NRC Leak-Before-Break (LBB.NRC) Analysis Method for Circumferentially Through-Wall Cracked Pipes Under Axial Plus Bending Loads

Topical Report

Prepared by R. Klecker, F. Brust, G WFikowski

Battelle's Columbus Division

Prepared for
U.S. Nuclear Regulatory

Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, or any of ther employees, makes any warranty, expressed or implied, or assumes any legal liability of re sponsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights

NOTICE
 Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W Washington, DC 20555
2. The Superintendent of Documents, U.S. Government Printing Otfice. Post Offre Box 37082. Washington, DC 20013-7082
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Docu ment foom include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers, and applicant and licensee documents and correspondence.

The following documents in the NUREG series are availabie for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC oponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NFC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuariees
Documents available from the National Technical information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Aromic Energy Commission, forerunner agency to the Nuclear Regulatory Commission

Documents available from public and special technical libtaries include an open literature tems. such as books, journal and periodical articles, and transactions. Federal Register notices, federal and state legislation, and congressional reports can usually be obtained from these libraries

Documents such as theses, dissertations, foreign reports and transletions, and now NAC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Technical Information and Document Controi, US Nucledr Requlaiory Com mission, Washington, DC 20555

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library. 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are Americall National Standards, from the American National Standards Institute, 1430 Broadway. New York, NY 10018.

NRC Leak-Before-Break (LBB.NRC) Analysis Method for Circumferentially Through-Wall Cracked Pipes Under Axial Plus Bending Loads

Topical Report

Manuscript Complated: March 1986
Date Published: May 1986

Prepared by
*R. Kiecker, F. Brust, G. M. Wilkowski

Battelle's Columbus Division
505 King Avenue
Columbus, OH 43201
-Formerly with USNRC
Office of Nuclear Reactor Regulation

Prepared for
Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, D.C. 20555
NRC FIN B8134

This document records the present status of the LBB.NRC fracture mechanics computer program for analysis of degraded piping. Only circumferential through-wali cracks are considered. Because of the developmental nature of leak-before-break estimation procedures, neither the NRC nor BCL assume responsibility for the accuracy of results. The LBB. NRC methodology is expected to evolve with time as more pipe experiments are performed, particularly with larger diameter and thicker wall pipes as are found in FWR main coolant systems for instance.

Statements and comments made in this report are those of the authors and other contributors. They do not represent official NRC endorsement or policy. The latter is expressed only via the NRC's rules and regulations.

Abstract

The fracture mechanics analysis procedure used by the NRC to evaluate utility leak-before-break submittals is described in this report. This methodology is an estimation technique based on J-tearing theory. This approach is intended to provide a conservative approximation of the applied crack driving parameter, J, for postulated through-wall leakagesize cracks in nuclear power plant pipes. Piping integrity evaluations can then be accomplished for various loading conditions and assumed flaw sizes. Because the method can be used to obtain a rather rapid computer generated approximation of the applied crack driving parameters, NRC evaluation of applicant or licensee submittals can be accomplished in an expeditious manner without resorting to elaborate finite element techniques. The NRC program should not be considered as fixed in time. As piping fracture mechanics technology matures, it may be refined in the future.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1-1
2. LEAK-BEFORE-BREAK ANALYSIS 2-1
2.1 Geometry Assumptions. 2-1
2.2 Applied Stresses. 2-1
2.3 Normalized Parameters 2-1
2.4 Linear-Elastic Fracture Mechanics 2-3
2.5 Plastic Zone Size Correction. 2-4
2.6 Derivation of B for Bending Plus Axial Loads. 2-4
2.7 J Analyses. 2-7
2.8 Estimate of Plastic Rotation Due to Crack 2-12
2.9 J Determination 2-15
3. DISCUSSION 3-1
4. CONCLUSION 4-1
5. REFERENCES 5-1
APPENDIX A. ASSESSMENT OF LINEAR ELASTIC F-FUNCTIONS FOR THROUGH-WALL CRACKS IN PIPES. A-1
APPENDIX B. COMPLIANCE FUNCTIONS. 8-1
APPENDIX C. RAMBERG-OSGOOD PARAMETERS C-1
APPENDIX D. NRC STAFF RATIONALE FOR J INTEGRATION FORMULA. D-1
APPENDIX E. COMPARISON OF LBB.NRC PROCEDURE WITH PIPE EXPERIMENT RESULTS. E-1
APPENDIX F. APPLICATION OF LBB.NRC IN A LICENSING APPLICATION F-1
APPENDIX G. SAMPLE PROBLEMS G-1
APPENDIX H. LBB.NRC COMPUTER PROGRAM FOR IBM-PC WITH EPSON FX80 PLOTTER AND "LOTUS" SYSTEM PACKAGE H-1

LIST OF FIGURES

PageFigure 2.1. Schematic of circumferential through-wall cracked pipe . 2-2
Figure 2.2. Typical plot of $G(\theta)$ versus θ defining θ_{F} (at $S=S_{p}$) and θ_{e} (at arbitrary level S). 2-6
Figure 2.3. Example problems showing values of effective crack size θ_{e} for $S_{t}=0.1550$ and S_{b} ranging from zero to $S_{p}2-8$
Figure 2.4. S_{b} versus $\left(\theta_{e} e^{-\theta_{0}}\right)$ curve for $S_{t}=0.1550 \ldots 2-9$
Figure 2.5. Typical normalized stress-strain diagram for a hardening material 2-13

ACKNOWLEDGMENTS

This document was prepared as part of the NRC/BCL Degraded Piping Program. Various personnel at the NRC and at BCL made contributions in its preparation. The authors wish to acknowledge this help. In particular at the NRC, Dr. Sam Lee and John Tsao participated in generating the LBB.NRC computer program and Dr. Lee prepared the supplemental programs and plotting routines via Lotus 123. Earlier versions of LBB. NRC were programmed by Dr. John Schiffgens who is now with the ACRS staff. Others including K. Wichman and E. Sullivan helped in proofreading.

Battelle staff members making valuable contributions to this report include J. Ahmad, B. Blanton, and B. Saffell. Dr. Jwo Pan, currently at the University of Michigan, also assisted in development efforts while he was at Battelle.

1. INTRODUCTION

This report describes the fracture mechanics analysis procedure developed by the NRC staff and used in its review of leak-before-break submfttals. The leak-before-break (LBB) approach is the application of fracture mechanics technology to demonstrate that high energy fluid system piping is very unlikely to experience double-ended ruptures or their equivalent as longitudinal or diagonal splits. This means that, in the unlikely event pipe cracks develop during operation, leakage monitoring systems and/or inservice inspections must be capable of detecting these cracks long before they grow to a sufficient size to cause concern for the overall integrity of the pipe(s).

The application of LBB technology requires:

1) Knowledge of the loads to which a pipe or piping system is or could be subjected to during operation;
2) Details of the geometry and materials properties of the pipe(s); and
3) A method for analyzing pipes with flaws; that is, a fracture mechanics procedure.

Each of the three areas listed above is subject to inherent uncertainties. Therefore, any LBB analysis for licensing purposes must include safety margins that adequately envelop these uncertainties. The NRC limitations and acceptance criteria for the application of LBB technology are provided in Volume 3 of NUREG-1061 (Ref. 1). Also, the state-of-the-art status of LBB technology is described in some detail in this reference.

The NRC fracture mechanics analytical procedure described in the following sections of this report was developed primarily for use by the NRC staff in its evaluations of LBB submittals by the nuclear industry. It is based on earlier work by Paris and Tada in NUREG/CR-3464 (Ref. 2) with modifications by the NRC staff to account for the strain-hardening characteristics of typical nuclear facility piping materials. These modifications and the rationale for them are discussed in this document. The reader is assumed to have a basic understanding of stress analysis, materials technology and fracture mechanics.

The systems of a nuclear facility for which LBB is generally applied are made of ductile materials. Ductile fracture mechanics (FM) methods employ analytical techniques ranging from elaborate finite-element models (FEM) to various FM estimation procedures to simple limit-load analyses. FEM analyses are expensive and time consuming to perform and the purpose of the simple models is to facilitate the performance of FM analyses in a timely and relatively inexpensive manner.

Although all FM methods are based to some extent on theory, it is necessary to include certain idealizing assumptions related to crack shapes, consistent geometry and crack behavior if the crack initiates and grows as a result of increased loads. Also under most circumstances, it is necessary to obtain materials property data from other than the component being evaluated.

In reality, however, actual flaws can have complex shapes, the component being evaluated may deform under high loads particularly in the vicinity of the flaw (e.g., a pipe may ovalize and its wall may become thinner near the flaw) and a growing crack may develop shear lips. These reasons plus the inherent variability of material properties from specimen to specimen lead to the conclusion that perfect correspondence between analytical and experimental results should not be expected. On the other hand, to be useful at all, analytical methods should be able to predict results within an acceptable uncertainty band which can then be accounted for by appropriate margins.

The main objective of the NRC FM analytical procedure is to obtain a conservative approximation of the applied crack driving parameter, J, for postulated through-wall leakage-size cracks in nuclear power facility pipes to demonstrate their integrity under specified lcading conditions; that is, to demonstrate that they will not experience a large rupture. A secondary objective is to have a relatively simple analytical procedure that can be used in an expeditious manner to crosscheck results in submittals by applicants or licensees.

To meet the above objectives, the NRC FM method includes certain simplifying assumptions. Some of these assumptions are the same as in the Paris-Tada report (Ref. 2), while others were introduced by the NRC staff based on engineering judgement. Although not theoretically rigorous, this approach can be justified if the method of analysis results in reasonable predictions of pipe experimental results and/or the results are in reasonable agreement with those of more sophisticated FM analyses.

The staff recognizes the desirability of adhering to deformation theory to the extent practicable; however, in view of the overall analytical uncertainties cited earlier (loads, material properties, pipe ovalization, wall thinning, etc.), engineering judgement must still be used in interpreting results. Thus, the NRC requires that margins of safety be included in any LBB application for licensing purposes. This does not mean that this or any other analytical procedure should not continue to be refined as more experience and knowledge is gained from future piping experiments. As the analytical technology evolves to become more precise, margins may be reduced accordingly.

The needs for FM ana?yses in the licensing arena are somewhat different from those of an experimenter. Typical piping loads in a nuclear facility piping system are generally low enough so that even with a modest postulated leakage size through-wall crack, the margin to
incipient failure of the pipe is reasonably large (or is required to be so). For licensing purposes, a determination of the loads and crack driving parameter, J, at crack initiation (on-set of crack growth) is more important than prediction of J at ultimate failure loads because of the margins used for the latter. At most in its evaluations, the NRC staff considers only short crack growth ($1 / 4$ inch or less)* provided that valid material J-resistance (J-R) data exist for this range. By contrast, pipe test experiments may result in significant crack growth when the pipe is tested to failure. Based on experience to date, these larger crack growths can be quite complex. Even sophisticated analyses cannot predict this crack behavior precisely and engineering (and/or metallurgical) judgement is required to interpret the results.

This report describes the NRC J-estimation procedure (LBB.NRC) for assessing the stability of through-wall cracked piping systems subjected to axial loads including the affect of internal pressure plus bending loads. The LBB.NRC method represents an alternative to numerically developed J-estimation schemes, such as the EPRI-technique (Ref. 3). This method should be considered as state-of-the-art, as improvements in the technique should be expected with time. This analytical procedure is based on che NUREG/CR-3464 (Ref. 2) procedure, but modified to account for material strain hardening.

A description of the LBB.NRC method is presented in Section 2. The reader may obtain an applications-oriented, working-knowledge of the procedure by studying Section 2. Detailed information related to the development of the NRC. LBB method is provided in Appendices A through D. Section 3 and the appendices describe some of the assumptions involved with the technique and, consequently, the potential limitations inherent in the LBB.NRC method. Also included is a brief discussion of the theoretical limitations inherent in J-tearing theory. It must always be kept in mind that a J-estimation procedure for characterizing elasticplastic fracture of piping systems is only as good as the limitations necessarily imposed on J-tearing theory.

The LBB.NRC method is implemented in a computer program called LBB. NRC. Example calculations are provided in the Appendices E, F and G with a copy of the LBB.NRC computer program given in Appendix H. The remaining appendices supplement the descriptive information in Section 2. Note in Appendix C that the NRC staff fits the true stress-true strain data in a certain way to obtain the Ramberg-0sgood parameters. The results of any J-estimation procedure depend on the values selected for these parameters. Thus, to duplicate NRC results, users of the program must fit the stress-strain data in the same manner.

In summary, the NRC staff recognizes the state-of-the-art status of piping FM analyses. Thus, the reader is advised that the procedures

[^0]described in this document may evolve with time as more pipe tests are conducted, especially larger and thicker walled pipe tests. In the interim, the procedure is being used by the staff in its evaluations of licensing submittals in conjunction with adequate margins to account for uncertainties. The staff believes that the LBB.NRC procedure yields acceptable results for the purpose intended. A typical example of the staff analysis actually used in a licensing case is provided in Appendix F. Also shown in this appendix are the results determined by the organization that submitted the LBB application. They used both a finite element procedure and a procedure based on the EPRI approach described in Reference 3. The results of all three analyses are in reasonable agreement at the applied loads. The NRC staff also benchmarked its procedure against a series of pipe tests described in Appendix A of Reference 1. As described in Appendix E, the NRC staff subsequently revised these calculations using its current procedure for determining the Ramberg-0sgood parameters and obtained more conservative results. Finally, in Appendix G, fllustrative results of the staff's procedure with large axial as well as bending loads are provided.

2. LEAK-BEFORE-BREAK ANALYSIS

The NRC leak-before-break program for degraded piping is based on and generally follows the procedures of NUREG/CR-3464 (Ref. 2) except for the modifications discussed in this document. In this section linearelastic fracture mechanics methodology is first discussed. This includes definition of terms and statement of geometric assumptions. Secondly, extension of the linear-elastic methodology to elastic-plastic conditions is described.
2.1 Geometry Assumptions (See Figure 2.1)

- Thin-wall pipe, $4 \leq R / t \leq 16$ (If the R / t is outside this range, LBB.NRC assumes either 4^{-}or 16 as appropriate.)
- Thin-wall crack of half angle, θ_{0}
- $\mathrm{R}=$ mean radius
- $\mathrm{t}=$ wall thickness.

Although a pipe with an $R / t=4$ is not really a thin-walled pipe, typical applications of this procedure for licensing purposes are for pipes with higher R / t ratios for which the thin-wall assumption is reasonable in view of other uncertainties.

2.2 Applied Stresses

F and M are the applied loads at the ends of a pipe where:

- $F=$ axial load including the effect of pressure
- $M=$ applied moment
- Nominal axial stress $=\sigma t=\frac{F}{2 \pi R t}$
- Nominal bending stress $=\sigma_{b}=\frac{M}{\pi R^{2} t}$
- $\phi=$ kink angle.

2.3 Normalized Parameters

This report utilizes normalized or non-dimensional parameters which are defined in the various sections of the report. This is done for analytical convenience and to be consistent with NUREG/CR-3464 (Ref. 2). For instance, the bending ard tensile stresses are normalized by the flow stress.

Figure 2.1. Schematic of circumferential through-wall cracked pipe.

$$
\text { Flow stress } \begin{aligned}
=\sigma_{f} & \equiv \frac{\sigma_{u}+\sigma_{y}}{2} \\
\sigma_{u} & =\text { ultimate strength of the material } \\
\sigma_{\mathbf{y}} & =\text { yield strength of the material. }
\end{aligned}
$$

The normalized stresses are thus:

$$
S_{t}=\frac{\sigma_{t}}{\sigma_{f}}, \quad S_{b}=\frac{\sigma_{b}}{\sigma_{f}}
$$

2.4 Linear-Elastic Fracture Mechanics

In the low stress range, linear elastic fracture mechanics (LEFM) is applicable. The basic LEFM equation is:

$$
\begin{equation*}
K=\sigma \sqrt{\pi a} F(a) \tag{2.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{K} & \text { is the stress intensity factor } \\
\sigma & =\text { nominal far field stress } \\
\mathrm{a} & =\text { crack length or depth } \\
\mathrm{F}(\mathrm{a}) & =\mathrm{a} \text { geometry factor (F function). }
\end{aligned}
$$

For the assumed through-wall circumferential crack,

$$
\mathrm{a}=R_{\theta} .
$$

where θ is $1 / 2$ the total crack angle. In this report $K \equiv K_{I}$, that is the mode I stress intensity factor.

Because there are two components of stress,

$$
\begin{equation*}
K=K_{t}+K_{b}=\sigma_{t} \sqrt{\sqrt{R} \theta} F_{t}(\theta)+\sigma_{b} \sqrt{\pi R \theta} F_{b}(\theta) \tag{2.2}
\end{equation*}
$$

In NUREG/CR-3464 (Ref. 2), simplified formulas for $F_{t}(\theta)$ and $F_{b}(0)$ are used. The NRC program utilizes F-functions (Ref. 4) based on Sander's analysis of circumferentially cracked pipe under tension and bending.

$$
\begin{align*}
& F_{t}=1+A_{t}\left(\frac{\theta}{\pi}\right)^{1.5}+B_{t}\left(\frac{\theta}{\pi}\right)^{2.5}+C_{t}\left(\frac{\theta}{\pi}\right)^{3.5} \text { for tension } \\
& F_{b}=1+A_{b}\left(\frac{\theta}{\pi}\right)^{1.5}+B_{b}\left(\frac{\theta}{\pi}\right)^{2.5}+C_{b}\left(\frac{\theta}{\pi}\right)^{3.5} \text { for bending. } \tag{2.3}
\end{align*}
$$

The coefficients of the F-functions ($A_{t}, B_{t}, C_{t}, A_{b}, B_{b}$, and C_{b}) are a function of the R / t ratio of the pipe. A more detailed discussion of them is provided in Appendix A.

2.5 Plastic Zone Size Correction

As the stress level increases, a plastic zone forms ahead of the crack. The depth of this zone is usually designated as " $r y$ ". In the literature, various authors define r_{y} by different equations. In chis report, the Irwin plastic zone correction* is used:

$$
\begin{equation*}
r_{y}=\frac{1}{\beta \pi}\left(\frac{k}{\sigma_{f}}\right)^{2} \tag{2.4}
\end{equation*}
$$

This equation is consistent with NUREG/CR-3464 except that a is used in the NUREG instead of B and the flow stress, σ_{f}, is used as the limiting stress. The term B is used so as to avoid confusion with the RambergOsgood parameter " α " to be introduced later.

Generally, B is takeri as 2 for plane stress or 6 for plane strain. The NRC program, LBB.NRC, utilizes the rationale of NUREG/CR-3464 and derives a unique value of B which forces the solution to reach the limit load of a cracked pipe for large K values. Discussion of this assumption may be found in Section 3.

2.6 Derivation of B for Bending Plus Axial Loads

$$
\begin{equation*}
K=\sigma_{b} \sqrt{\pi R \theta} e F_{b}\left(\theta_{e}\right)+\sigma_{t} \sqrt{\pi R \theta} e F_{t}\left(\theta_{e}\right) \tag{2.5}
\end{equation*}
$$

where $\theta_{e}=\theta_{0}+\Delta \theta$ is the effective half-crack angle corrected for plastic zone size.

$$
\begin{aligned}
& \theta_{0}=\frac{a}{R}, \text { is the original crack size, and } \\
& \Delta \theta=\frac{r y}{R}, \text { is the plastic zone correction. }
\end{aligned}
$$

[^1]Using the normalized stresses and squaring the above equation:

$$
\begin{equation*}
\frac{k^{2}}{\pi R_{\sigma_{f}}^{2}} \equiv G\left(\theta_{e}\right)=\theta_{e}\left[S_{b} F_{b}\left(\theta_{e}\right)+S_{t} F_{t}\left(\theta_{e}\right)\right]^{2} \tag{2.6}
\end{equation*}
$$

Note: This $G(\theta)$ differs from that in NUREG/CR-3464 in that it includes the relative stresses.

Also, from

$$
\begin{align*}
& r_{y}=\frac{1}{\beta \pi} \frac{k^{2}}{\sigma_{f}^{2}}=R\left(\theta e^{-\theta_{0}}\right) \tag{2.7}\\
& \frac{K^{2}}{\pi R \sigma_{f}^{2}}=G\left(\theta_{e}\right)=B\left(\theta_{\left.e^{-\theta_{0}}\right)}\right. \tag{2.8}
\end{align*}
$$

These two values of $G\left(\theta_{e}\right)$ must be equal for a given stress level. S_{p} is defined as the value of S_{b} at fully plastic limit load conditions:

$$
S_{b} \equiv S_{p}=\frac{4}{\pi}\left[\cos \left(\frac{\theta_{0}}{2}+\frac{\pi}{2} S_{t}\right)-\frac{1}{2} \sin \theta_{0}\right]
$$

The rationale presented in NUREG/CR-3464 requires that at the 1 imit load the straight line, labeled (2) in Figure 2.2, be tangent to the curve labeled (1). This occurs at $\theta=\theta$ F. At lower stress levels:

$$
g(\theta)=\theta\left[S_{b} F_{b}(\theta)+S_{t} F_{t}(\theta)\right]^{2}
$$

from which θ_{e} can be determined once β and θ_{F} are established (see the dashed curve in Figure 2.2). As shown in this figure:

$$
B=\frac{G\left(\theta_{F}\right)}{\left(\theta_{F}-\theta_{0}\right)}=G^{\prime}\left(\theta_{F}\right)
$$

or $\theta_{0}=\theta_{F}-\frac{G(\theta F)}{G^{\top}(\theta F)}$ where the prime denotes $\frac{\partial}{\partial \theta}$, the derivative of G with
respect to

Figure 2.2. Typical plot of $G(\theta)$ versus θ defining θ_{F} (at $S=S_{p}$)
and θ_{e} (at arbitrary level S).

Using:

$$
\begin{aligned}
G\left(\theta_{F}\right) & =\theta_{F}\left[S_{p} F_{b}\left(\theta_{F}\right)+S_{t} F_{t}\left(\theta_{F}\right)\right]^{2} \\
G^{\prime}\left(\theta_{F}\right) & =2 \theta_{F}\left[S_{p} F_{b}^{\prime}\left(\theta_{F}\right)+S_{t} F_{t}^{\prime}\left(\theta_{F}\right)\right]\left[S_{p} F_{b}\left(\theta_{F}\right)+S_{t} F_{t}\left(\theta_{F}\right)\right] \\
& +\left[S_{p} F_{b}\left(\theta_{F}\right)+S_{t} F_{t}\left(\theta_{F}\right)\right]^{2}
\end{aligned}
$$

This results in:

$$
\begin{equation*}
\theta_{0}=\theta_{F} \frac{2 \theta_{F}\left[S_{p} F_{b}^{\prime}\left(\theta_{F}\right)+S_{t} F_{t}^{\prime}\left(\theta_{F}\right)\right]}{\left[S_{p} F_{b}\left(\theta_{F}\right)+S_{t} F_{t}\left(\theta_{F}\right)\right]+2 \theta_{F}\left[S_{p} F_{b}^{\prime}\left(\theta_{F}\right)+S_{t} F_{t}^{\prime}\left(\theta_{F}\right)\right]} \tag{2.9}
\end{equation*}
$$

Because θ_{0} is known a d θ_{F} is not known, this equation is solved by iteration in the LBB.NRC computer program by assuming values of θ_{F} until a value of θ_{0} is obtained to tie desired accuracy.

Once θ_{F} is determined, then B is found by:

Then:

$$
\begin{gather*}
B=\frac{\left[S_{p} F_{b}\left(\theta_{F}\right)+S_{t} F_{t}\left(\theta_{F}\right)\right]^{2}}{\left(1-\frac{\theta_{0}}{\theta_{F}}\right)} \tag{2.10}\\
S_{b}\left(\theta_{e}\right)=\frac{\sqrt{B\left(1-\frac{\theta_{0}}{\theta_{e}}\right)}-S_{t} F_{t}\left(\theta_{e}\right)}{F_{b}\left(\theta_{e}\right)} \tag{2.11}
\end{gather*}
$$

where θ_{e} is incremented in steps, $\theta_{0} \leq \theta_{\mathrm{e}} \leq \theta_{\mathrm{F}}$. This relates $S_{\mathrm{b}}\left(\theta_{\mathrm{e}}\right)$ to each θ_{e}. Typical plots of $G(\theta)$ versus θ and S_{b} versus ($\theta^{-} \theta_{0}$) are shown in Figures 2.3 and 2.4.

2.7 JAnalyses

As the stress level increases in ducti'e piping, LEFM methods have to evolve into elastic-plastic fracture mechanics (EPFM) methods. The crack driving parameter in the following discussion is assumed to be J instead of K. In the LEFM range:

$$
\begin{equation*}
J_{e}=\frac{k^{2}}{E} \tag{2.12}
\end{equation*}
$$

$$
G(\theta)=\theta\left[S_{b} F_{b}(\theta)+S_{t} F_{t}(\theta)\right]^{2}, S_{t}=0.1550
$$

Curve	S_{b}	M, in kips	θ_{e}	$G\left(S_{b}, \theta_{e}\right)$
1	0	0	0.2403	0.00708
2	0.3370	34,048	0.2578	0.07459
3	0.6932	70,046	0.3101	0.27714
4	0.8111	81,959	0.3450	0.41217
5	$S_{p}=1.0400$	105,085	$\theta_{F}=0.6142$	1.45333

Figure 2.3. Example problems showing values of effective crack size θ for $S_{t}=0.1550$ and S_{b} ranging from zero to ${ }^{e} S_{p}$.

$$
\text { T-4572-F2. } 3
$$

Figure 2.4. S_{b} versus $\left(\theta_{e^{-}} \theta_{0}\right)$ curve for $S_{t}=0.1550$ (See Figure 2.3).
where J_{e} is the elastic component of the crack driving parameter, J. As in NURE ${ }^{e} / C R-3464, J_{e}$ is normalized as follows:

$$
\begin{equation*}
\bar{J}_{e}=\frac{E J_{e}}{\sigma_{f}^{2} R}=\frac{k^{2}}{\sigma_{f}^{2} R}=\pi \theta_{e}\left[S_{b} F_{b}\left(\theta_{e}\right)+S_{t} F_{t}\left(\theta_{e}\right)\right]^{2} \tag{2.13}
\end{equation*}
$$

The NRC originally considered two versions of LBB. NRC, one in which $\overline{\mathrm{J}}_{\mathrm{e}}$ is based on θ_{0} (MOD 7) and a more conservative version in which J_{e} is based on θ_{e} (MOD 8). (The modification numbers are arbitrary and reflect the evolution of the program versus time.) In this report, only MOD 8, which is used for licensing evaluations, is described. However, the user still has the option of using MOD 7 (see line 731 of LBB.NRC in Appendix H).

The total J has to include a plastic component, J_{p} :

$$
\begin{equation*}
J=J_{e}+J_{p} \text { or } \bar{J}=\bar{J}_{e}+\bar{J}_{\rho} \tag{2.14}
\end{equation*}
$$

J_{p} is determined by using a moment-rotation relationship for a cracked pipe, which is discussed next. Before developing a procedure to determine J_{p}, it is necessary to find a relationship between the applied stresses and the kink angle, ϕ. NUREG/CR-3464 defines ϕ as (using Castiglianos' theorem)

$$
\begin{equation*}
\phi=\frac{\partial}{\partial M} \int_{0}^{A} \frac{K^{2}}{E} d A \tag{2.15}
\end{equation*}
$$

where:

$$
\begin{aligned}
& A=2 R t_{\theta} \text { is the crack area } \\
& M^{2}=\pi R^{2} t_{b} \\
& K^{2}=\left(K_{b}+K_{t}\right)^{2}=K_{b}^{2}+2 K_{b} K_{t}+K_{t}^{2} .
\end{aligned}
$$

The, efore:

$$
\begin{aligned}
\int_{0}^{A} \frac{K^{2}}{E} d A & =\frac{2 \pi R^{2} t}{E}\left\{\sigma_{b}^{2} \int_{0}^{\theta} \theta F_{b}^{2}(\theta) d \theta\right. \\
& +2 \sigma_{b} \sigma_{t} \int_{0}^{\theta} \theta F_{b}(\theta) F_{t}(\theta) d \theta \\
& \left.+\sigma_{t}^{2} \int_{0}^{\theta} \theta F_{t}^{2}(\theta) d \theta\right\}
\end{aligned}
$$

and:

$$
\begin{align*}
\phi & =\frac{1}{\pi R^{2} t} \frac{\partial}{\partial \sigma_{b}} \int_{0}^{A} \frac{k^{2}}{E} d A \\
& =4 \frac{\sigma_{b}}{E} \int_{0}^{\theta} \theta F_{b}^{2}(\theta) d \theta+4 \frac{\sigma_{t}}{E} \int_{0}^{\theta} \theta F_{b}(\theta) F_{t}(\theta) d \theta \\
& =\frac{\sigma_{b}}{E} I_{b}(\theta)+\frac{\sigma_{t}}{E} I_{t}(\theta) \tag{2.16}
\end{align*}
$$

where I_{b} and I_{t} are compliance functions. The derivation of I_{b} and I_{t} are given in Appendix B using the F functions in Appendix A.

The kink angle equation is normalized by:

$$
\bar{\phi}=\frac{E_{\phi}}{\sigma_{f}} \quad, \quad S=\frac{\sigma}{\sigma_{f}} \quad, \quad \bar{\varepsilon}=\frac{E_{\varepsilon}}{\sigma_{f}}
$$

where $\varepsilon=\frac{\sigma}{E}$.
Then:

$$
\bar{\phi}=\bar{\varepsilon}_{b} I_{b}(\theta)+\bar{\varepsilon}_{t} I_{\imath}(\theta)
$$

or

$$
\begin{equation*}
\bar{\phi}=\left[S_{b} I_{b}(\theta)+S_{t} I_{t}(\theta)\right] \tag{2.17}
\end{equation*}
$$

2.8 Estimate of Plastic Rotation Due to Crack

At this point, the NRC procedure begins to depart from the NUREG/CR-3464 method. Note that ϕ as just derived is essentially based on LEFM methods whereas the piping materials to be analyzed can undergo plastic deformation under high loads. The following is an engineering attempt to estimate the plastic rotation of the cracked pipe based on the behavior of a smooth bar tensile specimen. A typical normalized tensile stress-strain diagram is shown in Figure 2.5.

Assuming that the material stress-strain behavior can be adequately described by the Ramberg-0sgood equation

$$
\begin{equation*}
\frac{\varepsilon}{\varepsilon_{0}}=\frac{\sigma}{\sigma_{0}}+a\left(\frac{\sigma}{\sigma_{0}}\right)^{n} \tag{2.18}
\end{equation*}
$$

where

$$
\sigma=\sigma_{b}+\sigma_{t}
$$

$\sigma_{0}=a$ reference stress which affects the a obtained
$\varepsilon_{0}=\frac{\sigma_{0}}{\tilde{E}}$
α and n are material parameters.
As Eq. 2.18 does not fit a stress-strain curve over its entire range, engineering judgement has to be used to specify a and n. The procedure used by the NRC is described in Appendix C. Users of the LBB.NRC procedure should determine a and n in the same way to reproduce NRC results. Other fits of the stress-strain data may be more appropriate for other J-estimation analyses. This is one area subject to future refinement.

The Ramberg-0sgood equation can be rewritten as follows:

$$
\begin{equation*}
\varepsilon=\frac{\sigma}{E}+a\left(\frac{{ }^{c}}{E}\right)\left(\frac{\sigma_{f}}{\sigma_{0}}\right)^{n-1}\left(\frac{\sigma}{\sigma_{f}}\right)^{n}=\frac{\sigma}{E}+a^{\prime}\left(\frac{\sigma_{f}}{E}\right)\left(\frac{\sigma^{\sigma}}{\sigma_{f}}\right)^{n} \tag{2.19}
\end{equation*}
$$

where:

$$
\alpha^{\prime}=\alpha\left(\frac{\sigma_{f}}{\sigma_{0}}\right)^{n-1}
$$

Figure 2.5. Typical normalized stress-strain diagram for a hardening material.

This last equation merely adjusts the reference stress from o_{0} to of . It does not affect the end results.

In normalized form:

$$
\begin{equation*}
\tilde{\varepsilon}=\left(S_{b}+S_{t}\right)\left[1+\alpha^{\prime}\left(S_{b}+S_{t}\right)^{n-1}\right] \tag{2.20}
\end{equation*}
$$

Note that $\bar{\varepsilon}_{\mathrm{e}}=S_{\mathrm{b}}+S_{\mathrm{t}}$ is the elastic component (see Figure 2.5) and the term

$$
\left[1+a^{\prime}\left(S_{b}+S_{t}\right)^{n-1}\right]
$$

is a correction factor to account for strain hardening. By analogy to the stress-strain diagram in the elastic range:

$$
\begin{equation*}
\bar{\phi}_{e}=\left[S_{b} I_{b}\left(\theta_{e}\right)+S_{t} I_{t}\left(\theta_{e}\right)\right] \tag{2.21}
\end{equation*}
$$

Note that this latter $\bar{\phi}_{e}$ is the total $\bar{\phi}$ in NUREG/CR-3464. By comparison with experimental results of circumferentially cracked pipes under load, it was seen to underestimate the observed kink angle. Assuming that $\phi_{p} / \phi_{e}=\varepsilon_{p} / \varepsilon_{e}$ and therefore using the same correction factor, $\left[1+a^{\prime}\left(S_{b}+S_{t}\right)^{n-1}\right]$, to go from linear elastic to elastic-piastic conditions, the NRC procedure uses:

$$
\begin{equation*}
\bar{\phi}=\bar{\phi}_{e}\left[1+a^{\prime}\left(S_{b}+S_{t}\right)^{n-1}\right] \tag{2.22}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{\phi}_{\mathrm{e}} \text { is the elastic component } \\
& \bar{\phi}_{\mathrm{p}}=\bar{\phi}_{\mathrm{e}^{\alpha^{\prime}}}\left(S_{\mathrm{b}}+S_{t}\right)^{n-1} \text { is the plastic component } \\
& \bar{\phi}=\text { total relative kink angle. }
\end{aligned}
$$

Eq. 2.22, although applicable for the behavior of a smooth bar tensile specimen, is used here to provide an engineering estimate of the plastic rotation of a cracked pipe.

2.9 J Determination

$$
\begin{equation*}
\bar{j}_{e}=\pi \theta_{e}\left[S_{b} F_{b}\left(\theta_{e}\right)+S_{t} F_{t}\left(\theta_{e}\right)\right]^{2} \tag{2.23}
\end{equation*}
$$

was previously developed.
The NRC determination of \bar{j}_{p} differs from NUREG/CR-3464 in that the total stresses rather than just the bending stress are used in the integration formula:

$$
\begin{equation*}
\bar{j}_{p}=\frac{F_{j}}{\left(S_{p}+S_{q}\right)} \int_{0}^{\phi_{p}}\left[S_{b}+\left(F_{t} / F_{b}\right) S_{t} \mid d \bar{\Phi}_{p}\right. \tag{2.24}
\end{equation*}
$$

This equation was developed based upon engineering judgement. The rationale used is presented and discussed in Appendix 0.

In Eq. $2.24 \mathrm{~S}_{\mathrm{q}}$ is the applied S_{t} and

$$
F_{J}=\sin \left(\frac{\theta_{0}}{2}+\frac{1}{2} S_{t}\right)+\cos \theta_{0}
$$

FJ_{3} is derived in NUREG/CR-3464 (Ref, 2). The LBB.NRC computer program (Appendix H) first integrates S_{t} from zero to S_{q} and then with S_{q} constant, it integrates S_{b} from zero to S_{p} (see Figures in Appendix D). In NUREG/CR-3464, S_{t} is absent in the J_{p} integration formula.

The reason for including S_{t} in the \bar{J}_{p} integration is to account for the plastic contribution of axial stresses, especially if they are comparatively large. Note that for axial loads only, the NUREG/CR-3464 procedure would be inadequate.

Crack opening areas calculated by the LBB.NRC program use the equation given on page 77 of NUREG/CR-3464 without the effect of strain-hardening but using the effective crack angle, ${ }^{\theta} \mathrm{e}$:

$$
\text { Crack opening area }=C O A=\frac{\pi \sigma_{f} R^{2} I_{t}\left(\theta_{e}\right)}{E}\left|S_{t}+\frac{S_{b}\left(3+\cos \theta_{e}\right)}{4}\right|
$$

The leakage rate constant (gpm/in ${ }^{2}$) is user specified in the LBB.NRC program and can be set to be as conservative as desired based on experimental data. The leakage rate is calculated in the LBB.NRC program by multiplying the leakage rate constant and the crack-opening area.

Because of pressure differences between BWRs and PWRs, different values of this constant are appropriate for the respective analyses. Based on available leakage rate data, conservative leakage rate constants of 250 and $125 \mathrm{gpm} / \mathrm{in}^{2}$ are selected for PWRs and BWRs, respectively. Because the crack opening area is also conservatively estimated without strainhardening, this introduces further conservatism in the leakage rate calculation. However, leakage through an actual crack is a coriplex thermal-hydraulic phenomenon. The estimation of leakage rates is subject to improvement with experimental and analytical developments.

3. DISCUSSION

The LBB.NRC method as described in Section 2 and elaborated on and illustrated in the appendices to this document is a modification of the technique presented in Reference 2. The significant modifications made are to include the strain-hardening effect of materials typically used in nuclear power plant piping and to expand the Reference 2 procedure to permit relatively large tensile loads to be combined with bending loads. LBB.NRC is intended to be an engineering approach to solving a cracked pipe problem without having to resort to finite element or finite difference rethods when the pipe is subjected to tensile plus bending loads. To meet this ohjective, cerłain simplifying assumptions must be made. Some of these are the same as in Reference 2 ; others are unique to the LBB. NRC procedure. Many of these assumptions are based on engineering judgenent and are not consistent with deformation plasticity theory. Their acceptability depends solely on how well the procedure predicts cracked piping behavior and/or how well the results agree with those of more sophisticated analyses. For licensing purposes, the procedure used should be conservative; that is, it should predict crack growth and pipe failure before these events actually occur in a pipe test.

Based on cracked pipe experiments, crack behavior is not always consistent with idealized theory. Cracked pipes generally ovalize under load; wall thinning may occur in the vicinity of the crack; or material property discontinuities may be present such as at weld locations and crack propagation may be somewhat erratic prior to gross pipe failure. In fact, as discussed in Section 1 of this document, even the loads and material properties in a real piping system may include uncertainties. Because these factors cannot be accounted for with precision, a conservative estimation procedure based on experience and judgement will suffice. For licensing purposes, margins must be included in an overall evaluation of a pipe or piping system with postulated cracks to envelop the various uncertainties.

Nevertheless, a discussion of the assumptions used in any analytical procedure is in order so that as more experience is gained, the procedure may be refined and perhaps allow for a decrease in the prescribed margins. With this in mind, three of the assumptions used in the LBB.NRC procedure (labeled ithrough ifi), are discussed in the following paragraphs, noting that some of them are also included in the parent docurgent (Ref. 2).
(i) litilizing the concept of an effective crack size to estimate the increased pipe compliance due to the presence of crack tip plasticity. Related to this assumption is the necessity of defining B as given by Eq. 2.10.

As discussed in Reference 2, the so-called plastic zone size correction method is often used to account for the effect of local yielding. The method was developed for evaluating the material fracture toughness in small scale yielding conditions where the yielding near the crack tip
is well contained within the surrounding elastic field. Both the NUREG/CR-3464 and LBB.NRC procedures are based on the premise that this concept can be extended to large specimens; i.e., pipes with throughwall cracks. Thus, the NRC suggested limit on crack growth for licensing applications of LBB as stated on Page 1-3, should bound the uncertainties asscciated with the plastic zone assumption to a range acceptable for engineering purposes.

The above approach is based on the acceptance of a limit-load corresponding to a limiting value of stress beyond which fully plastic conditions are assumed. Based on numerous experiments, this limiting stress, referred to as the flow stress, has been found to be approximately the average of the yield and ultimate strengths of a material. Although the use of an elastic solution adjusted for small scale yielding for cracked piping applications does not seem to be theoretically justified, Paris and Tada in NUREG/CR-3464 suggest that the crack size adjustment, $r y$, be considered as an index representing the compliance of the cracked body at each level of loading. As the plastic zone spreads across the net ligament ahead of the crack, the compliance increases and, at the limit load or fully plastic state, general yielding of the body may be referred to as the compliance instability. The NURFG/CR-3454 and the LBB. NR techniques interpolate between the elastic and fully plastic states. The applied loads produce a plastic zone size adjustment which increases the effective crack size until instability is reached at the limit load. This is done via the Eas. 2.5 through 2.10 in this document and illustrated in Figures 2.2 and 2.3. This is an engineering approach to a complex problem and results in the elastic component cf J as given by Ec. 2.23. An alternate approach, proposed by Brust is under consideration (see Appendix E).
(ii) Determination of the plastic component of J by integration of the load-displacement relationship where the displacement in this case is the kink angle, ϕ, due to the presence of the crack.

A problem with this assumption is the determination of the kink angle versus the loads applied to a cracked pipe between the elastic and fully plastic states. Here a great deal of engineering judgement has to be used and the final validity of the assumption has to be determined by the comparison of analytical results with those from cracked piping experiments or with those of more sophisticated analyses such as finite element procedures. Paris and Tada in NUREG/CR-3464 propose a method for estimating the moment versus kink angle between elastic and fully plastic conditions. Additional complexity is incorporated in the LBB. NRC procedure by the introduction of axial plus bending loads and the kink angle adjustment to account for the strain hardening of typical materials used in nuclear power facilities. The NRC staff approach to resolving this problem is described in Section 2 and Appendices C and D of this document. Both the Paris/Tada and the staff approaches assume that the pipe geometry is maintained; i.e., potential ovalization and wall thinning are ignored. Here again, if crack growth is limited for
licensing applications, these factors are not believed to be significant and an engineering estimate of J can be obtained for the purpose intended.
(iii) Thin wall pipe - Both the NUREG/CR-3464 and the LBB.NRC procedures assume that thin-wall equations can be used to calculate piping stresses.

For typical applications, this approach is sufficient; that is, a pipe can be characterized by its R / t ratio. However, LBB analyses are being applied to pipes ranging in wall thickness from one-half inches or less to over 4 inches with diameters ranging from about 4 inches to 48 inches. It is quite possible, in fact probable, that cracked pipes with the same R/t ratio but with significant differences in wall thickriess will behave differently. Only future experiments will resolve this question.

4. CONCLUSION

The LBB.NRC fracture mechanics (FM) method is an "estimation procedure" used by the NRC for reviewing leak-before-break submittals. It serves as an aiternative to more elaborate finite element analyses which are expensive and time consuming to perform and the purpose of simple models is to facilitate the performance of FM analyses in a timely and relatively inexpensive manner. Although all FM methods are based (to some extent) on theory, it is necessary to include in them certain idealizing assumptions related to crack shapes, consistent geometry and crack behavior if the crack initiates and grows as a result of increased loads. Also under most circumstances, it is necessary to obtain materials property data from other than the component being evaluated.

In real life, however, actual flaws can have complex shapes, the component being evaluated may deform under high loads particularly in the vicinity of the flaw (e.g., a pipe may ovalize and its wall may become thinner near the flaw) and a growing crack may develop shear lips. These reasons plus the inherent variability of material properties from specimen to specimen lead to the conclusion that perfect correspondence between analytical and experimental results should not be expected. On the other hand, to be useful at all, analytical methods should be able to predict results within an acceptable uncertainty band which can then be accounted for by appropriate margins.

Further, the LBB.NRC methodology is subject to the theoretical limitations discussed in References 6 and 7. For example, it is recognized that for J-integral theory to be rigorously valid, cracked pipe analyses should be consistent with deformation theory plasticity. This requires that Ilyushin's theorem be satisfied. However, as noted, Ilyushin's theorem is not satisfied by this or some other J-integral methods.

The LBB.NRC method is, therefore, an engineering approach for solving complicated cracked pipe problems without having to utilize more elaborate methods. It is expected to evolve with time. In the interim, the reader may judge its applicability and validity for the purpose intended from the examples given in Appendices E, F and G of this document.

5. REFERENCES

(1) Pipe Break Task Group, "Report of the U.S. Nuclear Regulatory Commission Piping Review Committee", NUREG-1061, Vol. 3, November 1984.
(2) Paris, P. C. and Tada, H., "The Application of Fracture Proof Design Methods Using Tearing Instability Theory to Nuclear Piping Postulating Circumferential Through Wall Cracks", NUREG/CR-3464, September 1983.
(3) Kumar, V., et al., "Advances in Elastic-Plastic Fracture Analysis", EPRI Final Report NP-3607, August 1984.
(4) Wilkowski, G. M., et al., "Degraded Piping Program - Phase II," Semiannual Report, March 1984-September 1984, by Battelle-Columbus Laboratories, NUREG/CR-4082, Vol. 1, January 1985.
(5) Irwin, G. R., Kies, J. A., Smith, A. L., "Fracture Strengths Relative to Onset and Arrest of Crack Propagation", Proceedings of the ASTM, Vol. 58, 1958, pp. 640-660.
(6) Brust, F. W., Nishioka, T., Atluri, S. N., Nakagaki, M., "Further Studies on Elastic-Plastic Stable Fracture Utilizing the T^{*} Integral", Engineering Fracture Mechanics, Vol. 22, No. 6, pp 10791103, 1985.
(7) Brust, F. W., McGowan, J. J., At luri, S. N., "A Combined Numerical/Experimental Study of Ductile Crack Growth After a Large Unloading, Using T, J, and CTOA Criteria", Engineering Fracture Mechanics, (In Press).

APPENDIX A

APPENDIX A

ASSESSMENT OF LINEAR ELASTIC F-FUNCTIONS FOR THROUGH-WALL CRACKS IN PIPES

The F-function is an alytical relation which correlates the linearelastic stress-intensity factor (K) of a cracked shell to that for the same size of crack in an infinite flat plate, see Eq. A-1.

$$
\begin{equation*}
K=\sigma F \sqrt{\pi a} \tag{A-1}
\end{equation*}
$$

where,
$K=$ stress intensity
$F=$ function of crack size
$a=$ half crack length.
Thin shell analyses have been developed by Folias, Erdogan, etc. (Ref. A.1 and A.2), for a circumferentially cracked pipe in pure tension or torsion, but not bending. Here the F-function is usually expressed as a function of the dimensionless shell parameter λ, see Eq. A-2.

$$
\begin{equation*}
F=1+A \lambda+B \lambda^{2}+C \lambda^{3} \tag{A-2}
\end{equation*}
$$

where

λ	$=\left[12\left(1-v^{2}\right)\right]^{\frac{1}{4}}(a / \sqrt{\mathrm{Rt}})$
v	$=$ Poisson's ratio
a	$=$ half crack length
t	$=$ pipe thi,ickness
R	$=$ average pipe radius
A, B, C	$=$ constants depending on crack orientation and type of loading.

Figure A. 1 shows some F-functions analytically and experimentally derived (Ref. A.3).

Sanders (Refs. A.4, A.5) recently developed solutions using an energy integral technique. This was done for circumferentially cracked pipes under pure tension (Ref. A.4) and global bending (Ref. A.5). This analysis was used in NUREG/CR-3464 (Ref. A.6) to develop an F-function for pipes in tension and bending. Sanders' sclutions are generally for longer cracks and hence require extrapolation of the F-function to a value of one, as the crack length approaches zero. Figure A. 2 shows the Sanders F-function versus circumferential crack size for an (R/t) of five. Note that as the crack angle approaches zero, Sanders' solution for F also approaches zero. In NUREG/CR-3464 the F-function was expressed in the below forms.

Figure A.1. Comparison of various stress intensity ratio factors, F, for through-wall circumferential flaws in cylinders under uniform axial tension (Ref. A.3).

Figure A.2. Comparison of Sanders' F-Functions for ${ }^{\prime} R / t=5$ and polynominal fit assuming $F=1$ as crack angle approaches zero.

$$
\begin{equation*}
F_{t}=1+A_{t}(\theta / \pi)^{1.5}+B_{t}(e / \pi)^{2.5}+C_{t}(\theta / \pi)^{3.5} \tag{A-3}
\end{equation*}
$$

for tension and

$$
\begin{equation*}
F_{b}=1+A_{b}(\theta / \pi)^{1.5}+B_{b}(\theta / \pi)^{2.5}+C_{b}(\theta / \pi)^{3.5} \tag{A-4}
\end{equation*}
$$

for bending.
Here the constants A, B, and C, were curve fitted so that there was good agreement with Sanders' solution for long crack length. Figures A. 3 and A. 4 show how the F-function changes for R / t values of 10 and 15. Nuclear piping typically has R / t values from 5 to 15 . The reliability of Sanders, or other thin-shell analyses at the lower R/t ratios, is a point of concern. This is not addressed in this effort.

The change in the constants for different R / t values is given in Table A. 1 as well as graphically displayed in Figure A.5. These constants have been curve fit, and are expressed below. This form (i.e. equations) are quite convenient for computer based on a solution of the circumferential cracked pipe problem.

$$
\begin{aligned}
& A_{t}=-2.02917+1.67763(R / t)-.07987(R / t)^{2}+0.00176(R / t)^{3} \\
& B_{t}=7.09987-4.42394(R / t)+.21036(R / t)^{2}-.00463(R / t)^{3} \\
& C_{t}=7.79661+5.16676(R / t)-.24577(R / t)^{2}+.00541(R / t)^{3} \\
& A_{b}=-3.26543+1.52784(R / t)-.072698(R / t)^{2}+.0016011(R / t)^{3} \\
& B_{b}=11.36322-3.91412(R / t)+.18619(R / t)^{2}-.004099(P / t)^{3} \\
& C_{b}=-3.18609+3.84763(R / t)-.18304(R / t)^{2}+.00403(R / t)^{3}
\end{aligned}
$$

Figure A.3. Comparison of Sanders' F-Function for $R / t=10$ and polynominal fit assuming $F=1$ as crack angle approaches zero.

Figure A.4. Comparison of Sanders' F-Functions for R/t $=15$ and polynominal fit assuming $F=1$ as crack angle approaches zero.

Table A.1. Coefficients for F-Functions from Sanders' analysis of circumferentially cracked pipe under tension and bending

		Ft	
R/8	a		c
4.808	3.488	-7.453 2	24.792
5.830	4.686	-10.402	28.235
6.868	5.566	-12.236	31.195
7.888	6.413	-15.171	33.884
8.880	7.173	-17.178	36.147
9.888	7.865	-19.895	38.280
18.888	8. 581	-20.685	48.242
11.888	9.892	-22.244	42.862
12.888	9.643	-23.790	43.761
13.888	10.16	1-25.06?	7 45.358
14.880	10.65	9 -26.358	8 46.865
15.888	11.11	$4-27.581$	148.293
16.888	11.55	4-28.744	4 49.651
		Fb	
R/8	a	b	
4.888	1.768	-1.5129	9.470
5.800	2.778	-4.120 1	12.834
6.808	3.653	-6.362 1	14.238
7.828	4. 424	-8.339 1	16.181
8.898	5.117	-10.114	17.926
9.908	5.748	-11.730	19.514
10.880	6.328	-13.216	20.975
11.808	6.866	-14.594	22.330
12.880	7.368	-15.882	23.596
13.808	7.848	-17.891	24.785
14.800	8.286	-18.233	25.987
15.028	8.798	-19.314	26.971
16.020	9.110	-20.343	27.982

T-4572-TA. 1

Figure A.5. Variation of coefficients for Sanders'
F-Functions - Eqs. $\mathrm{A}-3$ and $\mathrm{A}-4$.
A_{t}, B_{t}, and C_{t} for tension; A_{b}, B_{b}, and C_{b} for bending.

REFERENCES (APPENDIX A)

(A.1) Folias, F. S., "An Axial Crack in a Pressurized Cylindrical Shell," Int. J. of Fracture Mechanics, Vol. 1, 1965, pp. 104-113.
(A.2) Erdogan, F. and Kibler, J. J, "Cylindrical and Spherical Shells with Cracks," Int. J. of Fracture Mechanics, Vol. 5, 1969, pp. 229-237.
(A.3) Wilkowski, G. M., et al., "Degraded Piping Program - Phase II", Semiannual Report, March 1984 -September 1984, by BattelleColumbus Laboratories, NUREG/CR-4082, Vol. 1, January 1985.
(A.4) Sanders, J. L., Jr., "Circlimferential Through-Cracks in Cylindrical Shells Under Tension", Journal of Applied Mechanics, March 1982, Vol. 49, pp. 103-107.
(A.5) Sanders, J. L., Jr. "Circumferential Through-Crack in a Cylindrical Shell Under Combined Bending and Tension", Journal of Applied Mechanics, March 1983, Vol. 50, p. 221.
$(A, 6)$ Paris, P. C and Tada, H., "The Application of Fracture Proof Design Methods Using Tearing Instability Theory to Nuclear Piping Postulating Circumferential Through Wall Cracks", NUREG/CR-3464, September 1983.

APPENDIX B

APPENDIX B

COMPLIANCE FUNCTIONS

For:

$$
\begin{aligned}
& F_{t}(\theta)=1+A_{t}\left(\frac{\theta}{\pi}\right)^{3 / 2}+B_{t}\left(\frac{\theta}{\pi}\right)^{5 / 2}+C_{t}\left(\frac{\theta}{\pi}\right)^{7 / 2} \\
& F_{b}(\theta)=1+A_{b}\left(\frac{\theta}{\pi}\right)^{3 / 2}+B_{b}\left(\frac{\theta}{\pi}\right)^{5 / 2}+C_{b}\left(\frac{\theta}{\pi}\right)^{7 / 2},
\end{aligned}
$$

with A_{t} through C_{b} given in Appendix A in functional form.
Then:

$$
\begin{aligned}
& \theta F_{t}(\theta) F_{b}(\theta)= \pi\left\{\frac{\theta}{\pi}+\left(\frac{\theta}{\pi}\right)^{5 / 2}\left[\left(A_{t}+A_{b}\right)+\left(B_{t}+B_{b}\right)\left(\frac{\theta}{\pi}\right)+\left(C_{t}+C_{b}\right)\left(\frac{\theta}{\pi}\right)^{2}\right]\right. \\
&+\left(\frac{\theta}{\pi}\right)^{4}\left[A_{t} A_{b}+\left(A_{t} B_{b}+A_{b} B_{t}\right)\left(\frac{\theta}{\pi}\right)\right. \\
&+\left(A_{t} C_{b}+B_{t} B_{b}+A_{b} C_{t}\right)\left(\frac{\theta}{\pi}\right)^{2} \\
&\left.+\left(B_{t} C_{b}+B_{b} C_{t}\right)\left(\frac{\theta}{\pi}\right)^{3}+C_{t} C_{b}\left(\frac{\theta}{\pi}\right)^{4} 1\right) \\
& I_{t}(\theta)= 4 \int_{0}^{\theta} \theta F_{t}(\theta) F_{b}(\theta) d \theta \\
&=4 \pi^{2}\left\{\frac{1}{2}\left(\frac{\theta}{\pi}\right)^{2}+\frac{2}{7}\left(A_{t}+A_{b}\right)\left(\frac{\theta}{\pi}\right)^{7 / 2}+\frac{2}{9}\left(B_{t}+B_{b}\right)\left(\frac{\theta}{\pi}\right)^{9 / 2}+\frac{2}{11}\left(C_{t}+C_{b}\right)\left(\frac{\theta}{\pi}\right)^{11 / 2}\right. \\
&+\frac{1}{5} A_{t} A_{b}\left(\frac{\theta}{\pi}\right)^{5}+\frac{1}{6}\left(A_{t} B_{b}+A_{b} B_{t}\right)\left(\frac{\theta}{\pi}\right)^{6} \\
&+\frac{1}{7}\left(A_{t} C_{b}+B_{t} B_{b}+A_{b} C_{t}\right)\left(\frac{\theta}{\pi}\right)^{7} \\
&\left.+\frac{1}{8}\left(B_{t} C_{b}+B_{b} C_{t}\right)\left(\frac{\theta}{\pi}\right)^{8}+\frac{1}{9} C_{t} C_{b}\left(\frac{\theta}{\pi}\right)^{9}\right\}
\end{aligned}
$$

Let:

$$
\begin{aligned}
I_{t} & =\frac{\left(A_{t}+A_{b}\right)}{7}+\frac{\left(B_{t}+B_{b}\right)}{9}\left(\frac{\theta}{\pi}\right)+\frac{\left(C_{t}+C_{b}\right)}{11}\left(\frac{\theta}{\pi}\right)^{2} \\
I_{t_{2}} & =\frac{\left(A_{t} A_{b}\right)}{2.5}+\frac{\left(A_{t} B_{b}+A_{b} B_{t}\right)}{3}\left(\frac{\theta}{\pi}\right)+\frac{\left(A_{t} C_{b}+B_{t} B_{b}+A_{b} C_{t}\right)}{3.5}\left(\frac{\theta}{\pi}\right)^{2} \\
I_{t_{3}} & =\frac{\left(B_{t} C_{b}+B_{b} C_{t}\right)}{4}\left(\frac{\theta}{\pi}\right)^{3}+\frac{C_{t} C_{b}}{4.5}\left(\frac{\theta}{\pi}\right)^{4}
\end{aligned}
$$

Then:

$$
\begin{gathered}
I_{t}(\theta)=2 \theta^{2}\left[1+4\left(\frac{\theta}{\pi}\right)^{3 / 2} I_{t_{1}}+\left(\frac{\theta}{\pi}\right)^{3}\left(I_{t_{2}}+I_{t_{3}}\right)\right] \\
I_{b}(\theta)=4 \int_{0}^{\theta} \theta F_{b}^{2}(\theta) d \theta
\end{gathered}
$$

can be obtained by replacing A_{t}, B_{t} and C_{t} with A_{b}, B_{b} and C_{b} in the above equations.

Then:

$$
\begin{aligned}
& I_{b_{1}}=\frac{A_{b}}{7}+\frac{B_{b}}{9}\left(\frac{\theta}{\pi}\right)+\frac{C_{b}}{11}\left(\frac{\theta}{\pi}\right)^{2} \\
& I_{b_{2}}=\frac{A_{b}^{2}}{2.5}+\frac{A_{b} B_{b}}{1.5}\left(\frac{\theta}{\pi}\right)+\frac{\left(2 A_{b} C_{b}+B_{b}^{2}\right)}{3.5}\left(\frac{\theta}{\pi}\right)^{2} \\
& I_{b_{3}}=\frac{B_{b} C_{b}}{2}\left(\frac{\theta}{\pi}\right)^{3}+\frac{C_{b}^{2}}{4.5}\left(\frac{\theta}{\pi}\right)^{4}
\end{aligned}
$$

and

$$
I_{b}(\theta)=2 \theta^{2}\left[1+8\left(\frac{\theta}{\pi}\right)^{3 / 2} I_{b_{1}}+\left(\frac{\theta}{\pi}\right)^{3}\left(I_{b_{2}}+I_{b_{3}}\right)\right]
$$

Note: The LBB.NRC program uses $\mathrm{I}_{\mathrm{t}}(\theta)$ and $\mathrm{I}_{\mathrm{b}}(\theta)$ in the format of the last equations given.

APPENDIX C

APPENDIX C

RAMBERG-OSGOOD PARAMETERS

Stress-strain data are often fitted with the Ramberg-Osgood equation

$$
\frac{\varepsilon}{\varepsilon_{0}}=\frac{\sigma}{\sigma_{0}}+a\left(\frac{\sigma}{\sigma_{0}}\right)^{n}
$$

where:

$$
\varepsilon=\text { strain }
$$

$\sigma=\quad$ stress
$E=$ elastic modulus
$\varepsilon_{0}=\sigma_{0} / E$
$\sigma_{0}=a$ reference stress sometimes assumed to be equal to the yield strength, σ_{y}, but can be arbitrary. However, the value of a obtained will depend on the value of σ_{0} used, therefore, mutually consistent parameters must always be used. Note that in the LBB.NRC analytical procedure, a is adjusted to a^{-}by

$$
\alpha^{\prime}=\alpha\left(\frac{\sigma_{f}}{\sigma_{0}}\right)^{n-1}
$$

where σ_{f} is the material flow stress.
The Ramberg-0sgood equation can be rearranged as follows:

$$
\left(\frac{E_{\varepsilon}-\sigma}{\sigma_{0}}\right)=a\left(\frac{\sigma}{\sigma_{0}}\right)^{n} .
$$

This form of the equation is more convenient for fitting stress-strain data on a $\log -\log$ plot; that is

$$
\ln \left(\frac{E_{\varepsilon-\sigma}}{\sigma_{0}}\right)=\ln a+n \ln \left(\frac{\sigma}{\sigma_{0}}\right)
$$

which is a straight line on $\log -\log$ paper. a can be determined directly at $\sigma / \sigma_{0}=1$ and n can be determined by the slope of the line.

Alternatively, for linear regression analyses, define

$$
\begin{aligned}
& y=\ln \left(\frac{E_{\varepsilon}-\sigma}{\sigma}\right) \\
& x=\ln \left(\sigma / \sigma_{0}\right) \\
& a=\ln a
\end{aligned}
$$

Then

$$
\begin{aligned}
& y=a+n x \\
& a=e^{a}(a t x=0) \\
& n=d y / d x
\end{aligned}
$$

The stress-strain data points plotted on a $\log -\log$ graph usually do not fall in a straight line.

Figure C.1. Schematic of typical stress-strain data.

A typical set of stress-strain data points is shown schematically in Figure C.1. Various values for a and n can be obtained depending on the method used to fit the curved data point plot with a straight line. If linear regression is used, then an appropriate range of data must be used. If a tangent to the data curve is used, then the point of tangency must be assumed.

The stresses used in leak-before-break or other piping integrity analyses of a cracked pipe are remote from the crack vicinity. For ifnear-elastic analyses, the K, or Je calculation accounts for the fact that these stresses are not at the crack tip. In elastic-plastic or
fully plastic calculations, the J estimation procedure for strainhardenable materials may not adequately account for complex strain relations in the vicinity of the crack (wall thinning, for instance). Assume a pipe with a through-wall crack of total length, 2 θ. For a relatively small θ, say ≤ 10 degrees, the remote stresses that lead to crack growth or pipe faīure are generally q:ite high. Conversely, for a large θ, say ≥ 90 degrees, crack growth could occur for relatively small or modest remote stresses. Thus, how one fits a Ramberg-0sgood line to the stress-strain data to get a and n could depend on crack length as well as other factors to get best rosults or those that best predict pipe test results. In that different J estimation procedures are also being used, it is conceivable that one type of fit to the data may be better than another for a particular procedure. This question has not been adequately answered at this time and is one of the reasons (among others) for applying margins for licensing purposes.

For consistency in its analyses to date, the NRC staff has used a tangent fit at $\varepsilon \leqslant 4$ percent or a linear regression fit in a range close to 4 percent (plus or minus a few percent ε). The staff has found that its LBB.NRC procedure then results in a J at applied loads that closely approximates that reported by applicants/licensees using alternate J estimation procedures or more sophisticated finite element analyses. (See example given in Appendix F.)

Results of NRC analyses of a series of pipe experiments conducted by U.S. David W. Taylor Naval Ship Research and Development Laboratory (NUREG/CR-3740) were reported in the Piping Review Committee report NUREG-1061, Volume 3, Figures A-7, A-8, and A-9. For those analyses, the staff used values of a and n supplied by others so that they would be consistent with the Ramberg-0sgood parameters that were used in the EPRI procedure analyses of these tests. The calculated results were close to agreement with test results. However, they were somewhat nonconservative. The staff has since recalculated these problems using values of a and n determined by the procedure indicated above. (See Appendix E.)

APPENDIX D

NRC STAFF RATIONALE FOR J INTEGRATION FORMULA

APPENDIX D

NRC STAFF RATIONALE FOR Jo INTEGRATION FORMULA

For a pipe with a circumferential through-wall crack under a bending load, Paris and Tada in NUREG/CR-3464, Section II-2 describe a procedure for estimating J from a load displacement. (M-4) diagram. (See discussion in Reference 2 beginning on page 102.) M is the applied moment and ϕ is the angular displacement due to the presence of the crack. After separating J into its elastic and plastic components, Je and J_{p}, and using

$$
J_{p}=-\left.\int_{0}^{\phi_{p} p} \frac{\partial M}{\partial A}\right|_{\phi_{p}} d \phi_{p}
$$

they arrive at

$$
\begin{aligned}
& \bar{J}_{p}=\frac{E J_{p}}{\sigma_{f}^{2} R}=\frac{F_{j}\left(\theta_{0}\right)}{S_{p}\left(\theta_{0}\right)} \int_{0}^{\bar{\phi}_{p}} S_{b}(\theta) d \bar{\phi}_{p} \\
& \text { (Eq. } 68 \text { page } 107 \text { of Reference 2) }
\end{aligned}
$$

$$
\begin{aligned}
\text { where }_{\Phi_{p}} & =\frac{E_{\Phi_{p}}}{\sigma f} \\
S_{b} & =\frac{M}{\pi R^{2} \operatorname{taf}_{\sigma}} \\
S_{p} & =\frac{4}{\pi}\left[\cos \frac{\theta_{0}}{2}-\sin \theta_{0}\right] \\
F_{J} & =-\frac{\pi}{2} \frac{\partial S_{p}}{\partial \theta_{0}}=\sin \frac{\theta_{0}}{2}+\cos \theta_{0}
\end{aligned}
$$

Note that the NRC staff uses of as the limiting stress in the above equations.

In Section II-4 of NUREG/CR-3464, Paris and Tada use similar rationale for determining J_{p} when a pipe is subjected to axial plus bending loads except now:

$$
\begin{aligned}
& S_{p}=\frac{4}{\pi}\left\{\left.\cos \left(\frac{\theta_{0}}{2}+\frac{\pi}{2} S_{t}\right)-\frac{1}{2} \sin \theta_{0} \right\rvert\,\right. \\
& F_{J}=\sin \left(\frac{\theta_{0}}{2}+\frac{\pi}{2} S_{t}\right)+\cos \left(\theta_{0}\right)
\end{aligned}
$$

where

$$
S_{t}=\frac{F}{2 \pi R t \sigma_{f}} \text { and }
$$

[^2]Their procedure is based on the assumption of a relatively low value of $S_{t}\left(S_{t}=0.1\right.$ in the example given). This procedure is adequate for engineering estimates of J_{p} when S_{t} is small, however, the NRC staff desired an approach that could be used for larger values of S_{t} because typical licensing applications of leak-before-break technology involve S_{t} greater than 0.1 .

For $\mathrm{S}_{\mathrm{t}}=\mathrm{S}_{\mathrm{q}}$ an applied axial relative stress, and plotting

$$
S_{p}=\frac{4}{\pi}\left[\left.\cos \left(\frac{\theta_{0}}{2}+\frac{\pi}{2} S_{t}\right)-\frac{\sin \theta_{0}}{2} \right\rvert\,\right.
$$

versus S_{q} one gets a typical limit load curve shown schematically as curve θ_{0}, o in Figure 0.1. Note that for positive stresses S_{p} approaches zero as S_{q} increases to its 1 imit . Alternatively, for a given value of applied bending stress, $S_{b}=S_{p}$, one could calculate the limiting axial stress by

$$
S_{q}=\frac{2}{\pi}\left|\cos ^{-1}\left(\frac{\pi}{4} s_{b}+\frac{\sin \theta}{2}\right)-\frac{{ }_{0}}{2}\right|
$$

to get the limit load point, P, in Figure D.1.
Pecause both axtal plus bending loads contribute to the strain in the material of a cracked pipe, any J estimation procedure must account for them both, especially if the resulting stress magnitudes are comparable, as is the case in some piping systems.

In Appendix A of NUPEG-1061, Volume 3 (Subsection A.3.3.2), a method for combined tension and bending loads is discussed. As seen from Figure A-11 of this reference, the axial load is approximated as an increase to the applied moment to get an equivalent moment according to:

$$
M_{e q}=M+\frac{R}{2} \frac{F_{t}}{F_{b}} F
$$

where M and F are applied loads.
(The NUREG formula used P instead of F. F is used here for internal consistency in this document.)

Using the thin-wall pipe assumption and dividing all terms by π^{2} tof, the above equation can be rewritten as:

$$
s_{b_{e q}}=s_{b}+\frac{F_{t}}{F_{b}} s_{t}
$$

There are several ways in which tension plus bending stresses can be incorporated into a J estimation procedure. One approach used by an organization submitting a LBB application was to assume that $F=0$. Then, using the EPRI/GE procedure, they calculated J versus an equivalent moment as suggested in NUREG-1061, Volume 3 (see also Appendix F of this document). They then get J at their applied moment from $J\left(M_{e q}\right)$ where $M_{e q}$ is defined above and M and F are their applied loads. In effect, the J versus M plot of results is shifted to the left by $\frac{R}{2} \frac{F_{t}}{F_{b}} F$ and J is then obtained at the applied moment. The LBB.NRC procedure could also be used in the same manner as is illustrated in the example given in Appendix F.

The LBB.NRC procedure now being used combines the axial and bending stresses in the J_{p} integration formula as follows:

$$
\bar{j}_{p}=\frac{F_{J}}{\left(S_{p}+S_{q}\right)} \int_{0}^{\bar{\Phi}_{p}}\left(S_{b}+\frac{F_{t}}{F_{b}} S_{t}\right) d \bar{\phi}_{p}
$$

in which F_{J} and S_{p} include the applied $S_{t}=S_{q}$. S_{q} is added in the denomioator of the integration constant based on engineering judgment to avoid J_{p} resulting in unreasonably high values at relatively large values of S_{q} when S_{p} approaches zero.

Both of the above procedures are recognized to be engineering approximations that can be used until a more theoretically correct method is formed for conbining tensile plus bending loads. Example analyses are given in Appendix G.
Further rationale for including S_{t} in the \bar{J}_{p} integration for relatively large values of S_{q} is illustrated schematically in Figure 0.2. The NUREG/CR-3464 equation for J_{p} would result from the area shown as (1) in the figure. This area approaches zero as S_{q} approaches its limit. The NRC program uses the area shown as (2) in the figure. Typical results using the NRC, approach appear to be quite reasonable for an engineering estimation of J_{p} at nominal applied loads.

Figure D.1. Typical limit-load curve for through-wall crack.

Figure D.2. Typical normalized stress variation as a function of the kink angle.

APPENDIX E

COMPARISON OF LBB.NRC PROCEDURE WITH PIPE EXPERIMENT RESULTS

During the preparation for writing NUREG-1061, Voi. 3, the NRC staff analysed a series of pipe experiments performed by the U.S. David W. Taylor Naval Ship Research and Development Laboratory as reported in NUREG/CR-3740. For those analyses the staff used Ramberg-Osgood parameters provided by others. The staff's results are discussed in Appendix A of NUREG-1061, Vol. 3.

Subsequently, the NRC staff derived revised values of the Ramberg-Osgood parameters using the procedures described in Appendix C of this document. The original and the new parameters are shown in Table E. 1 and the new results in Table E.2. The more recent results are more conservative and a comparison of the results of the new and the original analyses fllustrates their sensitivity to the selection of the Ramberg0 osgood parameters. Results for one of thie pipe experiments are plotted on the following revised Figure A-9 from NUREG-1061, Vol. 3.

A number of full scale pipe experiments have been carried out at BCL for pure bending. Predicted results using the BCL's NRCPIPE computer program which includes the LBB.NRC procedure and allows for crack growth compared favorably with these experimental results for both crack initiation and maximum load. These results are discussed fully in Reference E. 1 .

Brust recently proposed two modifications to the iRC metnod. In one version, the plastic kink angle is obtained from the elastic kink angle using a modification which depends on the G.E. h-function. This version, which is referred to as the "C.E. Functions Modification", is the most accurate if the h-functions are correct. The second version obtains the plastic kink angle from the elastic kink angle using an "engineering estimate". The "engineering estimate" is obtained by approximating the stiffness of the cracked section of pipe by using a short length of pipe with an appropriately reduced thickness. This method is referred to as the "engineering estimate modification". A description of both of these modifications will be described in an upcoming Battelle report. An encouraging feature of the results is that the "engineering estirate modification" produces results which are very close to the "G.E. function modification" results. This is important because it means that analyses can be made in $/ / t$ ranges not covered by the G.E functions. Moreover, this method may be extended to crack geometries not encompassed by the G.E. functions.

Table E. 1 DTNSRDC 8 Inch Ferritic Pipe Tests.

	Original Calculations for NUREG-1061, Vol. 3	New NRC Calculations with NRC Method for $\alpha \& n$
Parameters	1.35	3.6
α	6.2	4.159
n	35	35
σ_{0}, ksi	29,000	29,000
E, ksi	56.4	56.4
$\sigma_{\text {f }}$, ksi		T-4572-TE.1

Table E. 2 Analysis results from LBB.NRC using the original and new parameters listed in Table E.1.
(See also Table A-3, NUREG-1061, Vol. 3.)

Test \#	$M_{i},(i n-k)$	$J_{i}\left(\frac{i n-k}{i n^{2}}\right)$	Original NRC $J / J_{i} @ M_{i}$	New NRC $J / J_{i} @ M_{i}$	New NRC $M / M_{i} @ J_{i}$
N3	935.69	3.680	1.035	1.856	0.910
N7	928.90	5.400	0.564	1.022	0.998
N8	801.31	4.420	0.402	0.690	1.075
N11	1061.8	2.340	0.922	1.545	0.929
N12	1090.70	3.110	1.195	1.898	0.901
N14	1228.00	4.300	0.671	0.991	1.000
N15	1189.40	2.850	1.428	2.135	0.870
Average			0.888	1.448	0.955

Figure E.1. Comparison of various J-estimation schemes to average values from DTNSRDC ferritic pipe test data at crack initiation.

REFERENCES (APPENOIX E)

(E.1) Wtlkowski, G. M., et al., "Degraded Piping Program - Phase II", Semiannual Report, April 1985-September 1985, NUREG/CR-4082, BMI-2120, Vol. 3, March 1986.

APPENDIX F

APPENDIX F

APPLICATION OF LBB.NRC IN A LICENSING APPLICATION

The Ramberg-Osgood parameters are determined from the stress-strain data submi,ted in the licensing application. Table F. 1 shows the stress-strain data and the determined Ramberg-0sgood parameters. The stress-strain data and the Ramberg-0sgood correlation are plotted in Figures F.1 and F.2.

LBB.NRC is evaluated using the Ramberg-Osgood parameters. Tables F. 2 and F. 3 show the input parameters. The results for an axial force of 1685.7 kips and an applied bending moment of 37171 in-kips are shown in Figure F.3. The results for an axial force of 2383.9 kips and an applied bending moment of 52568 in-kips are shown in Figure F.4. As a comparison, the finite element (FEM) results provided in the licensing application are also indicated in Figures F. 3 and F.4. The reported EPRI/GE results, obtained by combining the axial force and the bending moment into an equivalent bending moment according to Figure A. 11 in NUREG-1061, Vol. 3, are also plotted in Figure F.3. (The axial force of 1685.7 kips is equivalent to a bending moment of 13093 in kips.) The numbers in parentheses are the values of J obtained from the various approaches.

To further demonstrate that the axial force and bending moment can be combined into an equivalent bending moment according to Figure A. 11 in NUREG-1061, Vol. 3 to yield an estimate of J, LBB.NRC is evaluated using the input parameters shown in Table F. 4 (no axial force). The results are plotted in Figure F. 5 after the curve has been shifted to the left by 13093 in-kips to account for the axial force. As a comparison, the LBB.NRC results in Figure F-3 is also plotted in Figure F.5.

The J values for an axial force of 1685.7 kips and a bending moment of 37171 in-kips estimated from the various approaches are summarized in Table F.5.

Table F. 1 Determination of Ramberg-Osgood parameters using the NRC computer program*

12-23-1935 (FO)

Estimation of Strain Hardening Using Ramberg-0sqood Equation and Linear Fieqression Over User-Selected Fange of Strains From Data File of Stress and Strain

```
    Reference Stress, SIGR (ksi) = 39
        Elastic Modulus, E (ksi) = 26500
    Linear Regression Fit :
        Starts at Strain of (%) = (% 1.45
        Ends at Strain of (%)=6.05
Filename of Stress--strain Data = TYPICAL
```

SIGMA (tsi)	EFSILON	x	Y
42.000	0.00500	1.077	2.321
48.000	0.01000	1.231	5.564
52.000	0.01500	1.333	8.859
56.000	0.02000	1.436	12.154
63.000	0.03000	1.615	18.769
69.000	0.04000	1.769	25.410
73.000	0.05000	1.872	32.103
77.000	0.06000	1.974	38.795

$x=$ SIGMA/SIGR : $\quad \gamma=$ (E*EPSILON-SIGMA)/SIGR Data File Contains a Total of 8 Fairs of Points
A rotal of B Fiars of Foints are Plotted A Total of o Pairs of Foints are in Linear Regression Resulting Correlation Coefficient, $r=0.99954$

Ramberq-usqood Coefficients: Alpha $=3.102 ; n=3.719$

* Calculations are performed by BASICA and plotting is done by LOTUS 123.

Figure F.1. Stress versus strain plot with associated Ramberg-0sgood correlation.

Figure F.2. Log-log plot with associated Ramberg-Osgood correlation indicated as straight line.

Table F.2. Data Sheet for Axial Force of 1685.7 kips and applied bending moment of 37171 in-kips

SIGT=Axial Stress SIGB=Bending Stress MB=Bending Moment PHI=Kink Angle $\mathrm{J}=\mathrm{J}$ Integral $\mathrm{COA}=\mathrm{Crack}$ Opening Area LR=Leak Rate ST=SIGT/SIGF

SB=SIGB/SIGF CL=Crack Length

* ${ }^{\text {\# }}$	NORMALIZED	***			ENGINEER	G UNITE		***
$S T+5 B$	PHI	$\begin{aligned} & \mathrm{J} \\ & - \end{aligned}$	$\begin{aligned} & \text { SIGB } \\ & \text { [ksi] } \end{aligned}$	MB $[k k-i n]$	PHI [deg]	$\begin{gathered} \mathrm{J} \\ {[k / \mathrm{in}]} \end{gathered}$	COA [si]	LR [gpm]
0.0000	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.0
0.1293	0.028	0.021	0.00	0.00	0.00	0.04	0.046	11.4
0.2316	0.059	0.068	6. 14	10.26	0.01	0.14	0.084	20.9
0.3280	0.108	0.144	11.92	19.93	0.01	0.30	0.122	30.6
0.4199	0.189	0.259	17.44	29.13	0.02	0.54	0.164	41.1
0.5070	0.320	0.428	22.66	37.87	0.04	0.89	0.210	52.6
0.58839	0.519	0.670	27.58	46.08	0.07	1.40	0.262	65.4
0.6653	0.807	1.012	32.16	53.74	0.10	2.11	0.319	79.8
0.7358	1. 205	1. 484	36.39	60.81	0.16	3.10	0.385	96.2
0.8003	1.736	2. 118	40.26	67.28	0.23	4.42	0.459	114.8
0.8586	2.420	2.951	43.76	73.13	0.31	6.16	0.544	136.1
0.9109	3.280	4.019	46.90	78.36	0.43	8.39	0.641	160.4
0.9571	4.334	5.355	49.67	83.00	0.56	11.19	0.752	188.1
0.9975	5.600	6.993	52.09	87.04	0.73	14.61	0.879	219.8
1.0322	7.093	8. 958	54.17	90.52	0.92	18.71	2.023	255.8
1.0614	8.823	11.270	55.93	93.45	1. 14	23.54	1. 187	296.8
1.0855	10.777	13.942	57.37	95.37	1. 40	29.12	1.373	343.3
1. 1046	13.017	16.977	58.52	97.78	1.69	35.46	1.584	395.9
1. 1190	15.479	20.365	59.39	99.23	2.01	42.54	1.821	455.3
1.1290	18. 172	24.086	59.99	100.23	2.36	50.31	2.088	522.0
1. 1343	21.017	28.108	60.33	100.81	2.73	58.71	2.388	597.0
1.1365	23.998	32. 148	60.44	100.98	3. 11	67.15	2.704	676.0

[^3]

Figure F.3. J versus bending moment for axial force of 1685.7 kips.

Table F.3. Data sheet for axial force of 2383.9 kips and applied bending moment of $52568 \mathrm{in}-\mathrm{kips}$

12-23-1985	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array}$	Strain Strain Referen Flow St Initial Axial F Elastic Pipe or Pipe or Leak Ra Applied	AK BE LBB. NRC CILITY: TY PE SYBTEM: INPUT P Hardening Hardening hce Stress ress [ksi Hal f Cra Force Ckip C Modulus Vessel R Vessel Re Consta d Bending	$\begin{aligned} & \text { CORE } \\ & \text { CMOD: } \\ & \text { ypical } \\ & 28^{\prime \prime} \text { ID } \end{aligned}$ PARAMETER [ksi] i] ack Angle ps] [ksi] Radius [i Thickness ant [gpm/ Moment [Carbon Stea 8 alpha $=A L=$	$\begin{aligned} & K \\ & =1 \text { Pipe } \\ & =3.1 \\ & =3.7 \\ & =39 \\ & =60 \\ & =23.14 \\ & =26500 \\ & =15.37 \\ & =2.25 \\ & =52.56 \end{aligned}$		
$\begin{gathered} \text { SIGT }=A \times i \\ J=J \end{gathered}$	al Stress Integral	$\begin{array}{r} \text { SIGB=Be } \\ C O A=C r a c \\ S B= \end{array}$	endiny Str k Opening =SIGB/SIGF	$\begin{aligned} & \text { ress } \\ & \frac{M B}{F} \quad \text { Area } \\ & \frac{C L}{F}=C r \end{aligned}$	=Bending Mo LR=Leak Rat rack Length	oment te h	$\begin{aligned} & \mathrm{FHI}=\mathrm{Ki} \\ & =\mathrm{SIGT} / \mathrm{S} \end{aligned}$	Angle
***	NORMAL IZED	***	********	****	ENGINEERING	G UNITE		****
ST+SB	PHI	\mathbf{J}	$\begin{aligned} & \text { SIGB } \\ & \text { [ksi] } \end{aligned}$	$\begin{gathered} \text { MB } \\ {[k k-i n]} \end{gathered}$	PHI [deg]	$\begin{gathered} \mathrm{J} \\ {[k / i n]} \end{gathered}$	$\begin{aligned} & \text { CDA } \\ & {[s i]} \end{aligned}$	LR [gpm]
0.0000	0.000	0.000	0.00	0.00	0.00	0.00	0.000	0.0
0.1828	0.043	0.043	0.00	0.00	0.01	0.09	0.065	16.3
0.2 .262	0.074	0.093	5.00	8. 36	0.01	0.19	0.097	24.3
0.3542	0.127	0.174	10.29	17.19	0.02	0.36	0.134	33.5
0.4416	0.216	0.299	15.53	25.95	0.03	0.62	0.175	43.7
0.5262	0.358	0.483	20.60	3.4 .43	0.05	1.01	0.221	55.2
0.6065	0.573	0.750	25.42	42.48	0.07	1.57	0.272	68.1
0.6819	0.881	1. 128	29.95	50.04	0.11	2.36	0. 331	82.7
0.7518	1.306	1.659	34.14	57.05	0.17	3.45	0.397	99.3
0.8158	1.870	2.353	37.98	63.47	0.24	4.92	0.473	118.2
0.8739	2.595	3.277	41.47	69.29	0.34	6.85	0.559	139.8
0.9259	3.503	4.462	44.59	74.50	0.45	9.32	0.658	164.6
0.9720	4.615	5.945	47.35	79.12	$0.60 \quad 1$	12.42	0.771	192.8
1.0122	5.949	7.762	49.76	83. 15	$0.77 \quad 1$	16.21	0.900	225.0
1.0467	7.513	9.940	51.83	86.61	0.982	20.76	1.047	261.7
1.0758	9.333	12.501	53.58	89.53	1.21 2	26.11	1. 214	303.4
1.0976	11.401	15.458	55.01	91.92	1.48 3	32.29	1.403	350.7
1.1185	13.723	1 18.812	56.14	93.81	1.78	39.29	1.617	404.2
1.1326	16.292	22.552	56.99	95.23	2.11 4	47.10	1.858	454.6
1.1422	17.096	26.652	57.57	96.19	2.48 S	55.67	2.130	532.4
1.1476	22.115	31.074	57.89	96.73	2.87 b	64.90	2.434	608.6
1.1489	24.707	34.867	57.97	96.86	3.21 7	72.83	2.708	677.1

$S I G T=10.968 \mathrm{ksi}, \mathrm{CL}=9.200$ in., $\mathrm{AMR}=92.57 \mathrm{kk}-\mathrm{in}, \mathrm{J}=2.749 \mathrm{k} / \mathrm{in}$,
$S I G B=31.460 \mathrm{ksi}, \mathrm{PHI}=0.134 \mathrm{deg}, \mathrm{COA}=0.355 \mathrm{si}, \quad \mathrm{si}=88.68 \mathrm{gpm}$

Figure F.4. J versus bending moment for axial force of 2383.9 kips.

Table F.4. Data sheet for no axial force and equivalent applied bending moment of 50264 in-kips

Figure F.5. J versus bending moment for axial force of 1685.7 kips treated as equivalent bending moment.

Table F.5. J estimates for axial force of 1685.7 kips and bending moment of 37171 in-kips.

LBB.NRC	LBB.NRC (Equivalent Moment)	Finite Element	EPRI/G.E. (Equivalent Moment)
$J\left(\right.$ in-1b $\left./ \mathrm{in}^{2}\right)$	365	862	677

APPENDIX G

APPENDIX G

SAMPLE PROBLEMS

Sample problems to illustrate LBB.NRC with relatively large axial loads together with bending loads (see data sheets for input parameters) are presented in this appendix. Tables G. 1 through $G .7$ give the output from an LBB.NRC andlysis. All the analysis parameters are defined in the printout. These outputs can be reproduced by the reader.

The results of these analyses were then plotted in Figures G. 1 through G.3. These plots are self-explanatory. The term "data sheet" in Figure $G .1$ refers to the data listed in Tables G.1 through G.7.

Figure G.1. J versus S for various levels of axial force and bending moment. Data sheet here refers to the appropriate result from Tables $\mathrm{G}-1$ through $\mathrm{G}-7$.

T-4572-FG. 1

Figure G.2. J versus M for various levels of axial force. From Tables G. 1 through G. 7 .

T-4572-FG. 2

Figure G.3. Equivalence of axial force versus bending moment. From cross-plot of Figure G.2.

Table G.1. LBB.NRC analysis output

Table G.2. LBB.NRC analysis output

Table G.3. LBB.NRC analysis output

Table G.4. LBB.NRC analysis output

Table G.5. LBB.NRC analysis output

Table G.6. LBB.NRC analysis output

LEAK BEFORE BREAK
 LBB. NRC MODI 8
 FACILITY: Example Calculation PIPE SYSTEM: with various values of F

INPUT PARAMETERS

9.0060)	O. ()00	O. 04 mg	0.00	9.Cut	0.00	0.00	9.000	0.0
0.1252	a. 119	0.048	0.00	0.00	0.01	0.05	0. 121	\%.
0.1777	0.217	9.152	0.00	0.001	0.03	0.17	0.174	13.5
9.26 .9	0.559	A. 559	0.00	12, 00]	0.05	0.39	a. 266	6s. 4
0.3275	1.1923	0. 741	0.00)	6, 100	0.09	0.31	9.339	34.0
0. 3794	1.729	1.391	9.00	0.69	0.15	1. 52	0.417	104.4
9.4530	3. 75 is	2.421	9.00	0. 000	0.35	2.64	9, S01	123.3
Q.48.9	4.105	3.960	0.00	(1.00)	0.33	4.32	6.572	146. 2
0.3000	4. 675	4. 5.64	1).00	0.019	0.44	¢.08	0.627	155.7
0.3112	5.112	3. 171	0. 47	0.99	0.47	5.64	C.6.49	102.
0.5 .272	5. 7/54	5.732	1.15	2.46	61. 3.3	6. 58	9.585	170.
9.5472	e. 080	A. 154	1.98	4.15	0.02	7.30	$\therefore .722$	181.5
Q, 5, 00	7.899	3.734	2.95	6.12	9.73	9. 5 \%	7.733	175.8
0. 5949	\%.46.	11).408	4.00	R. 35	9. $\mathrm{E}_{6} 8$	11.983	0.85w	212.4
0.3210	11.41	13.674	S.09	10.54	1,0\%	14. 201	.1. 773	231.7
a.oic:	1 3. Pateri	1/.189	6. 20	12.76	1...त	[3.	1.71	134
0.6258	in. 4 H3s	1. 5.52	7. 29	15.24	1. 3.5		1.1. ${ }^{1.2}$	
O. S99:	A0, +1.41	解, 9400	8.34	17.4.4	1.8.0	29. 8.	. 2.5	0
Q. $7: 14$	2i8. 7 m	5. . .297	Q. 3 3	15.50	2.2	\%	1. 2.65	311.1
0.7451	28.44%	40.880	10.0 \%	21.40	2. 04	44.89	1, 50, $\mathrm{c}^{\text {c }}$	$57=$
0. 7.327	33,44:	79, 5\% ${ }^{\text {a }}$	11.614	$\therefore 3.67$	$3,1:$	915.4×5	1. 571	+17.9
0. 19%	59.045	774.423	18.75	24.56	\%. 5 3	6.4.76	1. $85 \cdot$	$4 \operatorname{coses}^{4}$
-. $7+1$	47. 21.77	20.4 40	1.2.84	23.74	4. 14	7\%.10	$\therefore 173$	512.
9.654 2	51.834		12.80	26.77	4. 80	87.84	2. 26.3	AnP.
0.18121	$48.8,734$	4.7. 88	1313	$2 \%+7$	5.45	1, 5, 74	2.519	52\% 4
0.13189	25. +5	102. 283	13, 55	A. 68	s. 12	118.01	. 776	3)4.7
0.313:	fivel 8	1.1.74	18.40	28.01	6.15	- 34	. 948	7 $=1$, *
			LTS AT	APPLIE	Cap-			
$\begin{aligned} & \text { SIGT= } \\ & \text { SIGE= } \end{aligned}$	$\begin{array}{r} 21.042 \\ 9.565 \end{array}$	i. $\mathrm{CL}=1$	$52 \text { deg, }$	AMB $=1$ $C C A=1$	$\begin{aligned} & 00 \mathrm{kk} \\ & 3 \pm i . \end{aligned}$	$\text { , } \mathrm{J}=\mathrm{J}$	$\begin{aligned} & 451 \mathrm{k} / \\ & 0.65 \mathrm{~g} \end{aligned}$	

Table G.7. LBB.NRC analysis output

APPENDIX H

LBB. NRC COMPUTER PROGRAM FOR IBM-PC WITH EPSON FX80 PLOTTER AND "LOTUS" SYSTEM PACKAGE

APPENDIX H

LBB. NRC COMPUTER PROGRAM FOR IBM-PC WITH EPSON FX80 PLOTTER* AND "LOTUS" SYSTEM PACKAGE**

* If a printer/plotter other than Epson FX 80 is used some lines in the program may have to be changed. For example if an Epson FX85 is used, $\mathrm{N}=0$ should be used instead of $\mathrm{N}=2$ in lines 1900 and 3730 .
**It is not necessary to use "lotus" if only printed output is required.

Listing of BASIC - Lançuage LBB.NRE Compiter Program

LEAK BEFORE. BREAK		
20	REM	LEAK BEFQRE. BREAK *Semi Autamated Plotting lising LQTUS*
30	REM	(LBB.NRC Version 11-12-85)
31	REM	The leak-before-break program is coded based on the NRC-NRR
32	REM	(Klecker) method, which is based on the pracedure of NUREG/
33	REM	CR-3464 extept for the modifications on strain hartening.
34	REM F	For feference of the coding, read the IBM Basic manual.
35	REM *-	Lines 70 and 90 define default input parameters. The parameters
51	REM L	
52	REM C	can be changed by the user using the EDIT mode.
53	REM	$A L=8: N 1=3.5: S I G R=20.3: S I G F=44.2: T H O=22.9: F=1600: T T=2.5$
70		
90		$E=26000: R R=16: L R C=250: A M B=37.8$
110	REM	
120	REM P	Parameter definition and data format preparation
125	REM	
130	DIM	$A(20), A \$(20), T(13,2), B(13,2), C \$(10), W(50)$
150	DIX	$A_{1}(5), A 2(5), A 3(5), X(50), Y(50), Z(50)$
170	A ${ }^{(1)}$	=" 1 Strain Hardening alpha $=\mathrm{AL}=$ "
190	A ${ }^{\text {B (2) }}$	=" 2 Strain Hardening $n=N={ }^{\text {a }}$
210	A* (3)	=" 3 Reference Stress [ksi] SIGR="
230	A* (4)	\# 4 Flow Stress [ksi] SIGFa*
250	As (5)	=* 3 Initial Half Crack Angle [deg] THOw"
270	As (6)	
290	As (7)	m" Elastic Modulus [ksil Em"
310	A S $^{\text {(}}$ (8)	$={ }^{\prime \prime} 8$ Pipe or Vessel Radius [in] $R={ }^{\text {a }}$
330	A S $^{(9)}$	=" 9 Pipe or Vessel Thickness [in] $T={ }^{\text {a }}$
350	A $\$(10)=$) $=10$ Leak Rate Constant [gpm/si] LRC="
370	A $(11)=$	$)=$ " 11 Applied Bending Moment [kk-in] AMB="
390	W1\%="\#	
410	W5 ${ }^{\text {co }}=$ " ${ }^{\text {a }}$	\#\#\#\#\#\#, ""
412	$A(1)=A L$	$: A(5)=$ THO : $A(6)=F: A(7)=E$
413	$A(8)=R R$	RR : $A(9)=$ TT $: A(10)=$ LRC $: A(11)=A M B$
420	REM	
421	REM	The following are coefficient for F-functions from Gander's analysis of circumferentially cracked pape under tension and
422	REM	
423	REM	bending. The radius to thickness ratio (R/t) is limited to
424	REM	between 4 and 16 . The coefficients listed are for unit
425	REM	increments of R / t.
426	REM	
430	DATA	3.488, $-7.453,24.792,1.760,-1.512,9.470$
450	DATA	$4.606,-10.402,28.235,2.778,4.120,12.034$
470	DATA	5.566, $-12.936,31.195,3.653,-6.362,14.238$
490	DATA	$6.413,-15.171,33.804,4.424,-8.339,16.181$
510	DATA	$7.173,-17.178,36.147,5.117,-10.114,17.926$
530	DATA	$7.865,-19.005,38.280,5.718,-11.730,19.514$
550	DATA	8.501, $-20.685,40.242,6.328,-13.216,20.975$
570	data	$9.092,-22.244,42.062,6.866,-14.594,22.330$
590	data	$9.643,-23.700,43.761,7.368,-15.882,23.596$
610	data	$10.161,-25.067,45.358,7.840,-17.091,24$
630	DATA	$10.650,-26.358,46.865,8.286,-18.233,2$
650	data	$11.114,-27.581,48.293,8.708,-19.314,2$
670	DATA	11.554, $-28.744,49.651,9.110,-20.343,27$
671	FOR $\mathrm{R}=0$	$\mathrm{R}=0$ TO 12 : FOR $\mathrm{C}=0$ TO 5 ,
672	IF C<3	3 THEN READ $7(R, C)$ ELSE READ $B(R, C-\zeta)$ C, R
673	NEXT C	

```
6 9 0 ~ R E M
700 REM
7 1 1 ~ R E M
721 CLS
730 PRINT SPC(32) "LEAK BEFDRE BREAK" :PRINT SPC(29) TIMES SPC(4) DATE5
71 INPUT " Do you want to USE LBE.NRC MOD; 7 or 8 (enter 7 or 8)";ANS
732 INPUT " Facility Name";Cs(2)
```



```
740 REM
741 REM Open daca file L.BBCUY.PRN for lotus plotting input
72 REM Open files MOD.PRN and PLANT, PRN for tities in plotting
74% REM Open file LBBOUT.PIC for storag% of Lutus generated picture
744 REM
761 OPEN "O", #1, "B:MOD.PRN"
762 FRINT "1, "LEAK BEFORE BREAK (LBB.NRC MOD: "ANS")"
763 CLOSE #1
764 OPEN "O", #1, "B:PLANT.PRN"
765 PRINT #1, C$(2)":"C$(3)
7 6 6 \text { ClOSE * I}
767 OPEN "O", *1, "B:LBBOUT.PIC"
768 CLOSE *1
769 OPEN "G", #1, "B:LBBOUT, PRN"
77% FRINT:PRINT SPC (12) "The current default INPUT PARAMETERS are: ":PRINT
B00 FDR i~1 TO 11:PRINT SPC(1O) A$(I);A(I):NEXT I :PRINT
810 PRINY SPC\123 "Do you want to change any of these parameters"
811 \NPUT " (enter y for yes, or n for no)"; Z" zPRINT
820 IF 2s="y" GOTO 830 ElSEE GOTO 930
Q30 PRINT SPC(5) "To change any parameter, enter its line number, a comma,"
840 FRINT SPC(5) "and thers the new parameter value. For example, enter"
GSO PRINT SPC(5) "7,25890 to change the elastic modulus to 25890 ksi.":FRINT
B60 INPUT&I,M : A(I)=M: CLS: GOTO }77
B62 REM Select the appropriate Sander's F-function coefficients
B63 REM depending on R/t
```



```
B65 REM If R/t is less than 4, it is assumed to be 4
866 REM If R/t is greater than ib, it is assumed to be ib
930 ROT=A(9)/A(9):ROTF=FIX(ROT)
940 IF ROT }=>4\mathrm{ THEN GOTO 960 ELSE ROT }=
950 ROTF=4
960 IF ROT< =26 THEN GOTO 980 ELSE ROT=16
970 ROTTF=16
972 REM Interpolate Sander's F-function coefficients for R/t
9 7 3 \text { REM between integer values}
980 FOR R=0 TO 12
990 RO=R+4
1000 IF RO<> ROTF THEN GOTO 1060
1010 FOR C=O TO 2
1020 C1 }=\textrm{C}=12\quad:C2=C+1
1030 A(C1)=T(R,C) + (RG1-RGTF) * (T (R+1,C)-T(R,C))
1040 A(C2)=8 (R,C) + (ROT-ROTF) # (B (R+1,C )-B(R,C))
1050 NEXT C
1050 NEXT R
```

```
1370 REM
1390 REN Frint out tha top part of the output page
```



```
2450 LFRINT TAE:25); sN=56 :GOSUB 4210 : ; PRINT "LEAK BEFORE BREAK"
1470 N=24:GUSUB 4215:LPRINT SPC(3O) "LB6.NRC MOD:";:LPRINT ANS
1490 Nm24:GOSUB 4210:LPRINT SPC(25) "FACILITY: ";:LPRINT C#(2)
1510 N=24:GOSUB 4210&LPRINT SPC(25) "PIPE SYSTEM: ";:LPRINT C$(3):LPRINT
1530 N=24:GOSUB 4210:LPRINT SPC(30) "INPUT PARAMETERS"
1550 N=8: GOSUR 4210
15%0 FOR {=1 T0 11
1590 LPRINT SPC(16) LEFT*(A*(I),39) + "#";A(I)
1610 NEXT I:LPRINT
1630 A1:$=" SIGT=Axial Stress SIGBmBending Stress MB=Bending Moment "
lbS0 A 12t=" PHI=kink Angle"
1670 N=B:GGSUB 4210:LPRINT A11%+A12%
1690 A13%=" JmJ Integral COA=Crack Opening Area LR=Leak Rate "
1710 A14%w" ST=SIGT/SIGF"
1720 Ai5*=" SB=SIGB/SIGF CL=Crack Length"
1730 LPRINT A13++A&45: LORINT SPC(20) A15$
1750 A4*="*a* NORMAL.IZED ***
1 7 7 0 \text { A5s="*********** ENGINEERING UNITS **********"}
1790 Abs=" SI+5& PHI J
1810 A7$=" SIGB MB PHI N COA LR"
```



```
IG51 LPRINT :N=24 :GOSUB 4210 : LPPR[NT A4% + AS$
1871 N=9 :GOSUB 4210 :LPRINT A6% + A7$
1891 LPRINT CHR* (27) "-1" A8年 + A9%;CHR年(27) "-O"
1900 N=2: GOSUB 4210
```



```
1 9 3 0 ~ R E M ~ S t a r t ~ t h e ~ c a l c u l a t i o n ~
```



```
1970 AL=A(1) :N {=A(2) :SIGR=A(3) :SIGF=A(4) :THO=A(5) :F=A (6) :E=A(7)
1990 RR=A(B): :T =A(9) :LRC=A(10) : AMB=A(11) : AT=A(12) :BT=A(13):CT=A(14)
2010 AB=A(15):AB=A(16) :CE=A(17)
2 0 1 2 ~ R E M ~ D e f i n e ~ c o n s t a n t s ~ a n d ~ n o r i n a l i z a t i o n ~ c o n s t a n t s ,
2090 AL.P=AL*(SIGF/SIGR)* (NI-1)
2110 PI=3.141593 : THOw THO*PI/1BO ; MM=0 :PHIM=0 :JM=', : COAM=O :ST=0
2150 CL=2*RF*THO &MM*PI*TY*SIGF*RR^2: PHIM=(18,2/PI)*SIGF/E
2170 \MM=RR*SIGF^2/E
2190 COAM*PI*SYGF*RR`2/E : ST=F/(2*PI*RR*TT*SIGF)
2230 SP=4/PI*(CUS(THO/Z+PI*ST/2)-SIN(THO)/2)
2250 FJ=SIN(THO/2+PI/2+ST) +COS(THO): H=FJ/(SF+ST)
```



```
2 2 9 2 ~ R E M ~ D e t e r m i n e ~ T H F , ~ t h e ~ f i n a l ~ c r a c k ~ a n g l e ~ a t ~ t h e ~ l i m i t ~ l u a d ,
```



```
2310 THF=THO+.36
2330 TH=THF:GOSUB 3810 : GOSUR 3890
2350 THOI=THF*(FD/(FB*SP+ST*FT+FD)): 「ELTA=THOI -THO
2370 IF ABS(DELTA) >.000002 THEN THF=T苂-DELTA : GOTO 2330
2401 REM Calculate BETA froin THF
2410 BE.TA= (SP *FB+ST *FT)^2/(1-THO/THF)
2430 THmTHO: GOSUB 3810: GOSUB 4010
2450 FBO=FB: FTO=FT: IBO=1B: ITO=IT
```



```
3150 A2(0)=SBA :A2(1)=PHIA:A2(2)=JA:A2(3)=COAA:A2(4)=LR:PMBA=MBA
3170W(NC)=MBA:X(NC)=PHIA:Y(NC)=SBA:Z (NC)=JA:NC=NC+1
3180 REM Print out on paper calculated values
3190 LPRINT USING W1%; (ST+SB);:LPRINT USING W2*;PHI;:LPRINT USING W3*;J;
3210 LPRINT USING W4*;SBA;MBA;PHIA;JA; :LPRINT USING W2*;COAA;
3230 LPRINT USING W5*;LR
3235 REM Saving data on disk file up to J of 10 (1000 in-lb/(in-in))
3236 REM (Only the bending moment and J are saved for plotting)
3240 IF JA>10 GOTO 325O
3245 PRINT #1, MBA, JA
3249 REM If angle TH < THQ, return (axial stress will increase)
3250 IF THQ>TH GOTO 3330
3260 REM If angle TH reaches the limit load angle THF, it is all done.
326́1 REM Otherwise, THQ< TH < THF, return (bending stress will increase)
3270 IF TH=THF GOTO 3510 ELSE GOTO 2510
3 3 1 0 ~ R E M ~ I n c r e m e n t ~ a n g l e ~ T H ~ f o r ~ z e r o ~ b e n d i n g ~ b u t ~ i n c r e a s i n g ~ a x i a l ~ s t r e s s
3330 TH=TH+.001714* (NC+1)
3350 IF TH=>THQ GOTO 3410
3370 GOSUB 3810: GOSUB 4010
3390 ST=(BETA* (1-THO/TH))^.5/FT :GOTO 2690
3410 TH=THQ :NC=0 : COTO 3370
3420 CLISE #1
3430 REM
3450 REM Print out the bottom of the output page
```



```
3490 N=8
3510 N=8 :EJSUB 4210 : X $=STRING (27,45)
3 5 2 0 \text { REM Print out results at the applied bending moment}
3530 LPRINT X * "RESULTS AT APPLIED LOAD-" X * :LPRINT " SIGT= ";
3550 LFRINT USING WG*;ST*SIGF;:LPRINT "ksi, CL=";:LPRINT USING WG*;CL;
3570 LFRINT "in., AMB=";:LPRINT USING W4*;AMB; :LPRINT "kk-in, J=";
3590 LPRINT USING W7%;A1(2);:LPRINT "k/in, ";:LPRINT " SIGB=";
3610 LPRINT USING W7%;A1 (O); :LPRINT "ksi, PHI=";:LPRINT USING Wb*;A1(1);
3612 LPRINT "deg, COA=";:LPRINT USING WG*;A1(3);:LPRINT "si, LR=";
3630 LPRINT USING W4;;A1 (4);:LPRINT "gpm"
3730 N=2 :GOSUB 4210 :LPRINT CHR$(12)
3740 PRINT "** Calculation Completed **"
3750 END
3770 REM
379 REM
3790 REM Subroutines
3791 REM *------------------------------------------------------------------------------
3800 REM Calculate functions FT and FB
3810 FT=1+(TH/PI)^1.5*(AT+BT*(TH/PI)+CT*(TH/PI) 2)
3830 FB=1+(TH/PI)^1.5*(AB+BB*(TH/PI) +CB*(TH/PI)^2):RETURN
3850 REM *-
3 8 8 0 ~ R E M ~ C a l c u l a t e ~ f u n c t i o n ~ F D ~ c o n t a i n i n g ~ d e r i v a t i v e s ~ o f ~ F T ~ a n d ~ F B
3890 FDI=3* (AB*SF+ST*AT)
3910 FD2=5* (BB*SP+ST*BT)*(THF/PI)
3930 FDJ=7*(CB*SP+ST*CT)*(THF/PI)^2
3950 FD= (THF/PI)^1.5* (FD1+FD2+FD3) :RETURN
3970 REM *-----------------------------------------
4000 REM Calculate compliances IB and IT
4010 IB1 =AB/7+BB/9*(TH/PI)+CB/11*(TH/PI)^2
4030 TB2=AB^2/2.5+AB*BB/1.5*(TH/P1) + (2*AB*CB+BB^2)/3.5*(TH/P1)^2
```

```
4050 1B3=BB*CB/2*(TH/PI) 3+CB^2/4.5*(TH/PI)^4
4070 IB=2*TH^2*(1+8*(TH/PI)^1.5*IB1+(TH/PI)~3*(IB2+IB3))
4090 1T1=(AT+AB)/7+(BT+BB)/9*(TH/PI)+(CT+CB)/11*(TH/PI)^2
4110 IT2=AT*AB/2.5+(AT*BB+AB*BT)/3*(TH/PI) +(AT*CB+BT*BB+AB*CT)/3.5*(TH/PI)`2
4130 ITJ=(BT*CB+BE*CT)/4*(TH/PI)^3+CT*CB/4.S*(TH/PI)^4
4150 IT=2*TH^2*(1+4*(TH/PI)^1.5*IT1+(TH/PI)^3*(IT2+IT3)): RETURN
4170 REM *-------------------------------------------------------------------------------------
4 1 9 0 \text { REM This subroutine is to emphasize the lettering of the output}
4192 REM characters. For more information, see EPSON printer manual.
4210 LPRINT CHR*(27)"!"CHR*(N); :RETURN
```

LOTUS macro program for plotting LBB.NRC results.

OFFICIAL BUSINESS
PENALTY FOA PRIVATE USE, $\$ 300$

$$
\begin{aligned}
& \begin{array}{l}
120555078877 \text { I } 14 N \\
\text { USNRC }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { W-SOI S PUE MCT ER-PDR NUREG } \\
& \text { DC } 20555
\end{aligned}
$$

[^0]: * This limit is an example only and is subject to modification as more experience is gained.

[^1]: * The plastic zone size is, of course, not circular as suggested here. This is merely an Irwin correction to the plastic zone size (Ref. 5) to estimate the reduced compliance of the pipe due to plastic deformation near the crack tip.

[^2]: $F=$ the total axial force including the effect of pressure.

[^3]: ---~--------------------NESULTS AT APPLIED LOADSIGT= $7.755 \mathrm{ksi}, \mathrm{CL}=9.200 \mathrm{in} ., \mathrm{AMB}=37.17 \mathrm{kk}-\mathrm{in}, \mathrm{J}=0.865 \mathrm{k} / \mathrm{in}$, $S I G B=22.245 \mathrm{ksi}, \mathrm{PHI}=0.040 \mathrm{deg}, \mathrm{CDA}=0.207 \mathrm{si}, \quad \mathrm{LR}=51.66 \mathrm{gpm}$

