

Browns Ferry ATRIUM-11 Fuel Transition

License Amendment Request: Pre-Application Meeting

June 8, 2020

Background

- TVA intends to transition to ATRIUM-11 fuel at Browns Ferry
 - First reload targeted for unit 2 reload 22 in February 2023
- TVA has experience with ATRIUM-11 fuel
 - Eight LUAs were inserted into unit 2 in 2015
 - Have completed nearly three two year cycles of irradiation
 - No adverse operating experience
- Framatome advanced methods are needed to support ATRIUM-11
- TVA will docket a Licensing Amendment Request (LAR) to request approval to add the methods to the Technical Specifications
 - Implementation addressed under 10 CFR 50.59

Licensing Approach

- TVA will follow the Brunswick and Susquehanna LAR approaches
- LAR will demonstrate application of new methods using an equilibrium Browns Ferry ATRIUM-11 core
- Select cycle specific reports will be provided for information post LAR for the implementation cycle
- LAR will also address RAIs received during Brunswick and Susquehanna LAR reviews, as applicable

LAR Content Overview

- Fuel cycle design report
 - Document BFN equilibrium ATRIUM-11 core design
- Nuclear fuel design report
 - Document bundle design details of equilibrium cycle assemblies
- Assembly mechanical design report
 - Compliance with SRP and Framatome mechanical design criteria
 - Compatibility of ATRIUM-11 with BFN co-resident fuel and reactor internals
- Fuel rod thermal mechanical design report
 - Demonstrate application of RODEX4 to ATRIUM-11 using equilibrium cycle design

LAR Content Overview (cont)

- Thermal hydraulic report
 - Demonstration of thermal hydraulic compatibility of ATRIUM-10 XM and ATRIUM-11 at BFN
- Methods applicability supplement
 - Address topics related to ATRIUM-11 and new methods
 - Similar in content to Brunswick report ANP-3705P
- LOCA report
 - Analysis of BFN break spectrum with NRC approved AURORA-B LOCA method
 - Derivation of exposure dependent MAPLHGR limits
- Stability report
 - BEO-III with CDA demonstration analysis

LAR Content Overview (cont)

- ATWS-I report
 - Demonstrate application of RAMONA5-FA method using equilibrium ATRIUM-11 core
- Control rod drop accident report
 - Demonstrate application of AURORA-B CRDA using BFN equilibrium ATRIUM-11 core
- Transient demonstration report
 - Demonstrate application of AURORA-B AOO using BFN equilibrium ATRIUM-11 core
- Limitations and Conditions (L&C) Report
 - Brunswick and Susquehanna LARs did not address L&Cs up front
 - Resulted in RAIs
 - Address L&Cs of the new Framatome methods SERs
 - Some L&Cs will need to be addressed as part of implementation cycle reports

ATWS-I

- LAR will request changing the licensing basis method from GEH TRACG04 to the Framatome RAMONA5-FA method
- Framatome method now NRC approved
 - ANP-10346P-A Revision 0, "ATWS-I Analysis Methodology for BWRs Using RAMONA5-FA"
- Key plant inputs will be unchanged from the analysis in the MELLLA+ LAR
 - Feedwater temperature reduction rate
 - Operator response times
- Does NRC plan on performing confirmatory TRACE analyses?
 - ATRIUM-11 core and thermal hydraulic information only
 - NRC need date?

BEO-III with CDA

- TVA intends to follow the Brunswick precedent for stability
 - Stability analysis will utilize the RAMONA5-FA methodology to analyze events and generate time dependent LPRM responses for each trial case
 - LPRM responses will be fed into a separate code for evaluation with the confirmation density algorithm (CDA)
 - Time of trip will be determined by this code
- Framatome will use time of trip values to determine CPR response for each trial and margin to SLMCPR

BEO-III with CDA (cont)

- Implementation will differ from Brunswick in one regard
- Brunswick used a screening process to reduce the number of cases analyzed with CDA
- TVA approach will integrate the CDA evaluation into the Framatome analysis process
 - CDA utilized for all aspects of the evaluation
 - Every stability trial case evaluated by RAMONA5-FA will have a CDA evaluation
 - No screening out of cases
 - No issues of PBDA tripping before CDA
 - Time of trip always based on CDA

BEO-III with CDA (cont)

- Current backup capabilities will be retained
 - Manual BSP regions retained
 - ABSP retained and functional
 - Validity of BSP regions and ABSP setpoints confirmed each reload
- No changes to the Tech Spec actions for an inoperable OPRM required

Preferred Stability Approach for LAR

- Generic BEO-III topical still under NRC review
 - TVA desires to reference the generic in the Browns Ferry LAR
- Use of CDA will require a plant specific report
- Plant specific report
 - Would reference the generic report for the overall BEO-III methodology
 - Describe the incorporation of CDA within the calculation framework
 - Describe how the CDA code used by Framatome complies with the approved CDA and Browns Ferry implementation
 - Describe how the CDA is validated on the Framatome computational platforms

Backup Stability Approach for LAR

- Two options if generic BEO-III topical not approved prior to LAR
 - Options differ in terms of how the generic topical ultimately gets referenced
 - CDA aspects still included as discussed on the prior slide
- Option 1 generic report approval imminent at LAR submittal
 - Plant specific report duplicates the methodology description in the generic report
 - Plant specific report will address draft Limitations and Conditions from generic report
 - Once generic approved the LAR would be amended to reference the approved report
 - Avoids having identical generic and plant specific topical reports
- Option 2 generic report review extends well beyond LAR submittal
 - Plant specific report duplicates the methodology description in the generic report
 - Use RAI process to address any Limitations and Conditions if not available at the time of LAR submittal
 - Plant specific methodology topical would remain as Browns Ferry licensing basis

Control Rod Drop Accident

- Application of NRC approved AURORA-B CRDA method
 - ANP-10333P-A Revision 0, "AURORA-B: An Evaluation Model for Boiling Water Reactors; Application to Control Rod Drop Accident Scenarios"
 - Methodology applied on a cycle specific basis
 - Demonstration analysis based upon ATRIUM-11 equilibrium core.
- Will address RIA criteria in Reg Guide 1.236
 - By end of October 2020 TVA will use available RG-1.236 (draft or final)
- Show current dose analysis for event remains bounding
 - Dose aspects will consider steady state and transient release criteria
 - Transient release fraction from DG-1327 Rev 1 (July 2019)
 - > A part of this material did not remain in RG 1.236
 - Steady state release fractions based on Reg Guide 1.183, July 2000

Transient Demonstration Analysis

- A demonstration analysis using the ATRIUM-11 equilibrium core will be performed using NRC approved AURORA-B AOO method
 - ANP-10300P-A Revision 1, "AURORA-B: An Evaluation Model for Boiling Water Reactors; Application to Transient and Accident Scenarios"
- Case matrix similar to Brunswick
 - Base case analyses for turbine trip, load rejection, and feedwater controller failure
 - Rated power and select off rated powers including below P_{bypass}
 - Event disposition for UFSAR Chapter 14 events
 - Brunswick RAI on equipment out of service will be addressed
 - Table of rated power case results for each currently licensed equipment out of service domain (alone and in combination) will be presented
 - Report will discuss specifics on scram times, cycle exposure points, and full range of power flow points that will be analyzed for the full reload report

Transient Demonstration Analysis (cont)

Additional cases

- TVA is considering extending the ARTS thermal limits administration used below P_{bypass} to the power range above P_{bypass}
- Below P_{bypass} MCPR_p limits depend on both power and core flow
- MCPR_p limits at a specified power below P_{bypass} depend on whether core flow is above or below a specified value (50% flow for BFN)
 - This is referred to as a "flow flag"
- Above P_{bypass} a single MCPR_p limit at a given power is set by the transient results at the limiting core flow
 - Typically ICF sets the limit
- If a similar flow flag concept is applied above P_{bypass}, you would have two MCPR_p limits for a given power
 - One limit for flows above the flag value, and another limit for flows below the flag value



Transient Demonstration Analysis (cont)

- Additional cases (cont)
 - The purpose of applying the flow flag concept above P_{bypass} is for operating thermal margin gain
 - Very beneficial during startup and maneuvering when xenon transients can erode margins
 - Using increased core flow based MCPR_p limits in the MELLLA+ region is restrictive
 - Using a MCPR_p limit set by analysis at the intermediate flow flag value provides a less restrictive MCPR limit than the increased core flow based limit
 - Improves operating margin while at reduced flow in the MELLLA+ region especially for non steady state conditions
 - Core monitoring system will be modified to enforce the flow dependence of the MCPR_p limits above P_{bypass} just as it does today below P_{bypass}
 - Concept illustrated on the next slide

Flow Flag Above P_{bypass} Concept

Transient Demonstration Analysis (cont)

- Overpressure analysis
 - The report will include both ASME and ATWS overpressure cases
 - ASME analysis based on MSIV closure with flux scram
 - 102% EPU power at increased core flow and MELLLA+ min flow
 - ATWS analysis will evaluate MSIV closure and pressure regulator failure open transients
 - 100% EPU power at increased core flow and MELLLA+ min flow

Technical Specification Changes

- The following approved methods topicals will be added to TS 5.6.5.b
 - BAW-10247P-A, Supplement 1P-A, Revision 0, "Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors Supplement 1: Qualification of RODEX4 for Recrystallized Zircaloy-2 Cladding" Approved April 2017
 - BAW-10247P-A, Supplement 2P-A, Revision 0, "Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors Supplement 2: Mechanical Methods" Approved August 2018
 - ANP-10340P-A Revision 0, "Incorporation of Chromium-Doped Fuel in AREVA Approved Methods" Approved May 2018
 - ANP-10335P-A Revision 0, "ACE/ATRIUM 11 Critical Power Correlation" Approved May 2018
 - ANP-10300P-A Revision 1, "AURORA-B: An Evaluation Model for Boiling Water Reactors; Application to Transient and Accident Scenarios" Approved January 2018
 - ANP-10332P-A Revision 0, "AURORA-B: An Evaluation Model for Boiling Water Reactors; Application to Loss of Coolant Accident Scenarios" Approved March 2019
 - ANP-10333P-A Revision 0, "AURORA-B: An Evaluation Model for Boiling Water Reactors; Application to Control Rod Drop Accident Scenarios" Approved March 2018
- The plant specific stability topical report will also be added
 - Description of the overall stability methodology will depend on timing of NRC review and approval of ANP-10344P Revision 0, "Framatome Best-Estimate Enhanced Option III Methodology,"

Technical Specification Changes (cont)

- TVA desires to include TSTF-564 related changes to the Tech Specs
- Framatome has established MCPR $_{95/95}$ values for the ATRIUM-10XM and the ATRIUM-11 fuel types
- A report documenting the derivation of the MCPR_{95/95} values will be included in the LAR
 - Method used to derive the values is in accordance with the NRC approved process in the TSTF
- Two associated Tech Spec changes will be made:
 - TS 2.1.1.2 will be modified to reflect the MCPR $_{95/95}$ value, applicable to both two loop and single loop operation
 - TS 5.6.3 will be modified to require that the MCPR $_{99.9\%}$ values for two loop and single loop operation be included in the COLR
 - Modified language of TS 5.6.3 will be consistent with that shown in the TSTF

Implementation Cycle Reports

- TVA will provide cycle specific reports for information for the implementation cycle
- Reports will be provided on a schedule specified in the LAR
- Reports include:
 - Fuel Cycle Design Report
 - Nuclear Fuel Bundle Design Report
 - Safety Limit MCPR Report
 - May include cycle exposure dependent values
 - Fuel Rod Design Report
 - Reload Safety Analysis Report
 - Include disposition of events summary
 - Address remaining Framatome methodology Limitations and Conditions

Criticality Report LAR

- NRC reviewed the BFN rack criticality report as part of the EPU LAR
- EPU safety evaluation noted the criticality analysis reviewed for fuel types up to and including ATRIUM-10 XM
- TVA believes adding ATRIUM-11 to the spent fuel pool requires additional NRC review
- TVA will docket this report as a separate LAR
 - Approval needed earlier than the transition LAR to support receipt of first ATRIUM-11 reload batch in early fall of 2022
- Approval of this LAR only grants the ability to receive and store ATRIUM-11 fuel in the fuel pool racks
 - LAR will not change the existing Technical Specification k-infinity limit
- TVA does not view this LAR as having linkage with the transition LAR

Schedule

- Proposed date for criticality report LAR submittal 5/28/2021
- Proposed date for transition LAR submittal 6/9/2021
- Safety evaluation need date for criticality report LAR 5/30/2022
 - 12 month review
- Safety evaluation need date for transition LAR 12/9/2022
 - 18 month review
 - Outage start date 2/25/2023
- All but one of the new methods is NRC approved
 - LAR review can focus on application of the approved methods to BFN
- Critical NRC action is approval of BEO-III topical report by March 2021
 - Allows avoidance of supplementing the LAR or having a permanent plant specific methodology topical report

