U.S. Nuclear Regulatory Commission Medical, Academic, and Commercial Use
Safety Branch (Mail Stop OwN N-6H3)
ATIN: Mr. Michael Lamastra
Washington, D.C. 20555

Subject: Control No. 019643; Submittal of an Expanded Appendix 5.0 to General Atomics' Application for License to Distribute Irradiated Topaz

Reference: \AA lith E. Asmussen letter GRN-1266 to U.S. NRC Medical, Academic, and Commercial Use Safety Branch, Arm: Mr. Michael Lanastra, dated September 9, 1988

Dear Mr. Lamastra:
As you know, General Atomics (GA) recently submitted the referenced application for a license authorizing the distribution of irradiated topaz to persons exert from regulation. While we were finalizing that submittal, we were also nearing the completion of a test run of our system for assaying large samples of gemstones. This system was described in Appendix 5.0 to our application. Important results from this test run have just become available.

In order to make the information contained in our application as complete as possible, we have expanded Appendix 5.0 to include a summary and discussion of these results. The Appendix 5.0 mubnitted with our referenced application should be replaced by the complete expanded version which is enclosed.

The apologize for the inconvenience caused by this late change to Appendix 5,0.

If you should have any questions or need any additional information, please do not hesitate .. contact me at (619) 455-2823 or Prs. whittemore or Razvi at (619) 455-3277.

Very truly yours,
tilt \& Comusen
Keith E. Asmussen, Manager
Licensing, Safety and
Nuclear Compliance

APPENDIX 5.0

Assay of Large Samples of Gerastones Using High Resolution Semiconductor Detector

The Ge(Li) [or equivalent HpGe] high resolution detector used in the determination of radionuclide concentrations in irradiated gemstones is mounted on a vertical cryostat. The available detectors have garma sensitivities ranging between 5 and 20 percent. The diameters of the outer container will vary between 2.75 inches and 3.0 inches.

The design of a holder for the assay of a large number of genstones in Step K1 (Figure 1 of Application) (eg., "50 1-gram stones) is based on experimental measurements made with a sjecially assembled source containing approximately $0.08 \mu \mathrm{Ci}$ Cs-13.7 (662 keV) and $0.13 \mu \mathrm{Ci} \operatorname{Co-60}(1173,1333$ keV). The source bolder for these measurements was a mall polyethylene cap with inside diameter of about 8 ma and about one-half millineter thickness between the source and the genstone holder. A survey was made in four quadrants and at various heights to arrive at the curvature shown in Figure 1.

The relative sensitivity as a function of posita n is 443 of the sensitivity for a single stone placed in the usual locat ion used for measurements on a single stone. The value (448) is an aver ige at each location of the sensitivities for the ganna rays fron cesiun and cobalt.

A test run for 44 gemstones weighing about 50 grams was made using the large sample holder. Tables 1 and 2 present the pertinent Ge(Li) data. In addition to the routine isotope callouts (Table 1) tho spectroscopist provided results of his inspection and additional calculations that also identified weak co-6u and $2 \mathrm{n}-65$ corponents (Table 2). The absence of additional garma lines for Eu-154 $\mathrm{NI}_{\mathrm{I}} \mathrm{Se}-75$ allowed the spectroscopist to line out these possibilities. A surmary of the results was derived by the spectroscopist from Tables 1 and 2 and is given below:

*Ser discussion below.

$$
\Sigma=64 \times 10^{-3} \frac{n C i}{g} \quad \Sigma=0.167 \ll 1.00
$$

These data demonstrate that for this batch, the "sum of ratios" is less thar. unity, with a total specific activity of $0.064 \mathrm{nCi} / \mathrm{g}$. It is also apparent that stones with this same distribution of radioactive carponents could have specific activity as large as $0.383 \mathrm{nCi} / \mathrm{g}$ and still satisfy the release criteria - i.e.,

$$
-\frac{1.00}{0.167} \times 0.064=0.383 \mathrm{nCi} / \mathrm{q}
$$

This maximum specific activity in sulled $L_{\max }$ as used in Equations 5 and 6 on page 27 of the Application.

The assay methodology using a large holder with approximately 50-gram samples of gemstones for the Ge(Li) count (Step K1) has improved the sensitivity of detection level for the minor radioactive corponents in the
stones. Simultaneously, this has increased the possibility of identifying isotopes (at these very low levels of concentrations) not previously found in assays of one-gram sarples. Furthemore, this increases the likelihood of finding an occasional isotope not included in Suhectule A of 10crr30.70. The "catchall" level of $10^{-6} \mu \mathrm{Ci} /$ gram is considered inappropriate for this application because it is arkitrarily small. Consider the case of $\mathrm{Na}-22$ which is an isotope not listed in Schectule A and found at a levei of 2.7 picocurie/gram in the reported data. In the following we illustrate a suitable approach for handling this and similar cases that may arise in the future.

In the particular case of $\mathrm{Na}-22$, it is anitted from Schedule A even though it can be produced by nuclear reactors. This is well known to workers experienced with sodium cooled reactors. Its threshold for ($n, 2 n$) procuction is about 12.5 Mev with the cross section as a function of neutron energy given in BNT-325 (1). The fraction of all fast neutrons from a reactor fueled with U-235 above about 13 MeV is 1.103×10^{-4} (2). Siuce the fast flux at the location of the genstone irradiation is about $10^{12} \mathrm{nv}$, the portion of this fast flux suitable for this ($n, 2 n$) reaction is about:

$$
\phi(E>13 \mathrm{Mev})=1.1 \times 10^{8} \mathrm{n} .
$$

An activation of $2.7 \times 10^{-3} \mathrm{nCi} / \mathrm{grams}$ corresponds to an activation of * 5.0 dps for the 50 gram saiple of stones:

$$
\begin{equation*}
\text { Act }=(\mathrm{N} \sigma) \phi\left[1-\mathrm{e}^{0.693 t / \mathrm{T} 1 / 2}\right] \ldots . . . \tag{1}
\end{equation*}
$$

where Act $=$ activation of $\mathrm{Na}-23$ to produce Na-22,
(NG) is the number of atans of $\mathrm{Na}-23$ in the 50 gram sample of stones, and σ is the effective ($n, 2 n$) cross section,

$$
\begin{aligned}
\sigma & =1.1 \times 10^{8} \mathrm{nv}, \text { and } \\
\mathrm{t} & =4 \text { weeks or } 0.077 \mathrm{yr} . \\
\mathrm{T}_{1 / 2} & =2.6 \mathrm{yr} .
\end{aligned}
$$

From equation (1) we see that

$$
(\mathrm{NF})=2.24 \times 10^{-6} \mathrm{~cm}^{-2}
$$

If the average cross section above 12.5 Mev were as small as 1 millibarn, then $\mathrm{N}=2.24 \times 10^{21}$ atoms of $\mathrm{Na}-23$ (~ 90 milligrams). A more reascnable average cross section might be as large as 10 millibarns, for which the mass of Na- 23 would be only 9 milligrams. To find such a small adnixture of $\mathrm{Na}-23$ ($9-90$ milligrams) in a 50 gram s.aple of stones cannot be considered unreasonable, although it is unusual from all past experience.

The question now arises on how to arrive at a reasonable 10 CrR30.70 1 imit for the $\mathrm{Na}-22$ isotope. As demonstrated above, $\mathrm{Na}-22$ can be produced by reactors from Na-23 and ther sfore, should be listed in Schectule A. To arrive at a suitable limit fs this application, we have corpared its garma and beta radiation with other isotopes present and which may have similar half lives and/or emissions. These are corpared in the following listing:

Isotope	$\mathrm{T}_{1 / 2}$	$\begin{gathered} \gamma \text { Energies } \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \beta_{\max } \\ & (\mathrm{Mev}) \end{aligned}$	$\begin{aligned} & 30.70 \text { Limits } \\ & \mathrm{nCi} / \mathrm{g} \end{aligned}$
Ta-182	0.32 yr	$\begin{gathered} 59,67, \\ 1189, \end{gathered} 1221$	0.522	0.40
Sb-125	2.8 yr	$176, \frac{428,601}{636}$	0.612	1.0
$2 \mathrm{n}-65$	243.8d	1116	$\beta^{+} 0.325$	1.0
Sc-46	83,3d	889, 1120	0.357	0.4
$\mathrm{Na}-24$	2.6 yr	511, 1275	$\beta^{+} 0.545$	---

For the case of $\mathrm{Na}-22$ we first note that it cannot be ingested or inhaled because it resides within the conpletely insoluble topaz crystal. Next, we note from the above listing that on the basis of half life, $\mathrm{Na}-22$ most. nearly matches $\mathrm{Sb}-125$ with a release limit of 1.0 . We also note that the 1275 keV line of $\mathrm{Na}-22$ matches the 1116 keV line of $2 \mathrm{n}-65$ which al30 has a release limit of 1.0 . Further, the range for positrors with Emax of 545 keV that are enitted by $\mathrm{Na}-22$ is very mach the same as the betas from the far more prevalent isotope, $\mathrm{Ta}-182$, as well as $\mathrm{Sb}-125$. In other words, even the smallest stones are infinitely thick for the $\mathrm{Na}-22$ positrons. Because of the similarities in the half lives and emitted radiations between $\mathrm{Na}-22$ and $\mathrm{Sb}-125$, we believe a reasonable release 1 imit for this minor corponent can be taken as that for $\mathrm{Sb}-125$, i.e., $1.0 \mathrm{nCi} / \mathrm{g}$.

References:

1. Neutron Cross Sections, BNL-325, Vol. 1, Suppl. 2, Second Edition (May, 1964).
2. H. Etherington, Ed., Nuclear Engineering Handbook, First Edition (1958), p. 7-91.

Fig. 1. Sketch roughly to scale showing dane shaped holder. This surface of revolution accamodates about 50 1 grem stones. For this bolder the detector has about 448 of the sensitivity for a single stone placed at the usual (7.5 mm) position. Measured sensitivies are shown.

SAMPLE：TRIGA STONES IN PLASTIC HOLDER

HEOVESTUR＇S NME：
SAMPLE OEOMETRN：

4 1ectiterge STONE MOLDER

Sescimen Friz： RECUEST MMMEER：

START TIME		8： $41: 14$
INTERCEPT	（KEY）：	－9． 646
REPA．TIME	（MIN）：	150． 360

TREC 346es 1590

COUNT OATE： GAIN（KEY／CN） LIVE TIME（MIN）

$9 / 3 / 88$
3248927
119.867
3． 5
A！

TOTA CPN： LIEAARY JEADCH：
of PEAY FOURC
：41：14
150． 369

MuCL TOE	asak CHARMEL	DEEGY KEY	CFH	$\frac{310 m A}{8}$	$\underset{N E Y}{H y}$	The／4en	ERGOR KEY
TA－152	177，44	59．78	7． 229	9．\％＊	2.47	182	－ 9.
T－－121	232． 3	57.4	27，ア3	2． 5	158	2.25	$\rightarrow 2$.
T＊－1：2	25．\％＊	84． 13	－ $4=1$	24． 72	17	14	－：
TA－192	23\％\％\％	34． 81	15． 6×2	5.14	1 is	175	－3． 20
＊－482	2ee． 41	119．$\frac{15}{51}$	－ 92%	21.4	\pm－7	1%	－ 11
TR－122	＋54． 71	152 29	\％¢0．	4． 48	1 12	179	－4．$\frac{13}{13}$
TA－1 $\mathrm{T}^{\text {a }}$	1住， 7	156． 3	2 tin	12． 40	15	179	－2．${ }^{\text {\％}}$
＋A－1i2	\％－15	179.84	4． 377	17． 54	1．72	2.25	－4． 18
T－152	521． 31	139． 18	2． 54	12． 46	$\bigcirc 22$	1.79	$\underline{+1}$
\cdots	5\％2． 42	1．93． 16	2844	19.46	229	179	－2． 401
TA－1\％2	＋4．4． 9		7． 614	7． 22	1.47	136	$\rightarrow+12$
－A－182	6\％1． 74	223． 24	2． 23	12．es	131	175	Q． 2^{2}
＋4－1＋2	720.4	$25 \times 4,97$	2361	12． 27	170	137	Q． 20
$\xrightarrow{2}$	7＊5． 14	Stac． 97	$2 \pm t ?$	12． 25	179	± 97	－ 5
$9-51$ ！	1527， 98	\＄11 et	7.125	5.8	2． 21	189	e． 33
（63－12	1207，\％	sed 7	174 ？	47． 17	1．79	189	a． 48
cs－124	227\％ 38	795.52	1545	11．-5	251	18	$\rightarrow 24$
$14 \mathrm{~N}-54$	2455． 27	335．${ }^{\text {a }}$	2 29\％	24． 34	2． 49	472	9． 21
$36-46$	265\％ 18	9\％\％ 29	1807	15．+	$2 \mathrm{2m}$	177	－3．${ }^{\text {a }}$
8C－46	3149．97	112424	4． 4.4	＋ 72	235	$1{ }^{12}$	Q． 72
TA－182	25－49 \％	1421． 24	9．ה1＋0	$4 T$	2 2i	1.2	－${ }^{\text {a }}$
TA－142	25\％ 78	119915	2．$+7 \%$	4． 22	252	2.5	Q． 12
TA－1＊2	1646．94	1201 ${ }^{\text {16 }}$	5． 4.4	＋ 5 －	$2{ }^{24}$	2.61	－${ }^{2}$
TA－1＊2	127\％5\％	1＊	－154	9， 41	2.43	154	8． 20
$N+32$	28．44 27	179 a	$12+3$		262	1.49	4． 13
	こ̧et 18	127a	1． 204	1% \％	262	1.4	9． 35
8×6	435\％ 2	4461 25	2．\％＊＊	6． 12	24	1 ） 4	2． 20

 OTVISOR＝5．afoble di Getin
OAYS DECAYES＊
15．3520 9／22／84 12：30 ： 0 ऐ

NJCLIDE	\＃3EFGY	$1+1$ ele	L！FE		MICROC: PgR caph		3104 ERROR				$251 G M A$ EFROR		
4－51！	514 32	2＊＊\％	ఖd	r	6． $9295=36$				5185	21		32 E	29
N4－22	1574．74	2	S4	＋	2． $5798-46$		$22 \mathrm{E}+$＋		97\％	de	－	＋e5	2
3C－5	33920	32.	740	）	ล ¢T7世－さす	，	－		רizE	39		9 F	3 e
$36-6$	11218	82	780	O	1 － 4 ¢ 7 －	1			3225	d1		วशE	วe
$\mathrm{Mr}=54$	825． 24	21：	2.40	0	2． 4798 －4	7	¢－E－at		724E	Be		T0E	\％
	149． 15	129．	0	0	7． $4195 \sim 5$	2	925－35		\％47E	32	2.		da
－7\％	25d．a？	1 ± 3 ．	420	0	$2 \mathrm{~s}, \mathrm{y}$		$\pm 5 E-7$		\％412	ae			20
62－134	5－4． 7	2	\％6		$\frac{1}{2}$		30E－37		362：	30		¢18	$9{ }^{3}$
$5 \%+12$	725 52	－	06	＋			¢eट－		5351．	d1			20
－7－20	1574．74	${ }^{8 .}$	54	－	7． $5 \times 5.5 \pm 5$	9	Qu玉゙或		211E	32	2		d1
TA－192	59． 79	14.	$\geqslant 7$	\bigcirc	4． $55-5-5$		－002－ 5		796E	31	5.	$3: 5$	$0{ }^{2}$
TA－132	57． 41	144	770	0	3． $7825-95$		55c－tb		＋य山区	31	3.	5sE	\＄1
TA－132	94． 33	14.	97	E			歫－th		2496	31		59E	∞
TA－132	99.81	114.	77	0			57E－ds		diek	31		saE	ar
TA－122	112． 36	144	97	0	2． 25%－ 575				＋515	d1		26E	2：
TA－182	15230	114	$\geqslant 7$	0	4． $457 \mathrm{E}-95$		2\％İ－${ }^{\text {a }}$		431E	31		74E	2
TA－132	156． 25	114.	97	，	3． $347 \mathrm{f}-25$		－ 1 E－${ }^{\text {a }}$		157E	32	3.	$14 E$	9
TA－132	179.24	144	97	0	5．$\frac{29}{} 51 \pm-45$		－15		S－1㫛	32		З3E	あ
TR－182	198． 16	14	97		4． $6145-15$		754		a $2+5$	32			31
TA－132	221 ？	114	97		4． $0.4 \mathrm{t}-19$		，wi		T9工E	21	2		d
TA－132	2×9.34	114	97		4． d $_{\text {d }}^{\text {a }}$		－4 ${ }^{\text {a }}$		＋5eter	＋1．			21
TA－132	25 ¢ θ ？	19＊	？		4． 50		से		1390	82		11E	है
TA－132	1121 24	14 ＋	97						124E	32	1		0
TA－192	1199． 15	1 ± 4	97		5		\％i¢－		103E	32		99E	＊
TA－152	1224	144			＋． $2+3 \mathrm{san} \rightarrow$ ？		2 －		$\cdots \mathrm{E}$		1	93E	\％1
－1	± 1－	114	$\geqslant 7$		1		24\％		1				

TABLE 2

U.S. NUCLEAR REGULATORY COMMISSION

\qquad 1 or of 2 \qquad pacics

MATERIALS LICENSE

Pursuant to the Atomic Energy Act of 1954, as amended, the Energy Reorganization Act of 1974 (Public Law 93 438), and Title 10. Code of Federal Regulations. Chapter 1, Parts 30,31,32,33,34,35,40 and 70 , and in reliance on statements and representations hereiofore made by the licensee, a license is hereby issued authorizing the licensee to receive, acquire. possess, and transfer by product, source, and special nuclear material designated below; to use such material for the purpose(s) and at the place(s) designated below; to deliver of transfer such material to persons authorized to receive it in accordance with the regulations of the applicable Part(s). This license shall be deemed to contain the conditions specified in Section 183 of the Atomic Energy Act of 1954, as amended, and is subject to all applicable rules, regulations and orders of the Nuclear Regulatory Commission now or hereafter in effect and to any conditions specifled below

Lisensee

1. General Atomics P. O. Box 85608

San Diego, California 92138
2.
6. By product, source, and/or special nuclear material
7. Chemical and/or physical form 04-14395-02E
3. Iicense number
4. Explration date October 31, 1993
5. Docket or Reference No.

030-29179
8. Maximum amount that licensee may possess at any one time under this license
A. Any byproduct material with atomic numbers between 1-83
9. Authorized use
A. In accordance with Section 32.11, 10 CFR Part 32, distribution of processed topaz containing byproduct material to persons exempt from licensing pursuant to Section $30.14,10$ CFR Part 30 or equivalent regulations of any Agreement State.

CONDITIONS

10. Licensed material shall be distributed only from the licensee's facilities located at 10955 John Jay Hopkins Drive, San Diego, California.
11. Licensed material shall be distributed by, or under the superviston of Dr. Junaid Razvi or Dr. William Whittemore.
12. This license does not authorize possession or use of licensed material.
13. A. The licensee shall file periodic reports as specified in Section 32.12 , 10 CFR Part 32.
B. The licensee shall file a report by November 1, 1989 and a new report at intervals not to exceed 14 months, listing the names and license numbers of all specific licensees to which the licensee has transferred irradiated gems pursuant to Section 30.41 of 10 CFR Part 30.

CONDITIONS

14. Notwithstanding the requirements of Section 32.11(c) of 10 CFR Part 32, the licensee may use the approach described in Appendix 5.0 "Assay of Large Samples of Gemstones, Using High Resolution Semiconductor Detector" contained in its September 14, 1988 letter, to assign maximum concentration values for isotopes not included in Schedule A of 10 CFR 30.70, except for $\mathrm{Na}-22$ which shall be 0.4 nanocurie per gram.
15. Notwithstanding the requirements of Section 32.11 (c) of 10 CFR Part 32, the licensee may distribute processed topaz for the purpose of being worn by human beings.
16. Except as specifically provided otherwise in this incense, the licensee shall conduct its program in accordance with the statements, representations, and procedures contained in the documents including any enclosures, listed below. The Nuciear Regulatory Cormission's rcgulations shall govern unless the statements, representations, and procedures in the licensee's application and correspondence are more restrictive than the regulations.
A. Application dated September 9, 1988.
B. Letter dated September $14,1988$.

FOR THE U.S. NUCLEAR RESULATORY COMMISSION
OLTE \qquad

BY
 Safety Branch
Division of Industriz: and Medical Nuclear Safety, NMSS
Washington, D. C. 20555

