.  New plant designs are more highly automated than most 
currently operating plants in the U.S.  O’Hara and Higgins (2010) reviewed the levels of 
automation employed in new designs.  While different levels of automation are used, in many 
cases, operators can override the automation and perform the F/Ts manually.  An operator’s 
ability to select between simple automatic and manual operations has been available for a long 
time in NPP plant designs.  This is not considered to be an AA system since the decision to shift 
between manual and automatic operations is not typically based on operator functional states 
(OFSs), such as workload.  While different static levels of automation have been used in NPP 
designs, there are few examples of adaptive systems.  
 
General Electric’s (GE) Advanced Boiling Water Reactor (ABWR) has an AA system for 
management of normal plant operations (GE, 2007).  The Power Generation Control System 
(PGCS) provides three levels of automation that are selected by the operators: manual 
operation, semi-automated operation, and automatic operation.  In manual operation, the 
operator decides what control actions to take and performs the actions with no support from the 
PGCS.  In the semi-automated level of automation, the PCGS monitors plant performance, as 
well as operator actions, and provides guidance of performing changes on plant status.  At this 
level, the PCGS is advisory and does not perform any control actions.  The third level is 
automatic operation and the PCGS performs control actions.  The PGCS cannot change a 
safety-related system. If a change is to a safety system is needed, the PCGS prompts the 
operator to perform the change manually.  Also, the PCGS goes to manual operations if an 
abnormal condition or major change in plant status, such as a reactor scram or turbine trip, is 
detected. 
 
An adaptive approach to operations, called “Functional Integrated Treatments for Novative 
Ecological Support System” (FITNESS), was developed by Électricité de France (EdF) as a 
prototype for the next-generation EdF plant (Pirus, 2004a and 2004b).  FITNESS was a 
prototype system run on a plant simulator.  One of its foundation principles was that fixed levels 
of automation are problematic for operators because the operational demands vary, thus it is 
necessary to provide more flexible approaches.  Therefore, FITNESS gave operators control 
over the levels of automation in real-time.  For example, operators were able to select the 
degree to which operational procedures were automated (i.e., steps could be manually or 
automatically performed).  In general, FITNESS sought to ensure that operators maintained 
their focus on higher-level goals and objectives and viewed automation as a means to 
accomplish this.  Pirus stated  
 

“Entrust the operator with management of the goals … and entrust the automatic 
controls with the tasks where the added value of the operators is not demonstrated” 
(Pirus, 2002, p. 4-30).   

 
This principle was reflected in the design of the HSIs as well.  A hierarchal approach was used 
where operational goals and the status of major systems were provided at the top level and 
successive display levels provided operators with increasing levels of detail.  At the bottom of 
the hierarchy, operators could access detailed component-level displays.  This approach 
supported high-level goal monitoring at the top level and the increasing detail in subsequent 
display levels supported operations and troubleshooting.  At each level, operators could access 
automation and procedures appropriate to that level.  Navigation between levels was 
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accomplished with on-screen navigation links.  There were no published empirical evaluations 
of the design. 
 
A site visit to NuScale Power, Inc. to discuss their concept of operations, automation 
philosophy, and potential applications of AA was conducted in 2016.  At the time, the NuScale 
design had not been completed, therefore the below characterization is based on the best 
information available at that time. 
 
The NuScale plant is a 50 MWe integral pressurized water reactor.  Each unit comprises a 
reactor and balance-of-plant systems.  In its baseline configuration, a NuScale site will consist 
of up to 12 units in a common reactor pool (Doyle et al., 2016).  The pool has greater than 30 
days of passive cooling capacity following an extended loss of AC power event.  The reactor is 
cooled via natural circulation (a passive safety feature) to two steam generators located inside 
the reactor pressure vessel.  The passive safety-features prevent fuel damage for postulated 
accidents.  The nuclear steam supply system is fabricated offsite and will be shipped by rail, 
truck, or barge to the plant site.  The NRC approved NuScale’s proposal to operate a plant 
consisting of 1-12 units from a single control room with a minimum crew of six licensed 
operators.7F

8 
 
Function allocation is guided by criteria contained in design documentation. The basis for 
allocating functions to automation includes considerations such as, the task is repetitive, the 
task must be performed continuously, and automation of the task will result in clear operational 
performance benefits.  The allocation process is iterative and is further analyzed as part of 
NuScale’s task analysis methodology.  At the design stage, SMEs make decisions about the 
degree of operator involvement in every aspect of operations. The anticipated crew size for 
operating a 12-unit site requires a high level of automation in order to manage workload.  
 
Operators have overall responsibility for power production and plant safety.  The tasks they 
perform to accomplish these responsibilities include:   
 

• monitoring the performance of structures, systems, components (SSCs)  
• operating local and remote SSCs  
• commanding automated sequences 
• directing subordinate operators to perform activities 
• monitoring the performance of sequences and procedures 
• interrupting and reprioritizing sequences or procedures 
• monitoring and evaluating Technical Specification conditions 
• performing surveillance tests 
• reviewing trends 
• responding to off-normal conditions 
• responding to notifications 
• establishing plant conditions to support preventative or corrective maintenance 
• maneuvering the plant to support load demand 
• summoning additional resources to expand capabilities 

 
If a crew encounters a significant operational problem, the general guidance is to place the plant 
in a safe condition, typically shutdown.   

 
8 Publicly available: Agencywide Documents Access and Management System Accession No. 
ML20023A318  
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Automation will support most operational tasks.  NuScale personnel are very aware of the 
classic issues operators face in highly automated systems; thus, their approach to automation is 
to keep operators actively involved.  For example, the startup process is divided into several 
sequences.  At the end of each sequence is a checkpoint where operators verify that the 
sequence was performed correctly, and startup is progressing normally.  Once the verification is 
completed, operators initiate the next sequence of the startup.   
 
Another example is boron concentration control.  The automation monitors boron concentration 
and if it detects the need for dilution or boration, the automation alerts the operator and provides 
an action recommendation.  The operator can accept the recommendation and implement it, 
modify the action, or reject it.   
 
As these examples illustrate, operational tasks involve a sharing of responsibilities by both 
operators and automation using a level of automation called “operation by consent” in the 
automation characterization.  Such an approach helps to keep operators aware and involved. 
 
The NuScale design will include automation of interface management tasks, as well.  For 
example, automation selects the correct unit for alarm response actions.  This relieves 
operators from having to retrieve the alarm response procedure and helps to minimize wrong 
unit errors. 
 
To address the issue of skills loss in highly automated systems, NuScale had planned for 
operators to periodically perform tasks manually that are normally automated.  
 
NuScale personnel have identified potential applications of AA.  For example, on a reactor trip, 
the tripped unit’s alarm system goes into a “transient alarm response” mode and automatically 
silences the alarms.  This mode lowers alarm response workload and is intended to improve 
situation awareness by enabling operators to focus on more important alarms.  Another 
application of AA is used when a transient occurs.  The large overview display automatically 
reconfigures the display to present specific information related to the situation (i.e., the specific 
information displayed varies depending on what caused the trip).  This type of AA reduces the 
workload associated with display retrieval and organization, and minimizes potential errors of 
selecting the wrong display. 
 
The design team emphasized the importance of giving operators flexibility in how they interact 
with automation and the HSI design reflects that philosophy.  A “process library” display 
contains all procedures and automation sequences available to operators.  From the display, 
operators can select and initiate the automation sequences they want.  Operators can quickly 
determine which automation sequences are active and their status on a “workbench” display.  At 
a glance, operators can monitor automation at a high-level.  This display also gives operators 
access to more detailed information about the progress of automation sequences.  For more 
complex automation, detailed information is available on a “system automation page.”  There 
are also automation icons for some sequences that provide yet another means for operators to 
interact with automation.   
 
The HSIs provided for monitoring and interacting with automation also provide the means to 
detect degrading and failed conditions.  For example, when an automation sequence fails, its 
icon is outlined with a red box, making it easy to detect.  The HSI also provides operators with 
trend displays and alarms to signal degraded conditions.  Operators can set special alarms 
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when the automation process is active.  NuScale’s HSI design provides multiple ways for 
operators to monitor and interact with automation. 
 
In summary, NuScale’s plant design is highly-automated with automation supporting most 
operations tasks.  The design, at the time, included several applications of AA.  Levels of 
automation are being implemented that permit operators and automation to work cooperatively, 
thus maintaining operator involvement and awareness in automatic processes.   
 
The nuclear industry has recognized the need to provide more flexible automation to support 
operations and this has resulted in the development of several systems.  In addition, new plant 
designers are developing AA systems for their highly automated plants.  The systems are all 
operator commanded.  While there is interest in other triggering conditions, near term systems 
are not likely to employ them.  As experience is gained with AA systems and as industry 
standards and guidelines increasingly identify AA as a function allocation option, it is likely that 
AA applications will become more widespread.    
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5    EFFECTS OF ADAPTIVE AUTOMATION ON PERFORMANCE 

In Section 3.2, the potential benefits of AA when compared with other types of automation were 
discussed.  In this section, the evidence in support of AA will be examined.  Specifically, 
whether the research and operational experience with AA supports the following hypotheses: 
 

• AA will improve task performance relative to alternatives such as manual performance or 
static automation  

• AA will improve SA 
• AA will improve workload management (i.e., maintain workload at acceptable levels (not 

too high, low, or variable) 
• AA will improve the detection of automation failure and management of recovery, 

including the maintenance of the skills needed to perform automation’s tasks manually  
 
5.1  Performing Normal Operations 

The studies reviewed in this section were loosely grouped by the class of trigger (e.g., operator 
commanded, task performance, and OFS) used to change AA configurations.   
 
In a study by Shaw et al., (2010), student participants controlled three unmanned aerial vehicles 
(UAVs).  The task was to use unarmed UAVs to identify hostile targets and pass the information 
to the armed UAV.  The armed UAV would then engage the target. There were three AA 
conditions: 
 

• Manual condition – the operator sets waypoints, targets weapons, and launches them  
• AA1 condition – the operator chooses between two LOA options:  manual, and partial 

automation that initiates “scripts”, such as a targeting script, and the task is performed 
automatically 

• AA2 condition – the operator chooses between three LOA options: manual, partial 
automation (the same as AA1), and fully autonomous operations (in the latter, operators 
must approve weapons launch) 

 
Changes in AA were triggered by operator command.   
 
The performance measures included the percent of targets successfully tracked and the time 
participants took to handle an unexpected event automation could not deal with.  Overall, the 
results showed that operators performed much better as more LOA choices were provided.  
AA2 offered the greatest number of choices and yielded the best performance.  Shaw et al., 
suggested that increasing the automation options available to operators helps them manage 
their workload.  Dealing with unexpected event performance did not differ significantly across 
conditions. In managing unexpected happenings, operators would increase the automation of 
unaffected aspects of UAV control, while assuming manual control of those affected.  The 
authors interpreted the results as supporting the use of AA to improve task performance.  
However, the experimental manipulations do not provide a clean test.  Since two AA conditions 
are compared to a manual condition, it is not clear whether performance improvements are the 
result of automation’s adaptive characteristics or whether it is simply that the addition of 
automation itself improved performance. 
 
Parasuraman et al. (2009) examined the effect of different types of automation for supervising 
multiple UAVs and unmanned ground vehicles (UGVs).  University students performed tasks 
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requiring change detection, planning routes, and communications in a simulated 
reconnaissance mission.  Three conditions were compared: manual performance (no 
automation support), static automation (automated target recognition), and AA.  The AA was 
triggered by task performance; operator detection performance was monitored, and automation 
was invoked when performance was below a predetermined setpoint.  Measures of change 
detection (primary task performance), SA, and workload were obtained.  To assess change 
detection, participants were asked to press a spacebar if the location of a previously identified 
target moved on a map.  The SA measure was based on operator responses to verbal probes 
and represented as a single overall rating from 0 to 100.  The workload measure was a single 
overall rating from 0 to 100 collected at the end of each scenario.  The results indicated that the 
type of automation significantly affected the detection of change that was far better under both 
automation conditions compared with the manual one; furthermore, detection was better in the 
AA condition than in the static condition.  The type of automation also significantly affected SA 
and workload.  SA scores were significantly higher in both automation conditions than in the 
manual condition, although the two automation conditions did not differ significantly from each 
other.  Workload was highest in the manual condition, followed by that under static automation, 
and lowest in the adaptive condition.  The results of this study support the first three hypotheses 
stated at the beginning of this section:  AA improved performance and SA and reduced 
workload. 
 
Another study looking at the use of task performance to trigger automation changes was 
conducted by Calhoun, Ward, and Ruff (2011).  They compared static automation and adaptive 
automation for supporting image analysis tasks while controlling a UAV.   Participants 
performed a simulated UAV task that involved monitoring the status of multiple UAVs and 
analyzing information provided by them.  Automation support for their tasks was provided based 
on operator performance on tasks such as image analysis and change detection. Performance 
on the tasks was monitored and integrated into a single score.  When performance fell below a 
predetermined threshold, automation increased.  When performance went above a 
predetermined threshold, automation decreased.  The results showed that performance on an 
image analysis task was better in the AA condition.  Performance on other primary tasks 
showed similar results, but not all achieved statistical significance.  Participants’ ratings 
indicated that workload and task difficulty were lower with AA.  They also rated SA as higher in 
the AA condition.     
 
In a follow-up study, Calhoun et al. (2012) evaluated the use of AA to support image analysis 
and decision tasks in a multiple UAV simulation.  The trigger for the change in automation was 
task performance.  The LOA was increased when task performance decreased, and decreased 
when performance improved.  As in the previous study, participant performance with AA was 
compared with static automation. Dependent measures included task performance and 
participants’ ratings of trust in automation, SA, and workload level.  The results showed that task 
speed and accuracy was better in the AA condition than the static automation condition. 
Participants rated SA as higher when using AA and cognitive workload lower, although these 
differences failed to reach statistical significance.  Static automation was rated higher in trust, 
but again the differences were not significant. 
 
Miller, Miller, and Calhoun (2014) used a simulated UAV supervision task to compare participant 
performance of an image analysis task.  Three LOAs (low, medium, and high automation 
support) were used with the level determined by the participant’s performance score.  Two 
methods of computing operator performance triggers were compared.  In the first method, all 
tasks were considered equal.  In the second method, task performance was adjusted based on 
weightings reflecting the tasks’ priority and frequency.  The authors hypothesized that adaptive 
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automation support would be improved when the weighted scores were used.  Non-professional 
operators controlled three UAVs and had to perform several related tasks, such as image 
analysis, target/UAV allocation, UAV rerouting, enemy aircraft detection, system health 
monitoring, and chat communications.  The results did not reveal a significant difference in task 
performance or workload ratings between the two means of computing the triggers.  However, 
post experiment questionnaires revealed that the participants favored the changes in 
automation based on the weighted trigger method and considered the changes in automation to 
be less disruptive.  
 
Dijksterhuis et al., (2012) examined the use of performance-based triggers in a driving task. 
Experienced drivers performed a path-following navigation task in a driving simulator.  In one 
condition, an adaptive lane position system provided an alert and then a warning if the driver did 
not respond when the system detected that the participant was deviating from their current lane.  
In a second condition, a non-adaptive system provided information to the driver as to lane 
position in a graphic display.  The adaptive system was found more effective at improving lane-
keeping performance (more time in the center of the lane and less lateral variation) than the 
non-adaptive system.  However, it is noted that there is a confound in this study.  The AA and 
static conditions are not directly comparable; since the AA used alerts to support performance 
while the static condition used a display.  Alerts are more likely to direct driver attention to a 
problem, while the display does not.  Therefore, whether the better performance in the AA 
condition is due to its adaptive characteristic or whether alerts are better than passive displays 
for this type of task is not known. 
 
In another automotive study, Itoh and Inagaki (2014) examined three levels of support for 
vehicle collision avoidance.  In the first condition, no automation support was provided. At the 
lowest level of automation, the system provided an alert to the driver.  At the intermediate level, 
the system provided feedback to the driver that a lane change was not recommended.  The 
feedback was in the form of a stiffer steering wheel.  At the highest automation level, the system 
overrode the driver’s steering wheel maneuver and took control and steered the car to a safe 
position.  A performance-based trigger was used based on longitudinal distance from a passing 
vehicle and steering wheel rotation (in the direction of a passing vehicle).  Skilled drivers 
participated in driving scenarios in a motion-based simulator.  The dependent variables were the 
number of collisions and the distance between the drivers and the other car.  Ratings of the 
participants’ acceptance of the system were also obtained.  The results revealed that the 
highest automation level was most effective and the low and intermediate LOAs yielded similar 
results.  Interestingly, even though participants found all the systems acceptable, the subjective 
ratings for the highest level of automation was lower than the other two suggesting that 
participants did not like automation overriding their decisions.  Like the study discussed above, 
the conclusion must be regarded as tentative.  While three AA conditions are compared to a 
manual condition, there is no static automation control group.  Therefore, where the observed 
effect is due to the adaptive aspects of automation or whether it is simply due to providing 
automation (static or adaptive) is not known.  
 
OFS triggers are typically based on assessments of workload, SA, and fatigue.  AA researchers 
have used physiological parameters as one approach to assessing such states.  
Psychophysiological measures have been found to be generally sensitive to changes in states 
such as mental workload and fatigue (Wilson & Russell, 2007).  Further, they can provide 
information about operator states in real time.     
 
Sebok et al. (2003) examined the use of AA support for students performing a compensatory 
tracking task.  Electroencephalogram (EEG) measurements were used to assess participant 
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workload and to initiate AA support.  The EEGs were obtained as participants performed a 
secondary task.  There were three groups:  The first group performed the task manually until the 
EEG measures indicated a rise in workload at which time AA support was provided.  The 
second was a yoked control group that received AA support on the same schedule as the AA 
group; however, the support was not adaptive (not associated with a change in the participant’s 
workload).  In a third condition, task support was received randomly.  In addition to tracking 
performance, subjective workload was assessed.  The results indicated that the AA group 
performed better on the tracking task than either of the two control groups.  The pattern of 
results was the same for the subjective workload scores.  Subjective workload was lower for the 
AA group when compared with the other two groups.  These findings show the potential to use 
EEG to detect operator workload changes in real-time and the use of AA as a compensatory 
means to control workload by using automation to support task performance.  
 
Imants and de Greef (2014) conducted a study of simulated air traffic control (ATC) scenarios 
with “naïve participants” who were trained on the tasks.  They tested the feasibility of using eye 
metrics to both determine what tasks air traffic controllers were currently performing and their 
workload.  Identifying current tasks is important to minimize distractions since automation can 
be applied to the operator’s ongoing activity and to minimize automation surprises.  Therefore, 
eye metrics may be effective triggers to determine context sensitive operator support (based on 
current tasks) when needed (based on current workload).  The study did not involve the actual 
use of the metrics to dynamically change automation.  The result indicated that some of the 
metrics were successful at task identification and others were sensitive to workload.  No single 
metric supported both task and workload determination.   
 
The effectiveness of using multiple physiological measures was examined in a study where 
participants controlled four UAVs in a simulation environment (Wilson & Russell, 2007).  Their 
task was to locate and identify targets to bomb using a set of predefined rules.  In one condition, 
operators were not aided in this task.  In the other, operators were aided by the system in two 
ways.  First, the target speed was reduced providing increased time for evaluation.  Second, 
vehicle health messages were displayed in a drop tab rather than on a separate display, thus 
reducing access time and memory load.  Whether the aid was provided was based on the OFS, 
which was assessed using the following physiological parameters: EEG, electrocardiograph 
(ECG), and vertical and horizontal electrooculography (EOG) activity.  When OFS was above a 
predefined threshold, the aid was provided.  The effect of adaptive aiding on task performance 
was evaluated.  The results showed that task performance was improved by 50% when aiding 
was provided.  Like several of the other studies reviewed, conclusions about the effectiveness 
of AA are limited by the experimental design.  Since AA is only compared to a manual condition, 
the superior performance of the AA group may simply have been an effect of supporting task 
performance with automation, rather than AA. 
 
Wilson & Russell (2007) noted that physiological measures can change rapidly; therefore, 
designers need to be careful when using them to trigger automation configuration changes.  If 
the configuration changes occur too rapidly, they may interfere with task performance.  Wilson 
and Russell also noted that significant improvement in system performance and safety can be 
obtained by assessing OFS since, while other aspects of the system are monitored for 
degraded conditions, the operator is not.  Real-time monitoring of OFS can address this issue. 
 
Wilson & Russell also noted that one of the challenges in the use of physiological measures is 
workload assessment.  Byrne and Parasuraman (1996) discussed additional challenges that 
arise using psychophysiological measures in the control of AA.  These measures must be 
sensitive to workload changes in the specific task environment (e.g., discriminate between task 
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load levels) and be relatively unobtrusive.  The sensitivity of psychophysiological measures can 
be affected by other factors such as the operator’s emotional states, activities (i.e., speaking), 
and the environment in which measures are obtained.  They also must be assessed for the 
effects of individual differences.  The challenges posed may suggest the use of a hybrid 
approach where different triggers are used to provide the robustness that may be lacking in 
individual measures.   
 
Workload can be measured in ways other than physiological parameters.  The following study 
assessed workload using a secondary task methodology (Kaber et al., 2005).  Secondary task 
assessments of workload have long been used in general workload studies (Wickens et al., 
2004).8F

9  In this study, student participants took part in a simulated ATC task.  AA was applied 
separately to support different cognitive aspects of the ATC task.  Using Parasuraman’s et al. 
(2000) categorization of cognitive functions, the task of clearing an aircraft for landing was 
divided into its information acquisition, information analysis, decision-making, and action 
implementation components.  Automation was adaptively implemented using workload as a 
trigger.  Participants’ workload was measured using performance on the secondary task, 
specifically a gauge monitoring task.  Consistent with secondary task methodology, the task was 
unrelated to the ATC tasks and was performed only when the participant could do so without 
impacting the primary task of clearing aircraft for landing.  When performance of the secondary 
task was below a predefined threshold (indicating a high workload), automation was introduced.  
Above a predefine threshold (indicating a low workload), the automation was stopped, and the 
participants performed the task manually.  The results showed that the participants’ 
performance was better when AA was applied to the lower-level cognitive functions of acquiring 
information and implementing actions.  By comparison, automation was less effective when 
applied to higher-level cognitive functions of information analysis and decision making.  These 
findings are important in that they suggest that the benefits of AA may depend on which 
cognitive aspects of the task are supported.   
 
The studies described below used task load as an indicator of workload (i.e., automation 
changes were triggered by changes in task load).  Task load is a surrogate for workload 
because it is based on the amount of work operators must perform, such as the number of 
targets they must process per unit time, rather than a direct measure of workload.  The 
assumption is that as the amount of information an operator needs to process goes up, 
workload goes up.  Therefore, if the task load goes up, automation can be provided to lower 
workload.     
 
In one study, students performed simulated UGV reconnaissance missions and were required to 
detect changes in a situation map and identify hostile targets (Cosenzo et al., 2010).  There 
were three automation conditions: manual, static automation (semi-autonomous), or adaptive 
automation.  In the adaptive condition, the level of automation provided was based on task load 
(i.e., the total number of targets on the display).  In addition to change detection and threat 

 
9  The primary assumption of secondary task methodology is that human operators have a finite 

quantity of cognitive resources available to perform their primary tasks.  That portion of the capacity 
not required for primary task performance is available as spare capacity for other, secondary tasks.  
The workload imposed by a primary task may be determined by measuring the speed and accuracy 
of a secondary task since it can only be performed with the mental capacity not used by the primary 
task.  The more capacity needed for the primary task, the less is available for the secondary task and 
it will be performed less well.  When performance on the primary task is maintained, a decrease in 
performance of the secondary task reflects higher workload of the primary task. 
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identification performance, the National Aeronautics and Space Administration’s (NASA) Task 
Load Index (TLX) was used to obtain workload measures and SA was assessed based on the 
participant’s responses to queries about the current situation asked during the scenarios.  
Results showed that when task load increased from low to high: (1) threat detection 
performance degradation was less in manual and adaptive than in the static condition, (2) no 
differences in change detection was found, and (3) SA performance was better in the both 
automation conditions than the manual condition.  When task load shifted from high to low: 
threat detection performance was better in the adaptive than the other two conditions, and no 
differences in change detection and SA were found.  No significant effects on workload were 
found.  The authors suggest that the lack of a workload effect may be attributable to high task 
demand levels even in the low task load condition.  
 
In a follow-up to this study, Reinerman-Jones et al. (2011) examined the effect of the 
congruence between task demands and levels of automation on performance.  Automation was 
either statically or dynamically provided. Students performed tasks like those described in the 
Cosenzo study described above. The result showed that higher-levels of automation were 
beneficial regardless of task load.  They further found that the task switching associated with AA 
was detrimental to performance under high task-load conditions.  This finding was attributed to 
the potential effects of the distraction caused by such changes during a period when operators 
were already very busy.     
 
The results of these two studies are complicated and provide mixed results regarding the 
effectiveness of AA. 
 
In another study, student participants performed a target detection task in a high-fidelity multi- 
unmanned vehicle (UV) simulation (de Visser & Parasuraman, 2011).  Three levels of 
automation were used: manual, static and adaptive.  AA was used only when task load was high 
(i.e., the number of UVs controlled was high relative to the low task load situation).  Dependent 
measures were detection accuracy, detection time, trust in automation, self-confidence, SA, and 
workload.  While no difference is detection performance was obtained, the results showed 
benefits for AA compared with static automation and manual performance for SAs, self-
confidence, workload, and trust.  The authors noted that participants rated the automation as 
slightly more trustworthy when aiding was implemented in a context-sensitive manner (when 
high task load was high), rather than when it was continually present (static automation). 
 
In the studies discussed so far, AA configuration shifts were based on single categories of 
triggering mechanisms.  In the studies reviewed below, hybrid triggers were used.  As noted 
above in Section 3.3.2, hybrid triggers may have the potential to be more effective at capturing 
OFS, since weaknesses in one method can be overcome by having alternative methods to use.   
 
Kidwell et al. (2012) examined automation support for the supervision of multiple autonomous 
vehicles.  The student participants performed tasks including image analysis, target detection, 
and vehicle routing.  There were three LOAs support for these tasks: low, medium, and high.  
Changes in AA were triggered by either operator command or participants’ task performance.  
Depending on the trigger, participants either requested a change in LOA or the change occurred 
automatically as performance changed.  The dependent measures were task performance, 
workload, and ratings of confidence.  The results showed that in comparison to the 
performance-based trigger, operator commanded changes increased task performance and 
confidence.  However, workload was increased as well.  The authors suggested that when 
operators make decisions to change the configuration, it keeps them in-the-loop.  While this 
increases workload, it also reduces the unpredictability of the system.   
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The next two studies examined the feasibility of using multiple metrics to predict variables that 
can be used to trigger changes in AA configurations.  The first study looked at predicting 
operator workload and the second at task performance.  Note that these feasibility studies did 
not use the proposed triggers to change AA configurations during task performance.   
 
Boeke et al., (2015) examined the relationship between potential trigger classes in a simulated 
UAV supervision task: objective measures of workload (secondary task performance), 
subjective workload ratings (NASA TLX), task performance (target surveillance), and physiology 
measures (EOG and ECG).  Automation was not manipulated in this study; task difficulty was in 
order to create workload variations that would permit examination of the relationship between 
these potential classes of triggers.   Participants supervised the UAV in a simulated 
environment.  Based on the results, the authors recommend the use of measures of objective 
workload as the primary means of triggering shifts in AA and that performance and physiological 
measure should be used to adjust the changes.  Therefore, a hybrid approach to assessing 
operator workload was recommended.   
 
Lackey et al., (2015) examined whether the combination of physiological and subjective 
parameters could predict performance.  The physiological parameters included EEG, ECG, 
functional near-infrared spectroscopy, transcranial doppler, and eye tracking sensors.  The 
subjective parameter was a simple workload rating using the Instantaneous Self-Assessment 
scale.  Undergraduate student participants performed simulated UAV supervision scenarios that 
required change detection and threat detection tasks.  Like the Boeke study, overall task 
difficulty was varied in three conditions:  low, medium, and high difficulty.  The results indicated 
that regression models successfully predicted task performance based on the physiological and 
subjective workload measures.  Therefore, using such measures may be useful to trigger a shift 
to AA configurations based on anticipated performance changes.   
 
The studies to follow discuss the use of hybrid approaches to triggering AA configuration shifts. 
 
Li et al., (2013) examined two levels of AA to support simulated teleoperations involving moving 
a robot arm to a specified position such as in a payload operation.  Student participants 
completed teleoperation scenarios and were responsible for trajectory planning, selection and 
adjustment of cameras, and operating the arm with hand controllers.  Two types of automation 
support were used: collision avoidance and trajectory control.  Each of these forms of support 
had two adaptive levels:  guidance and control.  The change in DOA was based on a hybrid 
trigger approach.  The change could be commanded by the operator or triggered by changes in 
task performance.  Operators could override the system triggered changes in DOA. 
 
In addition to the hybrid AA condition, several other conditions were tested: a static allocation 
condition, an operator commanded trigger condition, and a performance trigger condition.      
The dependent measures included task performance (time and accuracy), process measures 
(management of automation levels), awareness of automation configurations, and the operator’s 
workload.  
 
The results generally favored the hybrid AA system.  It led to better performance and lower 
workload.  This study supported the use of AA to improve performance and the use of hybrid 
triggers to shift automation configurations.  The participants subjectively preferred the hybrid AA 
condition more that the operator commanded or performance triggering condition alone.  It was 
also preferred over the static allocation condition.   
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When asked about preference of the two types of triggers, participants preferred operator 
commanded changes to performance-based triggers.  The reasons given were an increased 
feeling of control over the automation and a reduction in occasional confusion experienced 
when performance triggered changes in automation unexpectedly.   
 
Ting et al., (2010) developed a hybrid indicator of OFS based on the physiological parameters 
of ECG and EEG.  Graduate students operated a simulated cabin air management system.  The 
operator monitored the performance of system controllers to ensure a sufficient quantity and 
quality of breathable air.  The operators could make adjustments by controlling system 
parameters such as oxygen levels, temperature, and humidity.  Each had a normal operating 
range.  The DOA was adaptively varied.  Higher DOAs were characterized by a greater number 
of system parameters that are controlled automatically.  A total of five different DOAs were 
available.  Adaptive control was compared with a non-adaptive automation based on an error-
triggered system.  Task performance was improved with the AA system, as was performance on 
a secondary task, and subjective strain was reduced.  The authors concluded that the hybrid 
trigger could be used effectively to control automation configuration shifts.  
 
Saqer et al., (2011) examined whether an assessment of baseline task performance and 
working memory capacity can predict performance when the task is supported by automation. 
That is, can these measures be used as a hybrid trigger of AA changes?  Student participants 
performed an air defense task in a simulation UAV environment.  They had to identify and 
destroy enemy targets.  Three levels of automation were provided to support this task: no 
automation, low AA and high AA.  Two levels of task demands were also used based on the 
total number of targets presented.  The results showed that the baseline measure of 
performance was predictive of AA supported performance.  The measure of working memory 
capacity, while not predictive of task performance, did predict how effectively participants could 
use the automated aids.  Those with higher memory capacity scores used the aids more 
effectively.  The authors note that these factors are easy to obtain and can be used to efficiently 
trigger AA.   
 
The studies discussed thus far used a variety of different triggering conditions to change AA’s 
configurations.  There are also studies discussed in the AA literature where changes in AA 
configurations are made on a predefined schedule.  This method of changing automation does 
not fit the definition of AA because the triggering condition is not related to change in operator 
functional state, plant state, or any other trigger.  Such an approach can potentially lead to 
changes in automation that are contrary to the purposes of AA, such as lowering the level of 
automation when operator workload increases.  However, these studies do provide some insight 
into the exposure of operators to changing automation configurations.  
 
In a study by Kaber and Endsley (2003), student participants performed a dual-task scenario 
involving a dynamic target tracking and elimination task, and a secondary monitoring task.  Low, 
intermediate, and high-levels of automation were used that were allocated dynamically.  The 
LOAs were varied according to a predefined schedule.  The dynamic allocation was compared 
to a manual condition and fully automatic operations.  Performance measures included task 
performance, SA, and workload.  The results showed that the LOA was the primary determinant 
of primary task performance and SA.  Low levels of automation evoked superior performance, 
while intermediate levels facilitated higher SA.  AA was the determining factor in workload and 
secondary-task performance. In general, the results support intermediate LOAs and AA.  
 
McGarry, Rovire, and Parasuraman (2005) varied information and decision automation across 
segments of a simulated battlefield engagement.  The participant’s task was to identify the most 
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dangerous enemy units and to decide which friendly unit should engage them.  The variations in 
automation were based on a predefined schedule, and some segments required participants to 
complete tasks manually.  These authors found that the accuracy of the participants’ decisions 
improved in segments with decision automation when they were preceded by segments with 
information automation.  Exposing users to periods of information, automation minimized some 
problems associated with imperfect decision automation. 
 
One concern with AA is the potential disruption in performance due to the shift between 
automation configurations.  This issue was examined by Di Nocera, Camilli and Terenzi (2007).  
Students played the video game Tetris™ under three levels of difficulty in either manual or 
automatic mode.  The automation gave a projection of the falling block on the lowest level.  In 
some trials the automation level shifted, while in others it did not.  The shift followed a 
predefined schedule.  The player’s performances and workloads were impacted by the shifts.  A 
shift in either direction (automatic to manual and manual to automatic) disrupted the ongoing 
cognitive activity involved in mental rotation; the shifts also were affected by task load.  Better 
performance occurred when shifting from manual to automatic in the high-difficulty task, while 
the reverse was true for the low difficulty task (the intermediate difficulty task did not significantly 
differ from the other two).  However, since the shift was based on a schedule rather than 
specific triggering criteria, the shifts might not have occurred at an optimum time, and this may 
have disrupted performance. 
 
Jou, Yenn, and Yang (2011) examined the effects of differing levels of automation on 
performance in a simulated NPP reactor shutdown task performed by graduate students.  Five 
levels were used.  The levels differed in the amount of time spent with full automation.  At the 
lowest level, participants received operational guidance from the system, but tasks themselves 
were performed manually.  This is equivalent to the ABWR semi-automatic level of automation.  
At the highest level, the task was performed with a fully automatic level of automation.  The 
changes in automation were based on a predetermined schedule.  The results generally 
showed that higher levels of automation led to better task performance and lower workload, but 
poorer SA.  
 
While studies of changing DOA based on a predefined schedule are not AA by the definition, 
they do show that exposing operators to different DOAs is beneficial.  This result is consistent 
with research on exposure to different DOAs in general (not within the context of AA).  In one 
such study, Ryser (2003) found a positive effect of exposing operators to varying LOA in a study 
examining the relationship between DOA, strategies applied by operators, and mental 
representation of the system.  The participants were trainee operators who performed methanol-
synthesis tasks in a simulated chemical plant.  Some participants were trained primarily under 
manual-control conditions, a second group under high-automation conditions, and a third group 
experienced varying levels of automation in different trials.  The LOAs were not changed 
dynamically.  The results showed that participants from the third group developed a better 
understanding of the role of automation than those from the other two groups.   
 
When not changing the AA configuration based on a predefined schedule or operator command, 
an important consideration to take is when specifically, the triggering condition causes a shift in 
the AA’s configuration (i.e., the ‘invoking threshold”).  Taylor et al. (2013) noted that changing 
the level of automation while an operator is performing a task can negatively impact 
performance.  Therefore, configurations should not necessarily change immediately upon 
detecting a change in the triggering condition.  Taylor suggests that “introducing a slight delay 
before changing the level of automation provides the system with adequate time to ensure that 
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the newly detected state will persist, avoiding the risk of changing the level of automation 
(temporarily reducing operator performance) to meet a fleeting level of demand.” 
 
Another consideration is the effect of a configuration change on SA and workload.  As task load 
increases, changes in workload and SA are not linearly related (Rusnock & Geiger, 2013).  That 
is, for certain task loads, increasing automation leads to increases in both workload and SA, 
while for others, workload increases but not SA.  Table 5-1 illustrates the relationship between 
SA and workload under different DOAs.  This suggests that designers need to select invoking 
thresholds that achieve the desired changes in workload and SA. 
 

Table 5-1  Relationship of SA and Workload for Different DOAs 
 

 
 
So far, the effects of AA on performance using a variety of triggering conditions have been 
discussed.  An additional consideration when implementing AA is the relationship between the 
cognitive demands of the task and the type of support provided by automation.  While we 
suspect this relationship may be the cause of some of the inconsistent findings discussed 
above, one study specifically examined this relationship.  Taylor et al. (2013) looked at the 
impact of AA on supporting task performance from the perspective of the types of cognitive 
demands the tasks impose.  They hypothesized that AA would support performance when the 
type of support provided by AA matched the specific cognitive demands of the task.  Where a 
mismatch exists, providing automation would not enhance performance.  To test this 
hypothesis, students operated a simulated UGV and were required to perform three tasks: 
driving the vehicle, detecting threats, and detecting changes in a situation map.  In some trials 
the automation supported the specific cognitive demands of the tasks and in others it did not.  
Further, some of the trial’s automation was statistically provided while in others it was adaptively 
provided based on overall task demand (e.g., the number of threats to detect).  Measures of 
task performance and workload were obtained.  
 
The results supported Taylor et al.’s hypothesis.  AA effectively supported task performance in 
the trials where it was matched to the cognitive demands of the task and performance was 
greater than when static automation was available.  When automation and demands were not 
well matched, automation was much less effective and sometimes caused increases in 
workload.  The authors attributed the latter finding to the distracting effects of automation that 
otherwise was not sufficiently useful to aid performance.   
 
The studies reviewed above focused on the effects of AA on normal operations as reflected in 
measures such as task performance, SA, and workload.  
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5.2  Managing Degraded Conditions 

This section deals with the ability of operators to monitor automation, detect when automation 
degrades, and manage the degraded condition to restore and maintain system integrity.  From 
prior research, operators can be poor at monitoring reliable automation and this has led to 
significant production and safety issues (O’Hara & Higgins, 2010).  The issue of monitoring 
failed automation in greater detail will be examined, followed by the evaluation of the role, if any, 
AA plays in supporting operator management of automation failures.   
 
Automation’s degradation and failure (D/F) falls on a continuum from degradations resulting in 
little to no loss of functionality at one end of the continuum to a complete loss of functionality, 
and automation failure, at the other (O’Hara, Gunther & Martinez-Guridi, 2010).  In a degraded 
condition, automation may continue to operate, but the loss of functionality may lead to 
performance problems.  In a failed condition, automation does not perform its function at all.  
 
D/Fs can lead to two types of problems for operators: 
 

• automation does not do what it is supposed to do when it should  
• automation does something that it is not supposed to do, such as causing abnormal 

operating conditions due to erroneous automatic action, and/or providing erroneous 
information   

 
When these issues arise, operators must detect automation’s D/F condition, assess the 
situation, plan responses (determining the proper actions to take), and implement those actions 
by restoring the automation or transitioning to back-up systems. 
 
To address this question, Wickens (Wickens, Li, Santamaria, Sebok & Sarter, 2010) conducted 
a meta-analysis of studies that examined automation failure detection.  Specifically, they looked 
at overall performance when automation worked as designed, and performance when the 
automation failed.  An expansion of this meta-analysis to 18 studies was later reported in a 
subsequent study (Onnasch, Wickens, Li & Manzey, 2014).  This report integrates the results of 
both studies.   
 
Wickens and colleagues examined the operator’s ability to detect automation failure as a 
function of DOA.  As defined by Wickens’ analysis, DOA represents a combination of two 
automation dimensions: LOA and stages of information processing (generic tasks in our 
characterization).  Lower DOAs reflect automation applied to earlier stages (information 
acquisition and information analysis) and higher DOAs when automation is applied to later 
stages (action selection and action implementation).  Therefore, the DOA is higher when the 
LOA is higher, and the stages of information processing are later.   
 
The meta-analyses revealed an interesting relationship between DOA and automation failure 
detection.  Wickens called this relationship the “routine-failure tradeoff.”  The tradeoff suggests 
that when automation functions as it is supposed to (routine), higher DOAs lead to better 
human-system performance.  However, when automation fails, the higher DOAs lead to poorer 
human-system performance.  This relationship is illustrated in Figure 5-1.  The tradeoff is 
acceptable until Point A in the figure.  However, as the DOA is increased beyond Point A, the 
negative effects of failure on performance become significant.  The routine-failure tradeoff has 
been identified by others as well (Smith & Jamieson, 2012). 
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Figure 5-1  Routine-failure performance tradeoff 

(adapted from Onnasch et al., 2014) 
 
As for why this tradeoff exists, Wickens suggests that in the routine condition, as DOA 
increases, operator workload is reduced since the operator is relieved from the responsibility to 
perform functions that automation performs, and the operator can attend to other aspects of 
system performance.  Overall system performance is improved since the workload reduction 
afforded by the lower workload results in cognitive resources being available to assess overall 
performance.   
 
This very situation works against operators when automation begins to fail.  That is, since the 
lower workload shifts the operator’s attention away from the automation and the functions it 
controls, it reduces the operator’s SA about the automation’s performance, thus degradations 
go unnoticed (Dixon & Wickens, 2006; Wickens et al., 2010).   The higher the DOA, the worse 
the situation.  At lower DOAs, operators must still attend to some aspects of automation and the 
tasks to be performed.  Since the operators are still engaged in these tasks to some degree, 
there is SA regarding the automation’s performance and detection of degradations is more 
likely.  Therefore, when DOA is high and automation fails, SA regarding automation and its 
tasks is low and workload ramps up as operators try to recover SA, plan actions, and implement 
tasks to recover.  Figure 5-2 illustrates the effects of DOA on task performance, SA, and 
workload as automation fails.  
  

 
Figure 5-2  Hypothesized changes in task performance, SA, and workload as a function of 

degree of automation when automation fails  
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This simple relationship becomes even more complicated when reliability is considered. 
Operators are less likely to monitor automation they consider reliable.  This situation is 
considered “overtrust” and is likely to be the root cause for this finding. 
 
In summary, Wickens analysis shows that higher DOAs can lead to performance issues when 
automation fails due to loss of SA.  There appears to be a critical DOA point beyond which 
failure recovery is very difficult.  Wickens suggested that as designers make decisions about 
automating tasks, they should assess this performance tradeoff in the light of automation failure 
probabilities.  That is, there may be a point where the cost of increasing the DOA is too great if 
the automation fails.  This is especially significant if operators are expected to provide manual 
recovery for failed automation.   
 
Once operators realize the automation is degrading or failing, they face significant challenges. 
Such unplanned transitions from automatic to manual control create periods of very high 
workload (Huey & Wickens, 1993).  The shift often requires a change in the concept of 
operations (ConOps) wherein the roles and responsibilities of individual crewmembers must 
change to compensate for the loss of automation (Roth & O'Hara, 1999, 2002). 
 
One approach to managing this tradeoff may be to refrain from higher levels of automation 
(Kaber & Endsley, 2004).  There is some empirical support for this approach. Petermeijer et al. 
(2015) found greater negative effects on lane-keeping driving performance associated with a 
driving aid providing continuous guidance as compared to others that provided less guidance 
and required drivers to lane keep on their own some of the time.  
 
In another study, Lorenz et al. (2001) examined the effect of LOA on out-of-the-loop problems. 
Students performed environmental control tasks with the support of an intelligent fault 
management (IFM) system.  The IFM had three LOAs.  In the lowest, it guides operators on how 
to find faults.  In the medium LOA, the system made a fault diagnosis and recommended 
actions to take.  At the highest level, the IFM made a diagnosis, recommended actions, and 
automatically implemented them unless the operator disagreed and overrode the action within 
45 seconds.  The IFM failed (provided no support to the operator) in 10 percent of the trials 
during which the participants’ fault detection and management performance was evaluated.  
The results showed degraded performance in the medium and high LOAs, but more consistent 
performance when the IFM system having a low LOA failed.  This failure was due, in part, to 
changes in information-sampling strategies with changing LOA.  This study found that higher 
LOAs were associated with more human-automation issues.  Recovery from automation failure 
was better at the lower LOAs.  This finding is generally consistent with Parasuraman 
recommendation that recovery from automation failure is superior when intermediate levels of 
automation are used rather than high automation (Parasuraman, Sheridan & Wickens, 2000). 

 
Manzey, Reichenbach and Onnasch (2008) investigated the effects on fault identification and 
management performance of four different levels of automation.  In the first level, there was no 
automation, and the entire task was handled manually.  In the second level, the automation 
offered a diagnosis of system faults.  The third level provided diagnosis along with 
recommended actions that the operator had to perform manually.  In the fourth level, the 
diagnosis and actions were automatically performed upon operator’s approval.  Student 
participants controlled a simulated spacecraft life-support system in which malfunctions 
occurred.  Measures were collected of primary- and secondary-task performance.  Primary task 
measures included percentage of correct diagnosis and fault identification time.  The secondary 
task measure was connection check response time.  Automation bias (commission errors - 
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doing what automation suggests even when it is wrong) was also assessed.  The authors also 
examined “return-to-manual control” (skills deficit) after the automation failed.  They found that 
any automation improved primary- and secondary-task performance compared with manual 
operation, and the higher the LOA, the better the performance.  In using the two lower levels of 
automation, differences were observed in secondary task performance, but not primary tasks.  A 
cost was incurred however; automation bias was observed in approximately 50% of the possible 
opportunities and was about equal for all automation functions.  The authors suggested that 
these errors were due to less attentive crosschecking of information with automation.  
Therefore, a partial explanation of the improved performance at higher levels of automation may 
be that participants unquestioningly accepted the automation’s actions.  In addition, there was 
some evidence of loss of control skills at the highest LOA, the only one for which automation 
control was available.  The authors concluded that medium LOAs are preferred if manual skills 
must be maintained.   
 
These findings may partially explain the preference that experienced pilots have for a 
management-by-consent approach to automation, where automation cannot act unless and until 
explicit pilot consent is received (Olson & Sarta, 1998 & 2001).  Operators rarely want to 
delegate whole tasks or functions to automation; more typically, they want to delegate some 
portion of them (e.g., the information-gathering portions of a task (Miller, 2005)). 
 
Thus, intermediate and low DOAs support automation failure detection and management, 
especially when manual skills need to be preserved.  This approach may also be favored by 
operators of real-world systems.  In addition to improving SA, failure recovery, skills 
maintenance, and lower DOAs also keep the operator in a clear position of control.  
 
Another approach to support automation failure recovery performance may be to use AA that 
provides operators with experience with various DOAs, which, as noted previously, enhances 
the operators understanding of how automation performs.   
 
A study by Parasuraman, Mouloua, and Molloy (1996) examined this hypothesis.  They 
examined the effects of AA on automation failure detection during flight simulation scenarios 
performed by nonprofessionals.  Participants monitored engine status while engaged in tracking 
and fuel management tasks.  The engine status was monitored automatically; however, the task 
was shifted to the participants periodically.  Two methods of shifting the task were used.  The 
first shifted task responsibility between automated and manual monitoring was based on a 
predefined schedule.  The second method followed the same schedule, but only returned 
monitoring to automation if the participant’s manual performance did not meet the predefined 
criteria.  There was a third group where the monitoring task was always automated.  At some 
point during the scenarios, the automation failed and the ability of participants to detect the 
failure was the key performance measure.  The results showed that monitoring performance 
significantly improved (by approximately 66%) following the time period where the task was 
performed manually.  The authors interpret this finding as demonstrating the effectiveness of AA 
to support failure detection.   
 
This was the only study found at the time that provided a specific test of AA’s impact of failure 
management.  Therefore, there is some support, but it is quite limited.   
 
There are some other factors that may contribute to automation failure management: task 
sharing, HSI design, and training. 
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AA may be more effective if it is implemented to support task sharing.  This is because a factor 
contributing to the failure to properly monitor automation is that automation often performs tasks 
independently from plant personnel (O’Hara & Higgins, 2010).  Personnel often have other tasks 
for which they are responsible.  While personnel do play a role in monitoring the performance of 
the automation, that responsibility often becomes compromised in the face of workload 
pressures.  This problem is exacerbated when automation is reliable, and personnel trust and 
depend on it to function properly (Parasuraman & Riley, 1997).  Because of workload 
management strategies, personnel may continue to use automation, even when it does not 
correctly fulfill its functions.  Improved task sharing strategies may help overcome this issue.  
 
HSI design is another contributing factor to difficulties dealing with automation failures.  Even 
when operators do monitor automation, the design of the HSI may not support monitoring 
needs.  Many studies have found that HSIs typically provide insufficient information about 
automation’s goals, current activities, and performance (Liu, Nakata & Furuta, 2004; Lee & See, 
2004; Parasuraman & Riley, 1997; Roth et al., 2004; Rook & McDonnell, 1993).  Willems and 
Heiney (2002) stated, “as errors involving automation tend to be more cataclysmic and costly, 
the human interface has become more important than ever.”  
 
Consistent with this finding, Parasuraman and Riley (1997) noted that there is evidence to 
indicate that automation failures were better detected when the behavior of automation can be 
easily determined in the HSIs, especially those that minimize attentional demands (such as 
integrated displays and emergent features. 
 
An additional factor to consider is training.  Training supports operators’ ability to detect and 
respond to degradations and failures (O’Hara & Higgins, 2010).  Training can provide operators 
with clear and specific information so that when automation degrades and fails, the following 
occurs:  
 
 Operators -  

• understand how and why it might degrade or fail 
• understand the implications of such degradations for HSI and their own performance 
• monitor the system’s performance so they can detect and recognize degradations via 

control room HSIs  
• perform recovery- and compensatory-actions  
• transition smoothly to backup systems when needed 
• understand how the roles and responsibilities of crew members and the concept of 

operations are affected  
 
Further, simulator training that specifically gives operators experience with examples of 
automation failures helps them to deal effectively with any failures (O’Hara & Higgins, 2010).   
 
5.3  Conclusions 

5.3.1  Task Performance, SA, and workload 

In general, AA supports improved task performance.  There are exceptions however, but the 
research does not provide a basis to understand why.  There is a thought that it has to do with a 
mismatch of task demands and automation support in some studies.  This was found in one 
study but may have been a factor in other studies that did not specifically address it.  For 
example, operator performance was better when AA was applied to the lower-level cognitive 
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functions, such as acquiring information and implementing actions, and less effective when 
applied to higher-level cognitive functions of information analysis and decision-making.  When 
task demands and automation support are not well matched, changes in automation are likely to 
be distracting and increase workload.   
In general, operators do well with high DOAs in AA systems.  This may be because exposure to 
varying DOAs improves their understanding of how automation functions.  In fact, exposing 
operators to different LOAs has been found to be beneficial. 
 
The effects of AA on SA and workload are a bit more complicated.  Some studies did find 
improved SA.  However, others did not.  This result may be dependent of the specific nature of 
the tasks.  When AA and operators share tasks, SA may be improved.  But when AA is 
performing a different set of tasks, operator SA for those tasks may be reduced.  Our effort to 
understand the effects of AA on SA was hampered by the fact that many studies that assessed 
SA were not specific about the aspects of SA that were measured.  That is, it is not often known 
if the SA measures assessed the operator’s SA of overall system status, SA of what automation 
was doing, or both.   
 
The results on the effects of AA on workload are similarly complex.  Some studies found it 
lowered workload while others did not.  One reason for this has to do with what AA is being 
compared with.  If AA is compared to a manual condition, workload is likely to be lower.  If AA is 
compared with a static automation condition, workload is likely to be higher.  Also, as mentioned 
above, if automation support is not well matched to the task demands, automation shifts can be 
distracting and increase workload as the operator must figure out what automation is doing.  
Workload increases can be associated with performance improvements, so the tradeoff may be 
acceptable in some circumstances.   
 
One key to successful application of AA is the triggering conditions that cause shifts in 
automation configurations.  The research reviewed provided some insights into the 
effectiveness and limitations. 
 
Operators generally preferred operator commanded triggers.  Operator commanded triggers 
keep the operator in control of the system and reduces potential surprises and distractions that 
can occur when a configuration shift occurs that the operator did not expect.  However, operator 
commanded triggers can increase workload since operator actions are required to change the 
DOA.  This may be problematic when they want to initiate automation because their workload is 
already high.  Therefore, when operator-initiated triggers are used, designers should seek to 
minimize the workload associated with them.  The cognitive cost of initiating automation 
changes should not outweigh its benefits or operators may not use it (Parasuraman et al., 
2009).  This concern can be addressed with well-designed HSIs.   While workload is created by 
operator commanded triggers, the workload contribution is less than if the task had to be 
performed manually.  
 
The other triggering categories, such as assessments of task performance, OFS, and task load, 
were also effective.  They have minimal effect on workload, because operator action is not 
required.  They all have the potential to cause disorientation and distractions that can lead to 
transient performance decrements.  When these triggers are used, HSIs should be designed to 
alert operators to the change in a manner that minimizes distractions and interruptions.  
 
Results were found with using task performance as a trigger.  Operators do not have to request 
a change in automation when task performance is used, therefore, it does not contribute to 
workload.  A negative aspect of using task performance is that a decline in performance is 
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needed before the DOA is changed.  Triggers that predict a downturn in performance before it 
occurs have the advantage of anticipating impending performance decrements and the potential 
to mitigate them before they occur; OFS triggers have that potential. 
OFS, especially as assessed by physiological measures, has had some success.  However, 
technical challenges were noted, including: 
 

• the potential for physiological variables to change very rapidly 
• integrating variables over time to get reasonable invoking thresholds 
• interference and noise from other physical activity such as moving around 
• uncertain viability in the operational environment of a control room  

 
Resolving these issues would be a significant advantage because it would provide an 
unobtrusive way to assess OFS issues and increase automation in advance of performance 
decrements. This could be accomplished at no cost to workload.   
 
Researchers have suggested that there is value in using a hybrid approach to triggering AA 
configuration changes.  Hybrid approaches may provide a more robust approach to determining 
when changes should be initiated.  The use of multiple approaches to trigger automation 
changes helps offset limitations of any single approach.  The limited research available provides 
support for this hypothesis. However, not enough research is available to recommend which 
triggering categories should be used. 
 
For any triggering condition except operator command, an important decision is the 
identification of an appropriate invoking threshold; the specific point at which the trigger changes 
the AA configuration.  The research reviewed provided very little insight into the process of 
determining invoking thresholds. It did however highlight some concerns.  One is the potential 
for triggers to oscillate around the threshold.  For example, if physiological measures are used 
to change automation, these measures can potentially move up and down about the invoking 
threshold.  The danger here is that it can cause oscillations in automation configurations.  This 
type of oscillation is unlikely to be acceptable to operators and is likely to disrupt performance.  
Strategies to manage this issue are needed.  Perhaps an approach can be found in methods 
used to address “chattering” alarms (O’Hara & Brown, 1999); when an alarmed parameter drifts 
above and below the alarm setpoint rapidly indicating an alarm state and a return to normal.   
 
Another important consideration in the design of AA systems is the number of configurations the 
system has, and the length the minimum time configurations should remain active.  The 
research provided few answers to these questions.  Studies of Flight Management Systems 
(FMSs) suggest that too many configurations can make it difficult for pilots to develop a good 
understanding of the relative roles and responsibilities of the crew and the automation for each.  
This concern is related to HSI design (supporting configuration awareness) and training on the 
automation.  However, it appears there is a point where there may be too many configurations.    
 
The other consideration, related to the invoking threshold discussion above, is the minimum 
time a configuration should be active.  Several researchers have suggested that rapidly 
changing configurations will be disruptive to operators.  However, the research does not provide 
any suggestions as to what that time is.    
 
In summary, the research provided some insights into the effects of AA on performance, SA, 
and workload.  It also provided an improved understanding of the detailed design of AA 
systems. However, additional research is needed.   
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It was noted that deriving conclusions about the effects of AA was sometimes hampered by 
experimental designs that did not provide a clean test of AA.  Where applicable, these issues 
were identified.  Future studies should ensure that their designs support the assessment of the 
hypotheses they are designed to test.  For example, if the focus is on the effects of AA, 
comparing AA to manual conditions alone in not adequate to test the hypothesis.  The results of 
such comparisons make it difficult to distinguish between the effects of AA or those of task 
automation, whether static or adaptive.    
 
5.3.2  Detection of Automation Failure and Management of Recovery  

Information to address the potential of AA to support the operator’s ability to detect automation 
failures and manage them was sought.  However, very little research specifically addressed this 
question.  The research that was reviewed tentatively supported a conclusion that it does.   
 
The general issue of automation failure management was examined.  Wickens’ meta-analyses 
revealed an interesting relationship between DOA and automation failure detection, the “routine-
failure tradeoff.”  The tradeoff suggests that when automation functions as it is supposed to, 
higher DOAs lead to better performance.  However, when automation fails, the higher DOAs 
lead to poorer human-system performance.  Further, there appears to be a DOA beyond which 
the negative effects of failure on performance become significant.  This occurs because 
operators tend to reduce monitoring of reliable automation.  When the DOA is high (such that 
operators play little direct role in the F/Ts automation is performing), the lack of monitoring leads 
to poor SA of automation’s functioning.  Therefore, when a failure occurs, it is difficult to detect 
and recover from.   
 
Several researchers have suggested that one approach to managing this tradeoff is to refrain 
from using higher levels of automation; and there is empirical support for this approach. 
Intermediate and low DOAs support automation failure detection and management, especially 
when manual skills need to be preserved. This approach may also be favored by operators of 
real-world systems.  
 
AA may provide an alternative approach because it provides operators with experience with 
various DOAs and that enhances the operator’s understanding of how automation performs.  AA 
may provide a means of including high DOAs when needed, but since lower DOAs are also 
used, operator performance is supported. 
 
It was noted that other factors contribute to automation failure management including task 
sharing, HSI design, and training. 
 
Most of the research discussed in this section focused on automation failures.  Automation 
degradations and loss of functionality may be more difficult to detect.  This situation was not 
addressed in the studies reviewed but warrants additional research. 
 
5.3.3  Potential Challenges of Adaptive Automation 

The conclusion stated above was that AA has the potential to address some of the challenges 
of human interaction with automatic systems.  However, it also presents new issues to be 
addressed and they are summarized here.   
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Even when operators anticipate a configuration change, the change can interrupt their ongoing 
task performance.  Configuration changes also can increase the workload associated with 
human-automation interaction, especially when changes are initiated by operators.  These 
issues are worse when AA shifts configuration unexpectedly or when it should not.  This can 
occur if the configuration changes result from triggers other than those initiated by operator 
command.  It is important for configuration changes to be gracefully implemented to support 
seamless shifting of responsibilities between human and automation agents.   
 
Another challenge is ensuring that operators know the implications of configuration changes for 
their roles and responsibilities.  Not knowing these responsibilities presents the opportunity for a 
new type of error like “mode” errors.   
 
Finally, when configuration shifts are initiated by assessments of OFS, there may be 
technological challenges and limitations to detecting and interpreting such states, such as the 
availability of sensors to accurately and reliably assess operator workload. 

 
5.3.4  Generalizing the Research Findings 

In prior research studies, the generalizability of the findings to real-world operational systems 
was considered (e.g., O’Hara, Higgins, & Pena, 2012).  Research findings are generalized most 
easily when they closely match the target’s operational context.  Dimensions to consider in the 
generalization process are listed in Table 5-2. 
 
Often the systems, tasks, and HSIs used in research studies are simplified representations of 
real-world systems.  In many of the AA studies reviewed, the systems were desktop and micro-
simulations of actual systems such as ATC and UVs.  These systems are greatly simplified 
when compared with the real-world systems they represent.  Consequently, the tasks are 
simplified as well.  Since the system is not represented in its full complexity, the task set 
participants need to perform is greatly limited and simplified.  In addition, the HSI provided to 
interact with the system lacks the complexity of actual HSIs because only limited functionality is 
needed.  
 
In many of the studies, the participants were relatively inexperienced non-professionals with 
limited training.  Professional operators and naïve participants differ in their cognitive 
approaches to task performance and decision-making.  In support of generalization, research 
findings ultimately should be confirmed with professionals in real-world settings (de Greef, 
Arciszewski, & Neerincx, 2010; Zsambok & Klein, 1999).   
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Table 5-2  Generalization of the Studies Reviewed 
 

Generalization 
Dimension 

Target Operational Context Typical Study Reviewed 

Application 
Domain 

Nuclear power plants The domains varied and included UV, 
ATC, and vehicles.  The simulated 
systems usually were very simple and did 
not involve the complexity of real-world 
operations.   

Functions and 
Tasks 

Normal plant operations and 
emergency management 

Simplified versions of the types of tasks 
the system domain demanded 

System 
Representation 

Various plant designs, such as 
pressurized water reactors 

Simplified systems from the study domain, 
(e.g., simplified UV represented on a 
desk-top computer) 

HSIs Alarm, displays, and controls in 
control rooms designed to 
accommodate a crew of 
operators 

Very simple, lacking the complexity and 
functionality of the HSIs in a typical control 
room 

Personnel Highly-trained, professional 
operators organized into a crew 
and supported by a wide variety 
of professionals, such as 
maintenance, engineering, 
training, etc. 

While some professionals participated in 
these studies, most research used 
students with very limited experience and 
training 

 
The results must be interpreted with these differences in mind.  Future systems are in the early 
design phase where research can be directed to identifying issues and developing approaches 
and concepts for addressing them.  Studies like those reviewed provide important contributions 
at this stage.  Once identified, promising technologies and strategies to achieving AA’s long-
term goals can advance to the systems development and evaluation phase, where real-world 
mission constraints can be addressed.   
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6    HUMAN-AUTOMATION INTERACTION AND HSIs  

6.1  Human-Automation Teamwork 

O’Hara and Higgins (2010) emphasized recent perspectives of humans and automation working 
as a multi-agent team (Christoffersen & Woods, 2002; Hollnagel & Woods, 2005; Woods & 
Hollnagel, 2006).  In a multi-agent team, human and machine agents work cooperatively to 
accomplish plant safety and production goals (Figure 6-1).  Any activity in the plant, whether 
performed by human or automation agents, is accomplished by four generic primary tasks: 
monitoring/detection, SA, response planning, and response implementation.  Automation can be 
applied to interface management tasks as well. If a human performs all the primary tasks, the 
F/T is said to be a manual F/T.  If the automation performs them, the F/T is fully automatic.  If 
the human performs some of the tasks and automation performs others, the F/T is at an 
intermediate level of automation.  Humans and automation can also support these tasks when 
they do not perform them completely, such as a decision-making aid.     
 

 
 

Figure 6-1  Multi-agents system monitoring and controlling the plant 
 
Beyond competent and reliable task performance, what characteristics does automation need to 
possess to function as an effective teammate?  Most of the research on designing automation to 
be a good “team player” has been based on an implicit notion of what it means to be a team 
player and how members of a team should perform to function successfully.  The concepts 
employed, such as trust, are based loosely on a sense of what is important to human teamwork. 
That is, the assumption is that automation will be a good teammate when it behaves like a 
human teammate.  In part, this makes sense because research has shown that humans relate 
to automation in similar ways to the way they relate to human teammates (Lee & See, 2004; 
Madhavan & Wiegmann, 2007).  However, there are challenges with this approach.  
Specifically, what model of teamwork is appropriate to human-automation teams and how do we 
account for differences between human and automation agents. 
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First, if we want to model human-automation teams on the characteristics of human teams, what 
model of teamwork should be used?  There is currently no consensus as to what factors are 
necessary to promote good and effective human teams (Salas, Cooke & Rosen, 2008).  In fact, 
there may not be one appropriate model since what constitutes a good team may differ based 
on the overall mission of the team and of the individual characteristics of the members of the 
team.    

 
Even if the focus is restricted to NPP crews, the issue of consensus on key characteristics of 
good teams still exists.  Nuclear plant operations are accomplished through teamwork; the 
coordinated activity of multi-person teams.  Operators share information and perform their tasks 
in a coordinated fashion to maintain safe plant operation as well as to restore the plant to a safe 
state when process disturbances arise.  Crew members may perform a task cooperatively from 
one location, such as the main control room, while in other cases a control room operator may 
have to coordinate tasks with personnel located remotely.   
 
O’Connor et al. (2008) identified team skills necessary for NPP operations based on interviews 
with 38 crews at three different plants in the United Kingdom.  The skills were grouped into five 
categories, each with several sub-elements (Table 6-1).  
 

Table 6-1  Important NPP Teamwork Characteristics 
 

Category Element 
Building situation awareness Develop understanding 

Anticipation 
Maintain overview 
Performance monitoring 

Team focused decision making Analytical decision making 
Procedure following 
Intuitive decision making 
Initiative 

Communication Assertiveness 
Information exchange 

Co-ordination Adaptability 
Supporting behavior 
Team workload management 

Collaboration Leadership 
Co-operation 
Followership 

Note: Source is O’Connor et al. (2008) 
 
Based on simulator observations, O’Hara and Roth (2005) identified a similar, yet broader set of 
factors important to NPP crew teamwork, including: 
 

• having common and coordinated goals 
• maintaining shared situation awareness 
• engaging in open communication 
• planning cooperatively  
• monitoring the status of other team members 
• backing each other up 
• identifying errors proactively  
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Carvalho and colleagues identified somewhat different factors, including plant culture (Carvalho, 
dos Santos & Vidal, 2006; Carvalho, Vidal & de Carvalho, 2007).  They performed field studies 
of NPP crews, and their analyses showed that communication was key in developing a shared 
understanding of the situation among the crewmembers (i.e., shared cognition), such that the 
correct decisions and courses of action could be taken.  They showed that numerous cultural 
factors, including the leadership style of the senior reactor operator and the plant’s safety 
culture can affect communication and the process of forming a shared understanding, which 
other research has shown is key to effective team coordination (Mathieu, Heffner, Goodwin, 
Salas, & Cannon-Bowers, 2000). 
 
Park, Jung, and Yang (2012) also studied how characteristics of communication among NPP 
crews during simulated emergencies affected crew performance.  Specifically, they found that 
the following communication characteristics improved overall crew performance during 
simulated emergency scenarios: 
 

• a tightly coupled communication structure (e.g., which is an indicator of good team 
cohesion) 

• increasing the amount/density of communication to increase team SA (e.g., crew 
members speaking up when observing changes in the system state) 

• increasing the thoroughness of communication to make shared understanding more 
explicit (e.g., greater adherence to three-way communication practices) 

 
Gertman, Haney, Jenkins, and Blackman (1985) found that the emotional stability of individual 
crewmembers’ personalities was related to their future performance.  Itoh, Yoshimura, Ohtsuka, 
and Matsuda (1990) showed that the cognitive abilities of perceptual speed and memory are 
also related to individual NPP crewmember performance, and as a result, overall team 
performance.  Similarly, many studies show that group cohesion or lack thereof, can have an 
effect on team performance (Evans & Dion, 1991).   
 
Three primary antecedent factors have been found to contribute to variability in performance 
between teams (Toquam et al., 1997):  
 

• task characteristics (e.g., how routine and simple versus unusual and complex is the 
task the team must perform) 

• team member characteristics (e.g., intelligence, personality types, and specific cognitive 
abilities) 

• team dynamics (e.g., group cohesion and communication practices)  
 
Further, the characteristics necessary to create good teams may differ based on the control 
room technology with which they interact.  Chung, Yoon, and Min (2009) argued that 
communication protocols will vary depending on whether the crew is operating in a conventional 
control room or a computer-based control room.  Similarly, Roth and O'Hara (2002) found that 
the introduction of computer-based aids into a conventional control room changed crew member 
roles and responsibilities and team processes.   
 
The bottom line is that defining the key characteristics of human-automation teams based on 
those identified for good human teams may be premature as a consensus on an appropriate 
model is yet to emerge.   
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Another challenge with modeling human-automation teams is how to account for differences 
between human and automation agents.  Research on how automation should behave (or 
designed to behave) to be a team player has not been based on the recognition that there are 
some fundamental differences between human behavior and how automation can be 
programmed to behave.  Automation agents are not humans and are not likely to fully behave 
as a human member of a team.  For example, automation agents cannot assume responsibility.  
Automation can be given the authority to act, but humans always maintain responsibility 
(Pritchett, 2001; Sarter & Woods, 1992).  Pritchett and colleagues identified ways in which 
automation agents are different from human agents (Feigh & Pritchett; 2014; Kim, 2011; 
Pritchett, Kim, & Feigh, 2014 a & b): 

 
• Behavior when outside boundary conditions – Human team members will continue to 

attempt effective performance in unfamiliar circumstances, while automation generally 
cannot.  

• Anticipating the needs of a teammate – Good teammates anticipate each other’s 
information needs and provide information.  Automation is limited in this capability. 

• Managing interruptions – Humans time their interactions based on the current situation, 
(e.g., another teammate’s workload).  Automation can be “clumsy” in this regard and 
interrupt human teammates at inopportune times. 

• Responsibility – Automation does not have motivation and a sense of responsibility. 
 
The design of automation teammates should address these differences. 
 
Therefore, there are some technical obstacles to defining a comprehensive model of human-
automation teamwork, including the lack of a consensus on the factors characterizing 
successful human teams and a need for a better understanding of the differences between 
human and automation agents. 
 
6.2  HSIs for AA Interaction and Management  

6.2.1  Supporting Situation Awareness and Managing Workload 

Within the context of automation, supporting SA means supporting operator awareness of: 
 

• the high-level status of automation’s functioning 
• detailed information about automation’s current processes 

 
O’Hara and Higgins (2010) discussed the design of HSIs for general human-automation 
interaction.  While there are some unique considerations when considering AA HSIs, the 
general principles apply to AA HSIs, as well.  It will be briefly summarized before turning to the 
unique characteristics of AA HSIs.   
 
Many automation researchers have endorsed the use of displays based on ecological-interface 
design (EID) principles9F

10 for the rapid monitoring and understanding of automation’s current 
status, especially for non-routine and failure conditions (e.g., Onnasch, Wickens, Li & Manzey, 

 
10 EID refers to an approach to display design that focuses on presenting information at various “levels of 

abstraction” (from lower-level parameter information about a component to high-level plant functions 
such as critical safety function status).  EID principles seek to display this information to making 
maximum use of graphical features to present information. See O’Hara, Higgins, & Kramer, 2000) for 
more information. 
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2014; Sheridan & Parasuraman, 2005).  The use of EID displays for automation is summarized 
for the process of developing such displays in two phases: (1) conduct work-domain analysis to 
identify information requirements and (2) use the principles of EID to design information displays 
to present the required information to operators (Vicente, 1999; Burns & Hajdukiewicz, 2004).  
 

• Information requirements analysis – Identifying the information operators need to interact 
with automation using (1) work-domain analysis using an abstraction hierarchy to identify 
the information needed to interact with automation and ecological interface design 
principles to increase the operator’s understanding of automation and current situation 
awareness (Duez & Jamieson, 2006; Linegang et al., 2006); and (2) functional modeling 
using a means-end hierarchical structure (Liu, Nakata & Furuta, 2004; Piccini, 2002; 
Pirus 2004a & 2004b; Riera, 2001) 

• Detailed HSI design – Presenting information about automation using ecological HSI 
designs, integrated displays, emergent features, and mixed modal feedback (Guerlain et 
al., 2002; Parasuraman et al., 1997, 2000)    

 
EID HSIs provide for rapid processing by operators at low cognitive cost in part due to their 
simplicity and their use of visual graphics.  The importance of HSI simplicity was supported by 
Mosier et al. (2012 &2013).  Mosier et al. (2013) showed how design of the HSIs to automation 
impact pilot perception and use of flight management system (FMS) automation.  Simple (e.g., 
one button changes) were found to have minimal negative impact on workload and SA as 
compared with HSIs requiring multiple inputs.  Mosier et al. (2012) conducted a study with 
professional pilots who flew simulated scenarios using an FMS.  The FMS had two different 
interfaces to accomplish flight management tasks: clumsy and easy.  Also, varied were 
situational factors where unanticipated tasks had to be performed during some scenarios.  The 
interfaces significantly affected workload and task management.  With respect to SA, under 
routine situations, the HSI design did not affect SA, however, the clumsy HSI impaired SA when 
performing an unanticipated task.   
 
While EID displays support high-level monitoring, operators also need access to more detailed 
information about automation processes.  For example, one important aspect of automation that 
operators need access to is the basis for its decisions.  Roth et al. (2004) evaluated the extent 
to which UAV operators understood the plans developed by automation when humans and 
automation cooperated as a team in the planning and execution of missions.  They showed the 
need to communicate the rationale used by the automation and offer a means for operators to 
modify the automation’s operations, without which operators cannot properly assess the 
appropriateness of automation’s actions and whether changes are needed.  Thus, HSIs should 
support automation-human communication so operators can determine and understand how the 
automation performs its tasks. 
 
In AA systems, operators need to know the current configuration and when the configuration 
changes (i.e., configuration awareness) (Kaber & Kim, 2011).  Configuration awareness is 
critical because each configuration shift is associated with new roles and responsibilities 
(Bindewald, Miller & Peterson, 2014).   
 
The implication of loss of awareness of the current configuration is the potential for a type of 
mode error.  That is, operators behaving as though one AA configuration is in effect when 
another configuration is actually active.  Operator behavior appropriate for the mode they 
believe the automation is in may be inappropriate to the currently active configuration.   
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Silva and Hansman (2015) examined the mechanisms behind mode errors in crew interactions 
with flight management systems and suggested strategies to mitigate them.  FMS mode errors 
are very similar to AA configuration awareness errors.  Mode errors arise from a divergence 
between the systems actual mode and the operator’s mental model as to what the current mode 
is.  They identified three types of divergence (D):  
 

• Type D-1: Automation shifts to a new mode, but the operator’s mental model is not 
updated  

• Type D-2: Automation does not shift to a new mode, but the operator’s mental model is 
updated to reflect a new mode 

• Type D-3: Automation shifts to a new mode, but the operator’s mental model is updated 
to reflect a different new mode 

 
The authors propose mitigation strategies to address the different types of divergences.  
Divergence Type D-1 can be addressed with salient feedback in the HSI as to the current mode. 
Type D-2 can be addressed through training and crosscheck procedures that include 
verifications of the currently active mode.  For Type D-3, a combination of HSI feedback and 
crosscheck may be effective.  These strategies should support AA operators to maintain 
awareness of the current AA configuration. 
 
Parasuraman, Miller, and colleagues have proposed an HSI approach, the delegation interface, 
to support both configuration awareness and managing the workload of AA interaction (Miller & 
Funk, 2001; Miller & Parasuraman, 2007).  Sheridan and Parasuraman (2005) discussed the 
importance of users maintaining control over adaptive systems.  They note the issue of potential 
lack of predictability in adaptive systems and loss of SA, especially when configuration shifts are 
not under user control.  In a team environment, a second issue is the potential for one member 
of the team to change the configuration while the other members of the team are unaware of the 
change.  When users control the shifts, these issues are lessened.  They acknowledge the 
potential of increased workload when users control configuration shifts.  The challenge is to 
design an interface to minimize the workload associated with user control.       
 
The delegation interface seeks to achieve the goals of ensuring awareness of the 
responsibilities of each agent while minimizing the workload associated with operator 
interactions with automation.  The approach is modeled on work delegation in human teams.  
Delegation is the process of assigning specific roles and responsibilities for tasks for which the 
delegating agent retains authority and responsibility.  As supervisory controllers, operators 
select tasks for automation to perform, and set procedures for how it must accomplish them. 
Communication between agents is expressed in terms of goals, methods, constraints, and 
resource utilization.  The underlying concept is that operators can delegate predefined tasks to 
automation, thereby giving them a flexible approach to completing tasks and an efficient means 
of changing the DOA.   
 
“Playbook” is one form of delegation interface.  The name is based on the metaphor of a sports 
team’s use of a “playbook,” (i.e., a set of specific plays that all team members understand).  The 
plays, based on a hierarchal task-model, reflect the system’s DOAs.  Groups of predefined 
tasks are organized into plays, with the relevant task parameters identified (specified when 
operators call a particular play), such as times and locations, thereby establishing a common 
understanding for all team members of what each individual agent will do.  Operators can make 
real-time adjustments, but more effort is involved in communicating with the automation.  
However, this capability enables the “play” to be better tailored to a specific situation.     
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Playbook contains a planning function to develop a specific plan for a current situation.  The 
planner has access to information, such as resources available (e.g., fuel), and can adjust the 
tasks accordingly.  It alerts the operator about any constraints that would compromise success. 
Finally, if necessary, an event-handling function makes fine adjustments during the execution of 
the plans.  
 
There is empirical support for the Playbook-delegation interface (Calhoun et al., 2013; Miller & 
Funk, 2001; Miller & Parasuraman, 2003, 2007; Miller et al., 2005; Miller, et al., 2011; 
Parasuraman, Galster, Squire, Furukawa, & Miller, 2005).  In one study, Parasuraman, Galster, 
Squire, Furukawa, and Miller (2005) compared the effect of Playbook on the performance of UV 
tasks with a restricted interface with only one level of control.  The success rate and time to 
completion were better with Playbook, although the benefits fell as the number of vehicles 
simultaneously controlled increased.  The HSIs enabled operators to identify goals and instruct 
automation agents.  Also, they adapted better and responded to the automation’s ineffective 
behavior. 
 
Calhoun et. al (2013) conducted a usability evaluation of a delegation interface for single 
operator adaptive control of multiple UAVs.  The interface enabled operators to shift between 
four DOAs with manual control at the lower end and high-level command with automation 
controlling the vehicle at the high end.  Participants included both pilot and non-pilots.  They 
used the interface to control the UAVs in a desktop simulation.  The data collected consisted of 
user comments collected during a think-aloud procedure used during the scenarios, as well as 
via a questionnaire and debriefings.  The interface was rated highly and was considered easy to 
use.  Recommendations for improvement were obtained and included the need for more 
flexibility in working with the different DOAs (e.g., using voice, touch, and mouse inputs).  Many 
additional suggestions were made which are specific to the details of the HSI.   
 
The lessons-learned from these studies is that providing operators with “set plays,” (i.e., 
predetermined definitions of a set of roles and responsibilities of human and automation) helps 
support configuration awareness by establishing clearly defined roles and helps reduce the 
operator’s workload in interacting with the automation since plays can be selected rather than 
having to be developed in real time.  Note that while the delegation interface was developed for 
operator commanded AA, the general principles can be applied to other triggers as well. 
 
6.2.2  Etiquette and Managing Interruptions  

Communication is commonly identified as an important process factor in human teams.  As 
automation becomes more interactive and more like a “team player,” it is increasingly becoming 
an important factor in human-automation interaction as well.  Miller (2015) observed: 
  

I think it is becoming increasingly clear that we need machines that are designed with an 
eye to how humans will perceive and interact with them on a social level, as well as 
computational models of those social interactions. After all, we are social beings and all our 
interactions with other “autonomous agents” (be they human or not) are necessarily social 
interactions. Failing to fully design for those interactions means we get random, and most 
likely undesirable, interactions as a result. 

 
Identifying approaches for accomplishing this goal is a relatively new area of research. 
 
Communications from automation can be disruptive and negatively impact task performance 
and workload (Maere et al., 2010).  When prompts come too quickly, they add to workload and 
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degrade performance.  When they are not frequent enough, again, the operator’s performance 
is negatively impacted because they do not get the necessary information.  Maere et al. (2010) 
showed that one simple means of handling such disruptions is allowing operators to control the 
rate of automation prompts to help mitigate these effects. 
 
Another means is to design the interactions between automation and its human teammates to 
follow rules of “etiquette.”  In the context of automation, etiquette means communications from 
automation that are “non-interruptive” and “patient.” (Parasuraman & Miller, 2004).  However, it 
is important for an automation system to know when it is appropriate to interrupt.  Dorneich et al. 
(2012) gave the example that while it is inappropriate to interrupt a pilot during landing with a 
baseball score; it is appropriate to interrupt with the information that the landing gear has 
malfunctioned.  Designing an automation system to communicate in a manner that follows 
social conventions of human teammates is a challenge because it requires knowledge of 
operator states and situations. 
 
Dorneich et al. (2012) examined the role of operator workload as input to an AA system 
designed to manage interruptions.  Participants performed simulated platoon scenarios 
involving five tasks: route navigation, keeping count of the number of civilians and soldiers 
sighted, maneuver monitoring, maintaining awareness of the overall situation, and a secondary 
math interruption task.  During the scenarios, messages were received from a variety of sources 
such as unit commanders, soldiers, and others.  The task load associated with managing the 
messages was varied from low (about 3 messages per minute) to high (about 8 message per 
minute).  An adaptive communication scheduler was available during half the scenarios.  When 
the participant’s workload was high, the scheduler sorted messages such that only high priority 
messages were put through the communications equipment.  Lower priority messages were 
sent as text messages to a personal computer.  The system minimized interruptions during high 
workload periods.  When the participant’s workload was low, the scheduler did not sort the 
messages.  The system determined the participant’s workload based on EEG and ECG 
measurements.  In the other half of the scenarios, no adaptive support for managing 
communications was available.  Measures of the participant’s task performance were obtained.  
The results showed that the scheduler improved task performance on priority tasks.  At the 
same time, SA of the lower-priority task was lower.  This tradeoff was considered acceptable, 
since the scheduler enabled participants to maintain awareness of the more important 
information.        
 
Miller and Funk (2001) described the effort to design the etiquette of the U.S. Air Force’s 
Rotorcraft Pilot’s Associate (RPA).  To do so they first studied the teamwork of helicopter pilots. 
The concept was that if the adaptive system was to be a teammate in the cockpit, it should 
emulate the etiquette of the crew.  They observed that crews spend about one third of the time 
in “meta-communication” activities.  These include communications such as those related to 
plans and intentions, allocations and affirmation of responsibilities, and maintenance of situation 
awareness.  To emulate this behavior in the adaptive system, Miller and Funk developed the 
“Crew Coordination and Task Awareness” display to communicate “what the associate thought 
was going on.”  The display had four buttons to provide information to the crew pertaining to: 
 

• the associate’s current inference about the general, high-level mission context (e.g., 
currently engaged in an attack task rather than an evade task), 

• the associate’s inference about the highest priority current pilot task 
• the task which the associate is engaged in currently which it believes has the highest 

priority 
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• the highest priority, inferred copilot task 
 

If the crew felt something was wrong in the system’s information in any of these areas, they 
could correct it. 
 
Four flight crews (eight pilots) evaluated the system during realistic scenarios in a high-fidelity 
flight simulator.  Half were flown with the display and the other half without.  Following the 
scenarios, the pilots were given questionnaires to assess the system and the NASA TLX to 
assess workload.  Pilot evaluations of the system were very favorable (e.g., most evaluated the 
display “Of Considerable Use” or “Extremely Useful”).  They also rated their workload lower 
when the system was available.  They did not, however, rate their overall performance higher 
with the system.  Overall the authors concluded the effort to design the etiquette of the RPA by 
modeling its behavior on the meta-communications of human crews to be successful. 
 
Based on their experience, Miller and Funk developed 12 ‘Etiquette Rules’ for adaptive 
automation, stated from the perspective of the automation system: 
 

1.  Make many, many correct interaction moves for every error made 
2.  Make it very, very easy to override and correct your errors 
3.  Know when you are wrong, the easiest way to do this is to let the human tell you, and 

then get out of the way. 
4.  Don’t make the same mistake twice 
5.  Don’t show off, just because you can do something, doesn’t mean you should. 
6.  Be able to talk explicitly about what you’re doing and why.  Humans spend a lot of time 

in meta-communication activities facilitating coordination, especially in distributed work 
environments. 

7.  Be able to take instruction; not only will this help you adapt to the user’s expectations, it 
may actually make you look smarter. 

8.  Make use of multiple modalities and information channels redundantly; understand the 
implications of your communications on all the levels on which it operates. 

9.  Don’t assume every user is the same, be sensitive and adapt to individual, cultural, 
social, contextual differences 

10. Be aware of what the user knows, especially if s/he knows it because you recently 
conveyed it (i.e., don’t repeat yourself). 

11. Try not to interrupt. There may be times when something you want to convey is 
important enough to warrant interruption, but this will usually not be the case. Err on the 
side of caution. 

12. Be cute only to the extent that it furthers your interaction goals. 
 
The importance of designing AA systems with etiquette is even greater in high workload 
situations (Sheridan & Parasuraman, 2005). 
 
In addition to managing disruptions and interruptions, etiquette has been found to help calibrate 
operator trust in automation (Atkinson et al., 2012). 
 
6.3  Adaptive HSIs 

In the discussion of Figure 6.1, it was noted that agents can support primary tasks and interface 
management tasks.  In a computer-based control room, secondary tasks include activities such 
as navigating through or accessing information at workstations and arranging information on the 
screen.  In part, these tasks are necessary because operators view only a small amount of 
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information at any one time through the workstation displays.  Therefore, they must undertake 
interface management tasks to retrieve and arrange the information.  Interface management 
tasks are necessary to perform the operator’s primary tasks. 
 
The distinction between primary and interface management tasks is important because the 
latter created workload and may divert attention away from primary tasks and disrupt 
performance (O’Hara & Brown, 2002).  Aspects of interface management are candidates for 
automation.  Adaptive user interfaces can lower workload by automatically providing information 
relevant to the current operational context.  Reducing the workload associated with interface 
management should provide more cognitive resources to devote to primary tasks.  The design 
challenge is doing so while users can remain in control and have a full understanding of what is 
being presented to them (Roberts & Parush, 2007).   

 
The communication scheduler system (Dorneich et al., 2012) discussed is an example of an 
adaptive HSI.  Another very simple example is automating the alarm reset when many alarms 
are coming into the control room (Yenn et al., 2006).  Another example of an adaptive HSI is the 
automatic identification of a display appropriate to the ongoing situation (e.g., identifying an 
emergency procedure display upon detecting any of the procedure’s entry conditions).  Here, 
the HSI would notify the operator of the availability of the display, such as via a blinking icon at 
the bottom of the screen, rather than disrupting the operator's ongoing activity by obtrusively 
showing the display.  This type of automation may reduce the possibility of operators 
erroneously retrieving the wrong display. 
 
Hou, Kobierski, and Brown (2007) developed an intelligent adaptive interface (IAI) that selects a 
display based on current situational factors involving mission changes and operator states like 
the triggering conditions discussed earlier.  They investigated the efficacy of IAIs in a multi-UAV 
mission.  The IAI was modeled as part of the UAV tactical workstations in maritime patrol 
aircraft.  They used a performance model to compare the difference in mission activities with 
and without IAI agents.  A prototype IAI experimental environment was implemented for a 
human-in-the-loop empirical investigation.  Both the simulation and the experiments showed 
that, although multiple UAV control is a cognitively complex task, IAIs significantly reduced 
workload and improved SA, allowing operators to work under time pressure.   
 
6.4  Conclusions 

Various aspects of human-automation interaction were considered.  The efforts to model 
human-automation teamwork were first examined.  The research to define the key 
characteristics of human-automation teams has generally been based on modeling multi-agent 
teams after good human teams.  However, a consensus has yet to emerge as to what 
constitutes good human teams, thus generalizing such models to multi-agent teams has had 
limited success.  In addition, a robust model of human-automation teams must account for 
differences between human and automation agents.  Therefore, most of the research to define 
how automation should be designed to behave to be a team player has not been based on a 
recognition that there are some fundamental differences between human and automation 
teammates.   
 
HSIs bridge the gap between human agents and automation agents.  A key consideration in 
designing AA HSIs is to support SA of the high-level status of automation’s functioning as well 
as the detailed information about automation’s current processes.  Research has defined 
promising strategies to supporting SA using EID displays and detailed displays that are based 
on a comprehensive information requirements analysis.  For AA HSI, an important aspect of SA 
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is configuration awareness.  Since configurations define operator and automation roles and 
responsibilities, lack of configuration awareness can lead to errors.  The research on FMS mode 
errors since it is very similar to configuration awareness were examined.  Recommendations for 
supporting configuration awareness were identified.    
 
Another key consideration is the management of workload, especially for AA systems.  
Promising approaches to both support configuration awareness and also managing workload 
can be found in the research on delegation interfaces.    
 
Etiquette is an important aspect of human-automation interaction for managing interruptions and 
distractions stemming from interactive automation.  A promising approach to understanding 
etiquette requirements in an operational domain may be used to model its behavior based on 
how human teams interact.  Such efforts are not as ambitious as developing a comprehensive 
human-automation teamwork model.  Instead, they focus on a more limited set of behaviors in a 
specific application domain.  Future successes in establishing models of human-automation 
teams should lead to advances in defining the etiquette requirements for human-automation 
interaction.  
 
Finally, adaptive HSIs represent a means of supporting operators by performing interface 
management tasks.  Such tasks potentially take cognitive resources away from primary tasks 
and can have a negative effect on performance.  Adaptive HSIs have been found to lower this 
kind of workload. 
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7    HFE GUIDANCE FOR DESIGNING AND EVALUATING AA 
SYSTEMS 

HFE standards and guidelines (S&Gs) documents play an important role in the design and 
evaluation of complex systems (Karwowski, 2006).  S&Gs provide users with principles to help 
ensure that the physiological, cognitive, and social characteristics of personnel are 
accommodated in system development.  They also support standardization and consistency of 
HSI characteristics and functionality.  Many HFE S&Gs are developed by professional 
organizations such as the Human Factors and Ergonomics Society (HFES) and the Institute of 
Electrical and Electronics Engineers (IEEE) using a consensus process.  Consensus S&Gs are 
periodically updated to keep current with new research and technological developments.  
Government organizations also develop HFE S&Gs.  The Department of Defense’s HFE 
Technical Advisory Group (DoD, 2004) listed over 30 U.S. government HFE standards.  Like 
consensus documents, government S&Gs are periodically updated.  
 
In this section, the HFE guidance that is available to support the design and evaluation of AA 
systems is discussed.  It is organized around three topics: 
 

• function allocation 
• AA design and review 
• evaluation and validation 

 
7.1  Guidance on Function Allocation  

O’Hara, Higgins and Pena (2012) identified two automation-related issues.  One issue was 
“function allocation methodology to support automation decisions” which addressed the fact that 
function allocation methodologies have not kept pace with automation technology.  There is a 
need for improvements in the methods available to designers for making automation decisions 
and the safety reviewers of those decisions.   
 
7.1.1  General Function Allocation Guidance 

Methods for the allocation of functions to humans and machines originated in the development 
of military systems.  One of the first approaches was to allocate F/Ts to humans or automation 
using a Fitts list (Table 7-1).  The analyst first evaluates F/Ts in terms of what abilities are 
needed for successful performance.  The list is then consulted, and the F/T allocated to the 
most capable agent.  Fitts lists are simple to use and require little training.  Employing the 
technique requires only the Fitts list and a list of system F/Ts.   
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Table 7-1  Example of a Fitts List Comparing Human and Machine Capabilities 
 

People Excel In These Activities Machines Excel In These Activities 
Detection of certain forms of very low 
energy levels 

Monitoring (both people and machines) 

Sensitivity to an extremely wide variety of 
stimuli 

Performing routine, repetitive, or very precise 
operations 

Perceiving patterns and making 
generalizations about them 

Responding very quickly to control signals 

Ability to store large amounts of 
information for long periods – and recalling 
relevant facts at appropriate moments 

Storing and recalling large amounts of 
information in short time-periods 

Ability to exercise judgment where events 
cannot be completely defined  

Performing complex and rapid computations 
with high accuracy 

Improvising and adopting flexible 
procedures 

Sensitivity to stimuli beyond the range of 
human sensitivity (infrared, radio waves) 

Ability to react to unexpected low-
probability events 

Doing many different things at one time 

Applying originality in solving problems, 
(i.e., alternative solutions) 

Exerting large amounts of force smoothly and 
precisely 

Ability to profit from experience and alter 
course of action 

Insensitivity to extraneous factors 

Ability to perform fine manipulations, 
especially where misalignment appears 
unexpected 

Ability to repeat operations very rapidly, 
continuously, and precisely the same way 
over a long period 

Ability to continue to perform when 
overloaded 

Operating in environments which are hostile to 
man or beyond human tolerance 

Ability to reason inductively Deductive processes 
Note: Source is DoD, 1999 

 
One criticism of the approach is that in actual system design, decisions about allocations are 
often iterative, rather than one-time allocations as suggested by the Fitts list approach.  Another 
criticism is that the approach is overly simplistic in terms of human roles and uses qualitative 
terms only.  Further, the capabilities of humans and machines are not always directly 
comparable; they can be complementary (Madni, 1988).  That is, some F/Ts are better 
performed by both humans and automation (rather that humans or automation) since the FT 
demands require capabilities of both agents.  This is one of the misleading aspects of applying a 
Fitts approach, it fosters a view that allocation is the process of substituting automation for 
human performance.  However, allocation is not a simple substitution, rather the allocation 
process fundamentally changes human roles in the system and the F/Ts they will perform 
(Hollnagel, 1999; Thurman et al., 1977).  The result of a Fitts list approach to allocation can be 
that the role of the humans in the system is ill-defined and both human and integrated system 
performance suffers.  Its “either-or” process does not support AA decisions since AA 
fundamentally is based on a dynamic changing of allocations between human and automation 
agents.  
 
Despite these criticisms, Fitts lists continue to be widely used and improved to accommodate 
technological advances (de Winter & Dodou, 2014).  An example is the Function Allocation 
Evaluation Matrix (DoD, 1999).  This technique is an extension of the Fitts' list approach that 
recognizes that some F/Ts may be best allocated to both human and automation agents.  Like 
the Fitts list, F/T requirements are compared to the capabilities of hardware, software, and 
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humans.  A worksheet is used to document the evaluation (Figure 7-1).  F/Ts are listed on the 
left side of the worksheet.  The Fitts-like evaluation criteria are listed in the columns.  The 
analyst can assign numerical weightings to the criteria.  For example, the weightings can be 
defined by SMEs based on their importance to the F/T being analyzed.  The scores are then 
entered in the table and summed for the “operator” and the “machine” allocations.  The scores 
are used to make function allocation decisions.  When the score totals are close to each other, 
then the allocation is made to “both” operator and machine.  Once the allocation decision is to 
share the F/T, a further analysis must be made to determine if the shared F/T should be 
statically or dynamically implemented.  
 

 
 

Figure 7-1 Example of a function allocation evaluation matrix  
(Note: Source is DoD, 1999) 

 
Allocation of functions methods have been included in a standard developed by the International 
Standards Organization (ISO, 2000).  The standard describes the considerations to be used to 
allocate functions.  An input to the allocation process is a set of F/Ts and their performance 
requirements.  Preliminary allocations are made based on legal requirements, if any, which 
make certain allocations mandatory.  Then allocations are based on the relative capabilities of 
human and machine agents, in a manner like a Fitts list approach.  The allocation is further 
informed by prior experience with the allocations of similar F/Ts in previous systems.  Additional 
considerations are included to address some of the challenges of automated systems, such as 
the need to maintain situation awareness and to maintain manual skills if human backup of 
automation is required.  The standard further considers the integration of allocations to humans 
such that their role results in “challenging, interesting and satisfying jobs.”  The ISO process 
includes the evaluation of allocations and their reallocation as necessary. 
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The standard acknowledges that not all F/Ts should be allocated in a fixed manner.  Rather, 
some can be implemented in a dynamic manner based on situational workload.  However, while 
dynamic allocation is acknowledged as an alternative to static allocation, the methodology does 
not clearly address how the analyst would identify when this alternative is preferred.    
 
Bindewald, Miller, and Peterson (2014) proposed the use of a function-to-task design process 
for identifying aspects of functions to be adaptively performed.  The overall process is based on 
a functional decomposition approach, much like hierarchal decomposition method of task 
analysis.  Once functions are broken down into basic tasks, the tasks are allocated to agents to 
perform them.  At this point the process depends on mapping tasks to the capabilities of the 
agents to identify those best suited to perform the task.  After those tasks are identified for 
which the allocations are fairly clear, a set of tasks remain that can be performed by either 
agent.  These tasks can be allocated dynamically, that is, the tasks can be allocated to human 
or automation agents based on human workload.  
 
Bindewald et al., did not discuss the option of using a shared control approach, where these 
tasks are statically allocated to human and automation agents based on criteria other than 
agent capability.  For example, a designer might assign a set of such tasks that are related to 
each other to automation when the tasks support a lower-level function while assigning a set of 
related tasks to the human operator when they support a higher-level function when the latter 
may support the operator to maintain overall situation awareness of system state.     
 
Binderwald and colleagues provide a methodology that includes AA considerations as an option 
in the allocation process.  However, it does not provide criteria, beyond the fact that the tasks 
are within the capability of both agents, to support the identification of when AA should be 
selected.  
 
Therefore, the general FA guidance has advanced to the point of acknowledging AA as a viable 
allocation option, but the methodology has not been sufficiently developed to provide detailed 
processes to support the decision.  
 
7.1.2  Nuclear Industry Guidance for Function Allocation  

The NRC conducted one of the first studies in the nuclear industry on function allocation 
methodology.  The objective of the study was to “develop criteria for assessing design proposals 
and concepts of automation that employ computer-based operational aids.”  Price (1982) 
described the relationship between human and automation performance as a continuum that 
has many possible combinations, as is illustrated in Figure 7-2.  The two-dimensional space is 
divided into "regions" indicating the best choice for allocation to automation or human 
performance:  
 

• In Region 1, human performance is good and automation performance is poor, thus the 
F/T should be allocated to humans. 

• In Region 2, human performance is good and exceeds automation performance, thus 
human performance is preferred. 

• In Region 3, automation performance is good and human performance is poor, thus the 
F/T should be allocated to automation. 

• In Region 4, automation performance is good and exceeds human performance, thus 
automation is preferred. 

• In Region 5, there is little difference in the relative advantages of human and automation, 
thus the F/T can be allocated based on other criteria. 
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• In Region 6, neither human nor automation can be performed acceptably, thus the F/T 
should be redesigned. 
 

 
Figure 7-2  Relative combinations of human and automation performance 

(Adapted from Price et al., 1985) 
 
Pulliam et al. (1982) used the results of Price’s work to develop a methodology for allocating 
nuclear plant control functions to human and automatic control.  The methodology begins with 
the identification of functions to be allocated and steps through a decision flow chart until the 
functions are allocated to the regions depicted in Figure 7-2.  The considerations include 
whether allocation to humans or automation is mandatory and whether performance by humans 
or automation is feasible.   
 
While Region 5 allocations may be suitable to AA, the methodology is based on the assumption 
that F/Ts in this region will be statically allocated to humans or automation.  Price et al. did not 
explicitly discuss the possibility of dynamic allocation.  It is worth examining the method 
because the analysis that results in an assignment to Region 5 can include important 
considerations for AA.  However, the methodology bins F/Ts into Region 5 at the end of the 
process when they have not been assigned to another region first.  At that point in the process, 
F/T performance by either automation or humans is reasonable.  Unfortunately, no 
considerations for selecting AA are presented. 
 
Guidance for allocation of NPP functions is provided in the International Electrotechnical 
Commission’s (IEC) standard on NPP control room design, IEC 60964 (IEC, 2009).  Section 6 
discusses the functional design of the control room, which is divided into functional analysis, 
function assignment, verification of function assignment, validation of function assignment, and 
job analysis.  Function assignment is the allocation of functions.  The standard requires the 
designer to develop and document criteria for function assignment based on the capabilities and 
limitations for human and automatic agents (much like a Fitts List approach).  The guidance is 
high-level, and IEC 60964 refers the user to IEC 61839 (IEC, 2000) for more detailed guidance 
on assignment of functions. 
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IEC 61839 provides detailed guidance for functional analysis and assignment for nuclear plant 
design. The standard requires criteria to be developed for function assignment.  These criteria 
may be based on: 
 

• the requirements for accomplishing functions (i.e., time, complexity, and accuracy that 
are derived from functional analysis) 

• national law, rules, and guidelines 
• utility and vendor practices 
• cost 

 
The criteria should reflect the basic capabilities of human and automation agents.  Following a 
consideration of legal requirements and utility practices, the process is much like a Fitts List 
approach where function requirements are matched to agent capabilities.  
 
The allocation options include F/Ts that should be shared, but no actual guidance is provided for 
selecting this option.  No reference is made to the adaptive implementation of shared F/Ts.   
 
The standard notes that the process is iterative and should be validated (per the higher-level 
standard IEC 60964).      
 
Guidance has been developed by the Electric Power Research Institute (EPRI) (Hanes, Fink, & 
Naser, 2015).  The characterization of automation is based largely on the NRC’s automation 
dimensions (O’Hara & Higgins, 2010).  One dimension is “Allocation Flexibility,” where static 
and dynamic allocation are both presented as design options.  The allocation process uses a 
flow chart approach where decision points represent F/T characteristics important to the 
selection of humans, automation, or both.  The F/T characteristics include considerations such 
as whether the F/T is a safety function, whether operators can perform the F/T, and whether 
automation of the F/T is technically and economically feasible.  For all but fully automatic and 
manual F/Ts, the last decision in the process is whether the selected levels of automation are 
static or dynamic.  Unfortunately, no specific guidance is identified in this conference paper on 
how this selection is made.  The guidance has been incorporated into an EPRI guideline (EPRI, 
2015). 
 
The guidance available to NPP designers and reviewers is at a stage of development like that of 
the general FA guidance:  AA is identified as an option in recent methods, but detailed 
processes for addressing AA are still lacking. 
 
7.2  Guidance on AA Design and Review  

7.2.1  High-Level Principles 

Parasuraman, Barnes, and Cosenzo (2007) proposed the following principles: 
 
1.  Information displays should adapt to the changing military environment.  For example, 

information presentation format (e.g., text vs. graphics) can change depending on 
whether a soldier is seated in a vehicle or is dismounted and using a tablet controller.     

 
2.  Software should be developed that allows the operator to allocate automation under 

specified conditions before the mission.    
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 3.  At least initially, adaptive systems should be evaluated that do not take decision 
authority away from the operator. This can be accomplished in two ways: (a) an advisory 
asking permission to invoke automation, or (b) an advisory that alerts the operator that 
the automation will be invoked unless overridden.       

 
4.  For safety or crew protection situations, specific tactical or safety responses can be 

invoked without crew permission.     
 

These reflect conservative extrapolations of principles from the general literature.  While they 
are made in the context of military systems, these principles can be applied to NPPs as well as 
other complex systems.  The first principle recommends adaptive interface management, a 
feature that is already employed in existing designs.  The second principle recommends a 
delegation style interface design.  Delegation interfaces have been supported in the literature.  
The third principle recommends operator commanded triggers.  Given some of the technical 
issues to implementing system-initiated triggers in operational environments, this 
recommendation seems reasonable, at least at the present time.  The fourth principle is one 
already implemented in many systems, including NPPs.   
 
Parasuraman et al. further recommend the evaluation of design options in a realistic 
environment before final design decisions are made.   
 
Steinhauser et al. (2009) proposed a set of high-level design principles for AA systems.  These 
principles are listed below (Steinhauser et al., 2009, p. 9): 
 

1.  Adaptive function allocation to the operator should be used intermittently. Intermittent 
allocation can improve performance in monitoring tasks.  

 
2.  Energetic human qualities should be considered in design. For example, degrees of 

challenge can be automatically adjusted with artificial tasks.  
 
3.  Emotional requirements of the human operator must be considered. The human 

operator should not feel unnecessary to the system as a whole.  
 
4.  The system should be calibrated to the individual operating it. Individual differences 

factor into the human operator portion of a human-system pairing and thus should be 
incorporated into the design.  

 
5.  Task transformation should be used to simplify tasks for operators. A task that is 

partitioned and transformed can be handled piecemeal instead of as a whole.  
 
6.  The environmental context of the system should be used to determine allocation. 

Environmental stressors such as heat, vibration, and gravitational force affect human 
performance and should be addressed.  

 
7.  Tasks should be partitioned when both the human and the system can contribute 

effectively. A true human-system collaboration operates as a pairing instead of a 
dichotomy of effort. Performance is improved when the most effective attributes of each 
part are employed. 

 
8.  Adaptation should be controlled by the system but be open to human intervention when 

the system fails to recognize new conditions or demands. In order to reduce task load on 
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the human operator and improve general performance, the system should allocate tasks. 
To improve satisfaction and motivation, the human operator should retain control, or 
perceived control, of the system. 

 
With the exceptions noted below, these are high-level principles that are generally supported in 
this review.  The second principle recommends the use of artificial tasks to adjust workload 
levels.  The research that supports this suggestion is not known for this review.  In the context of 
AA, workload can be adjusted using operational tasks.  Alternatively, operators have other tasks 
they typically need to perform that are unrelated to AA and these can be used if their workload 
needs to be adjusted.  
 
The eighth principle, that adaptation should be controlled by the system, may not be fully 
achievable at the present time.  While the ability of system triggers is a goal of considerable AA 
research, there are still technical challenges to achieving this goal in actual operational 
environments.  For example, using physiological parameters to monitor OFS is promising, but 
recording these parameters in a control room environment with active operators may be difficult.  
Then integrating the parameters to get reliable OFS results is still a research question.  Further, 
considerable support does exist for operator demanded changes in AA configurations, and it is 
unclear why system induced triggering is preferred.  This principle also is inconsistent with 
Parasuraman’s third principle listed above. 
 
7.2.2  Detailed Guidelines 

NRC  
 
This section will examine the AA guidance available in existing NRC review guidelines.  In a 
separate report (O’Hara, 2017), the suitability of that guidance for conducting a comprehensive 
review of AA systems is evaluated.  The automation guidance in O’Hara and Higgins (2010) 
was reviewed by NRC users and revised accordingly (O’Hara, 2015).  The new guidance on 
automation systems has been integrated into Revision 3 of NUREG-0700  (O'Hara & Fleger, 
2020).  The guidelines for reviewing the HSIs to automation are organized into subsections, as 
shown in Table 7-2.   
 

Table 7-2  Organizational Structure of HSI Review Guidance for Automation Systems  
 

 
 

Section 9 includes design review guidance for AA.  The guidance is shown in Table 7-3.   
 

9.1 Automation Displays
9.2 Alerts, Notifications, and Status Indications 
9.3 Interaction and Control
9.4 Automation Modes
9.5 Automation Levels

9.5.1 Shared Control
9.5.2 Operation by Consent
9.5.3 Operation by Exception

9.6 Adaptive Automation
9.7 Computerized Operator Support Systems
9.8  HSI Integration

9  Automation Systems
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Table 7-3  NRC HFE Guidance for the Review of Adaptive Automation 
 
9.6-1 Predefined Roles and Responsibilities 
Adaptive automation should use predefined definitions of the roles and responsibilities of human and 
machine agents. 
Additional Information: This will minimize the workload caused by changing the automation 
configuration and will support the operator’s understanding of automation by limiting the number of 
available options.67653 
 
9.6-2 Operator Control of Automation Shifts 
The HSI should provide controls for implementing changes in automation.67653 
 
9.6-3 Notification of Impending Changes to Automation 
If automation can change for reasons other than by the user’s request, the operators should be notified of 
the impending change with adequate time to override the change, if necessary. 
Additional Information: Operators should be alerted to impending changes in automation (approach to 
triggering condition) so they are not surprised and have time to block or override it, if appropriate.67653 
 
9.6-4 Identification of Triggering Conditions 
If automation can change for reasons other than by the user’s request, the triggering conditions and how 
automation has changed should be identified. 
Additional Information: Adaptive changes can be made based on factors such as measured workload 
indicators, performance decrements, or other criteria.67653 
 
9.6-5 Shift Confirmation of Automation Change 
The HSI should confirm that a change in automation has taken place. 
Additional Information: Adaptive changes should be confirmed positively by the system to prevent 
operators becoming confused about their current roles and responsibilities. 67653 
 
O’Hara and Higgins (2010) also contained design process and training guidance for automation 
systems.  This guidance was also reviewed by NRC users and modified to address their 
comments.  It has been included in Appendix B of NUREG-0700, Rev 3.  Note that Appendix B 
of NUREG-0700 contains guidance for selected HSI topics (information displays, user interface 
interaction and management, and computer-based procedure systems) that address important 
considerations in the design of those topics.10F

11  The guidelines in the main sections of NUREG-
0700 address the physical and functional characteristics of HSIs and not the unique design 
process considerations that may be important.  However, in the development of guidelines, 
guidance developers often identify aspects of the design process or training that are important 
to consider.  Since such considerations are not within the scope of the main design review 
guidelines, they are contained in NUREG-0700 Appendix B.  For example, in the development 
of design review guidelines for automation, training emerged as a very significant factor in 
supporting reliable human-automation interaction.  The considerations contained in Appendix B 
can be addressed by NRC reviewers on a case-by-case basis during specific reviews.  The new 
process guidance for automation is organized into the sections shown in Table 7-4. 
 

 
11 Note that this differs from the more general process review guidance in NUREG-0711. NUREG-0711 

does not cover design considerations for specific HSI technologies. 



 

72 
 

Table 7-4  NRC HFE Guidance for the Review of the Adaptive Automation Design Process  
 

 
 
Federal Aviation Administration 
 
The FAA’s main HFE document is the Human Factors Design Standard (HFDS) (Ahlstrom et al., 
2003).  FAA HFDS, Section 3.13 contains nine guidelines on adaptive automation (see Table 7-
5). 
 

Table 7-5 FAA HFE Guidance for the Design of Adaptive Automation  
 

1.  Automation should be designed to adapt by providing the most help during times of highest user 
workload, and somewhat less help during times of lowest workload. 

 
2.  Adaptive automation should not be implemented unexpectedly or at a time when the user may 

not desire the aiding.  
 
3. Adaptive automation should be implemented at the point at which the user ignores a critical 

amount of information. 
 
4.  Adaptive automation should be used to increase the performance of users with different skill 

levels. 
 
5.  Adaptive automation should be at least as skilled as the user, if not greater, to promote optimal 

user performance. 
  
6.  Modeling of human behavior for aid-initiated intervention should at least include: task execution 

goal states, environment representation (graphical), situation assessment information and 
planning, and commitment logic. 

  
7. When dynamic adaptation of the interface is used, it should be attained by utilizing information 

provided to the system through user interactions within a specific context.  
 
8.  When dynamic adaptation of menus is used, the resultant menus should offer only the options 

that are relevant to the current environment.  
  
9.  Direct manipulation interfaces should be used to minimize the impact of a transition to manual 

control. 
 
These guidelines address the use of AA for both task performance as well as interface 
management.  They address some of the concerns about AA, such as the unexpected change 
in configurations.  Guideline 6 identifies information needed for operators to monitor automation 

Section B.4  Review Guidance for the Automation 
System Design Process

B.4.1  Operating Experience Review
B.4.2  Functional Requirements Analysis and Function Allocation
B.4.3  Treatment of Important Human Actions
B.4.4  Human-System Interface Design
B.4.5  Procedure Development
B.4.6  Human Factors Verification and Validation
B.4.6 Training Program Development
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changes triggered by the system.  Interestingly, guideline 5 addresses automation’s 
competence, a factor we noted as important in human-automation teaming.  The basis for 
guideline 9 is not completely clear.  However, direct manipulation interfaces are thought to 
require less workload than alternatives, and it can be expected that such an approach to 
interface design will make the transition to manual control easier.   
 
National Aeronautics and Space Administration 
 
NASA-STD-3001 (NASA, 2007), the primary HFE guidance for the design of space vehicles, 
contains one guideline applicable to AA.  Guideline 10.6.1.6, Automation Level Status 
Indication, states: 

 
Operators of automated and robotic systems shall be provided with information on the status 
of the automation, including when the system changes between levels of automation.  
Rationale: The intent of this requirement is to ensure that operators are always able to 
ascertain the status of automated processes to maintain mode awareness. The operators 
need to be able to determine and affect what level of automation the system is operating in, 
as well as which processes are being automated. Analysis will determine cases where 
alerting may be required when automation takes control from human operators or switches 
to a higher level of automation. 

 
This guideline addresses the issue of operator awareness of system-initiated changes in AA 
configurations and is essentially the same as NUREG-0700’s guideline 9.6-3. 
 
Department of Defense 
 
DoD’s Design Criteria Standard: Human Engineering (MIL-STD-1472) is primarily used in the 
acquisition of DoD systems (DOD, 2012).  It includes one requirement addressing AA.  
Requirement 5.12.3.1.1, item g, states that the automated system shall provide a means for 
changing the allocation of roles and responsibilities between human and other system 
components.  However, no additional guidance is provided. 
 
In summary, some guidance for the design and evaluation of AA systems is available in HFE 
S&G documents, but it is limited.  Some of the key AA design considerations are not yet 
addressed, such as: 
 

• How to determine the number of configurations operators can manage before the design 
of the AA system becomes overly complex.  Also, distinguishing between configurations 
and the relative roles and responsibilities associated with each before it becomes difficult 

• How should invoking thresholds be established 
• What is the minimal time configuration that should be in effect to establish system 

stability from the operator’s perspective? 
 
7.3  Guidance for the Evaluation and Validation of AA Systems 

The need to evaluate the functions allocated to human and machine agents is identified in many 
HFE standards and guidance documents (e.g., IEC 90964) (IEC, 2009), as discussed in Section 
7.1.  For example, NUREG-0711’s, “Functional Requirements Analysis and Function Allocation 
Review, Criterion 8” states that the applicant should verify that the allocation of functions to 
humans and automatic systems assures a role for personnel that takes advantage of human 
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strengths and avoids human limitations.  However, these documents do not specify how the 
evaluation should be made.  Instead, function allocation evaluation is considered as part of the 
general HFE evaluation.  
 
The same is generally true of the detailed AA design (i.e., general HFE evaluation and 
validation methods can be applied).  Parasaurman et al. (2007) recommended the evaluation of 
AA design in a realistic setting before implementation, but no specific methodology is provided.  
However, several authors have addressed some of the unique considerations of automation and 
AA. 
 
Oglesby et al. (2014) proposed a general approach to the evaluation of automation focusing on 
performance measurement.  Measures are divided into three categories: 
 

• input measures, including user inputs (personality and expertise), automation inputs 
(reliability, adaptability, and level of automation), and contextual inputs (team factors, 
task complexity, and the task environment) 

• process and state measures, including attitudes (trust and complacency), behaviors 
(monitoring and automation use), and cognitive states (situation awareness, workload, 
and skill decay) 

• outcome measures, including task time, errors, overall goal achievement 
 
Many of the studies reviewed used performance measures in these categories.  The value of 
such a framework is that it can lead to a more comprehensive and systematic approach to guide 
selection of measures to evaluate automation.  It can provide standardization and help to 
ensure that important measures are not overlooked.  For example, team measures are not often 
evaluated, but they should be, especially for AA systems that are often thought of as a team 
member, which can impact the roles, responsibilities, and communications of the human team 
members (O’Hara & Roth, 2005; Roth & O'Hara, 2002). 
 
Cahill and Callari (2015) proposed a “safety case” approach to validation of AA systems.  The 
methodology was developed as part of a research program on AA in the aviation domain. The 
overall objectives are to validate:    
 

• the design of the cockpit as a co-operative system (i.e., pilot/automation coordination/ 
teamwork, distribution of task activity between the crew and automation) 

• pilot comprehension of automation (i.e., status of automation, who is responsible for 
what task and what are they doing) and the avoidance of automation surprises 

• how automation supports workload management and reduction of crew stress in high 
workload and potentially safety critical situations 

• how the design supports crew briefing/planning, situation assessment, information 
management and decision making (i.e., Crew Resource Management11F

12 concepts) 
• how the design supports error identification and recovery 

 
As the validation process unfolds, a “safety case” is developed consisting of two parts: a 
theoretical framework and the specification of what information is needed to establish the case 
(i.e., how the adaptive automation concept and associated technologies will yield specific 
operational and safety benefits).  The safety case is developed in four phases.  Phase one 
addresses background concepts that underpin the safety framework.  In Phase 2, the specific 

 
12 See Helmreich and Foushee (1993) for a discussion of crew resource management concepts. 
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safety case for the design is articulated.  Phase 3 addresses the design of the AA system.  
Phase 4 articulates the operational and safety benefits of the design. 
 
The methodology itself is described in general terms rather than explicit step-by-step 
procedures.  Validation begins early in a design project and is iteratively performed throughout 
the development of the AA system.  Early evaluations address the evaluation of design 
requirements. Later evaluations address early design concepts implemented using low-fidelity 
prototypes.  As the design matures, it is tested using scenarios performed on high-fidelity 
prototypes.  A final evaluation of the overall integrated system is performed using realistic 
scenarios and high-fidelity simulation in order to show the overall safety and operational impact. 
 
An interesting aspect of the process is that it is designed to obtain input from both internal and 
external stakeholders, thus providing diverse perspectives on what aspects of the design and 
operations need to be validated. 
 
The approach proposed by Cahill and Callari includes some noteworthy characteristics.  The 
first is its broad perspective, looking at validation from a broader perspective than design testing 
alone.  The validation includes design process considerations, such as design requirements 
validation.  Second, the process of validating across the design life cycle, beginning with initial 
design activities and culminating with integrated system validation of the final design.  Third is 
the recognition of the need to build a safety case to support validation decisions. Fourth is the 
involvement of multiple stakeholders.      
 
The approach is similar to current suggestions in the nuclear industry to view validation from a 
perspective beyond integrated system validation (ISV).  One of the outcomes of the 2015 
validation workshop sponsored by the Working Group on Human and Organizational Factors 
(WGHOF) of the Nuclear Energy Agency (NEA) was the importance of a phased approach to 
validation NEA/WGHOF (2017).  A phased approach means that validation is an ongoing 
activity beginning early in the design process and is periodically addressed until integrated 
system validation is performed on the final design.  Guidance to support a phased approach to 
validation is currently being developed by the IEEE.    
 
Another parallel to the nuclear industry is in the use of “safety cases” to support validation 
conclusions.  This was also discussed in the validation workshop (NEA/WGHOF, 2017).  The 
logic underlying the safety case approach is that overall conclusions regarding the acceptability 
of the design is not simply based on data analysis.  Conclusions involve making judgments 
about the overall results and the process upon which those results were obtained. Confidence in 
the ability to generalize the findings beyond the ISV to actual plant operations is essential for 
being confident in the results and the conclusions derived from them.  
 
The most clearly articulated description of a safety case approach was made by Skraaning 
(Skraaning & Strand, 2015).  They argue that the arrival at a validation conclusion requires an 
“acceptability analysis process.”  The process is illustrated in Figure 7-3 (reproduced from their 
paper). They summarized this process, as follows: 
 

In the second stage of the acceptability analysis, the validation team compiles all the 
detailed ISV results and judge the overall acceptability of the new control room. This 
analysis includes findings for each crew and individual operator; each scenario and scenario 
type; and for every performance measure included in the validation. The validation team 
must weigh the importance of the detailed performance observations and search for 
meaningful results that can substantiate whether the new control room is acceptable. To 
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achieve this goal, it is necessary to reveal systematic effects, converging results, and other 
consistent patterns that are hidden in the huge and complex ISV data set. In addition, the 
relative importance of plant performance, task performance, team performance and 
cognitive performance for the operational safety should be clarified. We also have to 
interpret conflicting evidence and contra-intuitive results. Furthermore, the validation team 
has to take into consideration that some performance indicators may have more predictive 
value than others, i.e., some measures may express the acceptability of human 
performance only in the sampled scenarios, while other measures anticipate operator 
performance in future scenarios. The validation team needs to evaluate minimum 
performance as well as typical performance, i.e., focus both on the acceptability of the 
lowest observed performance scores and average performance scores. In addition, we have 
to consider the principal and practical weaknesses of the validation methodologies, such as 
benchmarking, operationalization of requirements or expert rating in the specific ISV. 
Generic methodological issues like simulator fidelity, scenario representativeness, 
participant training, statistical conclusion validity etc. should also be evaluated to estimate 
the trustworthiness of the findings in the particular validation study (see NUREG-0711 rev3, 
pp. 85-93). Finally, possible unanticipated adverse effects of the new control room design 
have to be taken into account. 

 

 
 

Figure 7-3  Acceptability analysis process 
 

Skraaning and Strand, consider this process similar to building a safety case and reference a 
United Kingdom Office of Nuclear Regulation document (Office of Nuclear Regulation, 2013) 
that describes what a safety case should involve: 
 

A safety case should communicate a clear and comprehensive argument that a facility 
can be operated or that an activity can be undertaken safely. The safety case for a 
facility or activity should demonstrate that the associated risk and hazards have been 
assessed, appropriate limits and conditions have been defined, and adequate safety 
measures have been identified and put in place.  

 
However, validation conclusions do not only pertain to safety.  A parallel argument needs to be 
made for the production side of validation objectives. 
 
The acceptability analysis process is a potentially valuable augmentation to the validation 
process, in general, and should be useful in the validation of AA systems.    
 
An approach based on NUREG-0711’s framework of integrated system validation and modified 
to incorporate automation specific considerations is proposed.  Like the Oglesby et al. (2014) 
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approach, it has the advantages of a comprehensive and systematic approach to performance 
assessment. 
 
A robust approach to performance measurement is generally considered important to system 
tests/evaluations (ANSI/AIAA, 2001; DoD, 2011, 2012; IEC, 1995; & ISO, 2010) and regulatory 
assessments (O’Hara et al., 2012).  In part, due to the broad application of automation to all 
aspects of plant operations and maintenance, the studies of automation reviewed in this report 
illustrate the need for a comprehensive measurement approach, encompassing function and 
task accomplishment, cognitive performance, and teamwork.  Table 7-6 summarizes the 
dimensions of performance characterization. 
 

Table 7-6  Performance Measurement Framework for the Assessment of Human-Automation 
Interaction 

 
Performance Dimension Example Measures 
Integrated System Performance Function Performance 

Process Task Performance 
Cognitive Task Performance Monitoring and Detection 

Situation Awareness 
Response Planning 
Response Implementation 
Interface Management Task Performance  
Workload 

Teamwork Communication 
Trust 

 
Two additional consideration are (1) the known human performance challenges associated with 
human-automation interaction, and (2) the type of plant operations embedded with AA.  That is, 
the performance measurement approach should reflect the unique human performance 
challenges associated with plant operations.  For example, within the context of SMRs, research 
on multi-unit operations has shown that measures such as “unit neglect” are important factors in 
multi-unit performance.  Unit neglect is related to monitoring and SA. 
 
Performance needs to be characterized by dimensions that encompass both integrated human-
automation performance and by the aspects of personnel performance that mediate its usage.   
 
Integrated System Performance  
 
Function Performance 
 
Automation and personnel work together in various ways to accomplish a mission, function, or 
purpose.  The overall accomplishment of that function reflects the success of the human-
automation collaboration.  Therefore, measures of function accomplishment are ultimately the 
“bottom line” from an operations standpoint.  Measures of function performance are scenario 
specific.  While they are an important criterion for success, these measures are typically not 
diagnostic; that is, they do not provide an indication as to:  
 

• whether successful function accomplishment was achieved in an undesirable way, such 
as with poor SA or high workload, that may bring into question the reliability of 
performance 
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• why function accomplishment failed 
 
The performance dimensions discussed below provide information as to how performance was 
achieved (or failed). 
 
Process Task Performance 
 
Automation and personnel accomplish functions by performing tasks.  Tasks include activities 
such as following procedures, responding to alarms, starting pumps, and aligning valves.  The 
measures chosen to evaluate personnel task performance should reflect those aspects of the 
task that are important to system performance, such as: 

 
• time 
• accuracy 
• frequency 
• amount achieved or accomplished 
• consumption or quantity used 
• subjective reports of participants 
• behavior categorization by observers 

 
Cognitive Task Performance 
 
While function and task performance are key aspects to the overall integrated system success, 
they do not typically provide sufficient information to ensure that reliable performance can be 
predicted under changing conditions or diagnostics when performing assessment of less than 
acceptable performance.  The measurement of cognitive performance helps fill this gap.  
 
Cognitive measures such as SA and workload are constructs that are essential to 
understanding and predicting human-system performance in complex systems, especially those 
employing extensive automation (Parasuraman, Sheridan, & Wickens, 2008).  For example, 
Wickens et al. (2010) noted that SA was a critical factor in dealing with automation failure and 
tended to mitigate the poor handling of disturbances often associated with high levels of 
automation.  They indicated that designers need to focus on increasing the operators’ SA for 
automation by finding its right level for tasks, improving the HSI for automation, and training. 
 
Monitoring and Detection 
 
A key aspect of performance, especially when unplanned events occur, is monitoring and 
detection.  These measures are scenario specific and often tied to key events. 
 
The monitoring of automation has been an issue in highly automated systems as has the 
detection of automation degradations and failures. Thus, including performance measures to 
assess these cognitive behaviors of operators is important in AA to better understand its effect 
on human performance.   
 
An example of how measures should reflect the operational environment in which AA is 
embedded is the potential issue of “neglect time” (Crandall & Cummings, 2007) and “change 
detection” or “change blindness” (Parasuraman et al., 2009) in multi-modular SMR monitoring.  
The latter issue refers to the phenomenon of failing to see large, salient changes in the 
environment (Simons & Ambinder, 2005).  These issues were identified in the automation of 
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multi-unmanned vehicle operations yet may have applications to NPP SMR operations as well 
(O’Hara, Higgins, & Pena, 2012). 
 
Situation Awareness 
 
SA is the evaluation of current conditions to determine that they are acceptable or to determine 
the underlying causes of abnormalities when they occur (e.g., diagnosis).  Like monitoring and 
detection, SA has been a long-recognized issue in automated systems.   
 
There are many different methods to measure SA; however, they do not all measure the same 
aspect of SA and some may be better than others for evaluating SA related to human-
automation interaction (Schuster et al., 2012). 
 
Response Planning 
 
Response planning refers to deciding upon a course of action to address the current situation. 
In general, response planning involves operators using their situation model to identify goal 
states and the transformations required to achieve them.  Assessing the impact of AA on the 
ability of crews to develop response plans when needed should be included in evaluations and 
validations of AA systems. 
 
Response Implementation 
 
Response implementation refers to performing the actions specified by response planning. 
Measures of response implementation complete the primary task loop and provide for an 
assessment of HSI efficiency.  Some response implementation activities are needed when 
interacting with AA systems and these should be included in the evaluation.  
 
Interface Management Task Performance  
 
To perform their primary tasks successfully, crews must successfully perform interface 
management tasks.  As discussed earlier, these tasks create workload and may divert attention 
away from primary tasks and make them difficult to perform (O’Hara & Brown, 2002).  Thus, 
secondary tasks are important and need to be carefully addressed in design reviews.  This 
aspect of performance is important for AA system evaluations for two reasons.  First, operator 
interactions with AA can create interface management tasks.  Second, AA can be used to 
minimize these tasks through adaptive HSIs.  Both aspects should be included in AA 
evaluations and validations.   
 
Workload 
 
Performing tasks produces workload.  If workload is too low, vigilance suffers and the ability of 
personnel to develop accurate situation assessment diminishes.  As the demands of performing 
the task rise, greater workload is experienced.  Ultimately, if workload gets high enough, the 
ability to perform the task is reduced.  Workload is a significant factor in addressing 
automation’s effects.  Automation can impose additional workload and, if high enough, may lead 
operators to abandon it (e.g., disuse of automation).  Many approaches are available to 
measure workload (e.g., NASA TLX).  
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Teamwork 
 
Many, if not most, of the activities performed by plant personnel require teamwork.  That is, 
tasks are accomplished by the coordinated activity of multi-person teams.  As automation 
increasingly fulfills its role in multi-agent teams, it impacts teamwork and needs to be assessed 
(O’Hara & Roth, 2005; Wright, 2002).  As teams are social entities (Salas, Cooke & Rosen, 
2008), integrating non-human team members has to be assessed.  Many approaches to 
assessing teamwork have been developed (e.g., see Palmqvist, Bergström & Henriqson, 2012).   
 
One important aspect of teamwork that plays an important role in personnel use of automation 
is “trust.”  The benefits of automation can be offset when operators do not trust it.  If operators 
do not trust automation, they may not use it; of if they do, their workload may be significantly 
increased by overly verifying the automation’s behavior.  Similarly, failures of automation can 
remain undetected if operators trust it too much and hence, become complacent.  Thus, 
constructs such as trust are important to assess as part of developing and evaluating a system. 
Measures of trust have been developed for this purpose.  For example, Jian, Bisantz, and Drury 
(2000) developed the “System Trust Scale” which was validated by a factor analysis study 
(Spain, Bustamante & Bliss, 2008).  The comprehensive performance measurement strategy 
needed to characterize performance also should reflect the unique aspects of human-
automation interaction that are often found as important mediators to the operators use (and 
misuse) of automation.  Trust is an example of one such measure.  Many of the general 
measures listed above also can be tailored to focus on the operator’s interaction with 
automation – such as SA, and workload. 
 
7.4  Conclusions 

Function Allocation 
 
The review of current advances in FA methodology has not substantially changed the overall 
conclusion from the issue that there remains a need for improvements in the methods available 
to designers for making automation decisions, especially as they relate to AA. 
 
Many HFE standards do not address FA methods (e.g., IEEE, 2004) and when they do, they 
rely heavily on methods that have Fitts lists at their core.  While some of the limitations of such 
an approach are addressed in more current approaches, such as updating lists for technology 
improvements and recognizing the need for design iterations, they are still quite limited in 
addressing other important allocation considerations, such as the importance of maintaining 
situation awareness for human agents, the impact on workload as scenarios lead to a situation 
where operators are simultaneously responsible for multiple F/Ts, and the need to maintain skill 
proficiency for F/Ts that human agents will be expected to perform if automation fails.    
 
More recent guidance has acknowledged AA has an option and alternative to static allocation, 
but little guidance is available to designers for selecting this alternative. 
 
HFE Guidelines 
 
Most of the general principles and guidance available are fairly high level.  The NRC and FAA 
have provided perhaps the most detailed guidance currently available.  While this guidance is 
mostly justified based on current research, it does not address important design and evaluation 
considerations for AA systems.  Examples of these limitations include: 
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• How to determine the number of configurations operators can manage before the design 
of the AA system becomes overly complex.  Also, distinguishing between configurations 
and the relative roles and responsibilities associated with each before it becomes difficult 

• How should invoking thresholds be established 
• What is the minimal time configuration that should be in effect to establish system 

stability from the operator’s perspective? 
 
Evaluation and Validation 
 
The general HFE approaches to system evaluation and validation are appropriate to the 
evaluation of AA systems.  As is generally the case, available approaches are improved when a 
systematic and thorough framework is used to guide the evaluation to help promote 
standardization and ensure that important factors are not overlooked.   
 
As with any good evaluation, it should address unique design characteristics and known human 
performance issues.  In the case of AA systems, unique design characteristics include 
consideration such as number of configurations, length of configurations, and the specific 
invoking thresholds established for the triggers.  With respect to known human performance 
issues, measures such as operator trust in automation, skills decay, and automation failure 
management should also be included.   
 
The safety case approach may represent a promising enhancement of AA evaluation and 
validation, but the approach needs additional applications in order to fully understand its 
contributions.    
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8    DISCUSSION 

8.1  Lessons Learned from Current Research and Operations 

The conclusions and lessons learned from this study are briefly summarized here.  The reader 
is directed to the conclusion subsections within each section for a more detailed discussion.  
The material is organized into the following sections: 
 

• Effects of Adaptive Automation on Performance  
• Human-Automation Interaction and HSIs 
• HFE Guidance for Designing and Evaluating AA Systems 

 
8.1.1  Effects of Adaptive Automation on Performance  

In general, AA supports improvements in task performance.  Varying DOAs improves operator’s 
understanding of how automation functions.  There are exceptions; however, and it has to do 
with a mismatch of task demands and automation support in some studies.  Matching 
automation support to task demands is an important consideration in the design of any 
automation system.  
 
The effects of AA on SA and workload are complicated.  Some studies did find improved SA 
while others did not.  This result may be dependent of the specific nature of the tasks. 
 
Some studies found lowered workload for AA systems, while others did not.  This finding is in 
part due to what an AA system is compared with.  If AA is compared to a manual condition, 
workload is likely to be lower.  If AA is compared with a static automation condition, workload is 
likely to be higher.  
 
Operators generally preferred operator commanded triggers.  Operator commanded triggers 
keep the operator in control of the system and reduce potential surprises and distractions when 
a configuration shift occurs that the operator did not expect.  However, operator commanded 
triggers can increase workload. 
 
The other triggering categories, such as assessments of task performance, OFS, and task load, 
have also been used successfully and have minimal effect on workload.  However, they have 
the potential to cause disorientation and distractions that can lead to transient performance 
decrements.  Also, technical challenges have been noted for some OFS indicators, such as 
physiological parameters, including: 
 

• the potential for physiological variables to change very rapidly 
• integrating variables over time to get reasonable invoking thresholds 
• interference and noise from other physical activity such as moving around 
• uncertainty of its viability in the operational environment of a control room  

 
Resolving these issues would be a significant advancement because it would provide an 
unobtrusive means of assessing OFS and can be used to increase automation in advance of 
performance decrements.   
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Hybrid approaches to triggering AA configuration changes has also shown promise and has the 
potential advantage of providing a more robust approach to determining when changes should 
be initiated. 
 
For any triggering condition except operator command, an important decision is the 
identification of an appropriate invoking threshold; the specific point at which the trigger changes 
the AA configuration.  The research reviewed provided little insight into the process of 
determining invoking thresholds.  
 
Another important consideration in the design of AA systems is the number of configurations the 
system has, and the minimum time configurations should remain active.  Unfortunately, the 
research provided few answers to these questions.   
 
Deriving conclusions about the effect of AA on performance was sometimes hampered by 
experimental designs that did not provide a clean test of AA (e.g., it was sometimes not possible 
to determine whether performance differences were due to the adaptive characteristic of 
automation or simply due to providing automation support to operators).  Future studies should 
ensure that their designs support the assessment of the hypotheses they are designed to test.   
 
The support AA gave operators in the detection of automation failures and management of them 
were examined.  However, very little research specifically addressed this question.  The limited 
research reviewed tentatively supported the conclusion that it does.   
 
While AA was shown to help address some of the challenges of human interaction with 
automatic systems, it also presents new issues: 
 

• Configuration changes can interrupt an operator’s ongoing task performance and can 
increase the workload associated with human-automation interaction, especially when 
changes are initiated by operators. This issue is worse when AA shifts the configuration 
unexpectedly or shifts it when it should not. 

• It is vital that operators know the implications of configuration changes for their roles and 
responsibilities.  This is a key to AA’s success.  Not knowing these responsibilities 
presents the opportunity for configuration awareness errors, a type of error like “mode” 
errors.   

 
The issue of generalization of the findings of the review to real-world applications were 
discussed.  Often the systems, tasks, and HSIs used in studies are simplified representations of 
real-world systems.  The participants were relatively inexperienced non-professionals with 
limited training.  In support of generalization, research findings ultimately should be confirmed 
with professional operators in real-world settings.   
 
8.1.2  Human-Automation Interaction and HSIs 

The research to define the key characteristics of human-automation teams has generally been 
based on modeling them after good human teams.  However, a consensus has yet to emerge 
as to what constitutes good human teams, thus generalizing such models to multi-agent teams 
has had limited success.  In addition, a robust model of human-automation teams must account 
for differences between human and automation agents.  Additional research is needed to 
address these limitations. 
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HSIs bridge the gap between human agents and automation agents.  Research has defined 
promising strategies to HSI design for AA systems: 
 

• supporting SA using EID displays and detailed hierarchal displays 
• supporting AA configuration awareness and workload management using delegation 

interfaces 
• managing interruptions and distractions stemming from interactive automation by 

developing etiquette principles 
 
Adaptive HSIs represent another approach to supporting operators by performing interface 
management tasks, thus minimizing the increased workload and distractions they cause. 
 
8.1.3  HFE Guidance for Designing and Evaluating AA Systems 

Function Allocation 
 
There remains a need for improvement in the methods available to designers for making 
automation decisions, especially as they relate to AA.  Many HFE standards do not address FA 
methods and when they do, they rely heavily on methods that have Fitts lists at their core. More 
recent guidance has acknowledged AA as an option and alternative to static allocation, but little 
guidance is available to designers for selecting this alternative. 
 
HFE Guidelines 
 
Most of the general principles and guidelines available are fairly high level and do not address 
important design and evaluation considerations for AA systems.  For example, there is no 
guidance on:   
 

• determining the number of configurations operators can manage before the design of the 
AA system becomes overly complex and distinguishing between configurations and the 
relative roles and responsibilities associated with each becomes difficult 

• establishing invoking thresholds 
• determining the minimal time a configuration should be in effect to establish system 

stability from the operator’s perspective 
 
Evaluation and Validation 
 
General HFE approaches to system evaluation and validation are appropriate to the evaluation 
of AA systems.  Some considerations to enhance the evaluation include: 
 

• using a systematic and thorough measurement framework to guide the evaluation to 
help promote standardization and ensure that important factors are not overlooked   

• addressing the unique design characteristics and known human performance issues 
associated with the operations of the design 

• addressing the human performance issues associated with automation such as operator 
trust in automation, skills decay, and automation failure management  

• considering a safety case approach to support the development and justification of 
conclusions   
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8.2  Approaches to Improving Human-Automation Interaction  

The review suggests several promising ways in which human-automation interaction may be 
improved.  Approaches include: 
 

• automate F/Ts based on a need for automation, not simply because they can be 
automated 

• use appropriate degrees of automation for automated F/Ts, not simply very high levels 
by default 

• introduce real-time flexibility in F/T allocation 
• improve the human-automation interaction  

 
Automate F/Ts Based on a Need for Automation, Not Simply Because They can be Automated 
 
In the early 1980s when the ironies of automation were coming to light, the failure to address 
the operator’s role in automated systems was implicated.  Accordingly, Wiener and Curry (1980) 
noted, “the question today is not whether a function can be automated, but whether it should 
be.”  This question is still being asked today (Hancock, 2014), since the tendency to automate 
on technology grounds with little consideration of the operator’s role persists.   
 
Wiener’s caution reminds designers and reviewers that both human and automation agents play 
important roles in system productivity and safety.  When the design process focuses on one 
agent at the expense of the other, overall integrated system performance is likely to suffer.  
Further, there may be F/Ts that are better left to human operators, even though automation is 
technically possible.   
 
Use Appropriate Degrees of Automation for Automated F/Ts, Not Simply Very High Levels by 
Default  
 
Another approach to improving human-automation interaction is to use lower DOAs than can be 
technically accomplished.  While such an approach is appropriate in some situations, overall it 
runs contrary to the designer’s motivations to automate in the first place.  However, research 
has shown that, in general, intermediate DOAs are better for higher-level generic tasks, such as 
situation awareness and response planning, while higher DOAs are suitable for “lower-level” 
generic tasks, such as monitoring and response execution.  This general result has been 
supported when applied to computer-based procedure usage in NPPs as well (Lin, Yenn & 
Yang, 2010).  AA may provide a greater opportunity to include high DOAs since operators are 
exposed to multiple DOA levels and that enhances their understanding of automation. 
 
When using lower DOAs, the opportunity arises to make automation more interactive (i.e., 
human agents and automation agents interact to accomplish F/Ts).  Following this approach, 
F/Ts are accomplished using varying DOAs.  Some F/Ts are performed primarily by personnel 
with automation assisting.  In other cases, F/Ts may be performed primarily by automation, with 
personnel performing other aspects of the F/T.  This approach is consistent with recent 
perspectives of humans and automation working as a multi-agent team. 
 
Introduce Real-Time Flexibility to F/T Allocation  
 
F/Ts have historically been implemented in a static fashion (i.e., F/Ts are assigned either to 
automation, or humans, or some combination of agents, in an unchanging manner).  Recent 
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consideration has been given to AA, the dynamic allocation of F/Ts in response to the operator’s 
current situation.  For example, if the operator’s workload gets too high, automation is increased 
to assume some of the operator’s responsibilities and, therefore, lowers the operator’s 
workload.  When operator workload is low, the level of automation is decreased, and the 
operator assumes more control over tasks the automation was performing.  Operator workload 
is thereby increased, reducing concerns for complacency and boredom.  An additional benefit is 
that by assuming more direct control, the operator maintains manual skills proficiency 
(Parasuraman & Wickens, 2008).  AA has the potential to address many of the issues 
associated with highly automated systems; hence it is receiving a lot of attention from designers 
and researchers.   
 
Improve the Human-Automation Interaction  
 
Human-automation interaction and HSI design in contributing to the performance issues 
associated with highly automated systems is important.  Making automation more interactive 
and “cooperative” involves improving the communication between human and machine agents.  
Achieving this goal involves several design activities:  
 

• designing the automation to enable interaction with operators, such as making relevant 
information available  

• designing the HSIs to make it easier for operators to interact with automation (i.e., to 
monitor, query, configure, and control automation) 

• designing automation’s communications with operators to reflect principles of etiquette 
that are consistent with the operational domain so that they are less disruptive  

 
Improving the interaction between humans and automation will help them to work more flexibly 
with each other. 
 
8.3  Research and Development Needs 

8.3.1  Key Enabling Technologies and Issues 

The following topics require additional research: 
 
Overall Impact of AA on Performance  
 
The research on the effects of AA on performance, SA, workload, and failure management was 
reviewed.  Generally, support for AA was found; however, the findings were not always 
consistent or were based on a limited number of studies.  Additional research to better 
understand these effects are needed and to help resolve inconsistent findings.  Future studies 
should be designed to more clearly pinpoint the unique effects of the adaptive aspects of AA 
rather than simply showing the benefits of automation.  In addition, there are issues in 
generalizing from the findings of the research reviewed to their application in real-world systems 
with professional operators.  More work is needed to test the generalizability of the conclusions 
to have confidence in them. 
 
Function Allocation 
 
O’Hara, Higgins & Pena (2012) identified the issue of Function Allocation Methodology to 
Support Automation Decisions (i.e., that available HFE methods do not adequately support the 
function allocation process).  The evaluation of current advances in FA methodology has not 
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substantially changed the overall conclusion.  There remains a need for improvements in the 
methods available for making AA decisions.  While more recent HFE guidance has 
acknowledged AA as an option and alternative to static allocation, little guidance is available to 
designers for selecting this alternative or to safety reviewers evaluating those decisions. 
 
Configurations 
 
While AA systems provide configurations offering operators different DOAs, the number of 
configurations that are appropriate and the minimum length of time the configurations should 
remain in effect before the configuration shifts become disruptive is not known.  An additional 
area to be addressed is the potentially disruptive effects of configuration changes, especially 
when triggered by conditions other than operator command. 
 
Triggers  
 
While the triggering conditions used in the research studies reviewed were generally effective at 
switching AA configurations, more research is need on those using measures to assess OFS.  
OFS is often predicted using physiological measures.  Researchers have used single 
physiological measures or multiple measures.  A question remains as to which measures are 
best and how they should be integrated to get reliable OFS predictions.  Further, some 
researchers recommend the use of hybrid triggers (i.e., the use of triggers from more than one 
category).  A research question remains as to which ones provide the most reliable triggers and 
how they should be combined to trigger DOA changes.  Finally, a key consideration is the 
invoking threshold (i.e., the specific point at which the trigger changes).  Research is needed on 
determining these thresholds and on how to implement them, so configurations shift in an 
acceptable manner. 
 
Teamwork 
 
If automation is part of a multi-agent team, then what model of teamwork should be used to 
specify its characteristics?  There is currently no answer to this question.  Additional work is 
needed to identify appropriate teamwork models that incorporate an understanding of the 
differences between human and automation agents. 
 
HSIs 
 
HSIs provide the link between the operator and automation.  The work on EID displays to 
support monitoring and failure detection and delegation interfaces to support configuration 
awareness and workload management was discussed.  The work on automation etiquette to 
help make automation’s communication with its human teammates more acceptable and less 
disruptive was also discussed.  While all this research is promising, much more needs to be 
done, especially because automation is becoming more interactive.  In addition, the use of 
adaptive HSIs to support interface management and reduce the workload associated with it 
looks promising.  Additional research is needed to identify applications within nuclear power 
plant operations and to ensure that automation’s performance of these tasks does not disrupt 
operator tasks or create confusion. 
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8.3.2  Need for Operational AA Systems 

There have been few actual AA systems fielded in real-world operating systems.  This limits the 
lessons that can be learned from the actual deployment of these systems with real operators.  
There is a need for additional demonstration systems that can prove the concept.   
 
The availability of lessons learned from deployed systems will also support the assessment of 
generalizations from the type of research studies reviewed in this report.  Most of the research 
on AA has been performed using simplified systems and non-professional participants.  While 
the conclusions from these studies are suggestive, they need to be verified for generalizability to 
actual operations.  
 
8.3.3  HFE Guidance for AA Implementation and Review 

Despite the recognized importance of human-automation interaction, limited guidance is 
available to designers to implement systems supporting modern human-automation interaction 
and for regulators responsible for evaluating them.  This situation is worse for AA when 
compared with static automation.  Thus, additional work is needed to identify successful 
approaches and to develop design and review guidance supporting their implementation.  
 
There was a discussion on the methods used to allocate functions to human and machine 
agents and their limitations within the context of static allocation.  Methods are needed to help 
designers make decisions about the appropriate DOAs for F/T allocations, the use of flexible 
approaches to F/T allocations in real time, and the assessment of overall F/T allocations on 
operator roles to help ensure their roles are consistent with their capabilities and limitations, and 
are coherently integrated into a meaningful set of responsibilities.  Better approaches will also 
help regulators to review the rationale for design decisions about how human and automation 
responsibilities are determined.  
 
Another area is detailed HFE guidelines for AA.  The guidance available from the NRC and 
other organizations were reviewed.  While a limited set of guidelines is available, they do not 
address many important characteristics of AA.   
 
8.4  Final Conclusions 

The nuclear industry has recognized the need to provide more flexible automation to support 
operations.  GE’s PGCS and EdF’s FITNESS are examples of the use of AA to support normal 
operations.12F

i  Both designs provide operators with flexible control over the DOA applied at any 
point in time and are operator commanded systems.  Currently, new plant designers are 
developing AA systems for their plants.  AA supports performance and may increase the crew’s 
ability to detect and manage failures.  In doing so, AA can help mitigate the well know human 
performance issues associated with highly automated plants.   
 
As experience is gained with AA systems and as industry standards and guidelines increasingly 
identify AA as a function allocation option, it is likely that AA applications will become more 
widespread.   
 
While AA can be applied to any aspect of plant operations, obvious candidates for adaptive 
approaches are operator support systems and HSIs.  Computer-based normal and emergency 
procedures easily lend themselves to AA.  Operators can select higher DOAs for times when 
they are busy and routine operations are being performed.  They can select lower DOAs when a 
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critical event is occurring, and they need to remain “in-the-loop” to ensure procedures are being 
conducted properly. 
 
New, digital control rooms have hundreds or even thousands of displays.  This can create a 
large interface management burden.  Adaptive technology can assist operators in managing the 
HSIs and ensuing that the proper display is available.  Interface management tasks increase 
workload and can interfere with the performance of primary tasks of monitoring and controlling 
the plant.  Reducing interface management workload will help operators maintain focus on their 
primary tasks. 
 
An additional consideration is the development of methods to assess OFS.  While these 
methods are being developed to provide triggers to change configurations in AA systems, the 
ability for automation to monitor operator states is useful in its own right.   
 
Operators are needed in most complex systems to handle unplanned and unanticipated events 
and to form the last line-of-defense in the face of automation degradations and system failures. 
The ability of crews to manage situations that are unforeseen is an important component to 
overall system resilience (Woods & Cook, 2006) and AA has been identified as an important 
technology to enhancing that resilience (Zieba et al., 2010).   
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