Commonwealth Edison Company Braidwood Generating Station Route #1, Box 84 Braceville, IL 60407-9619 Tel 815-458-2801

July 30, 1998

1 4

* .

ComEd

Mr. Hironori Peterson U. S. Nuclear Regulatory Commission Region III 801 Warrenville Road Lisle, IL 60532-4351

Dear Mr. Peterson:

Enclosed are the examination materials that Braidwood Generating Station is submitting for review, comment, and approval for the Initial License Written Re-examination of Mr. Robert Sherman scheduled for the week of September 14, 1998, at Byron Generating Station.

This submittal includes the Reactor Operator Written Examination.

This examination material has been developed in accordance with Interim Revision 8 of NUREG-1021, "Operator Licensing Examiner Standards". Please note that reference materials are attached to each individual examination question per your request.

Some minor modifications have been made to the Integrated Examination Outline with regards to the written examination in order to improve balance and content. These changes improve the examination quality and compliance with Interim Revision 8 of NUREG-1021, "Operator Licensing Examiner Standards".

Quantitative and qualitative validation of the examination material will occur during the next three weeks. Some modifications or adjustments to the examination material may be required.

Please ensure that these materials are withheld from public disclosure until after the examination is completed.

If you have any questions or concerner regarding this submittal, please contact Scott Deprest at (815) 458-3411 extension 2250 or Paul Hippely at extension 2235.

Sincerely. Tulon

Site Vice President Braidwood Nuclear Generating Station

9811060212 981102 PDR ADOCK 05000456 V PDR

Mr. Hironori Peterson July 30, 1998 Page 2

· · · ·

List of Enclosures:

Updated RO Written Exam Sample Plan RO Composite Examination with references attached Completed ES-401-6 Checklist Examination Security Agreement (ES-201-3) Listing of Submitted Sample Plan Changes

cc: w/o Enclosures

Regulatory Assurance B. Wegner J. Walker D. Hoots C. Cerovac P. Hippely T. Benton L. Holden Class File

nrc/98047tjt.doc

ES-401

.

PWR RO Examination Outline

Form ES-401-4

					K	JA Ca	itegor	y Poin	ts				
Tier	Group	K1	K2	K3	K4	K5	K6	A1	A2	A3	A4	G	Point Total
1.	1	2	2	2				4	6				16
Emergency & Abnormal Plant Evolutions	2	3	2	3				6	2			1	17
	3			1				1	1				3
	Tier Totals	5	4	6				11	9			1	36
	1	3	2	1	2	2	1	1	2	3	4	2	23
2. Plant	2	2		2	2	2	1	2	2	3	2	2	20
Systems	3	2		1	1				1	1	1	1	8
	Tier Totals	7	2	4	5	4	2	3	5	7	7	5	51
3. Gener	ic Knowledge an	d Abili	ities		C	at 1	C	at 2	Ca	at 3	Ca	.t 4	
						5		3		2	1	3	13 -

∃ Systems/evolutions within each group are identified on the associated outline.

∃ The shaded areas are not applicable to the category/tier.

NUREG-1021

30 of 39

Interim Rev. 8, January 1997

	tion Outline				
Facility: Braidwoo Section Title Generic I RO Group 1		bilities	Exam Date: 9/14/98	3	Examination Level: RO
System/Evolution	K/A	RO	KA Statement	Level	Question Topic
Conduct of Operations	2.1.1	3.7	Knowledge of conduct of operations requirements.		Evaluation of requirement for "active" license
	2.1.1	3.7	Knowledge of conduct of operations requirements.	в	Direction of NLO personnel
	2.1.2	3.0	Knowledge of operator responsibilities during all modes of plant operation.	В	Operating Daily Orders
	2.1.23	3.9	Ability to perform specific system and integrated plant procedures during all modes of plant operation.	В	Procedure required usage
	2.1.24	2.8	Ability to obtain and interpret station electrical and mechanical drawings.	В	Use of electrical prints
Equipment Control	2.2.13	3.6	Knowledge of tagging and clearance procedures.	В	MOV tagout
	2.2.26	2.5	Knowledge of refueling administrative requirements.	В	RCS level discrepancy during refueling
	2.2.32	3.5	Knowledge of RC auties in the control room during fuel handling such as alarms from fuel handling area, communication with fuel storage facility, systems operated from the control room in support of fueling operations, and supporting instrumentation.		RO duties in Control Room during refueling
Radiation Control	2.3.1		Knowledge of 10 CFR: 20 and related facility radiation control requirements.	В	Radiation exposure determination
	2.3.10		Ability to perform procedures to reduce excessive levels of radiation and guard against personnel exposure.	R	Fuel Handling Accident Response
Emergency Procedures / Plan	2.4.16	3.0	Knowledge of EOP implementation hierarchy and coordination with other support procedures.	В	Performance of Status Trees/Function Restoration
	2.4.20		Knowledge of operational implications of EOP warnings, cautions, and notes.	В	Applicability of EOP Foldout Page
	2.4.31	3.3	Knowledge of annunciators alarms and indications, and use of the response instructions.	В	Identification of inoperable CR annunciators

.

. *

PWR RO aminat Facility: Braidwood Section Title Plant Syst RO Group 1			Exam Date: 9/	14/98	Examination Level: RO
System/Evolution	K/A	RO	KA Statement	Level	Question Topic
Control Rod Drive System	001 A2.06	3.4	Effects of transient xenon on reactivity	В	Effect of Xenon Transient & compensation
	001 K1.03	3.4	CRDM	В	Application of DC Hold
Reactor Coolant Pump System	003 A1.06	2.9	PZR spray flow	В	RCP and Pzr spray operations
	003 K2.01	3.1	RCPS	R	RCP Breaker & interlocks
Chemical and Volume Control System	004 A3.11	3.6	Charging/letdown	R	Charging & letdown flows (including seal injection)
	004 A4.07	3.9	Boration/dilution	В	Calculation of dilution
	004 K6.01	3.1	Spray/heater combination in PZR to assure uniform boron concentration	R	Boron mixing
Engineered Safety Features Actuation System	013 A3.01	3.7*	Input channels and logic	В	CNMT Spray/Phase B
	013 K4.13	3.7	MFW isolation/reset	R	FW Isolation - P14
Nuclear Instrumentation System	015 A2.02	3.1	Faulty or erratic operation of detectors or compensating components	В	SR NIS discriminator failure
	015 K2.01	3.3	NIS channels, components, and interconnect	tions B	SR NIS - loss of control power
	015 K5.06	3.4	Subcritical multiplications and NIS indication	s R	Eval for 1/M - Eightfold increase
In-Core Temperature Monitor System	017 K4.01	3.4	Input to subcooling monitors	R	CETC failure effect on Subcooling Monitor/Iconic Display
Containment Cooling System	2.1.32	3.4	Ability to explain and apply all system limits a precautions.	and R	RCFC operations requirements
Main Feedwater System	2.1.7	3.7	Ability to evaluate plant performance and ma operational judgments based on operating characteristics, reactor behavior, and instrum interpretation.		S/G Level program - low power
	059 K1.04	3.4	S/GS water level control system	R	Effect of failure of S/G steam pressure channel

Friday, July 24, 1998 5:02:54 PM

Prepared by WD Associates, Inc.

PWR RO aminat Facility: Braidwood Section Title Plant Syst RO Group 1			Exam Date: 9/14/98	1	Examination Level: RO
System/Evolution	K/A	RO	KA Statement	Level	Question Topic
Auxiliary / Emergency Feedwater System	061 A3.01	4.1	AFW startup and flows	B	AFW Startup
	061 K5.02	3.2	Decay heat sources and magnitude	в	AFW flow requirements for cooldown
Liquid Radwaste System	068 A4.04	3.8	Automatic isolation	в	RCDT operation - effect of CNMT Isolation
	068 K1.07	2.7	Sources of liquid wastes for LRS	R	CNMT Sump sources of input during normal operation
Waste Gas Disposal System	071 A4.05	2.6*	Gas decay tanks, including valves, indicators, and sample line	R	Waste Gas Decay Tank Operations
Area Radiation Monitoring System	072 A4.03	3.1	Check source for operability demonstration	R	Check Source operation
	072 K3.02	3.1	Fuel handling operations	8	Loss of FHB Overhead Crane rad monitor

.

.

PWR RO iminal Facility: Braidwood Section Title Plant Syst RO Group 2			Exam Date: 9/14/98	В	Examination Level: RO
System/Evolution	K/A	RO	KA Statement	Level	Question Topic
Reactor Coolant System	002 A1.11 2.7 Relative level indications in the RWST, the refueling cavity, the PZR and the reactor vessel during preparation for refueling		В	Relationship of levels during refueling operations	
	002 A3.01	3.7	Reactor coolant leak detection system	R	RCS leak Detection Systems
	002 K4.09	3.2	Operation of loop isolation valves.	R	Use of Loop Isolation Valves
Emergency Core Cooling System	006 A2.13	3.9	Inadvertent SIS actuation	В	Systems response to SI/Actions
	006 K3.02	4.3	Fuel	В	10CFR50.46 Design Criteria
	006 K6.03	3.6	Safety Injection Pumps	B	Evaluation of flow ECCS pumps
Pressurizer Pressure Control System	010 A1.08	3.2	Spray nozzle DT	В	Spray using Normal and Aux Spray
	010 K5.01	3.5	Determination of condition of fluid in PZR, using steam tables	В	Evaluation of Pzr conditions
Pressurizer Level Control System	011 K1.04	3.8	RPS	В	Pzr Level Reactor Trip
Reactor Protection System	012 A3.07	4.0	Trip breakers	R	Operation of BOTH Bypass Trip Breakers
	012 A4.03	3.6	Channel blocks and bypasses	в	Input that can be bypass & condition
	012 K5.01	3.3*	DNB	R	OTdT inputs & effect of changes
Rod Position Indication System	n 2.4.31	3.3	Knowledge of annunciators alarms and indications and use of the response instructions.	, R	ROD BOTTOM Alarm operation
Non-Nuclear Instrumentation System	016 K3.02	3.4*	PZR LCS	В	NR RTD Failure effects
Containment Spray System	026 A2.08	3.2	Safe securing of containment spray when it can be done)	B	Sequence for securing CNMT Spray
	026 A4.01	4.5	CSS controls	R	Pump operation interlocks
Spent Fuel Pool Cooling System	033 K1.05	2.7*	RWST	R	RWST Purification Loops

Friday, July 24, 1998 5:02:55 PM

Prepared by WD Associates, Inc.

PWR RO Imina Facility: Braidwo Section Title Plant Sy RO Group 2			Exam Date:	9/14/98	Examination Level: R	0.
System/Evolution	K/A	RO	KA Statement	Level	Question Topic	
D.C. Electrical Distribution	2.1.30	3.9	Ability to locate and operate components including local controls.	, В	DC bus battery charger	
Emergency Diesel Generators	064 A3.07	3.6*	Load sequencing	В	Sequencing of ESF pumps - SI & SI w LOP	
Fire Protection System	086 K4.06	3.0	CO2	В	Effect of loss of DC - CO2 actuation	

PWR RO iminat Facility: Braidwood Section Title Plant Syst RO Group 3			Exam Date:	9/14/9	8	Examination Level: RO
System/Evolution	K/A	RO	KA Statement		Level	Question Topic
Residual Heat Removal System	005 K1.12	3.1	Safeguard pumps		В	Recirc interties to SI Pumps & CV Pumps
	005 K4.10	3.1	Control of RHR heat exchanger outlet flow	,	R	Failure of Hx Outlet Valve
Pressurizer Relief Tank/Quench Tank System	2.4.50		Ability to verify system alarm setpoints and operate controls identified in the alarm resimanual.		R	PRT conditions causing alarm/response
Component Cooling Water System	008 A2.05 3		Effect of loss of instrument and control air position of the CCW valves that are air ope		R	Determination of effect of valve positioning
Containment Iodine Removal System	027 A4.03 3	3.3*	CIRS fans		R	Charcoal Filters response to deluge
Steam Dump System and Turbine Bypass Control	041 A3.02		RCS pressure, RCS temperature, and read power	ctor	В	Steam Dump input malfunction
Main Turbine Generator System	045 K1.20	3.4	Protection system		R	Turbine Control response to Failed Impulse Channel
Instrument Air System	078 K3.02	3.4	Systems having pneumatic valves and con	trols	в	Evaluation of eqpt affected for slow loss

.

Facility: Braid	wood rgency and Abnorm	al Plant	Exam Date: 9/14/98	3	Examination Level: RO
Cystem/Evolution	K/A	RO	KA Statement	Level	Question Topic
Reactor Coolant F Malfunctions	^D ump 015 AA2.10	3.7	When to secure RCPs on loss of cooling or seal injection	В	Eval loss of cooling fine
	015 AK2.07	2.9	RCP seals	в	Eval of RCP seal failure
Emergency Borat	ion 024 AA2.05	3.3	Amount of boron to add to achieve required SDM	В	Time/amount E-boration for condition
Loss of Compone Cooling Water	nt 026 AA1.05	3.1	The CCWS surge tank, including level control and level alarms, and radiation alarm	В	Evaluation of CCW leak
Pressurizer Press Control Malfunction		4.0	PZR heaters, sprays, and PORVs	В	Pressure controller step change
	027 AA2.15	3.7	Actions to be taken if PZR pressure instrument fails high	В	Non-Controlling channel failure
Steam Line Ruptu	ire 040 AA.1.01	4.6	Manual and automatic ESFAS initiation	в	Steamline isolation
	040 AK1.06	3.7	High-energy steam line break considerations	в	Eval of Leak
Loss of Condense Vacuum	er 051 AA2.02	3.9	Conditions requiring reactor and/or turbine trip	В	Eval of conditions
Station Blackout	055 EK3.02	4.3	Actions contained in EOP for loss of offsite and onsite power	В	Identification of RCP seal LOCA/cooldown
Loss of Vital AC Instrument Bus	057 AA2.19	4.0	The plant automatic actions that will occur on the loss of a vital ac electrical instrument bus	В	Eqpt affected on bus loss
Control Room Evacuation	068 \A1.21	3.9	Transfer of controls from control room to shutdown panel or local control	В	Operations required for transfer
Inadequate Core Cooling	074 EK1.03	4.5	Processes for removing decay heat from the core	В	Major action categories
High Reactor Coo Activity	ant 076 AA2.02	2.8	Corrective actions required for high fission product activity in RCS	В	Actions for reducing activity
Pressurized Them Shock	mal E08 EK2.2	3.6	Facility's heat removal systems, including primary coolant, emergency coolant, the decay heat removal systems, and relations between the proper operation of these systems to the operation of the facility.		Identification of heat removal process

. '

PWR RC amina	ation Outline					
Facility: Braidwo	od		Exam Date:	9/14/98	Examination Level:	RO
Section Title Emerge	ncy and Abnom	al Plant	Evolutions			
RO Group 1						•
System/Evolution	K/A	RO	KA Statement	Level	Question Topic	
Natural Circulation Operations	E09 EK3.1	3.3	Facility operating characteristics during tra conditions, including coolant chemistry and effects of temperature, pressure, and reac changes and operating limitations and reac these operating characteristics.	d the tivity	Natural Circ conditions and limits	•

2

Facility: Braidwoo Section Title Emergen		I Plant	Exam Date: 9/14/9 Evolutions	8	Examination Level: RO
RO Group 2 System/Evolution	K/A	RO	KA Statement	Level	Question Topic
Continuous Rod Withdrawal	001 AA2.05	4.4	Uncontrolled rod withdrawal, from available indications	В	Evaluate conditions - unwarranted rod withdrawal
Dropped Control Rod	003 AK3.10	3.2?	RIL and PDIL	Б	P/A vs. Group Step Counters
Reactor Trip	007 EA1.03	4.2	RCS pressure and temperature	В	Stabilized RCS temperature with failure of Steam Dumps
	007 EK2.03	3.5	Reactor trip status panel	R	Reactor Trip requirements
Pressurizer Vapor Space Accident	008 AK1.01	3.2	Thermodynamics and flow characteristics of open or leaking valves	R	Tail-Pipe conditions
Small Break LOCA	009 EA1.10	3.8*	Safety parameter display system	в	Calculation of subcooled margin on Iconics
Large Break LOCA	011 EA1.03	4.0	Securing of RCPs	В	RCP trip criteria evaluation
Loss of Reactor Coolant Makeup	022 AA1.08	3.4	VCT level	В	VCT level transmitter malfunction
Loss of Residual Heat Removal System	025 AK1.01	3.9	Loss of RHRS during all modes of operation	В	Calc of time to saturation/core boiling
	025 AK3.01	3.1	Shift to alternate flowpath	в	Alternate RCS cooling
Anticipated Transient Without Scram	2.4.48	3.5	Ability to interpret control room indications to verify the status and operation of system, and understand how operator actions and directives affect plant and system conditions.	yВ	AMS conditions
Loss of Source Range Nuclear Instrumentation	032 AK1.01	2.5	Effects of voltage changes on performance	В	Evaluation of SR NIS voltage failure
Loss of Intermediate Range Nuclear Instrumentation	033 AA2.04	3.2	Satisfactory overlap between source-range, intermediate-range and power-range instrumentation	В	Eval of failed IR channel on SU
Steam Generator Tube Leak	037 AA1.02	3.1*	Condensate exhaust system	R	Monitors for S/G Tube leakage
Steam Generator Tube Rupture	038 EK3.06	4.2	Actions contained in EOP for RCS water inventory balance 3 tube rupture, and plant shutdown proced lies	В	Loss of subcooling

Friday, July 24, 1998 5:02:59 PM

Prepared by WD Associates, Inc.

.

PWR RO amination Outline

Facility: Braidwood Section Title Emergen RO Group 2		nal Plant	Exam Date: 9/14/9	8	Examination Level: R	о
System/Evolution	K/A	RO	KA Statement	Level	Question Topic	•
Loss of Secondary Heat Sink	E05 EK2.1	3.7	Components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and automatic and manual features.	В	Interlocks affecting reestablishment of feed	•
Loss of Emergency Coolant Recirculation	E11 EA1.1	3.9	Components, and functions of control and safety systems, including instrumentation, signals, interlocks, failure modes, and automatic and manual features.	В	Reason for rapid S/G depressurization	

-

...

PWR RC aminati Facility: Braidwood Section Title Emergency		I Plant	Exam Date:	9/14/98		Examination Level: RO
RO Group 3 System/Evolution	K/A	RO	KA Statement	Level	Question Topic	
Pressurizer Level (Control Malfunction	028 AK3.05	3.7	Actions contained in EOP for PZR level malfunction	В	Failed level channel low.	
Loss of Off-Site Power (056 AA1 21	3.3*	Reset of the ESF load sequencers	В	Reset of sequencer	
(056 AA2.46	4.2	That the ED/Gs have started automatical	y and B	Eval of electric bus status	

that the bus tie breakers are closed

ES-401

Site-Specific Written Examination Cover Sheet

U.S. Nuclear Regulatory Commission Site-Specific Written Examination		
Applicant Information		
Name:	Region: III	
Date:	Facility/Unit: Braidwood 1 & 2	
License Level: RO	Reactor Type: W	
Start Time:	Finish Time:	
Use the answer sheets provided to document your answers. Staple this cover sheet on top of the answer sheets. The passing grade requires a final grade of at least 80.00 percent. Examination papers will be collected four hours after the examination starts. Applicant Certification All work done on this examination is my own. I have neither given nor received aid. Applicant's Signature		
Results		
Examination Value	Points	
Applicant's Score	Points	
Applicant's Grade	Percent	

- 1 An operator sits for the NRC License Operator Examination (Initial), successfully passes the Examination and is granted an NRC Senior Operator License or Reactor Operator license this month. What are the requirements for having the license on ACTIVE STATUS?
 - a. The individual must meet the time on shift requirements of SEVEN 8-hour shifts before the license is in ACTIVE STATUS.
 - b. The license is considered in ACTIVE STATUS for the current quarter ONLY.
 - c. The individual must meet the time on shift requirements of SEVEN 8-hour shifts to have a license in ACTIVE STATUS for the next quarter.
 - d. The license is considered in ACTIVE STATUS for the current and next quarter.
- 2 . The following conditions on Unit 1:
 - Reactor power 45%
 - 1A and 1C Feedwater pumps are operating
 - FW PUMP TURB BRNG OIL LEVEL HIGH LOW annunciator (1-16-D3) alarms and the SER monitor indicates a low level.
 - An EA is dispatched and confirms a low level exists.

In performing actions to correct the condition (per BwOP TO-08 "Filling a Turbine Feed Pump Oil Reservoir"), what is the normal relationship between the US, the NSO and the EA?

- a. The US will direct the EA's activities, but will inform the NSO before the job commences.
- b. The US will direct the EA's activities, and need NOT inform the NSO unless unit controls are affected.
- c. The NSO will direct the EA's activities, but will inform the US before the job commences.
- d. The NSO will direct the EA's activities, and need NOT inform the US unless unit load is affected.

- 3. How is a procedure change, which significantly changes normal processes, procedurally conveyed to licensed members of the operating crew?
 - a. The SM places the applicable information in the Daily Order Book, and issues an additional memo to all crew personnel that is initialed.
 - b. The SM is informed by memo of the addition to the Daily Order Book, and makes an announcement of the addition during the shift briefing.
 - c. The SOS places the applicable information in the Daily Order Book, and the individual operator is responsible for reviewing the Daily Order.
 - d. The US places the applicable information in the Daily Order Book, and makes an announcement of the addition during the shift briefing.
- 4 An example of a licensed operator evolution that can be performed WITHOUT either referring to an operations procedure or having a procedure in-hand is ...
 - a. Adjusting rod position following a boration.
 - b. Starting the 1A Heater Drain Pump.
 - c. Placing excess letdown in service.
 - d. Latching and rolling up the main turbine.
- 5 Assuming an auto-close signal is continuously present in the circuit for the 1A SI pump, which contact will be maintained open in order to prevent the starting relay (SR) from attempting repeated breaker closures onto a faulted bus?

(E 1-4030-SI01 is provided for use.)

- a. LC SW
- b. 52/b
- c. Y
- d. LS

6 An operator is preparing an OOS that designates 1CC685, RCP Thermal Barrier CC Return CNMT Isolation valve, as an isolation point.

What is the acceptability of using this isolation point?

The OOS is...

- a. acceptable only if the MOV is tagged at its control switch, power supply and valve handwheel.
- b. acceptable only if the MOV is tagged at its control switch, power supply and a blocking device is placed on the valve.
- c. NOT acceptable because the MOV fails to meet isolation requirements.
- d. NOT acceptable because the valve fails open on a loss of power.
- 7 . The following conditions exist for Unit 1:
 - Unit shutdown and cooldown initiated 120 hours ago
 - Lowering of RCS level to the reactor vessel flange is underway
 - RCS temperature 95°
 - RCS level Control Room indicators: 1LI-RY046 401' 0"
 - 1LI-RY049 402' 1"
 - RH loop 1A in operation with "normal" indications

What is the appropriate action for these conditions?

- a. The lowering of RCS level can continue.
- b. The level change must be stopped until the cause for the level discrepancy is determined.
- c. When temperature correction is applied to the highest Control Room level indication, the running RHR pump must be stopped to prevent cavitation.
- d. When temperature correction is applied to the lowest Control Room level indication, the available SI Pump aligned for hot leg injection must be started.
- 8 What is a responsibility of the NSO during refueling operations?
 - a. Checking source range counts while a fuel assembly is being placed in the core.
 - b. Ensuring water level in spent fuel pool is at least 23' above the fuel.
 - c. Maintaining a 1/M plot while reloading fuel during a core shuffle.
 - d. Monitoring the manipulator crane position by updating the Control Room tag board.

9 . An operator has the following exposure history this year until today:

Deep Dose Equivalent (DDE)	-	210 mrem
Committed Effective Dose Equivalent (CEDE)	-	45 mrem
Shallow Dose Equivalent (SDE)	-	33 mrem
Committed Dose Equivalent (CDE)	-	28 mrem

Today the operator was required to make two entries into containment:

Entry 1: Gamma dose - 52 mrem; Neutron dose - 24 mrem Entry 2: Gamma dose - 124 mrem

How much radiation exposure is available to the operator if he has to make additional entries?

His available margin based on the routine Administrative Exposure Control Levels is...

- a. 100 mrem for that day; 2484 mrem for the year.
- b. 100 mrem for that day; 2545 mrem for the year.
- c. 124 mrem for that day; 2569 mrem for the year.
- d. 124 mrem for that day; 2614 mrem for the year.
- 10 The following conditions exist on Unit 1:
 - Refueling operations in progress

- A HIGH alarm received on radiation monitor 1RE-AR012, Containment Fuel Handling Incident

When should the NSO initiate action and what action should he/she take from the control room?

Indication of a fuel handling accident is considered when a...

- a. report is received from personnel in containment. The operator starts the containment charcoal filter fans.
- b. report is received from personnel in containment. The operator actuates Unit 1 CNMT evacuation alarm.
- c. corroborating rise is indicated on monitor 1RE-AR011. The operator starts the containment charcoal filter fans.
- d. corroborating rise is indicated on monitor 1RE-AR011. The operator actuates Unit 1 CNMT evacuation alarm.

- 11 . The following conditions exist on Unit 1:
 - A reactor trip has occurred and both reactor trip breakers are verified open
 - The turbine has tripped
 - BwEP-0 "Reactor Trip OR Safety Injection" has been entered.
 - BUS 141 ALIVE light is NOT lit with bus voltage at ZERO volts
 - BUS 142 ALIVE light is lit with bus voltage at 4149 volts.

Which of the following describes the actions the operators are required to take?

- Continue with next step of BwEP-0.
- b. Turn on the synchroscope and manually close ACB 1412, SAT 142-1 feed breaker.
- c. Manually start 1A D/G and verify ACB 1413, D/G output breaker, closes.
- d. Initiate actions of BwOA ELEC-3 and continue with next step of BwEP-0.
- 12. From the list of procedures identified below, which has(have) "Transfer to Cold Leg Recirculation" on the Operator Action Summary Page?

(NOTE: The following procedures are in the E-1 or CA-1 series: BwEP-1 "Loss Of Reactor Or Secondary Coolant" BwEP ES-1.1 "SI Termination" BwEP ES-1.2 "Post-LOCA Cooldown And Depressurization" BwEP ES-1.3 "Transfer To Cold Leg Recirculation" BwEP ES-1.4 "Transfer To Hot Leg Recirculation" BwCA-1.1 "Loss Of Emergency Coolant Recirculation" BwCA-1.2 "LOCA Outside Containment")

- a. BwEP-1, BwEP ES-1.1 through ES-1.4, and BwCA-1.1 through BwCA-1.2 procedures.
- b. BwEP-1, BwEP ES-1.1 and ES-1.2 procedures ONLY.
- c. BwEP-1 and BwEP ES-1.2 procedures ONLY.
- d. BwEP-1 procedure ONLY.

Page 5 of 50

- 13 . The following conditions exist on Unit 1:
 - Reactor trip breakers status OPEN
 - RCS Tave 557°F
 - Pzr pressure 2235 psig

Annunciator RCFC VIBRATION HI (1-3-C5) has been in alarm for the past 1 ½ shifts due to a faulty vibration probe. While maintenance troubleshoots the vibration probe on RCFC 1C which of the following actions is appropriate for this alarm window?

- a. The alarm should be acknowledged for each actuation and the SER monitored for valid alarm inputs.
- b. The alarm should be acknowledged for each actuation and operators stationed locally at each RCFC to monitor vibration.
- c. The alarm should have been silenced without acknowledgement after obtaining Unit Operating Engineer's permission and the SER monitored for valid alarm inputs.
- d. The alarm should have been silenced without acknowledgement with US permission and operators stationed locally at each RCFC to monitor vibration.
- 14 . A feed pump trip occurred resulting in a rapid power reduction on Unit 1. Power was reduced from 100% steady-state conditions using a combination of rods and boration.

The following conditions exist for Unit 1 following stabilization:

- Reactor Power 60%
- Delta-I target value +2.0
- Control Bank D position 160 steps withdrawn
- Tave 572°F
- Delta-I -10.5%
- Core Age MOL

What actions will be required to maintain the current power level and maintain Delta-I within its normal operating band over the next FIVE hours?

- a. Boration and control rod withdrawal, followed by dilution.
- Boration and control rod insertion, followed by dilution.
- c. Dilution and control rod withdrawal, followed by boration
- d. Dilution and control rod insertion, followed by boration.

15 . A problem with the rod control system requires checking several rod bank circuits. The affected power cabinet repairs are to be made by supplying power from the DC hold supply cabinet.

What is the capacity of the DC Hold Supply Cabinet under these circumstances?

- a. ONE control rod bank group can be placed on DC HOLD, and these rods will drop ONLY if the controls are taken to OFF at the DC Hold cabinet.
- b. ONE control rod bank group and ONE shutdown bank group can be placed on DC HOLD, and these rods will drop ONLY if the controls are taken to OFF at the DC Hold cabinet.
- c. ONE control rod bank group can be placed on DC HOLD, and these rods will automatically drop.
- d. ONE control rod bank group and ONE shutdown bank group can be placed on DC HOLD, and these rods will automatically drop.
- 16 . The following conditions exist for Unit 1:
 - Mode 5
 - RCS is draining to Pzr level of 40%

- IM calibrations have been completed for LT-RY048, Refuel Cavity level, in preparation for further draining

What is the relationship between Pzr level instrument LT-459, Pzr level instrument LT-462 and LI-RY048?

At approximately 40% level indicated on LI-462, level on...

- a. LI-459 and LI-RY048 will be offscale high.
- b. LI-RY048 will be just onscale and LI-459 will be offscale low.
- c. LI-459 will read higher than 40% and LI-RY048 will just be onscale.
- d. LI-RY048 will be offscale high and LI-459 will read lower than 40%

17 The following conditions exist for Unit 1:

- Reactor power 100%
- RCS activity is elevated, but below Technical Specification (CTS) levels
- Pzr pressure 2225 psig
- Pzr level 44%
- PORV 1RY456 dual indication
- Leak rate 6 gpm

In an attempt to isolate the leakage past the PORV, the Block Valve 1RY8000B was taken to close. The valve failed to close and the operator placed 1RY456 in the CLOSE position. When conditions stabilize:

- Reactor power 100%
- Pzr pressure 2228 psig
- Pzr level 44%

How would the operator be able to tell if the PORV has closed?

- a. Position lights for PCV-456 showing CLOSE indication ONLY.
- b. PORV downstream temperature indication 1TI-463 dropping.
- c. Level change in RCDT.
- d. Lower readings for containment radiation monitors RE-001 IA/0012A.

- 18 . The following conditions exist on Unit 1:
 - RCS Loop C is isolated for maintenance
 - RCS Loop A had been isolated for maintenance
 - RCS Loop A Hot Leg Stop Isolation Valve (LSIV) was opened at 1001
 - RCS Loop A Bypass Stop Valve was opened at 1005 with relief line flow of 115 gpm verified
 - RCS Loop A Cold Leg LSIV is closed
 - RCS temperature 110°F
 - RCS Hot Leg Loop temperatures 108°F (A); 119°F (B); 110°F (C); 125°F (D)
 - RCS Cold Leg Loop temperatures 103°F (A); 108°F (B); 90°F (C); 115°F (D)
 - S/G levels (Narrow Range) 20% (A); 30% (B); 15% (C); 32% (D)

What will occur when the operator takes the control switch for MOV-RC8002A (RCS Loop A Cold Leg LSIV) to OPEN at 1509?

The valve...

- a. will travel fully open with NO automatic actuations.
- b. will travel fully open, and the AFW pumps get a start signal.
- c. remains closed because the temperature difference interlock remains active.
- d. remains closed because the timer interlock is still active.
- 19 . The following Unit 1 conditions exist:
 - RCS temperature (Average CETC) 140°F
 - RCS pressure 365 psig
 - A bubble has just been drawn in the Pressurizer
 - All loops are filled and vented
 - Preparations are in progress to start the first RCP for continuous run

What is the effect of selecting the 1C RCP to start?

- a. Both Pzr Sprays will function normally for Pzr pressure control.
- b. Manual cycling of the Pzr heaters will be required for Pzr pressure control.
- c. PORV RY456 will open on high pressure from high pressure bistable PB456E.
- d. Normal Pzr spray will deliver minimal spray flow for Pzr pressure control.

20 . The following conditions exist on Unit 1:

- Reactor power 26%
- Pzr pressure 2235 psig
- Pzr level 35%

RCP 1A breaker trips due to sensed undervoltage from bus 157. What is expected as a result of the trip of the RCP?

- a. The reactor will trip due to the open RCP breaker.
- b. The reactor will trip due to RCS loop low flow condition.
- c. The reactor will be manually tripped by the operator.
- d. A normal plant shutdown will be initiated.
- 21 The following conditions exist on Unit 1:
 - Reactor power 100%
 - PZR pressure 2235 psig
 - PZR level 44% stable
 - CV121 In MANUAL
 - CVCS letdown Isolated due to leak in Letdown Hx
 - CVCS Excess Letdown In service with maximum flow of 20 gpm
 - RCP seal injection 1A CV pump aligned to all RCPs
 - RCP seal leakoff flow 3 gpm (1A); 3.5 gpm (1B); 3 gpm (1C); 2.5 gpm (1D)

What flow is indicated on Charging Header Flow indicator, FI-121?

- a. 5 gpm
- b. 25 gpm
- c. 32 gpm
- d. 65 gpm

- 22 . The following conditions exist on Unit 2:
 - Unit is in MODE 5
 - Unit burnup is 5700 EFPH in Cycle 7
 - SDM 1.3% DeltaK/K
 - RCS pressure 400 psig
 - RCS average temperature 195°F
 - RCS boron concentration 1006 ppm
 - Differential boron worth -10.75 pcm/ppm
 - PZR level 32.3%
 - SR NIS countrate 10 cps , BOTH channels stable background levels
 - An inadvertent dilution at 70 gpm begins at 1300 hours

Assuming NO operator action is taken and PZR level remains constant over the time period, when would the HIGH FLUX AT SHUTDOWN alarm actuate?

- a. Never, because BDPS will actuate prior to actuation.
- b. 1430 hours.
- c. 1505 hours.
- d. 1734 hours.
- 23 . The following conditions exist on Unit 1:
 - Reactor power was 95% prior to the event
 - A turbine runback resulted in rod insertion with control rods in AUTOMATIC
 - Annunciator ROD BANK LO-2 INSERTION LIMIT (1-10-A6) is lit

The operators initiated an emergency boration per BwOA PRI-2 "Emergency Boration" and have verified control rods are now withdrawing. Why does the operator energize the Pzr Backup Heaters?

This action...

- a. ensures Pzr boron concentration equalization with RCS by increasing normal spray flow.
- b. counteracts RCS cooldown due the boration by the additional heat from the backup heaters.
- c. prevents loss of Pzr level by increasing the volume of fluid maintained in the Pzr.
- d. guarantees adequate subcooling margin is maintained by raising the saturation temperature of the Pzr.

- 24 The following conditions exist on Unit 1:
 - A LOCA has occurred
 - Actions of 1BwEP ES-1.3, 'Transfer To Cold Leg Recirculation, have been completed.
 - During alignment, 1CV8804A, RH HX to CENT CHG Pumps Isolation Valve, failed to open and could NOT be manually opened.

What is the status of the ECCS system?

- a. The RHR discharge headers are cross-tied with only RHR Pump 1B running and supplying suction to the SI pumps and Centrifugal Charging pumps from the B train connection.
- b. The RHR discharge headers are cross-tied with both RHR pumps running and supplying suction to the SI pumps only from the B train connection. The Centrifugal Charging pumps are stopped.
- c. RHR Pump 1B is discharging through the B Train cold leg injection headers and supplying suction to the SI Pumps. RHR Pump 1A and the Centrifugal Charging pumps are stopped.

0

d. RHR Pump 1B is discharging through the B Train cold leg injection headers and supplying suction to the SI pumps and Centrifugal Charging pumps. RHR Pump 1A is discharging thre ugh the A Train cold leg injection headers.

- 25 . The following conditions exist on Unit 1:
 - Unit is in MODE 4 during cooldown per 1BwGP 100-5 following unit shutdown 38 hours ago
 - RCS temperature 340°F
 - RCS pressure 345 psig
 - PZR level 33%
 - RHR pump 1A is operating in Shutdown Cooling mode
 - RH-618 A Hx Bypass Flow Control Valve is in MAN at 3000 gpm
 - RH-606 A HX Flow Control Valve controller demand is at 20%
 - CV-128 RHR Ltdn Flow Contr Valve demand is at 100%
 - PCV-131 is in AUTOMATIC set to maintain 350 psig

A signal failure from the controller causes RH-606 to go fully closed. What is the system response to this failure WITHOUT operator action?

- a. PCV-131 will throttle open due to lower RH discharge pressure.
- b. RCS pressure will increase due to RCS heatup.
- c. Pressurizer level will decrease due to increased letdown flow.
- d. RH-610 will throttle open due to lower RH flow.

26 The following conditions exist on Unit 1:

- A plant heatup is underway
- MODE 3 has just been entered
- RCS pressure 450 psig

SI Accumulator 1C was drained below required level during the outage for repair work. System configuration has NOT allowed refilling the Accumulator until now. The SI Accumulator line is being flushed in accordance with BwOP SI-14 "SI Accumulator Fill Line Flush" (Valve lineup includes: 1SI-8964, SI Test Lines to Radwaste Isolation Valve, and SI-8888, SI Pps to Accumulator Fill Valve, are open. 1SI 8821A, SI Pump to Cold Leg Isolation Valve, and 1SI 8802A, SI to Hot Leg 1A & 1D Isol valve are closed). SI pump 1A running. During the flushing, an inadvertent SI signal is generated.

What is the status of the ECCS based on the current alignment WITHOUT operator action?

- a. 1B SI pump ONLY is running with injection flow to the RCS cold legs and to the Accumulator 1C fill line flush.
- b. 1A SI pump ONLY is running with flow directed to the Accumulator fill line flush ONLY.
- c. BOTH SI pumps are running with injection flow to the RCS cold legs and to the Accumulator 1C fill line flush.
- d. BOTH SI pumps are running with flow directed to the Accumulator 1C fill line flush ONLY.
- 27 . To meet the 10CFR50.46 criteria, the ECCS System is designed such that under accident conditions it will maintain...
 - a. total hydrogen production from zirconium-water reaction below maximum value of 5%.
 - b. maximum fuel temperature at the inside surface of the cladding less than 2000°F.
 - c. the core at least 5% shutdown to prevent an inadvertent return to criticality.
 - d. fuel clad oxidation less than 17% of total clad thickness anywhere within the core.

28 . The following conditions exist on Unit 1:

- A LOCA has occurred
- Transfer to Cold Leg recirculation is required
- RCS pressure is approximately 50 psig

What is the approximate total SI pump flow indicated on the main control board and how will this value change following transfer of BOTH trains of ECCS to cold leg recirculation?

Total FlowFlow Changea. 650 gpmDecreaseb. 800 gpmIncreasec. 1050 gpmDecreased. 1300 gpmIncrease

29 . During shift turnover for Unit 1, the NSO notes the following parameters:

RCS Tave - 566.5°F Pzr pressure - 2235 psig Pzr level - 38.3% PRT pressure - 4 psig PRT level - 74% PRT temperature - 98°F

One hour later when annunciator 1-12-A7, PRT LEVEL HIGH LOW alarmed, the NSO notes the following parameters:

RCS Tave - 566.2°F Pzr pressure - 2233 psig Pzr level - 38% PRT pressure - 5.9 psig PRT level - 81% PRT temperature - 96°F

What condition resulted in the change in parameters?

- a. PRT PW Supply Inside Cnmt Isol Valve RY-8030 opened.
- b. PRT to GW Comp Isol Valve RY-469 failed closed.
- c. CVCS letdown relief valve CV-8117 lifted.
- d. PORV RY-455A opened and reclosed.
- 30 . Unit 1 is operating at 100% power in MOL conditions. All systems are functioning normally with rod control in manual.

What is the effect on plant operations if instrument air supplied to the CVCS letdown Hx component cooling water outlet valve, CV-130 is lost?

TCV-130 goes fully ...

- a. shut and reactor power decreases due to boration in the CVCS demineralizers.
- b. shut and the CVCS demineralizers are automatically bypassed on temperature signal.
- c. open and reactor power increases due to deboration in the CVCS demineralizers.
- d. open and the CVCS demineralizers are automatically bypassed on temperature signal.

- 31 What are the parameters and values used by the operator to ensure the temperature difference between the PZR and the spray fluid are within the specified limit(s) in the PRESSURE AND TEMPERATURE LIMIT REPORT when initiating PZR spray?
 - a. For normal spray, the difference between RCS hot leg loop temperature and PZR vapor space temperature limit is 50°F, and for aux spray, the difference between Regenerative Hx charging inlet temperature and PZR vapor space limit is 320°F.
 - b. For normal spray, the difference between RCS cold leg loop temperature and PZR vapor space temperature limit is 50°F, and for aux spray, the difference between Regenerative Hx charging outlet temperature and PZR vapor space limit is 320°F.
 - c. For normal spray, the difference between RCS hot leg loop temperature and PZR vapor space temperature limit is 320°F, and for aux spray, the difference between Regenerative Hx charging inlet temperature and PZR vapor space limit is 320°F.
 - d. For normal spray, the difference between RCS cold leg loop temperature and PZR vapor space temperature limit is 320°F, and for aux spray, the difference between Regenerative Hx charging outlet temperature and PZR vapor space limit is 320°F.
- 32 . The following conditions exist on Unit 1:
 - A load reject from 100% power has occurred
 - Reactor power 80%
 - Pzr level 56%
 - Pzr vapor temperature 655°F
 - Pzr liquid temperature 653°F
 - RCS Tave 578°F

What is the current status of the Pressurizer based on given conditions?

- a. Backup and proportional heaters are fully on.
- b. Proportional heaters are modulated on.
- c. Pzr spray valves have modulated open.
- d. Pzr spray valves and Pzr PORVs are open.

33 . The following conditions exist on Unit 1 with all controls in normal lineup:

- Reactor power 30% stable
- RCS Tave 564.5°F
- Pzr pressure 2230 psig
- Pzr level 36%

The pressurizer level controller 1LK-459 output fails low. What automatic actions result assuming NO operator action taken?

- a. The reactor will trip on high pressurizer level ONLY.
- b. Letdown will isolate on low pressurizer level and then the reactor will trip on high pressurizer level.
- c. The reactor will trip on high pressurizer pressure ONLY.
- d. Letdown will isolate on low pressurizer level and then the reactor will trip on RCS low pressure.
- 34 . The following conditions exist on Unit 1:
 - Mode 3 NOT NOP with reactor trip breakers (RTA and RTB) closed
 - Testing of reactor trip bypass breakers underway
 - Reactor bypass breaker B (BYB) is racked in and closed
 - An operator begins to perform test with reactor bypass breaker A (BYA).

What occurs as the operator operates the breaker BYA?

When reactor bypass breaker BYA is...

- a. locally closed, ONLY breaker BYB will trip.
- b. racked in to the CONNECT position, ONLY breaker BYB will trip.
- c. locally closed, all reactor trip and bypass breakers will trip.
- d. is racked in to the CONNECT position, all reactor trip and bypass breakers will trip

35 The following conditions exist on Unit 2:

- Unit shutdown is in progress
- Reactor power 20%
- RCS Tave 562°F
- Pzr pressure 2235 psig
- Pzr level 32%
- First stage turbine pressure channel PT-506 fails high

What affect does this failure have on operations as unit shutdown is continued, if NO action is taken for the failure?

- a. At 10% power, the reactor will trip if the Source Range Block RESET pushbuttons are depressed.
- b. At 9% power, the reactor will trip if an RCP trips.
- c. At 7% power, the reactor will trip if the TURBINE TRIP pushbuttons are depressed.
- d. At 5% power, the reactor will be manually tripped as during a normal shutdown by BwGP 100-5.

36 . The following conditions exist on Unit 1:

- Power range NIS reading 100%
- Tcold 553°F
- Thot 608°F
- RCS total flow 372,000 gpm
- Pzr pressure 2215 psig
- Pzr level 69%

How does the setpoint for Over Temperature Delta-T (OTdT) change when a listed parameter is changed? (Consider each change individually)

The setpoint...

- a. increases if Power range NIS output rises to 102%.
- b. increases if total reactor flow decreases to 370,000 gpm.
- c. decreases if pressurizer pressure increases to 2235 psig.
- d. decreases if the Thot rises to 612°F.

- 37 The following conditions exist on Unit 1:
 - Mode 3 with unit cooldown in progress
 - RCS temperature 520°F
 - Pzr pressure 1750 psig
 - Pzr level 33%
 - MSIVs open

What would directly happen if the operator were to take CONTAINMENT SPRAY & PHASE B ISOL switches for both trains to the ACTUATE position?

- a. NO ESF actuations would occur.
- b. Containment Phase B isolation and Containment Ventilation isolation ONLY would be actuated.
- c. Containment Phase B isolation and Containment Ventilation isolation, and Containment Spray ONLY would be actuated.
- d. Containment Phase B isolation and Containment Ventilation isolation, Containment Spray, and Main Steamline isolation would be actuated.
- 38 The following conditions exist on Unit 2:
 - RCS temperature 340°F
 - RCS pressure 900 psig
 - All MSIVs for the S/Gs are closed
 - The MSIV Bypass valves are open
 - The FW-035s, Feedwater Tempering Isolation Valves, are open
 - The FW-034s, Feedwater Tempering Flow Control Valves, are closed (opened periodically for level control)
 - Feedwater pump 20 is reset and latched on turning gear
 - The Start Up Feedwater pump is running

The level in the S/G 2B rises to 90%. How is the plant affected?

- No actuation occurs because of the position of the MSIVs.
- b. The 2C Feedwater pump and Start Up Feedwater pump trip.
- c. The 2C Feedwater pump trips and FW-035 valves close.
- d. The 2C Feedwater pump and Start Up Feedwater pump trip, the FW-035 valves close, and the MSIV Bypass valves close.

39 During a reactor startup, when does the ROD AT BOTTOM alarm become active for each control bank?

The alarm will actuate for a dropped rod for ...

- a. any Control Bank whenever Control Bank A DRPI output is above 9 steps.
- b. each Control Bank whenever that Control Bank demand position is above 3 steps.
- c. each Control Bank whenever that Control Bank DRPI output is above 9 steps.
- d. Control Banks A, B and C whenever their Control Bank demand position is above 9 steps, and for Control Bank D whenever Control Bank D demand position is above 3 steps.
- 40 . How would the failure of the pulse height discriminator to a low value affect the indication of the affected Source Range channel?

The output would...

- a. decrease due to electronic filtering which narrows the pulse height window.
- b. decrease due to failure in counting the higher amplitude neutron generated pulses.
- c. increase due to counting of the gamma generated pulses ONLY.
- d. increase due to counting of the gamma generated pulses and decay alpha generated pulses.

41 . The following conditions exist on Unit 1:

- RCS at NOT NOP
- Reactor trip breakers closed
- Source Range readings:
 - N31 18 cps N32 - 22 cps

What indication would the operator observe if Control Power was lost to the N31 Drawer?

The N31 meter would read...

- a. downscale, the associated drawer bistable lamps NOT lit, and reactor trip breakers closed.
- b. downscale, the associated drawer bistable lamps lit, and reactor trip breakers open.
- c. 18 cps, the associated drawer bistable lamps NOT lit, and reactor trip breakers closed.
- d. 18 cps, the associated drawer bistable lamps lit, and reactor trip breakers open.

42 The following conditions exist on Unit 1:

- A reactor startup is about to be performed
- All shutdown banks are fully withdrawn
- All control banks are fully inserted
 An ECC records the following: Predicted Critical Position (ECP) - 130 steps on CBD Max rod position - 231 steps on CBD Min rod position - 58 steps on CBD

The following parameters were recorded during the rod withdrawal:

ROD HEIGTH	N31 cps	N32 cps	
NO NELTRY ON MUNICI ON POSSES IN ADDRESS AN ADDRESS AN	SPACE STATISTIC A "VIOLATION DIS DELL'UNIC		
0 on CBA	25	23	
178 on CBA	34	31	
178 on CBB	58	62	
178 on CBC	116	106	
80 on CBD	200	182	
92 on CBD	237	225	

When was the first time the operator was required to determine the Predicted Critical Position?

a. At 50 steps on CBA, with N32 as the designated Source Range detector.

b. At 113 steps on CBC, with N31 as the designated Source Range Detector.

c. At 80 steps on CBD, with N31 as the designated Source Range detector.

d. At 92 steps on CBD, with N32 as the designated Source Range detector.

43 . The following conditions exist on Unit 1:

- Reactor power - 50% - RCS Tave - 570°F (A); 569°F (B); 569°F (C); 570°F (D) - RCS Thot - 585°F (A); 584°F (B); 583°F (C); 585°F (D) - RCS Tcold - 555°F (A) 554°F (B); 555°F (C); 555°F (D) - Pzr pressure - 2235 psig - Pzr level - 43 %

If loop B Thot output channel fails LOW, what is the response of Pzr level ?

Pressurizer level will...

- a. increases to 60%.
- b. remains the same.
- c. decreases to 25%.
- d. decreases to the letdown isolation setpoint.
- 44 With Unit 1 at 100% power and with normal operating parameters, how would the failure of the HOTTEST Core Exit Thermocouple affect the reading of subcooling margin on the SPDS Iconics (CETC/SMM display) for each of the two situations below:

Situation 1 - The CETC output fails high slowly Situation 2 - The CETC output fails low slowly

- a. Situation 1: Subcooling margin will decrease to saturation then rise in superheat, and return to normal when CETC output reaches 2300°F.
 Situation 2: Subcooling margin will increase, then stabilizes when the CETC output is smaller than TEN other TCs.
- b. Situation 1: Subcooling margin will decrease to saturation then rise in superheat, and return to normal when CETC output reaches 1200°F.
 Situation 2: Subcooling margin will remain constant.
- c. Situation 1: Subcooling margin will increase to saturation then rise in superheat, and return to normal when CETC output reaches 1200°F. Situation 2: Subcooling margin will decrease, then stabilizes when the CETC output is smaller than TEN other TCs.
- d. Situation 1: Subcooling margin will Increase to saturation then rise in superheat, and return to normal when TC output reaches 2300°F. Situation 2: Subcooling margin will remain constant.

45 . The following conditions exist on Unit 2:

- RCS Temperature 342°F
- Pzr pressure 375 psig

- 2A, 2B, and 2D RCFCs are operating in high speed

- Unit 2 RCFC Dry Bulb temperatures are recorded as follows:.

- 2A RCFC 119°F
- 28 RCFC 118°F
- 2C RCFC 127°F
- 2D RCFC 121°F

Which of the following identifies the equipment status and actions for the above conditions?

What are the MINIMUM requirements for operation for the Reactor Containment Fan Coolers (RCFCs)?

- a. An additional RCFC must be started because the average of ALL the RCFC temperatures exceeds the limit.
- b. An additional RCFC must be started because ONE of the operating RCFCs temperatures is above the limit.
- c. NO action is necessary because ALL temperatures are within their appropriate limit.
- d. NO action is necessary because the average temperature of ALL operating RCFCs is below the limit.

46 . The following conditions exist on Unit 1:

- A LOCA has occurred
- Transition has been made to BwEP ES-1.3 "Transfer To Cold Leg Recirculation"
- Containment Spray actuated due to high containment pressure
- All systems and components operating as expected

What conditions allow for termination of Containment Spray?

- a. ONE pump is stopped when containment pressure is less than 15 psig. The other pump is stopped when RWST LO-3 level is reached.
- b. ONE pump is stopped when containment pressure is less than 20 psig. The other pump is stopped after it has operated for a period of at least TWO hours
- c. BOTH pumps are stopped when containment pressure is less than 15 psig and have operated for a period of at least TWO hours.
- d. BOTH pumps are stopped when containment pressure is less than 20 psig and RWST LO-3 level is reached.
- 47 . The following conditions exist on Unit 1:
 - LOCA is in progress
 - Containment pressure 15 psig
 - Containment Spray actuated due to high containment pressure
 - Containment Spray signal has been reset
 - The actions of BwEP ES-1.3 "Transfer To Cold Leg Recirculation" have been completed
 - Offsite power is then lost and the D/G output breakers have just closed onto ESF buses

How are the Containment Spray Pumps re-started?

- a. The pumps will auto start 15 seconds following closure of the D/G output breakers.
- b. The pumps will auto start 40 seconds following closure of the D/G output breakers.
- c. If the operator immediately places the CS & PHASE B ISOL switches for both trains to ACTUATE, the pumps will auto start 15 seconds following closure of the D/G output breakers.
- d. If the operator immediately places the PP 1_TEST switches for both pumps in TEST, the pumps will auto start 40 seconds following closure of the D/G output breakers.

48 Annunciator 0-33-C3, FILTER 1VP05FA TEMPERATURE HIGH, alarms in the Control Room while 1VP02CA CNMT Charcoal Filter Fan is operating. The alarm condition is verified locally.

Which of the following describes the actions taken and/or the system response for the Containment Ventilation System?

- a. The deluge valve FP244A will automatically open and the fan will automatically stop.
- b. The control room operator will open the deluge valve FP244A and the local operator will then stop the fan.
- c. The local operator will open the deluge valve FP244A and the fan will automatically stop.
- d. The local operator will open the deluge valve FP244A and the control room operator will then stop the fan.
- 49 . The following conditions exist:
 - Unit 1 20% power with load increase in progress
 - Unit 2 MODE 5 following refueling outage
 - Unit 2 Spent Fuel Pool Cooling Loop is in service.
 - Spent Fuel Pool Pump 1FC01P is OOS.

Which of the following is allowed under this situation?

Alignment and operation of...

- a. both Unit 1 RWST purification and Unit 2 RWST purification with flow through the Unit 2 Spent Fuel Pool Demineralizer and Unit 2 Spent Fuel Pool Filter.
- Spent Fuel Pool purification and Unit 1 RWST purification with flow through the Unit 1 Spent Fuel Pool Demineralizer and Unit 1 Spent Fuel Pool Filter.
- c. Unit 2 RWST purification with flow through the Unit 1 Spent Fuel Pool Filter ONLY.
- d. Unit 2 RWST purification with flow through the Unit 2 Spent Fuel Pool Demineralizer and Unit 2 Spent Fuel Pool Filter.

50 . The following conditions exist on Unit 1:

- Reactor power was 65% when the turbine tripped
- An ATWS occurred
- The reactor tripped 15 seconds later when B reactor trip breaker was locally opened
- Reactor trip breaker A is failed closed
- RCS Tave 559°F
- Pzr pressure 2255 psig
- Steamline header pressure 1100 psig
- No controls other than control rods and boration controls have been operated

What is the status of the Steam Dump valves?

Steam Dun.ps are ...

- a. modulated open due to steam header pressure.
- b. modulated open due to Tave above no-load Tave.
- c. closed because Tave is NOT greater than 3°F above Tref.
- d. closed because the dumps are NOT armed.

51 . The following conditions exist on Unit 1:

- Reactor power 28%
- All systems normal
- Turbine EHC Panel settings: Turbine REFERENCE DEMAND - 580 MW Turbine REFERENCE - 330 MW
- The GO pushbutton is LIT

What would be the DEHC System response to a slow failure to ZERO for the turbine impulse pressure channel that feeds into the DEHC?

Turbine load will...

- a. decrease until the difference between REFERENCE and impulse pressure exceeds 30%, the operator would then be alerted to select MANUAL control.
- b. decrease until the difference between REFERENCE DEMAND and impulse pressure exceeds 30%, then load will stabilize in MANUAL control.
- c. increase until the difference between REFERENCE and impulse pressure exceeds 30%, then load will stabilize in MANUAL control.
- d. increase until the difference between REFERENCE DEMAND and impulse pressure exceeds 30%, the operator would then be alerted to select MANUAL control.
- 52 . The following conditions exist on Unit 1:
 - Reactor power 35%
 - All systems normal

What failure would cause a decrease in feedwater flow to all S/Gs?

- a. ONE condenser steam dump ONLY fails open.
- b. Main steamline pressure PT-507 fails low.
- c. ONE HD pump flow control valve ONLY fails open.
- d. Main feedwater header pressure PT-508 fails low.

53 . The following conditions exist on Unit 1:

- Reactor power 100%
- All systems normal
- FT-512 selected for steam flow input into SGWLC for S/G 1A

What is the initial effect of the pressure transmitter associated with FT-512 failing low?

- a. S/G 1A level will decrease and feed pump speed will decrease.
- b. S/G 1A level will decrease ONLY.
- c. S/G 1A level will increase and feed pump speed will increase.
- d. S/G1A level will increase ONLY.
- 54 . The following conditions exist on Unit 1:
 - The reactor tripped from 40% power
 - The trip was caused by RCS loop 1C low flow condition due to undervoltage for RCP 1C bus
 - Power Range NIS channel N42 failed at 100% on the trip
 - ESF bus 141 undervoltage occurred
 - 1A D/G automatically started and ACB 1413 is closed
 - S/G levels lowest readings were 19% (A); 25% (B); 22% (C); 20% (D)

What is the status of the Auxiliary Feedwater (AF) Pumps on Unit 1 for these conditions at ONE minute following the trip?

- a. Both AF pumps are running.
- b. ONLY the 1A AF pump is running
- c. ONLY the 1B AF pump is running.
- d. Neither AF Pump is running

- 55. Which of the following describes the designed MINIMUM AFW pump and S/G configuration necessary to remove all of the reactor decay heat load following a reactor trip from 102% power?
 - a. The 1A AF pump supplying 500 gpm to at least ONE S/G with S/G blowdown manually isolated.
 - b. The 1B AF pump supplying 740 gpm to at least ONE S/G with S/G blowdown in service
 - c. The 1A and 1B AF pump supplying 500 gpm total flow to at least TWO S/Gs with S/G blowdown in service.
 - d. The 1A and 1B AF pump supplying 740 gpm total flow to at least TWO S/Gs with S/G blowdown manually isolated.
- 56 . The following conditions exist on Unit 1:
 - Reactor power 100%

Investigation has located a ground on the 125 VDC Normal supply to the 1A D/G from DC 111. What action is required to transfer DC Control Power to the reserve source?

The Reserve power breaker from...

- a. DC 111 will be closed after opening the Normal power breaker and the Reserve power breaker at the D/G control panel.
- b. DC 111 will be closed after swapping the no-blow link at the Normal and Reserve power fuse blocks at the D/G control panel.
- c. DC 112 will be closed after opening the Normal power breaker and the Reserve power breaker at the D/G control panel.
- d. DC 112 will be closed after swapping the no-blow link at the Normal and Reserve power fuse blocks at the D/G control panel.

- 57 . Unit 1 was being synchronized to the grid when the following occurred:
 - Trip of 345 KV breakers resulted in deenergizing the SATs
 - A steamline break occurred that resulted in containment pressure reaching 20 psig 20 seconds after the D/Gs output breakers have closed

When would the 1A SX pump re-start?

- a. Always following start of the 1A CS Pump.
- b. Between the start of the 1A CV pump and the 1A RH pump on the SDRA contacts (UV).
- c. Between the start of 1A CC Pump and the 1A AF Pump on the SARA contacts (SI).
- d. Coincident with the starting of the 1A and 1C RCFCs.
- 58 . The following conditions exist on Unit 1:
 - Unit is in MODE 3
 - A cooldown had just been initiated
 - Steam Dump Bypass Interlock control switches have just been taken to BYPASS
 - No other operator actions have been performed
 - The Steam Dump valves fail open and the following parameters are observed:
 - RCS temperature 537°F (A); 539°F (B); 538°F (C); 538°F (D)
 - Pzr pressure 1820 psig
 - Pzr level 10%
 - S/G pressure 850 psig (A); 740 psig (B); 800 psig (C); 715 psig (D)
 - S/G flow 1.0 Mlb/hr (A); 1.5 Mlb/hr (B); 1.1 Mlb/hr (C); 1.6 Mlb/hr (D)
 - The level in the RCDT has risen to the alarm setpoint (80%) for REACTOR COOLANT DRAIN TANK UNIT 1 LEVEL HI-LO

Assuming all systems are functioning correctly, what is the status of the RCDT system?

- a. BOTH RCDT pumps are running and flow is directed to the Holdup Tanks.
- b. BOTH RCDT pumps are running and flow is recirculated back to the RCDT.
- c. ONE RCDT pump is running and flow is directed to the Holdup Tanks.
- d. NEITHER RCDT pump is running and NO flow exists for the system.

- 59 During at-power operations with systems in their normal alignment, what is a normal source of water to the Containment Floor Sump?
 - a. Output from the reactor cavity sump.
 - b. Leakoff from the #2 RCP seals.
 - c. Leakoff from the reactor vessel flange.
 - d. Valve packing leakage from the CVCS letdown isolation valves.
- 60 When aligned for normal operation (BwOP GW-1), how does the Waste Gas System respond to high pressure sensed at the in-service Gas Decay Tank?

An alarm is generated that...

- a. alerts the operator to place an alternate Gas Decay Tank in service.
- b. indicates auto swap of in-service Gas Decay Tank to selected backup Gas Decay Tank, and alerts the operator to align another standby Gas Decay Tank.
- c. indicates auto swap of in-service Gas Decay Tank to selected standby Gas Decay Tank and auto swap of standby Gas Decay Tank to new standby Gas Decay Tank.
- d. shuts down the Waste Gas Compressors and isolates the in-service Gas Decay Tank.
- 61 Area Radiation Monitor for Fuel Bldg Fuel Handling Incident (ORE-AR055) is being manually Check Source tested. What is the response when the monitor's CHECK SOURCE (C/S) pushbutton is depressed at the RM-23 panel?
 - a. The alarm and automatic action output will be blocked, and the RM-23 amber INTLK LED will be lit.
 - b. The alarm and automatic action output will be blocked, and the RM-23 green AVAIL LED willbe lit.
 - c. The alarm will be actuate when value is reached, and the RM-23 amber INTLK LED will be lit.
 - d. The alarm will be actuate when value is reached, and the RM-23 red HIGH LED will be lit.

- 62 . The following conditions exist on Unit 2:
 - Refueling operations are in progress

While using the Fuel Handling Building Crane to move new fuel into the Spent Fuel Pool, the radiation monitor ORE-AR039, Fuel Handling Building Crane Monitor, goes into alarm. What action is affected?

- a. Traverse of the Fuel Handing Building Crane bridge and trolley.
- b. Both lowering and raising the Fuel Handing Building Crane hoist.
- c. Traverse of the Fuel Handing Building Crane trolley and raising the hoist.
- d. Raising the Fuel Handing Building Crane hoist.
- 63 . The following conditions exist on Unit 1:
 - A unit startup is in progress with reactor power raised above 18%.
 - Turbine is at 1800 rpm ready to be synchronized to grid.
 - Motor driven feedwater pump is supplying the S/Gs with Feed Reg Bypass valves in AUTO.
 - Steam Dump demand in AUTO at 12%.
 - Instrument air header pressure begins to slowly drop due to a leak

If the leak CANNOT be isolated and instrument air pressure continues to drop, which of the following would occur?

(Assume NO operator action taken.)

- a. AF recirculation flow to the CST would be lost due to AF recirc failing closed.
- Pressurizer level would increase due to 1CV121 failing open.
- c. The main turbine would auto runback due to Diaphragm Interface Valve (DIV) opening.
- d. RCS temperature would drop to 550°F due to steam dumps failing open.

64 . With the fire protection systems in their normal alignment, what is the affect of a loss of DC power?

Loss of DC control power to the ...

- a. halon control cabinet will cause halon release in the 0A Control Room HVAC Room.
- b. battery control panel will cause automatic start of the diesel driven fire pump.
- c. fire detection system will cause start of the motor driven fire pump.
- d. carbon dioxide system will cause the master discharge valve to fail open pressurizing the CO2 header.

65 . The following conditions exist on Unit 1:

- Reactor power is 30%.
- Rod control is in Automatic
- Tref 564°F
- Tave values 564°F (A); 565°F (B); 565°F (C); 564°F (D)
- Power Range NI 31% (N41); 29% (N42), 30% (N43); 30% (N44)
- Control bank D is at 156 steps.

Which condition would result in continuous rod withdrawal?

- a. Turbine first stage pressure PT-505 fails upscale.
- b. Power Range channel N41 fails upscale.
- c. Loop A Tcold fails downscale.
- d. Tref signal fails downscale.

66 . A Control Bank D rod was dropped from 156 steps. The P-A converter was NOT zeroed when directed by the procedure.

Select the effect of NOT performing this action?

- a. While performing the procedure, the C-11 Rod Stop will be received prior to realigning the rod.
- b. While performing the procedure, the Rod Insertion Limit Alarm will be received at a lower rod position than required.
- c. After the procedure is complete, Bank C control rods will begin insertion at a lower value of Control Bank D.
- d. After the procedure is complete, Bank C control rods will begin insertion at a higher value of Control Bank D.
- 67 . On Unit 1, a loss of all circulating water pumps has resulted in a reactor trip. All control systems respond as expected. Significant decay heat causes RCS temperature to increase following the trip.

At what RCS temperature should temperature stabilize?

Temperature should stabilize at the saturation temperature for...

- a. 1030 psig.
- b. 1092 psig.
- c. 1115 psig.
- d. 1175 psig.
- 68 . If Unit 2 is operating at full load, which group of conditions will result in an automatic reactor trip either directly or indirectly?
 - a. RCP bus frequency(Hz):56.9 (Bus 156) 57.1(Bus 157) 56.9 (Bus 158) 57.2 (Bus 159)
 - b. Power range (%): 107 (N41) 108 (N42) 108 (N43) 109 (N44)
 - c. PZR pressure (psig): 2375 (PT-455) 2380 (PT-456) 2385 (PT-457) 2380 (PT-458)
 - d. S/G C NR level (%): 35 (LT-537) 38 (LT-538) 38 (LT-539) 37 (LT-558)

- 69. With the RCS at normal operating pressure and temperature, what is the condition of the steam entering the PRT at normal conditions, if a PORV opens? (Assume an ideal thermodynamic process).
 - a. Superheated steam at 239°F.
 - b. Superheated steam at 222°F.
 - c. Saturated steam-water mixture at 239°F.
 - d. Saturated steam-water mixture at 222°F.
- 70 What are the parameters used to calculate Subcooling Margin in the SPDS Iconics if only the 1C RCP and 1D RCP are running?
 - a. RCS wide range pressure from loop C hot leg and core exit thermocouple temperatures.
 - b. Pressurizer pressure and core exit thermocouple temperatures.
 - c. RCS wide range pressure from loop A and loop C hot leg, and RCS loop A and loop C hot leg temperatures.
 - d. Pressurizer pressure and RCS loop A hot leg temperature.
- 71. The following conditions exist during performance of BwEP-0.
 - Train A ECCS pumps failed to start.
 - RCS pressure is 1350 psig.
 - Containment pressure of 7 psig.
 - Bus 142 has an overcurrent trip on the normal feeder breaker.
 - SI actuated due to High Containment Pressure.
 - The highest critical safety function is Yellow on Heat Sink.
 - All other equipment and components operated as expected.

Based on the RCP Trip Criteria, the RCPs should

- a. NOT be stopped because NO SI pumps or Charging Pumps are running.
- b. NOT be stopped because RCS pressure is above the trip setpoint.
- c. be stopped because SI flow is established to the RCS.
- d. be stopped because CC flowpath to the RCP motor oil coolers is isolated.

- 72 On a loss of seal injection to the RCPs, what criteria is used to determine if the RCPs should be tripped?
 - a. High temperatures on the RCP seal or bearing outlet temperatures.
 - b. Time elapsed since loss of seal injection.
 - c. RCP Thermal Bearing Cooling Water low flow alarms.
 - d. #1 seal leakoff flow rate decreases to zero.
- 73 . Unit 1 is operating at 100% power when the following alarm is received:
 - RCP SEAL LEAKOFF FLOW LOW (1-7-C3)

The NSO investigates and reports the following additional information:

- RCP 1A seal injection flow is 10.7 gpm
- #1 Seal Leakoff Flow on 1A RCP is 0.4 gpm
- RCP 1A Seal Water Outlet Temperature is 140°F and STABLE
- RCP 1A Bearing Outlet Temperature is 145°F and STABLE

Based on the above information, which of the following events has occurred?

- a. RCP 1A #1 Seal has failed closed
- b. RCP 1A #1 Seal has failed open.
- c. RCP 1A #2 Seal has failed closed.
- d. RCP 1A #2 Seal has failed open.
- 74 . Given the following:
 - The plant is at 90% power with ALL controls in AUTO.
 - VCT level transmitter, LT-112, fails HIGH causing a letdown diversion.

What will occur if NO operator action is taken?

VCT level decreases...

- a. until Auto makeup starts and maintains VCT level.
- b. with NO auto makeup capability and charging suction shifts to RWST.
- c. faster than auto makeup input and charging suction shifts to RWST.
- d. until charging pumps lose suction and start to cavitate.

- 75 . Given the following after a reactor trip:
 - THREE rods remain withdrawn.
 - Due to equipment malfunctions boration is only available from the RWST.
 - Charging flow rate 132 gpm.
 - RCS boron concentration was 1050 prior to the trip.
 - 120 gpm letdown in service.

Of the listed times, which would be minimum acceptable time that boration from the RWST would have to occur?

- a. 1 Hour
- b. 2 Hours
- c. 3 Hours
- d. 4 Hours

76 . The following conditions exist on Unit 1:

- The plant was shutdown 81/2 days ago to repair a steam generator tube leak.
- Reactor vessel level is at 397' 1" with Thot at 212°F.
- A loss of RHR pumps due to cavitation has occurred

Which of the following is the smallest amount of flow that meets the minimum makeup flow required to maintain current RCS level?

- a. 80 gpm
- b. 72 gpm
- c. 59 gpm
- d. 45 gpm

- 77 . The following conditions exist on Unit 2:
 - MODE 5 operation during normal cooldown
 - RCS temperature 195° F
 - RCS pressure 325 psig
 - Train A RH in service, train B RHR tagged out for repairs

What is the preferred method of core cooling if a loss of RH cooling occurs?

Alternate RCS cooling using...

- a. bleed and feed using reactor head vents.
- b. the S/Gs.
- c. normal charging and RHR letdown.
- d. SI Pump cold leg injection

78 . The following conditions exist on Unit 1:

- The reactor is shutdown.
- RHR is in shutdown cooling.
- RCS temperature is 300°F.
- RCS pressure is 160 psig.
- CCW surge tank level is decreasing

What leak locations will produce these indications?

- a. RHR Heat Exchanger
- b. Thermal Bearing Heat Exchanger
- c. Letdown Heat Exchanger
- d. Seal Water Heat Exchanger

79 . The following conditions exist on Unit 2:

- Reactor power is 100%
- Pressurizer pressure control is in automatic.

What is the immediate response of the pressure control system if the Master Pressure Controller setpoint is inadvertently changed to 2330 psig (step change)?

- a. PORV RY455A cpens and spray valves open.
- b. PORV RY455A opens, spray valves open, and all heaters energize.
- c. Spray valves open and proportional heaters go to minimum.
- d. Spray valves close and proportional heaters go to maximum.
- 80 . The following conditions exist on Unit 1:
 - Reactor power is 100%
 - All systems are in automatic
 - Channel I Pressurizer Pressure Channel (PT-455) was declared inoperable and taken out of service with the appropriate bistables placed in the tripped condition.
 - Controlling pressurizer pressure channel (PT-457) fails high

Assuming NO operator action, what is the plant response to the channel failure?

- a. Both PORVs and both spray valves open resulting in a reactor trip from low pressurizer pressure followed by SI actuation.
- b. The reactor will trip immediately on high pressure, and safety injection will actuate on low pressure due to spray valve operation.
- c. Pressurizer proportional heaters will de-energize and spray valves will open resulting in an OTdT runback prior to tripping, and safety injection will actuate due to low pressurizer pressure.
- d. Both PORVs and both spray valves remain closed while pressurizer heaters de-energize.

- 81. The plant is operating at 100% power with all control systems in AUTO. The following parameters are noted:
 - Letdown Hx outlet flow (FI-132) 75 gpm
 - Charging Header flow (FI-121) 87 gpm
 - Total seal injection flow (FI-142 -FI -45) 33 gpm

What is the effect on total seal injection flow initially if controlling Pzr level channel LT-459 fails LOW?

Total seal injection flow will...

- a. decrease to 0 gpm.
- b. decrease to approximately 20 gpm.
- c. remain approximately 33 gpm.
- d. increase to greater than 40 gpm.
- 82 The following conditions exist on Unit 1:
 - At t= 0 sec, Turbine load was decreased below 352 MW (30% power)
 - At t=240 sec, The running main feedwater pump tripped. The reactor did NOT trip due equipment malfunction.
 - At t=250 sec, All feedflow indications decrease to 0% flow
 - At t=320 sec, All steam generator levels decrease below 15%.

Based on this information, AMS would ...

- a. initiate at t=320 sec.
- b. initiate at t=345 sec.
- c. initiate at t=360 sec.
- d. NOT initiate because C-20 is cleared.

83 The following conditions exist on Unit 1:

- Reactor startup in progress
- Intermediate power range indication: 2.5E-5 amp N35 & 2.8E-5 amp N36
- SOURCE RANGE PERMISSIVE P-6 permissive light clear
- SOURCE RANGE TRIP ACTIVE permissive light clear
- Source Range Channel N31 High voltage power supply fails to half its normal value

What indication(s) would be available to alert the operator to this failure?

- a. None, until power is lowered below the P-6 setpoint, and then the Source Range N31 indication will indicate lower than expected.
- b. None, until power is lowered below the P-6 setpoint, and then the Source Range N31 indication will indicate higher than expected.
- c. Annunciator SR HIGH VOLTAGE FAILURE (1-10-B1) will alarm when power exceeds P-10.
- d. Annunciator SR HIGH VOL GE FAILURE (1-10-B1) will re-flash when the voltage source fails.

84 The following conditions exists on Unit 2:

- Plant shutdown is in progress.
- All power range channels indicate 6% reactor power.
- Intermediate range channel N-36 fails HIGH.

What is the plant response to this failure?

- a. The reactor will trip on high IR flux, and source range trip will reinstate when N-35 decreases below P-6.
- b. The reactor will trip on high IR flux, and source range trip will NOT be reinstated.
- c. The reactor will NOT trip immediately, but will trip when the source range trip is reinstated when N-35 decreases below P-6
- d. The reactor will NOT trip, and source range trip will NOT be reinstated.

85 The following conditions exist on Unit 1:

- Reactor power is 75%
- Troubleshooting has commenced due to reduced condenser vacuum with the air ejectors out of service.
- Hogging vacuum pumps are aligned to the main condenser to aid in maintaining vacuum.

What would be an indication of a Steam Generator Tube Leak under these conditions?

- a. Increasing radiation level on 1RE-PR027, "SJAE/Gland Steam Exhaust Monitor".
- b. Decreasing S/G level for ONE S/G.
- c. Increasing feedwater flow to ONE S/G.
- d. Decreasing charging header flow to RCS.
- 86 .BwEP-3 "Steam Generator Tube Rupture" is being performed in response to a tube rupture on 2C S/G. The cooldown has just been completed but the target temperature value selected by the operators was higher than that stipulated in the procedure.

What condition could result because of this error?

- a. Loss of RCS subcooling before RCS and ruptured S/G pressures are equalized.
- b. Increase in pressure of the ruptured S/G with resultant lifting of the S/G Safety Valve.
- c. Increase in pressure of the non-ruptured S/Gs with resultant lifting of their S/G Safety Valves.
- d. Filling the Pressurizer solid during the subsequent depressurization.

87 . The following conditions exist on Unit 1:

- The Unit was in MODE 3 at normal operating temperature and pressure prior to the event.
- A faulted steam generator has occurred.
- RCS hot leg temperatures 547°F (A), 544°F (B), 545°F (C), 547°F (D)
- RCS cold leg temperatures 545°F (A), 530°F (B), 543°F (C), 545°F (D)
- S/G pressures 700 psig (A), 635 psig (B), 690 psig (C), 705 psig (D)
- S/G flow 0.85 MLB/hr (B)
- Containment pressure (Channel) 8 psig (1), 7.5 psig (2), 7.5 psig (3), 8 psig (4)

Based on these conditions, a main steam line isolation should...

- a. have occurred because of the low pressure in at least ONE S/G.
- b. have occurred because the steamline high negative rate occurred in S/G 1P.
- c. NOT have occurred because Containment pressure is below the setpoint for the CNMT High-2 pressure signal.
- d. NOT have occurred because THREE S/Gs have pressures above the isolation setpoint and do NOT indicate high steam flow.

88 . The following conditions exist on Unit 1 following a trip from 100% power:

- Pressurizer level is 0%
- Pressurizer pressure is 1500 psig
- Containment Pressure is 16 psig.
- Tcold is 420°F for all loops.

Where is the location of the leak?

- a. On one loop RCS cold leg.
- b. On a Main Steam Line inside containment.
- c. In a Steam Generator Tube.
- d. On a feedwater line between FWRV and Associated FWIV, 1FW009.

- 89 . In accordance with BwOA SEC-3, "Loss of Condenser Vacuum", which of the following sets of conditions requires the operator to trip the reactor?
 - a. LOW POWER TRIP BLOCKED P-8 annunciator LIT Turbine load - 200 MW Condenser pressure - 5.2 " HgA
 - LOW POWER TRIP BLOCKED P-8 annunciator LIT Turbine load - 300 MW Condenser pressure - 5.3" HgA
 - c. LOW POWER TRIP BLOCKED P-8 annunciator CLEAR Turbine load - 600 MW Condenser pressure - 7.2" HgA
 - d. LOW POWER TRIP BLOCKED P-8 annunciator CLEAR Turbine load - 900 MW Condenser pressure - 7.8" HgA
- 90 . Select the primary basis for rapidly depressurizing the steam generators during a Loss of All AC.
 - a. To provide maximum core cooling until power can be restored.
 - To minimize RCS inventory loss from RCP seals.
 - c. To enhance restoration of S/G level from the diesel driven AF pump.
 - d. To increase subcooling of the RCS.
- 91. How would the sequencer operate if a Safety Injection (SI) actuation occurs while the sequencer is sequencing loads in response to an ESF bus undervoltage condition?
 - a. There will be no change in operation; the undervoltage sequence overrides the SI sequence.
 - b. The undervoltage sequencing stops, the sequencer immediately resets and SI loads NOT already running will sequentially start.
 - c. The undervoltage sequencing stops, all started loads are shed, and SI loads will sequentially start.
 - d. The undervoltage sequencing completes its cycle, then resets to SI mode, and SI loads NOT already running will sequentially start.

- 92 . The following conditions exist on Unit 1:
 - Bus 141 is powered from its normal source
 - D/G 1A surveillance is being performed with the D/G paralleled to the bus

What would occur if a failure of the undervoltage relay results in a sensed undervoltage condition on Bus 141?

- a. SAT feeder breaker ACB 1412 and D/G feeder breaker ACB 1413 remain closed. The Safe Shutdown loads will NOT sequence and CANNOT be manually started from the control room.
- b. SAT feeder breaker ACB 1412 and D/G feeder breaker ACB 1413 will open. After a 10-second delay, ACB 1413 will close and the Safe Shutdown loads will sequence.
- c. SAT feeder breaker ACB 1412 will open but D/G feeder breaker ACB 1413 will remain closed. The Safe Shutdown loads will sequence normally.
- d. SAT feeder breaker ACB 1412 will open but D/G feeder breaker ACB 1413 will remain closed. The Safe Shutdown loads will NOT sequence and CANNOT be manually started from the control room.

93 On Unit 1 power is lost to 120 VAC Instrument Bus 111

How are the ESF and Safe Shutdown loads affected?

- a. "A" Train ESF loads will NOT load on an SI signal, but Safe Shutdown loads will load on a U/V signal.
 "B" Train loads arc NOT affected.
- A" Train ESF loads will load on an SI signal, but Safe Shutdown loads will NOT load on a U/V signal.
 "B" Train loads are NOT affected.
- c. "A" Train ESF loads will NOT load on an SI signal, and Safe Shutdown loads will NOT load on a U/V signal.
 "B" Train loads are NOT affected.
- d. "A" Train AND "B" Train ESF loads will NOT load on an SI signal, but Safe Shutdown loads will load on a U/V signal.

- 94 . Select the method used for transferring controls to the remote shutdown panels PI.04/05J.
 - Placing applicable transfer switches in LOCAL on RSP.
 - b. Opening the isolation switches in the Auxiliary Electric Room.
 - c. Deenergizing normal control power to individual controls.
 - d. Taking local controls out of the PULL-TO-LOCK position.
- 95. When inadequate core cooling exists, which of the following sets of actions states the proper sequence of the major action categories to be performed in accordance with BwFR-C.1, "RESPONSE TO INADEQUATE CORE COOLING", for removing decay heat from the core?
 - a. Reinitiation of safety injection; RCP restart; rapid secondary depressurization.
 - b. Reinitiation of safety injection; rapid secondary depressurization; RCP restart.
 - c. RCP restart; reinitiation of safety injection; rapid secondary depressurization.
 - d. RCP restart; rapid secondary depressurization; reinitiation of safety injection.
- 96 High coolant activity has been detected and chemistry has determined that it is due to corrosion product activation.

Identify the effect of placing the cation demineralizer in service.

The cation demineralizer...

- a. will remove lithium so it should NOT be used in this condition.
- b. will cause the activity level to decrease as soon as it is placed in service.
- c. is NOT effective in removing corrosion product activity.
- d. is less effective than the mixed bed demineralizer so it is placed in service ONLY if decontamination factor is less than 10.

97 . The following conditions exist on Unit 1:

- Reactor power was 8% prior to the event below.
- A failure in the feedwater control system caused ONE S/G level to exceed P-14.
- The main turbine tripped.
- S/G levels have returned to their normal level range
- The Startup FW Pump is running

What are all the conditions that would have to be met to feed the S/Gs using the FW034's Feedwater Tempering Flow Control valves?

- a. The FW Isolation Aux Relays would have to be reset and FW035 Feedwater Tempering Isol valves opened.
- b. The reactor trip breakers would have to be cycled, the FW Isolation Aux Relays would have to be reset and FW035 Feedwater Tempering Isol valves opened.
- c. The FW Isolation Main Relays and Aux Relays would have to be reset and FW035 Feedwater Tempering Isol valves opened.
- d. The reactor trip breakers would have to be cycled and FW Isolation Main Relays and Aux Relays reset and FW035 Feedwater Tempering Isol valves opened.

98 The following conditions exist on Unit 1:

- A leak developed on the RCS loop C flow instrument piping.
- Coincident with the RCS leak, on the reactor trip a S/G PORV failed open and was later isolated.
- FR-P.1 was entered to due to an ORANGE PATH condition.
- SI actuated and has been reset.
- All RCPs are stopped.
- Conditions required to support an RCP start are met.

What is the basis for operation of a RCP?

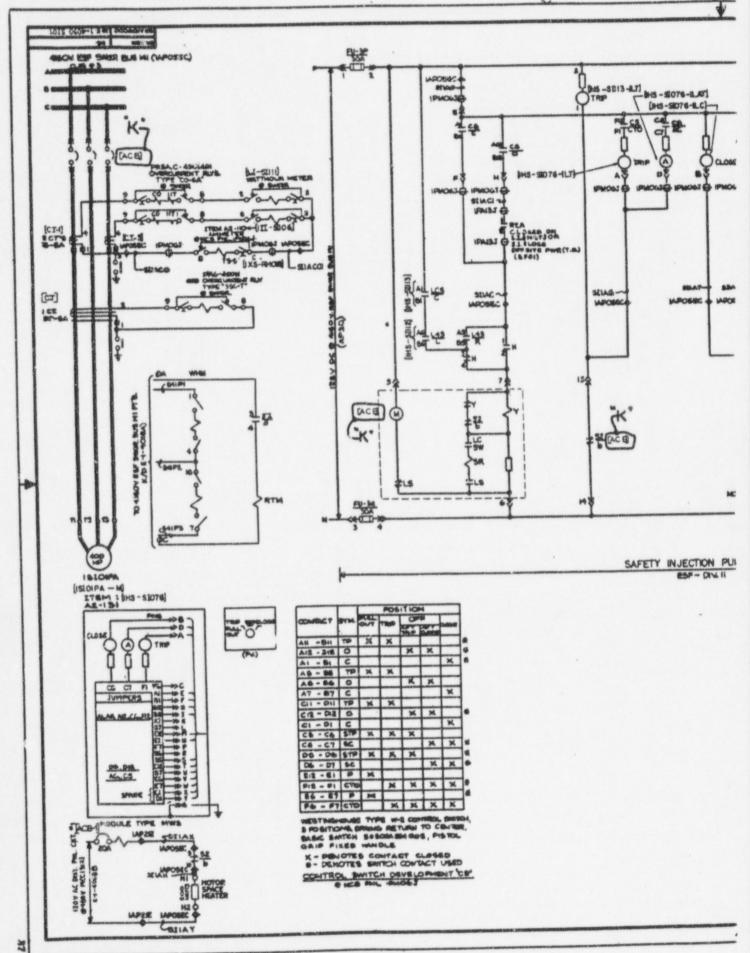
Under the current conditions starting the RCP will

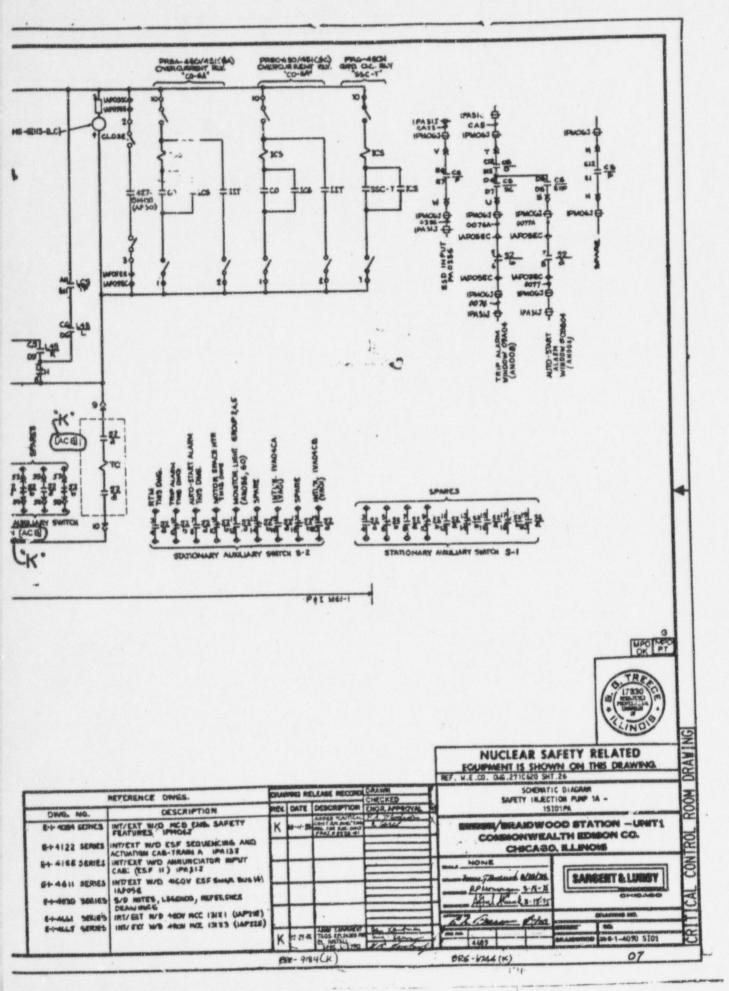
- a. cause excessive thermal stresses in the stagnant loops.
- b. cause a pressure surge that will aggravate the PTS condition.
- c. provide mixing of the ECCS injection flow thereby decreasing the likelihood of PTS.
- d. increase the RCS cooldown rate thereby increase the likelihood of PTS.

99. Why is it important to run the CRDM vent fans when performing a natural circulation cooldown?

- a. Aids the operator in maintaining subcooling in the reactor vessel head.
- b. Aids in natural circulation flow through the RCS head region.
- c. Minimizes stresses on the reactor vessel head due to uneven cooldown.
- d. Aids in natural circulation flow through the RCS.
- 100 . Why are the S/Gs depressurized to less than 670 psig according to BwCA-1.1, "Loss of Emergency Coolant Recirculation"?
 - a. To allow maximum AFW flow to the S/Gs.
 - b. To ensure adequate subcooling for restart of the RCPs.
 - c. To set up conditions for controlled injection to the RCS from the accumulators.
 - d. To decrease RCS temperature and pressure which reduces break flow in a LOCA condition.

GENERIC FUNDAMENTALS EXAMINATION EQUATIONS AND CONVERSIONS HANDOUT SHEET

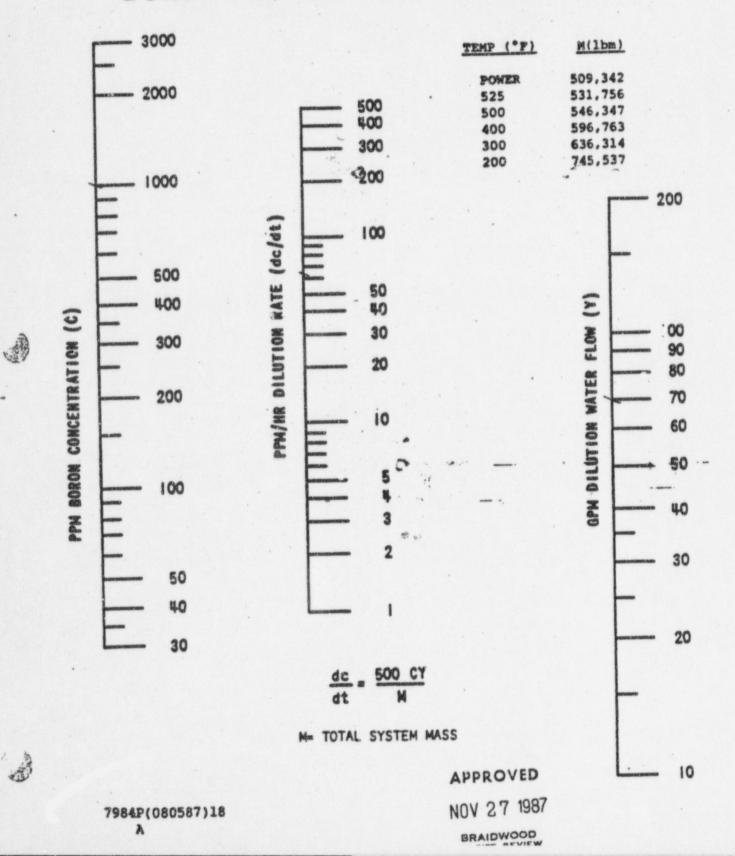

4

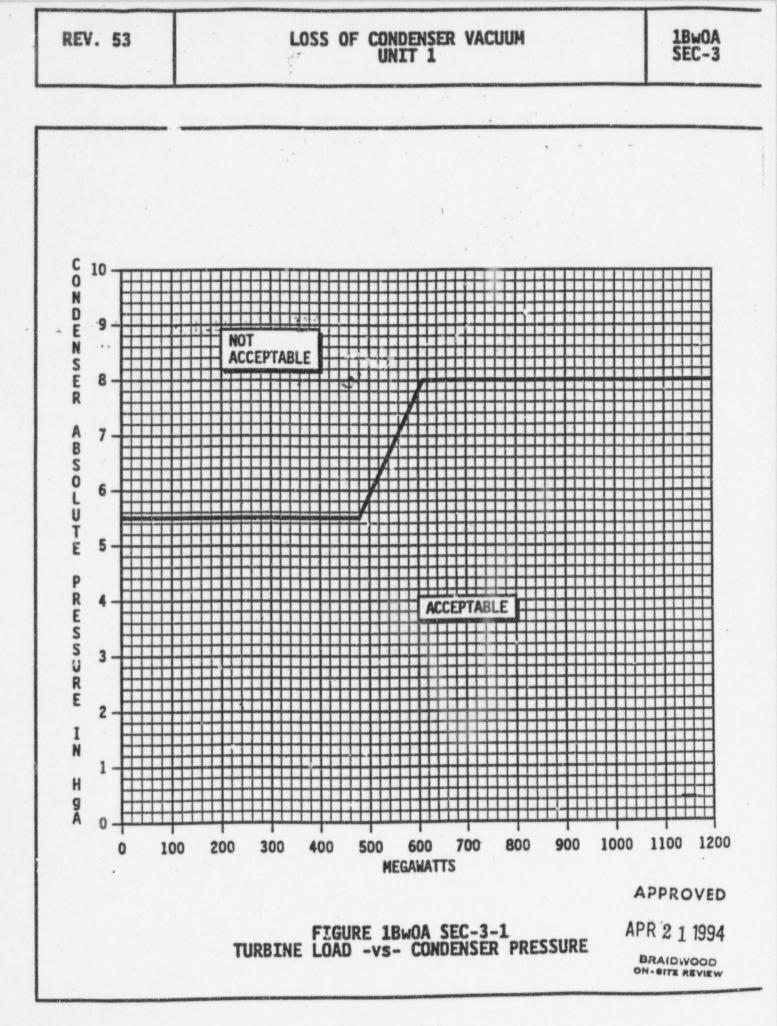

	BOUATIONS					
$\dot{Q} = \dot{m}C_{p}\Delta T$	P = P.10 ^{SUR(L)}					
$\dot{q} = \dot{m} \Delta h$	$P = P_o e^{(t/r)}$					
$\dot{Q} = UA\Delta T$	$A = A_{o}e^{-\lambda t}$					
Q or m ³ _{Nat Circ}	$CR_{S/D} = S/(1 - K_{eff})$					
AT a mat Circ	$CR_1(1 - K_{eff1}) = CR_2(1 - K_{eff2})$					
	$1/M = CR_1/CR_X$					
$K_{eff} = 1/(1 - \rho)$	DRW $\propto \phi_{tip}^2 / \phi_{avg}^2$					
$\rho = (K_{eff} - 1) / K_{eff}$ SUR = 26.06/7	F = PA $\dot{m} = \rho A \hat{v}$					
$\tau = \frac{\overline{\beta} - \rho}{\lambda_{\text{sff}} \rho}$	$\dot{W}_{Pump} = \dot{m} \Delta P v$					
$\rho = \frac{\ell^*}{\tau} + \frac{\overline{\beta}}{1 + \lambda_{eff}\tau}$	E = IR Eff. = Net Work Out/Energy In $u(P_{1} = P_{1}) \pm (\bar{v}^{2} = \bar{v}^{2}) \pm \sigma(\bar{v} = \bar{v}) = 0$					
$\ell^* = 1 \times 10^{-4}$ seconds	$v(P_2 - P_1) + \frac{(\bar{v}_2^2 - \bar{v}_1^2)}{2g_c} + \frac{g(z_2 - z_1)}{g_c} = 0$					
$\lambda_{eff} = 0.1 \text{ seconds}^{-1}$	$g_c = 32.2 lbm-ft/lbf-sec^2$					

CONVERSIONS

400-000-000-000-000		935 938 955 33 45 48 48 48 48 48 48 48 48 48 48 48 48 48	
1 Mw	882	3.41×10^6 Btu/hr	$1 \text{ Curie} = 3.7 \times 10^{10} \text{ dps}$
1 hp	-	2.54 x 10 ³ Btu/hr	1 kg = 2.21 lbm
1 Btu	=	778 ft-lbf	1 galwater = 8.35 lbm
°C	=	(5/9)(°F - 32)	$1 \text{ ft}_{water}^3 = 7.48 \text{ gal}$
°F	-	(9/5)(°C) + 32	

And a stand of the stand of the

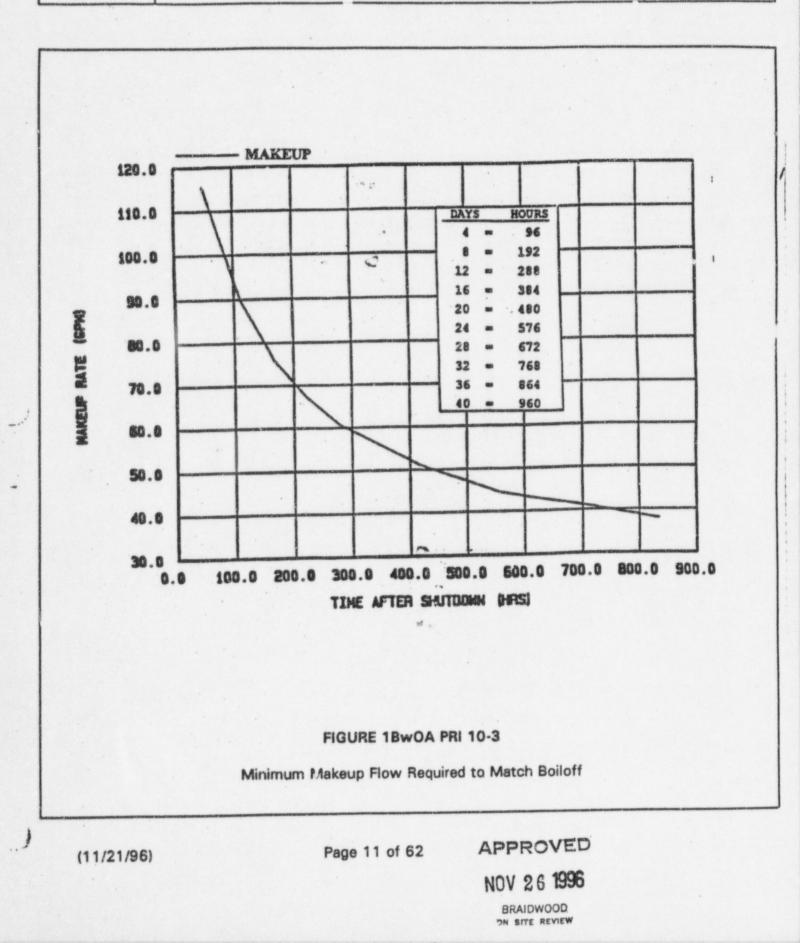



BWCB-2 Figure 12 Rev. 0 8/10/87 Page 1 of 1 MULTIPLE USE

BORON DILUTION RATE NOMOGRAPH

-

2



REV. 57

LOSS C RH COOLING UNIT - 1

1BWOA PRI-10

R	E	V		1	D
W	0	G	1	B	

REACTOR TRIP RESPONSE UNIT 1

1BwEP ES-0.1

ACTION/EXPECTED RESPONSE

- 5 VERIFY ALL CONTROL RODS FULLY INSERTED:
 - All rod bottom lights LIT

RESPONSE NOT OBTAINED

Perform the following:

- a. <u>IF</u> two or more rods are <u>NOT</u> fully inserted, <u>THEN</u> emergency borate <u>1200 GAL (3600 GAL FROM</u> <u>RWST)</u> for each rod <u>NOT</u> fully inserted per 1BwOA PRI-2, EMERGENCY BORATION.
- *b. Within <u>1 HOUR</u> calculate Shutdown Margin oer 1BwOS 1.1.1.1.e-1, SHUTDOWN M 'IN VERIFICATILA DURING SHUTDOWN (1BWOSR 3.1.1.1):

JUN 1 0 1998

BRAIDWOOD ON SITE REVIEW

38 m.

4

1.d		26.c
2.c	**	27 .d
3.c		28.d
4.a		29.a
5.c		30.c
6.a		31 .d
7.b		32.c
8.a		33.b
9.b		34.c
10 .d		35 . d
11 .d		36 . d
12.b		37.c
13.c		38.c
14 .a		39.c
15.c		40.d
16.c		41.d
17 .b		42.c
18 .a		43.b
19.d		44.a
20.c		45 .d
21.c		46.c
22 .c		47.c
23 .a		48.c
24 .d		49.d
25.b		50.b

Page 1

4

51 .c	76.b
52 .b	77 .b
53 .a	78.d
54 .b	79.d
55 .a	80 . b
56 .b	81 .d
57 .c	82 .b
58 .d	83.a
59.a	84 .b
60.b	85.a
61 .b	86 .a
62 .d	87.a
63.b	88 . b
64 .d	89.b
65.a	90.b
66 .a	91 .b
67.c	92 .d
68.a	93.c
69 . d	94 .a
70.a	95.b
71.a	96 . b
72.a	97.a
73 .d	98.c
74 .d	99.a
75.b	100.c

Page 2

Evaluation of requirement for "active" license

An operator sits for the NRC License Operator Examination (Initial), successfully passes the Examination and is granted an NRC Senior Operator License or Reactor Operator license this month. What are the requirements for having the license on ACTIVE STATUS?

- The individual must meet the time on shift requirements of SEVEN 8-hour shifts before the license is in ACTIVE STATUS.
- b. The license is considered in ACTIVE STATUS for the current quarter ONLY.
- c. The individual must meet the time on shift requirements of SEVEN 8-hour shifts to have a license in ACTIVE STATUS for the next guarter.
- d. The license is considered in ACTIVE STATUS for the current and next quarter.

Answer d	Exam Level B	Cognitive Level	Memory	Facility: Braidwood	ExamDate:	9/14/98
KA: 2.1.1	RO Value:	3.7 SRO Val	ue: 3.8 Section:	PWG RO Group:	1 SRO Group:	1
System/Evolutio	on					

KA

Knowledge of conduct of operations requirements.

Explanation of Answer

Reference Title/Facility Reference Number

Braidwood Ops Memo #2-97 issued 5/1/97 rev. 0

Bwd Tsk List

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment 4

Question Modification Method:

Revisio L.O.

Task P1-AM-TK-180

Direction of NLO personnel

The following conditions on Unit 1:

- Reactor power 45%
- 1A and 1C Feedwater pumps are operating
- FW PUMP TURB BRNG OIL LEVEL HIGH LOW annunciator (1-16-D3) alarms and the SER monitor indicates a low level.
- An EA is dispatched and confirms a low level exists.

In performing actions to correct the condition (per BWOP TO-08 "Filling a Turbine Feed Pump Oil Reservoir"), what is the normal relationship between the US, the NSO and the EA?

- a. The US will direct the EA's activities, but will inform the NSO before the job commences.
- b. The US will direct the EA's activities, and need NOT inform the NSO unless unit controls are affected.
- c. The NSO will direct the EA's activities, but will inform the US before the job commences.

a. The NSO will direct the EA's activities, and need NOT inform the US unless unit load is affected.

Answer C	Exam Level B	Cognitive Level	Comprehension	Facility: Braidwood	ExamDate:	9/14/98
KA: 2.1.1	RO Value:	3.7 SRO Va	iue: 3.8 Section	PWG RO Group:	1 SRO Group:	1
System/Evoluti	no					
KA						
	Knowledge of conduct	of operations requ	irements.			
Explanation of Answer						

Reference Title/Facility Reference Number aidwood Task List Revisio L. O. Task P1B-AM-TK-130

Material Required for Examination Question Source: New

Question Modification Method:

Question Source Comments:

Comment Type Comment

Page 2 of 127

Operating Daily Orders

How is a procedure change, which significantly changes normal processes, procedurally conveyed to Licensed members of the operating crew?

- a. The SM places the applicable information in the Daily Order Book, and issues an additional memo to all crew personnel that is initialed.
- The SM is informed by memo of the addition to the Daily Order Book, and makes an announcement of the addition during the shift briefing.
- c. The SOS places the applicable information in the Daily Order Book, and the individual operator is responsible for reviewing the Daily Order.
- d. The US places the applicable information in the Daily Order Book, and makes an announcement of the addition during the shift briefing.

Answer C Exam Level B Cognitive Level M	emory Fac	ility: Braidwood	ExamDate:	9/1	14/98
KA: 2.1.2 RO Value: 3.0 SRO Value:	4.0 Section: PV	G RO Group:	1 SRO Group:	1	
System/Evolution					
KA Knowledge of operator responsibilities during	all modes of plant operatio	n.			
Explanation of Answer	0				
Reference Title/Facility Reference Number	Section	Page	Revisio	L. O.	
BwAP 350-2 rev. 6	C.7.b.4)	14			
intro to Main Control Room Ops Lesson Plan				6	
Braidwood Task List			Tas	sk P1-AM-TK-025	
Material Required for Examination					
Question Source: New	Question	Modification Method	i:		
Question Source Comments:					
Comment Type Comment					

Procedure required usage

An example of a licensed operator evolution that can be performed WITHOUT either referring to an operations procedure or having a procedure in-hand is ...

- a. Adjusting rod position following a boration.
- b. Starting the 1A Heater Drain Pump.
- c. Placing excess letdown in service.
- a. Latching and rolling up the main turbine.

Answer a	Exam Level B	Cognit	tive Level	Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 2.1.23	RO Value:	3.9	SRO Value	e: 4.0	Section:	PWG	RO Group:	1	SRO Group:	1	
System/Evolutio	m										

KA

Ability to perform specific system and integrated plant procedures during all modes of plant operation.

Explanation of

Answer

Reference Title/Facility Reference Number		Section	Page	Revisio L. O.
Use Of Procedures For Operating Department Braidwood Task List	BwAP 340-1	C.1.f.3)	pg 4,5	rev.12 Task P1-AM-TK-022

.

Material Required for Examination Question Source: New

Question Modification Method:

Question Source Comments:

Comment Type Comment

Question Use o

Use of electrical prints

Assuming an auto-close signal is continuously present in the circuit for the 1A SI pump, which contact will be maintained open in order to prevent the starting relay (SR) from attempting repeated breaker closures onto a faulted bus?

(E 1-4030-SI01 is provided for use.) . LC SW b. 52/b c. Y d. LS ExamDate: Cognitive Level Comprehension Facility: Braidwood Answer C Exam Level B 9/14/98 1 SRO Group: PWG 1 2.8 SRO Value: 3.1 Section: **RO Group:** KA: 2.1.24 **RO Value:** System/Evolution KA Ability to obtain and interpret station electrical and mechanical drawings. Explanation of "Y" is an antipump relay that when prevented from energizing interrupts the circuit that energizes the START relay in the AUTO mstart circuit Answer - 14 Section/Page Revisio L. O. Reference Title/Facility Reference Number Schematic Diagram Safety Injection Pump 1A 20E-1-4030SI01 rev. 5 2c. 3 pg 23 Print Reading Lesson Plan Chap 3 **Material Required for Examination Question Modification Method: Editorially Modified Question Source:** Facility Exam Bank **Question Sourca Comments:** Braidwood regual bank **Comment Type** Comment

MOV tagout

An operator is preparing an OOS that designates 1CC685, RCP Thermal Barrier CC Return CNMT Isolation valve, as an isolation point.

What is the acceptability of using this isolation point?

The OOS is...

- a. acceptable only if the MOV is tagged at its control switch, power supply and valve handwheel.
- acceptable only if the MOV is tagged at its control switch, power supply and a blocking device is placed on the valve.
- c. NOT acceptable because the MOV fails to meet isolation requirements.
- d. NOT acceptable because the valve fails open on a loss of power.

 Answer
 a
 Exam Level
 B
 Cognitive Level
 Comprehension
 Facility:
 Braidwood
 ExamDate:
 9/14/98

 .tA:
 2.2.13
 RO Value:
 3.6
 SRO Value:
 3.8
 Section:
 PWG
 RO Group:
 1
 SRO Group:
 1

 System/Evolution
 Evolution
 Evol

KA

Knowledge of tagging and clearance procedures.

Explanation of Valve is MOV and requirements include tagging control switch, electrical power supply and local handwheel if Answer accessible.

Section/Page

D.4.a pg 12 D.4.c.1) pg 14

Reference Title/Facility Reference Number

BwAP 330-1 Out of Service Process

"raidwood Task List

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Revisio

LO.

Task P1-AM-TK-010

Question Modification Method:

RCS level discrepancy during refueling

The following conditions exist for Unit 1:

- Unit shutdown and cooldown initiated 120 hours ago
- Lowering of RCS level to the reactor vessel flange is underway
- RCS temperature 95°
- RCS level Control Room indicators: 1LI-RY046 401' 0"
 - 1LI-RY049 402' 1"
- RH loop 1A in operation with "normal" indications

What is the appropriate action for these conditions?

- a. The lowering of RCS level can continue.
- b. The level change must be stopped until the cause for the level discrepancy is determined.
- c. When temperature correction is applied to the highest Control Room level indication, the running RHR pump must be stopped to prevent cavitation.
- d. When temperature correction is applied to the lowest Control Room level indication, the available SI Pump aligned for hot leg injection must be started.

KA: 2.2.26 System/Evolutio KA	Exam Level B RO Value n Knowledge of refuel With any level of	ing administrative	Value: 3.7 e requirements.	Section: F	PWG I	raidwood RO Group: st be determ	1 SRO	Date: Group	
Answer	continue.	mber	Se	ection/Page			Rev	visio l	L. O.
BWOP RC-4 Reacto	or Coolant System	Drain		D.1			12	E1	
BwGP 100-6 Refue	ling Outage lesson	plan					1	12	2
Material Require Question Source Question Source		Bank Joa exam bank		Questi	ion Modifi	cation Method	: Sign	ificantly Modif	ied -
Comment Type NRC	Comment	ndustry Event							

RO duties in Control Room during refueling

What is a responsibility of the NSO during refueling operations?

- a. Checking source range counts while a fuel assembly is being placed in the core.
- b. Ensuring water level in spent fuel pool is at least 23' above the fuel.
- c. Maintaining a 1/M plot while reloading fuel during a core shuffle.
- Monitoring the manipulator crane position by updating the Control Room tag board.

Answer a E	xam Level B	Cognitive Level	Memory	Facility: Braidwood	ExamDate:	9/14/98
KA: 2.2.32	RO Value:	3.5 SRO Va	ue: 3.3 Section:	PWG RO Group:	1 SRO Group:	1
for a start of the second start is a start in the second start is a start in the second start is a						

System/Evolution

KA

Knowledge of RO duties in the control room during fuel handling such as alarms from fuel handling area, communication with fuel storage facility, systems operated from the control room in support of fueling operations, and supporting instrumentation.

Explanation of Answer

Reference Title/Facility Reference Number	Section/Page	Revisio L. O
BwAP 2000-38 Reactivity Management	F.2.h.6) pg 11	2E2
Braidwood Task List		Task P1-QG-TK-051

Braidwood Task List

Material Required for Examination **Question Source:** New

Question Modification Method:

Question Source Comments:

Comment Type Comment Question Radiation exposure determination

An operator has the following exposure history this year until today:

Deep Dose Equivalent (DDE)	-	210 mrem
CEDE)	-	45 mrem
Shallow Dose Equivalent (SDE)	-	33 mrem
Committed Dose Equivalent (CDE)	-	28 mrem

Today the operator was required to make two entries into containment:

Entry 1: Gamma dose - 52 mrem; Neutron dose - 24 mrem Entry 2: Gamma dose - 124 mrem

How much radiation exposure is available to the operator if he has to make additional entries?

His available margin based on the routine Administrative Exposure Control Levels is...

- a. 100 mrem for that day; 2484 mrem for the year.
- b. 100 mrem for that day; 2545 mrem for the year.
- c. 124 mrem for that day; 2569 mrem for the year.
- d. 124 mrem for that day; 2614 mrem for the year.

Answer D Exam Level B Cognitive Level Comprehension Facility: Braidwood ExamDate: 9/14/98 KA: 2.3.1 RO Value: 2.6 SRO Value: 3.0 Section: PWG **RO Group:** 1 SRO Group: 1 System/Evolution

A

Knowledge of 10 OFR: 20 and related facility radiation control requirements.

Explanation of Limits are 300 mrem routine DDE/Day and 3000 mrem routine cumulative TEDE/year. C. Neutron rad not counted for daily & yearly; A. All counted for yearly; d. previous DDE+CEDE only counted for year.

Section/Page

Reference Title/Facility Reference Number

Selected BwRPs Lesson Plan

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

L. O.

2,3.4

Revisio

Rev. 00

Fuel Handling Accident Response

The following conditions exist on Unit 1:

- Refueling operations in progress
- A HIGH alarm received on radiation monitor 1RE-AR012, Containment Fuel Handling Incident

When should the NSO initiate action and what action should he/she take from the control room?

Indication of a fuel handling accident is considered when a...

- report is received from personnel in containment. The operator starts the containment charcoal filter fans.
- report is received from personnel in containment. The operator actuates Unit 1 CNMT evacuation alarm.
- c. corroborating rise is indicated on monitor 1RE-AR011. The operator starts the containment charcoal filter fans.
- corroborating rise is indicated on monitor 1RE-AR011. The operator actuates Unit 1 CNMT evacuation alarm.

Answer d	Exam Levei R	Cognit	live Level (Compreh	ension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 2.3.10	RO Value:	2.9	SRO Value:	: 3.3	Section:	PWG	RO Group:	1	SRO Group:	1	
System/Evolution	on										

Ability to perform procedures to reduce excessive levels of radiation and guard against personnel exposure.

Explanation of Answer

KA

 Revisio
 L. O.

 BwOA REF-1 Lesson Plan
 Rev. 0
 2,3,4

 Material Required for Examination
 Question Modification Method:

Question Source Comments:

Comment Type Comment

Friday, July 24, 1998 4:33:53 PM

Page 14 of 127

Performance of Status Trees/Function Restoration

The following conditions exist on Unit 1:

- A reactor trip has occurred and both reactor trip breakers are verified open
- The turbine has tripped
- BwEP-0 "Reactor Trip OR Safety Injection" has been entered.
- BUS 141 ALIVE light is NOT lit with bus voltage at ZERO volts
- BUS 142 ALIVE light is lit with bus voltage at 4149 volts.

Which of the following describes the actions the operators are required to take?

- Continue with next step of BwEP-0.
- b. Turn on the synchroscope and manually close ACB 1412, SAT 142-1 feed breaker.
- c. Manually start 1A D/G and verify ACB 1413, D/G output breaker, closes.

d. Initiate actions of BwOA ELEC-3 and continue with next step of BwEP-0.

Answer d Exam Level B Cognitive Level	Memory Facility: Braidwood	ExamDate:	9/14/98
KA: 2.4.16 RO Value: 3.0 SRO Value	: 4.0 Section: PWG RO Group:	1 SRO Group:	1
System/Evolution			
КА			
Knowledge of EOP implementation hierarc	ny and coordination with other support procedures.		
Explanation of Answer			
Reference Title/Facility Reference Number	Section/Page	Revisio	L. O.
Reactor Trip or Safety Injection BwEP-0	Step 3.b. RNO		
VEP-0 Rx Trip or Si Lesson Plan		rev.11	1,3
Material Required for Examination			

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

Applicability of EOP Foldout Page From the list of procedures identified below, which has(have) "Transfer to Cold Leg Recirculation" on the Operator Action Summary Page?

(NOTE: The following procedures are in the E-1or CA-1 series: BwEP-1 "Loss Of Reactor Or Secondary Coolant" BwEP ES-1.1 "SI Termination" BwEP ES-1.2 "Post-LOCA Cooldown And Depressurization" BwEP ES-1.3 "Transfer To Cold Leg Recirculation" BwEP ES-1.4 "Transfer To Hot Leg Recirculation" BwCA-1.1 "Loss Of Emergency Coolant Recirculation" BwCA-1.2 "LOCA Outside Containment")

a BwEP-1, BwEP ES-1.1 through ES-1.4, and BwCA-1.1 through BwCA-1.2 procedures.

b. BwEP-1, BwEP ES-1.1 and ES-1.2 procedures ONLY.

c. BwEP-1 and BwEP ES-1.2 procedures ONLY.

d. BwEP-1 procedure ONLY.

Answer b	Exam Level B	Cogni	tive Level Co	mpret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 2.4.20 System/Evolution	RO Value:	3.3	SRO Value:	4.0	Section:	PWG	RO Group:	1	SRO Group:	1	
KA Explanation of Answer	Knowledge of operatic	nal impl	lications of EOP	warning	s, cautions,	and notes.					
Reference Title/Fa	acility Reference Numi	per		Se	ction/Page	,			Revisio	L. O.	
AEP-1 Loss of R	eactor or Secondary C	oolant	Lesson Plan						rev.11	1,10	

 Material Required for Examination
 Question Source: New
 Question Modification Method:

 Question Source Comments:
 Comment Type
 Comment

Friday, July 24, 1998 4:33:54 PM

Page 16 of 127

Identification of inoperable CR annunciators

The following conditions exist on Unit 1:

- Reactor trip breakers status OPEN
- RCS Tave 557°F
- Pzr pressure 2235 psig

Annunciator RCFC VIBRATION HI (1-3-C5) has been in alarm for the past 1 ½ shifts due to a faulty vibration probe. While maintenance troubleshoots the vibration probe on RCFC 1C which of the following actions is appropriate for this alarm window?

- a. The alarm should be acknowledged for each actuation and the SER monitored for valid alarm inputs.
- The alarm should be acknowledged for each actuation and operators stationed locally at each RCFC to monitor vibration.
- c. The alarm should have been silenced without acknowledgement after obtaining Unit Operating Engineer's permission and the SER monitored for valid alarm inputs.
- d. The alarm should have been silenced without acknowledgement with US permission and operators stationed locally at each RCFC to monitor vibration.

Answer C Exam	Level B	Cognit	tive Level	Compret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 2.4.31	RO Value:	3.3	SRO Valu	e: 3.4	Section:	PWG	RO Group:	1	SRO Group:	1	
System/Evolution											
KA											

Knowledge of annunciators alarms and indications, and use of the response instructions.

Explanation of Answer

Reference Title/Facility Reference Number	Section/Pag	e Revisio	L. O.
RCFC VIBRATION HI /BWAR 1-3-C5 HANDLING OF MAIN CONTROL BOARD and RADWASTE PANEL ANNUNCIATOR ALARMS/	E.	1	51
BwAP 380-2	C.3		•
	C.4		
Braidwood Task List			Task P1-AM-TK-033

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

Effect of Xenon Transient & compensation

A feed pump trip occurred resulting in a rapid power reduction on Unit 1. Power was reduced from 100% steady-state conditions using a combination of rods and boration.

The following conditions exist for Unit 1 following stabilization:

- Reactor Power 60%
- Delta-I target value +2.0
- Control Bank D position 160 steps withdrawn
- Tave 572°F
- -Delta-l -10.5%
- Core Age MOL

What actions will be required to maintain the current power level and maintain Delta-I within its normal operating band over the next FIVE hours?

- a. Boration and control rod withdrawal, followed by dilution.
- b. Boration and control rod insertion, followed by dilution.
- c. Dilution and control rod withdrawal, followed by boration
- a. Dilution and control rod insertion, followed by boration.

Answer a	Exam Level B	Cognitive Levei	Applicati	ion	Facility:	Braidwood		ExamDate:		9/14/98
KA: 001 A2.06	RO Value:	3.4 SRO Valu	e: 3.7	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolutio	Control F	Rod Drive System	n							
ка	Ability to (a) predict th procedures to correct Effects of transient xe	, control, or mitigate mon on reactivity	the consequ	iences of the	ose abnorm	nal operation:				
Explanation of Answer	With delt-I near t shifting of power poison) builds in	the negative limit poduction towar dilution will be i	d positive	e delta-l (p	power shi	ft toward top	o to of c	allow rod with ore). Later as	hdrawal s Xenon	and hence (neutron
Reference Thie/Fa	cility Reference Nun	nber				Section/Page			Revisio	L. O.
DELTA I CONS BWGP 100-8	IDERATIONS				F	3,5,6			3,4-7	
BwGP 100-8 Les	son Pian							re	v 4	1
Material Require	ed for Examination									
Question Sourc	e: New			Qu	estion Mod	lification Metho	d:			
Question Sourc	e Comments:									
Comment Type	Comment									

Application of DC Hold

A problem with the rod control system requires checking several rod bank circuits. The affected power cabinet repairs are to be made by supplying power from the DC hold supply cabinet.

What is the capacity of the DC Hold Supply Cabinet under these circumstances?

- a. ONE control rod bank group can be placed on DC HOLD, and these rods will drop ONLY if the controls are taken to OFF at the DC Hold cabinet.
- b. ONE control rod bank group and ONE shutdown bank group can be placed on DC HOLD, and these rods will drop ONLY if the controls are taken to OFF at the DC Hold cabinet.
- e. ONE control rod bank group can be placed on DC HOLD, and these rods will automatically drop.
- d. ONE control rod bank group and ONE shutdown bank group can be placed on DC HOLD, and these rods will automatically drop.

Answer C	Exam Level B	Cognitive Le	vel Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 001 K1.03	RO Value:	3.4 SRO	Value: 3.6	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolutio	on Control R	od Drive Sys	tem							
КА	Knowledge of the physic CRDM	sical connection	s and/or cause-	effect relatio	onships beh	ween Control Ro	od Dri	ve System and th	e following	; :
Explanation of	Only one GROU									

power to the CRDM is interrupted when the breakers open

Reference Title/Facility Reference Number	Section/Page	Revisio	L. O.
Rod Control System Chap 28	A.5.e pg 40	12	1,9

Material Required for Examination Question Source: New Question Source Comments:

Comment

Comment Type

Question Modification Method:

Question Relationship of levels during refueling operations

The following conditions exist for Unit 1:

- Mode 5
- RCS is draining to Pzr level of 40%
- IM calibrations have been completed for LT-RY048, Refuel Cavity level, in preparation for further draining

What is the relationship between Pzr level instrument LT-459, Pzr level instrument LT-462 and LI-RY048?

At approximately 40% level indicated on LI-462, level on...

- a. LI-459 and LI-RY048 will be offscale high.
- b. LI-RY048 will be just onscale and LI-459 will be offscale low.
- c. LI-4/39 will read higher than 40% and LI-RY048 will just be onscale.
- d. LI-RY048 will be offscale high and LI-459 will read lower than 40%

Answer C	Exam Level B	Cognitive Le	vel Compret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 002 A1.11	RO Value:	2.7 SRO	Value: 3.2	Section:	SYS	RO Group:	2	SRO Group:	2	
System/Evolutio	n Reactor (Coolant Syst	em							
KA	Ability to predict and/o Relative level indication	or monitor changes ons in the RWS	ges in parameters T, the refueling ca	associated wity, the FZ	with opera	ting the Reactor reactor vessel d	r Cool uring	ant System cor preparation for	ntrols including	g:
Explanation of Answer	LI-462 is the cold calibrated level in just comes onsca	nstruments (LI-459/460/46							
eference Title/Fa	cility Reference Num	ber	Se	ction/Page				Revisio	L. O.	
REACTOR COO	DLANT SYSTEM	DRAIN								
WOP RC-4			D.2 pg 4				rev	. 12E1		
SWOP RC-4A5										
3wCB 1/2 fig 31										
	efuel Outage lesso	n plan					rev	/. 12	1,2	
Question Source	e: New			Que	stion Mod	ification Metho	d:			
Question Source	e Comments:									
Comment Type	Comment									

RCS leak Detection Systems

The following conditions exist for Unit 1:

- Reactor power 100%
- RCS activity is elevated, but below Technical Specification (CTS) levels
- Pzr pressure 2225 psig
- Pzr level 44%
- PORV 1RY456 dual indication
- Leak rate 6 gpm

In an attempt to isolate the leakage past the PORV, the Block Valve 1RY8000B was taken to close. The valve failed to close and the operator placed 1RY456 in the CLOSE position. When conditions stabilize:

- Reactor power 100%
- Pzr pressure 2228 psig
- Pzr level 44%

How would the operator be able to tell if the PORV has closed?

- a. Position lights for PCV-456 showing CLOSE indication ONLY.
- b. PORV downstream temperature indication 1TI-463 dropping.
- c. Level change in RCDT.
- a. Lower readings for containment radiation monitors RE-0011A/0012A.

Answer b	Exam Level R	Cognitive Level	Compret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 002 A3.01	RO Value:	3.7 SRO Val	ue: 3.9	Section:	SYS	RO Group:	2	SRO Group:	2	
System/Evolutio	Reactor (Coolant System								
KA	Ability to monitor auto Reactor coolant leak		the keactor	Coolant Sys	tem includi	ng:				
Explanation of Answer										
Reference Title/Fa	cility Reference Num	nber	Se	ction/Page				Revisio	L. O.	
18wAR 12-C-6								rev61E2		
Braidwood Task L	ist							task	P1-OA-TK	-058
Material Require	ed for Examination			1						
Question Sourc	e: New			Que	estion Mod	lification Method	d:			
Question Sourc	e Comments:									
Comment Type	Comment									

Page 22 of 127

Use of Loop Isolation Valves

The following conditions exist on Unit 1:

- RCS Loop C is isolated for maintenance
- RCS Loop A had been isolated for maintenance
- RCS Loop A Hot Leg Stop Isolation Valve (LSIV) was opened at 1001
- RCS Loop A Bypass Stop Valve was opened at 1005 with relief line flow of 115 gpm verified
- RCS Loop A Cold Leg LSIV is closed
- RCS temperature 110°F
- RCS Hot Leg Loop temperatures 108°F (A); 119°F (B); 110°F (C); 125°F (D)
- RCS Cold Leg Loop temperatures 103°F (A); 108°F (B); 90°F (C); 115°F (D)
- S/G levels (Narrow Range) 20% (A); 30% (B); 15% (C); 32% (D)

What will occur when the operator takes the control switch for MOV-RC8002A (RCS Loop A Cold Leg LSIV) to OPEN at 1509?

The valve...

- a. will travel fully open with NO automatic actuations.
- b. will travel fully open, and the AFW pumps get a start signal.
- c. remains closed because the temperature difference interlock remains active.
- d. remains closed because the timer interlock is still active.

Answer a Exam Level R	Cognitive Level Co	mprehension	Facility: Braid	wood	ExamDate:		9/14/98
KA: 002 K4.09 RO Val	ue: 3.2 SRO Value:	3.2 Section:	SYS ROO	Group: 2	SRO Group:	2	
System/Evolution React	or Coolant System						
KA Knowledge of Rea Operation of loop	actor Coolant System design isolation valves.	feature(s) and or int	erlock(s) which p	rovide for the	following:		
Explanation of Answer							
Reference Title/Facility Reference M	Number	Section/Page				Revisio	L. O.
Simplified RCS/RC-1	val	ve interlocks/1				3	
Reactor Coolant system lesson	n plan						
Chapter 12						8 9	
Material Required for Examination							
Question Source: Facility Exam	n Bank	Que	stion Modification	on Method:	Significantly N	lodified	
Question Source Comments:	Question 30/35 on Braidwo different. Question asked al			eriocks. Prem	ise and answers	significant	y
Comment Tune Comment							

Comment Type Comment

on RCP and Pzr spray operations

The following Unit 1 conditions exist:

- RCS temperature (Average CETC) 140°F
- RCS pressure 365 psig
- A bubble has just been drawn in the Pressurizer
- All loops are filled and vented

Comment

Comment Type

- Preparations are in progress to start the first RCP for continuous run

What is the effect of selecting the 1C RCP to start?

- a. Both Pzr Sprays will function normally for Pzr pressure control.
- b. Manual cycling of the Pzr heaters will be required for Pzr pressure control.
- c. PORV RY456 will open on high pressure from high pressure bistable PB456E.
- d. Normal Pzr spray will deliver minimal spray flow for Pzr pressure control.

Answer d	Exam Level B Cogni	tive Level Memory	Facility: Braidwood	ExamDate:	9/14/98
KA: 003 A1.06	RO Value: 2.9	SRO Value: 3.1 Section:	SYS RO Group:	1 SRO Group: 1	
System/Evoluti		t Pump System			
ка	Ability to predict and/or monito PZR spray flow	or changes in parameters associate	ed with operating the Reactor	Coolant Pump System contro	ls
Explanation of Answer					
Reference Title/F	acility Reference Number	Section/Pag	e Revisio	L. O.	
BwGP 100-1 P	lant Heat up	f. 57 pg 20	rev 11		
BWGP 100-1 P	lant Heat up				
sson plan			12	1,2,3	
Material Requi	red for Examination				
Question Sour	ce: New	Qu	estion Modification Metho	d:	
- Question Sour	ce Comments:				

RCP Breaker & interlocks

The following conditions exist on Unit 1:

- Reactor power 26%
- Pzr pressure 2235 psig
- Pzr level 35%

RCP 1A breaker trips due to sensed undervoltage from bus 157. What is expected as a result of the trip of the RCP?

- a. The reactor will trip due to the open RCP breaker.
- b. The reactor will trip due to RCS loop low flow condition.
- c. The reactor will be manually tripped by the operator.
- d. A normal plant shutdown will be initiated.

Answer C	Exam Level R Cognitiv	ve Level C	omprehensio	n Facility:	Braidwood		ExamDate:		9/14/9
KA: 003 K2.01	RO Value: 3.1	SRO Value:	3.1 Secti	on: SYS	RO Group:	1	SRO Group:	1	
System/Evolutio	n Reactor Coolant F	Pump Syst	em						
КА	Knowledge of electrical power si RCPS	upplies to the	following;"						
Explanation of Answer	No AUTO trip is expected manual trip will be initiate		wer < P-8. A	dministrativ	e direction fo	or a F	RCP trip in the	ese cond	iitons is
Answer	manual trip will be initiate		wer < P-8. A		e direction fo	or a F	RCP trip in the	ese cond Revisio	
Answer Reference Title/Fa	manual trip will be initiate	ed.		age	e direction fo	or a F	RCP trip in the		
Answer Reference Title/Fa	manual trip will be initiate	ed. an C.	Section/	age	e direction fo	or a F	RCP trip in the	Revisio	L. O.

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

Charging & letdown flows (including seal injection) Question

The following conditions exist on Unit 1:

- Reactor power 100%
- PZR pressure 2235 psig
- PZR level 44% stable
- CV121 In MANUAL
- CVCS letdown Isolated due to leak in Letdown Hx
- CVCS Excess Letdown In service with maximum flow of 20 gpm
- RCP seal injection 1A CV pump aligned to all RCPs
- RCP seal leakoff flow 3 gpm (1A); 3.5 gpm (1B); 3 gpm (1C); 2.5 gpm (1D)

What flow is indicated on Charging Header Flow indicator, FI-121?

- a. 5 gpm
- b. 25 gpm
- c. 32 gpm

C

d. 65 gpm	١ .		. 0				
Answer C	Exam Level R	Cognitive Level	Application	Facility:	Braidwood	ExamDate:	9/14/98
KA: 004 A3.11	RO Value:	3.6 SRO Value	: 3.4 Section:	SYS	RO Group:	1 SRO Group:	1
System/Evolutio	on Chemical a	and Volume Cor	trol System				
KA	Ability to monitor autom Charging/letdown						
Explanation of Answer	FI-121 indicates to balance - Letdown	otal charging flor 1: 20 + 12 = 32 8	w (chg header + R & Chg: 0 + 20 + 12	CP seal 1 2 = 32.	flow, less Chg	pump recirc (60 g	ipm)). Flow
	cility Reference Numb	er	Section/Page CV-1	,	*	Revisio	L. O.
CVCS/ Schemi	auc	System lesson r				10	4,5,9,15

Question Modification Method:

Chp ontrol System lesson plan Chemical volume

Materia: Required for Examination **Question Source:** New

Question Source Comments:

Comment Type Comment

17 107

Calculation of dilution

The following conditions exist on Unit 2:

- Unit is in MODE 5
- Unit burnup is 5700 EFPH in Cycle 7
- SDM 1.3% DeltaK/K
- RCS pressure 400 psig
- RCS average temperature 195°F
- RCS boron concentration 1006 ppm
- Differential boron worth -10.75 pcm/ppm
- PZR level 32.3%
- SR NIS countrate 10 cps , BOTH channels stable background levels
- An inadvertent dilution at 70 gpm begins at 1300 hours

Assuming NO operator action is taken and PZR level remains constant over the time period, when would the HIGH FLUX AT SHUTDOWN alarm actuate?

.

a. Never, because BDPS will actuate prior to actuation.

b. 1430 hours.

- c. 1505 hours.
- d. 1734 hours.

Answer C	Exam Level B	Cognitive Level	Applicatio	n	Facility:	Braidwood		ExamDate:		9/14/98
KA: 004 A4.07	RO Value:	3.9 SRO Valu	ie: 3.7	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolutio	n Chemical	and Volume Co	ntrol Syste	em						
KA	Ability to manually ope Boration/dilution	erate and/or monitor	in the contro	l room:						
Explanation of Answer	Dilution rate dc/c lbm; C = 1006 pp alarms at 5 x bac (p2=-0.00261). D for the 98.2 ppm RCS at normal p period. Assumin minutes.	om (given); Y=70 ckground = 50 c oetta-P = 1056 p dilution is 98.2/4 ressure & tempo) gpm (give os. With K cm. 1056/ 47.2 = 2 ho erature cor	en). The 1= 0.987 -10.75=-{ ours 5 min nditions.	dil rate = dK/K (p1 98.2 ppm n. Differ 'd' would	 47.2 ppm/f -0.01317), change req rence in time only occur if 	nr. H calcu uirec base f cou	IIGH FLUX A ulate K2 = 0.9 i. Therefore t ed on use of I nt rate double	974 DKr/K he time rec Nomograph ed in any 10	own quired n for 0 minute
Reference Title/Fa	cility Reference Num	ber	Sec	ction/Page				Revisio	L. O.	
								0	471	4

 Reference Title/Facility Reference Number
 Section/Page
 Revisio
 L. O.

 Reactor Makeup Control system lesson plan
 8
 4,7.11

 Source Range Nuclear instrumentation
 6
 6,10,11

 Lesson plan
 6
 6,10,11

 Braidwood Curve Book
 Boron dilution rate nomograph
 Braidwood CURVE BOOK Figure 12.

 Material Required for Examination
 Braidwood CURVE BOOK Figure 12.

 Question Source:
 New

 Question Source Comments:
 Question Modification Method:

 Comment Type
 Comment

Page 29 of 127

Topic Question

Boron mixing

The following conditions exist on Unit 1:

- Reactor power was 95% prior to the event
- A turbine runback resulted in rod insertion with control rods in AUTOMATIC
- Annunciator ROD BANK LO-2 INSERTION LIMIT (1-10-A6) is lit

The operators initiated an emergency boration per BwOA PRI-2 "Emergency Boration" and have verified control rods are now withdrawing. Why does the operator energize the Pzr Backup Heaters?

This action...

- a. ensures Pzr boron concentration equalization with RCS by increasing normal spray flow.
- counteracts RCS cooldown due the boration by the additional heat from the backup heaters.
- c. prevents loss of Pzr level by increasing the volume of fluid maintained in the Pzr.
- guarantees adequate subcooling margin is maintained by raising the saturation temperature of the Pzr.

Answer a	Exam Level R	Cognitive Level C	ompret	ension	Facility:	Braidwood	1	ExamDate:		9/14/98
KA: 004 K6.01	RO Value:	3.1 SRO Value:	3.3	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evoluti	on Title: C	Chemical and Volur	ne Cont	rol System	m					
KA System:		Knowledge of the of the				the following will	have	on the Chemic	al and Volu	ume Control
	Spray/heater combina	ation in PZR to assure u	niform bo	ron concent	ration					
Explanation of Answer										
Reference Title/F	acility Reference Num	nber	Se	ction/Page				Revisio	L. O.	
	nergency Boration							6	6	
	p control system le							8	12	
Material Requir	ed for Examination							Number(s)	n	

Question Modification Method:

Friday, July 24, 1998 4:34:03 PM

Question Source: New Question Source Comments:

Comment

Comment Type

Page 30 of 127

Recirc interties to SI Pumps & CV Pumps

The following conditions exist on Unit 1:

- A LOCA has occurred
- Actions of 1BwEP ES-1.3, 'Transfer To Cold Leg Recirculation, have been completed.
- During alignment, 1CV8804A, RH HX to CENT CHG Pumps Isolation Valve,
- failed to open and could NOT be manually opened.

What is the status of the ECCS system?

- a. The RHR discharge headers are cross-tied with only RHR Pump 1B running and supplying suction to the SI pumps and Centrifugal Charging pumps from the B train connection.
- b. The RHR discharge headers are cross-tied with both RHR pumps running and supplying suction to the SI pumps only from the B train connection. The Centrifugal Charging pumps are stopped.
- c. RHR Pump 1B is discharging through the B Train cold leg injection headers and supplying suction to the SI Pumps. RHR Pump 1A and the Centrifugal Charging pumps are stopped.
- d. RHR Pump 1B is discharging through the B Train cold leg injection headers and supplying suction to the SI pumps and Centrifugal Charging pumps. RHR Pump 1A is discharging through the A Train cold leg injection headers.

Answer d	Exam Level B	Cognitive Level	Comprehension	Facility:	Braidwood	ExamDate	e:	9/14/98
KA: 005 K1.12	RO Value:	3.1 SRO Valu	e: 3.4 Section:	SYS	RO Group:	3 SRO Grou	up: 3	
System/Evolutio	Residual	Heat Removal S	System					
KA	Safeguard pumps		d/or cause-effect relation					
Explanation of Answer	& CENT CHG).	The discharge h	nning RHR pump a eaders between R ate in runout condit	H trains a	provide suction are required to	on path to all be separate	other ECCS so that the	S pumps (SI ONE
Reference Title/Fa	acility Reference Num	nber	Section/Page	B			Revisio	L. C.
Emergency Op	erating Procedures	5						
Loss of Reactor	r or secondary coo	plant/						
BWEP 1, BWEP	ES 1.1-1.4						11	10
Chp 58 Emerge	ency Core Cooling	system						
Lesson plan							10	5,7,8,14

 Material Required for Examination
 Guestion Source: New
 Guestion Modification Method:

 Question Source Comments:
 Comment Type
 Comment

iday, July 24, 1998 4:34:04 PM

Cuestion

Failure of Hx Outlet Valve

The following conditions exist on Unit 1.

- Unit is in MODE 4 during cooldown per 1BwGP 100-5 following unit shutdown 38 hours ago
- RCS temperature 340°F
- RCS pressure 345 psig
- PZR level 33%
- RHR pump 1A is operating in Shutdown Cooling mode
- RH-618 A Hx Bypass Flow Control Valve is in MAN at 3000 gpm
- RH-606 A HX Flow Control Valve controller demand is at 20%
- CV-128 RHR Ltdn Flow Contr Valve demand is at 100%
- PCV-131 is in AUTOMATIC set to maintain 350 psig

A signal failure from the controller causes RH-606 to go fully closed. What is the system response to this failure without operator action?

- a. PCV-131 will throttle open due to lower RH discharge pressure.
- b. RCS pressure will increase due to RCS heatup.
- c. Pressurizer level will decrease due to increased letdown flow.
- a. RH-610 will throttle open due to lower RH flow.

Answer b	Exam Level R	Cognitive Level	Application	Facility:	Braidwood		ExamDate:		9/14/98
KA: 005 K4.10	RO Value:	3.1 SRO Valu	e: 3.1 Sectio	n: SYS	RO Group:	3	SRO Group:	3	
System/Evolutio		Heat Removal S	*						
ка	Knowledge of Residua Control of RHR heat en			s) and or inter	lock(s) which pro	vide	for the following:		
Explanation of Answer	RCS pressure wild decreases system to raise pressure	n pressure down	nperature increa stream may dec	ises due to crease this	loss of coolin will cause PC	ng flo CV-1	ow through HX 31 to throttle c	. IF flow lose in a	n attempt

Reference Title/Facility Reference Number	Section/Pege	Revisio	L. O.
RHR Cooldown/ RH-1 Schematic Chp 18Residual Heat Removal system	RH-1	1 7	3,4,5,9

Material Required	for Examination
Question Source:	New
Question Source C	comments:
Comment Type	Comment

Question Modification Method:

2 .

Systems response to SI/Actions

The following conditions exist on Unit 1:

- A plant heatup is underway
- MODE 3 has just been entered
- RCS pressure 450 psig

SI Accumulator 1C was drained below required level during the outage for repair work. System configuration has NOT allowed refilling the Accumulator until now. The SI Accumulator line is being flushed in accordance with BWOP SI-14 "SI Accumulator Fill Line Flush" (Valve lineup includes: 1SI-8964, SI Test Lines to Radwaste Isolation Valve, and SI-8888, SI Pps to Accumulator Fill Valve, are open. 1SI 8821A, SI Pump to Cold Leg Isolation Valve, and 1SI 8802A, SI to Hot Leg 1A & 1D Isol valve are closed). SI pump 1A running. During the flushing, an inadvertent SI signal is generated.

What is the status of the ECCS based on the current alignment without operator action?

- a. 18 SI pump ONLY is running with injection flow to the RCS cold legs and to the Accumulator 1C fill line flush.
- b. 1A SI pump ONLY is running with flow directed to the Accumulator fill line flush ONLY.
- c. BOTH SI pumps are running with injection flow to the RCS cold legs and to the Accumulator 1C fili line flush.

a. BOTH SI pumps are running with flow directed to the Accumulator 1C fill line flush ONLY.

Answer C Exam I	Level B	Cognit	ive Level Co	ompreh	ension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 006 A2.13	RO Value:	3.9	SRO Value:	4.2	Section:	SYS	RO Group:	2	SRO Group:	2	
system/Evolution	Emergen	cy Core	Cooling Sy	stem							

KA Ability to (a) predict the impacts of the following on the Emergency Core Cooling System and (b) based on those predictions, use procedures to correct, control, or mitigate the consequences of those abnormal operation: Inadvertent SIS actuation

Explanation of SI pumps are operable; SI8821A remains closed; SI8888 and SI8964 remain open. Answer

Reference Title/Facility Reference Number Plant Heatup BwGP 100-1 SI Accumulator Fill Line Flush BwOP SI-14	Section/Page F.49 pg 30	Revisio 11 6	L. O.
Chp 58 Emergency Core Cooling system Lesson plan		10	6,9

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

10CFR50.46 Design Criteria

To meet the 10CFR50.46 criteria, the ECCS System is designed such that under accident conditions it will maintain...

a. total hydrogen production from zirconium-water reaction below maximum value of 5%.

b. maximum fuel temperature at the inside surface of the cladding less than 2000°F.

c. the core at least 5% shutdown to prevent an inadvertent return to criticality.

a. fuel clad oxidation less than 17% of total clad thickness anywhere within the core.

Answer d	Exam Level B	Cognitive Level M	emory	Facility:	Braidwood		ExamDate:		9/14/98
KA: 006 K3.02	RO Value:	4.3 SRO Value:	4.4 Section:	SYS	RO Group:	2	SRO Group:	2	
System/Evolutio	n Emergend	cy Core Cooling Sy	stem						
KA	Knowledge of the effect Fuel	ct that a loss or maifunc	tion of the Emergen	cy Core Co	oling System will	have	on the following	i:	
Explanation of Answer	Third selection ac	ddresses design cri	iteria for reactivi	ty control	per CTS.				
Reference Title/Fa	cility Reference Num	ber	Section/Page				Revisio	L. O.	
		10	CFR50/ 47						
Chp 58 Emerge Lesson plan	ency Core Cooling	system	0				10	2	

Material Required for Examination Question Source: Facility Exam Bank

Question Modification Method:

Editorially Modified

Question Source Comments:

Comment Type Comment

Evaluation of flow ECCS pumps

The following conditions exist on Unit 1:

- A LOCA has occurred
- Transfer to Cold Leg recirculation is required
- RCS pressure is approximately 50 psig

What is the approximate total SI pump flow indicated on the main control board and how will this value change following transfer of BOTH trains of ECCS to cold ieg recirculation?

Total Flow	Flow Change				
a. 650 gpm	Decrease				
ь. 800 gpm	Increase				
c. 1050 gpm	Decrease				
d. 1300 gpm	Increase				
Answer d Exam Level	B Cognitive Level	Comprehension	Facility: Braidwood	ExamDate:	9/1 4/98
KA: 006 K6.03 RO	Value: 3.6 SRO Valu	ue: 3.9 Section:	SYS RO Group:	2 SRO Group:	2
	nergency Core Cooling				
KA Knowledge of Safety Injectio	f the of the effect of a loss or on Pumps	malfunction on the follow	ving will have on the Emer	gency Core Cooling Sy	/stem:
Explanation of SI pump d Answer The flow fr	lesign values provid e f from the pumps increas to the pumps instead o	es since the RH put	mps are now providin	g a suction pressu	ire of approximately
teference Title/Facility Referen		Section/Page		Revisio	L. O.
Chp 58, Emergency Cora C esson plan	Jooling System			10	3, 8a

Material Required fo	or Examination
Question Source:	New
Question Source Co	omments:
Comment Type	Comment

Re

Question Modification Method:

Question PRT conditions causing alarm/response During shift turnover for Unit 1, the NSO notes the following parameters:

RCS Tave - 566.5°F ⁹zr pressure - 2235 psig Pzr level - 38.3% PRT pressure - 4 psig PRT level - 74% PRT temperature - 98°F

One hour later when annunciator 1-12-A7, PRT LEVEL HIGH LOW alarmed, the NSO notes the following parameters:

RCS Tave - 566.2°F Pzr pressure - 2233 psig Pzr level - 38% PRT pressure - 5.9 psig PRT level - 81% PRT temperature - 96°F.

2

What condition resulted in the change in parameters?

a. PRT PW Supply Inside Cnmt Isol Valve RY-8030 opened.

b. PRT to GW Comp Isol Valve RY-469 failed closed.

c. CVCS letdown relief valve CV-8117 lifted.

d. PORV RY-455A opened and reclosed.

	Answer a Exam L	evel R C	ognitive Level Co	omprehension	Facility:	Braidwood	ExamDate:		9/14/98
	KA: 2.4.50	RO Value:	3.3 SRO Value:	3.3 Section:	SYS	RO Group:	3 SRO Group:	3	
-	System/Evolution	Pressurizer	Relief Tank/Que	nch Tank Syster	n				
	KA Ability t	o verify system al:	arm setpoints and op	erate controls identil	ied in the a	larm response r	manual.		•
	Explanation of The of Answer	only input prov	ided that would g	ive a level incre	ase and	a temperatue	e decrease is the	makeup fro	om PW.

Reference Title/Facility Reference Number	Section/Page	Revisio	L. O.
Pressurizer Relief Tank Filling and Venting BwOP RY-3		3	
PRT Level High Icw/ BwAR 1-12-A7	* * ·	51E1	
Chp 14 Pressurizer lesson plan		9	13,14
Material Required for Examination			
Question Source: New	Question Modification Method:	Editorially Mod	dified
Question Source Comments: Ginna 9/90 NRC Exam			
Comment Type Comment			

Friday, July 24, 1998 4:34:08 PM

Page 37 of 127

Topic

Question Determination of effect of valve positioning

Unit 1 is operating at 100% power in MOL conditions. All systems are functioning normally with rod control in manual.

What is the effect on plant operations if instrument air supplied to the CVCS letdown Hx component cooling water outlet valve, CV-130 is lost?

TCV-130 goes fully ...

- a. shut and reactor power decreases due to boration in the CVCS demineralizers.
- b. shut and the CVCS demineralizers are automatically bypassed on temperature signal.
- e. open and reactor power increases due to deboration in the CVCS demineralizers.
- a. open and the CVCS demineralizers are automatically bypassed on temperature signal.

Answer C	Exam Level R	Cognitive Level	Comprehension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 008 A2.05	RO Value:	3.3 SRO Valu	e: 3.5 Section:	SYS	RO Group:	3	SRO Group:	3	
System/Evolution	on Compone	ent Cooling Wate	r System						
KA	procedures to correct. Effect of loss of instru	control, or mitigate i ment and control air	wing on the Component the consequences of the on the position of the C	ose abnorm CW valves	hal operation: that are air operation	ated			
Explanation of Answer	The CVCS letdo equilibrium value		ooled and will give od in demins).	up boron	to the resins	in th	e CVCS der	mins (until	a new
Reference Title/Fa	acility Reference Num	iber	Section/Page				Revisio	LO.	
	nent Air/ 18wOA		Table A						
			Compon	ent clg			2		
Ch15a CVCS I	esson plan						10	10,14	
Service Air/ In:									
Lesson plan			review o	14			8	9	

Material Required for Examination Question Source: New	Question Modification Method:	Number(s)	n
Question Source Comments:			
Comment Type Comment			

Spray using Normal and Aux Spray

What are the parameters and values used by the operator to ensure the temperature difference between the PZR and the spray fluid are within the specified limit(s) in the PRESSURE AND TEMPERATURE LIMIT REPORT when initiating PZR spray?

- a. For normal spray, the difference between RCS hot leg loop temperature and PZR vapor space temperature limit is 50°F, and for aux spray, the difference between Regenerative Hx charging inlet temperature and PZR vapor space limit is 320°F.
- b. For normal spray, the difference between RCS cold leg loop temperature and PZR vapor space temperature limit is 50°F, and for aux spray, the difference between Regenerative Hx charging outlet temperature and PZR vapor space limit is 320°F.
- c. For normal spray, the difference between RCS hot leg loop temperature and PZR vapor space temperature limit is 320°F, and for aux spray, the difference between Regenerative Hx charging inlet temperature and PZR vapor space limit is 320°F.
- d. For normal spray, the difference between RCS cold leg loop temperature and PZR vapor space temperature limit is 320°F, and for aux spray, the difference between Regenerative Hx charging outlet temperature and PZR vapor space limit is 320°F.

Answer d Exam Level B Cognitive Level Men	nory Cyron	Facility: Braid	wood Ex	amDate:	9/14/98
KA: 010 A1.08 RO Value: 3.2 SRO Value:	3.3 Section:	SYS ROG	roup: 2 SF	C Group: 2	
System/Evolution Pressurizer Pressure Control S	System	Press Park			
KA Ability to predict and/or monitor changes in parar including: Spray nozzle DT	neters associated	with operating the	Pressurizer Pres	sure Control System c	ontrols
Explanation of Answer					
erence Title/Facility Reference Number	Section/Page	-	F	Revisio L. O.	
Pressurizer Temperature Limit Surv/					
1BwOS 4.9.2-1					
Pressurizer Spray Water Temperature					
Differential Limit surv/ 1BwOS 4.9.2-2					
1BwGP 100-1 Plant heat up lesson plan			12	1,2,3	
Chp 14 Pressurizer lesson plan			9	7,8	
Material Required for Examination					
Question Source: New	Que	stion Modificatio	n Method: S	ignificantly Modified	
Question Source Comments: Kewaunee 2/94 NRC Exam					
Comment Type Comment	e.				

at wi

Evaluation of Pzr conditions

The following conditions exist on Unit 1:

- A load reject from 100% power has occurred
- Reactor power 80%
- Pzr level 56%
- Pzr vapor temperature 655°F
- Pzr liquid temperature 653°F
- RCS Tave 578°F

What is the current status of the Pressurizer based on given conditions?

- a. Backup and proportional heaters are fully on.
- b. Proportional heaters are modulated on.
- c. Pzr spray valves have modulated open.
- d. Pzr spray valves and Pzr PORVs are open.

Answer C	Exam Level B	Cognitive Level	Comprehension	Facility: E	Braidwood	ExamDate:	9/1 4/98
KA: 010 K5.01	RO Value:	3.5 SRO Val	ue: 4.0 Section:	SYS	RO Group:	2 SRO Group	: 2
System/Evolutio	n Pressuriz	er Pressure Con	ntrol System				
KA	Knowledge of the oper Determination of cond		of the following concept using steam tables	s as they app	ly to the Pressu	rizer Pressure Co	ontrol System:
Explanation of Answer			2272 psig. At this p nly component "on".	ressure, w	ith current P2	ZR level devia	ation <5% of program
Reference Title/Fa	cility Reference Num	ber	Section/Page			Revisio	L. 0.
Tr Pressure Co	ontrol/ RY-2		Pzr Pressun Setpoints	Ð			
Chp 14 Pressur	izer lesson plan			1		9	5,6,7
Steam tables			Saturation to	able			
Material Require	ed for Examination e: Facility Exam Ba	Steam T		stion Modifi	cation Method:	Concept Us	ed
Question Source		idwood 1997 NRC	exam				

Comment Type Comment

Pzr Level Reactor Trip

The following conditions exist on Unit 1 with all controls in normal lineup:

- Reactor power 30% stable
- RCS Tave 564.5°F
- Pzr pressure 2230 psig
- Pzr level 36%

The pressurizer level controller 1LK-459 output fails low. What automatic actions result assuming NO operator action taken?

- a. The reactor will trip on high pressurizer level ONLY.
- b. Letdown will isolate on low pressurizer level and then the reactor will trip on high pressurizer level.
- c. The reactor will trip on high pressurizer pressure ONLY.
- a. Letdown will isolate on low pressurizer level and then the reactor will trip on RCS low pressure.

Answer b	Exam Level B	Cognitive Level	Comprehension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 011 K1.04	RO Value:	3.8 SRO Valu	e: 3.9 Sectio	n: SYS	RO Group:	2	SRO Group:	2	
System/Evolutio	n Pressurize	er Level Control	System						
KA	Knowledge of the phys RPS	ical connections an	d/or cause-effect rela	tionships bet	ween Pressurize	er Lev	el Control Syste	em and the	
Explanation of Answer	NOTE that this fa minimum. At 17% level trip setpoint	level, letdown i							
Peference Title/Fa	cility Reference Numb	per	Section/Pa	ige			Revisio	L. O.	
zr Level Contr	ol schematic		RY-3 Pzr level s	etpts			2		
Chp14 Pressuri	zer lesson plan						9	21	

Material Required for Examination Question Source: Facility Exam Bank	Question Modification Method:	Significantly Modified
Question Source Comments:		
Comment Type Comment		

Page 42 of 127

Operation of BOTH Bypass Trip Breakers

The following conditions exist on Unit 1:

- Mode 3 NOT NOP with reactor trip breakers (RTA and RTB) closed
- Testing of reactor trip bypass breakers underway
- Reactor bypass breaker B (BYB) is racked in and closed
- An operator begins to perform test with reactor bypass breaker A (BYA).

What occurs as the operator operates the breaker BYA?

When reactor bypass breaker BYA is ...

- a. locally closed, ONLY breaker BYB will trip.
- b. racked in to the CONNECT position, ONLY breaker BYB will trip.
- c. locally closed, all reactor trip and bypass breakers will trip.
- d. is racked in to the CONNECT position, all reactor trip and bypass breakers will trip

Answer C	Exam Level R C	ognitive Level Me	emory	Facility:	Braidwood		ExamDate:		9/14/98
KA: 012 A3.07	RO Value:	4.0 SRO Value:	4.0 Section:	SYS	RO Group:	2	SRO Group:	2	
System/Evolutio	n Reactor Pro	tection System							
KA	Ability to monitor automa Trip breakers	tic operations of the F	eactor Protection S	ystem inclu	uding:				
Explanation of Answer	Closure of the seco open all trip and by		SPSS generat	ing a GE	NERAL WAR	NIN	G on both tr	ains whic	h would
Reference Title/Fa	cility Reference Number	,	Section/Page				Revisio	L. O.	
SF setpoints \$	Schematic	EF	2 Rx Trip Byp t	orkr trips			5		
h 60a SSPS I	esson plan						3	6,9	

Material Required for Examination Question Source: Facility Exam Bank Question Source Comments: Comment Type Comment

Question Modification Method:

Editorially Modified

Friday, July 24, 1998 4:34:11 PM

Input that can be bypass & condition The following conditions exist on Unit 2:

- Unit shutdown is in progress
- Reactor power 20%
- RCS Tave 562°F
- Pzr pressure 2235 psig
- Pzr level 32%
- First stage turbine pressure channel PT-506 fails high

What affect does this failure have on operations as unit shutdown is continued, if NO action is taken for the failure?

a. At 10% power, the reactor will trip if the Source Range Block RESET pushbuttons are depressed.

- b. At 9% power, the reactor will trip if an RCP trips.
- c. At 7% power, the reactor will trip if the TURBINE TRIP pushbuttons are depressed.

a. At 5% power, the reactor will be manually tripped as during a normal shutdown by BwGP 100-5.

Answer d	Exam Level B	Cogni	tive Level Co	mpret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 012 A4.03	RO Value:	3.6	SRO Value:	3.6	Section:	SYS	RO Group:	2	SRO Group:	2	
System/Evolutio	n Reactor F	rotect	ion System								
ка	Ability to manually ope Channel blocks and by			e contro	ol room:						
Explanation of	PT-506 failure re	sults in	P13 interloc						below 10%. T		

P7 "AT POWER TRIPS" interlock also remains active. Trips affected: 1) 2 loop loss of flow, 2) Pzr low press, Answer 3) Pzr high level, 4) RCP brkr open, 5) RCP UV, 6) RCP UF. At 10% power, the SR NIS should still be auto blocked by P-10 (active). The turbine is normally tripped from ~65 Mwe at 5% power per BwGP.

Reference Title/Facility Reference Number	Section/Page	Revisio	L. O.
Power Descension /1BwGP 100-4	note step F.27	16	
TESF Setpoints/Schematic	EF-1/ Permissive Rx Trip	4	
Ch60b/ Reactor Protection system		6	4
Material Required for Examination Question Source: New	Question Modification Meth	od:	
Question Source Comments:			

Friday, July 24, 1998 4:34:12 PM

Comment Type

Comment

Page 44 of 127

 Topic Question
 OTdT inputs & effect of changes

 The following conditions exist on Unit 1:

- Power range NIS reading 100%
- Tcold 553°F
- Thot 608°F
- RCS total flow 372,000 gpm
- Pzr pressure 2215 psig
- Pzr level 69%

How does the setpoint for Over Temperature Delta-T (OTdT) change when a listed parameter is changed? (Consider each change individually)

The setpoint...

- a. increases if Power range NIS output rises to 102%.
- b. increases if total reactor flow decreases to 370,000 gpm.
- c. decreases if pressurizer pressure increases to 2235 psig.
- d. decreases if the Thot rises to 612°F.

Answer d I	Exam Level R	Cognitive Level	Comprehension	Facility:	Braidwood	ExamDate:		9/14/98
KA: 012 K5.01 Title:	RO Value:	3.3 SRO Value	: 3.8 Section:	SYS	RO Group:	2 SRO Group:	2	
System/Evolution		rotection System						
KA	DNB		of the following concept					
Explanation of Answer	a - NIS input is or c - Pressurize ris	nly for exceeding e increases OTc	+/- delta-l; b - Flo IT. Thot input to d	w affects T power	when DNB of for OTdT det	ermination	T an input to Number(s)	n OTdT;
Reference Title/Fa	cility Reference Num	per	Section/Page			Revisio	L. O.	
ESF Setpoints/	EF-2		OTDT			5		
CH 60b/ RPS le	sson plan					6	3,4	

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

Page 46 of 127

CNMT Spray/Phase B

The following conditions exist on Unit 1:

- Mode 3 with unit cooldown in progress
- RCS temperature 520°F
- Pzr pressure 1750 psig
- Pzr level 33%
- MSIVs open

What would directly happen if the operator were to take CONTAINMENT SPRAY & PHASE B ISOL switches for both trains to the ACTUATE position?

- a. NO ESF actuations would occur.
- b. Containment Phase B isolation and Containment Ventilation isolation ONLY would be actuated.
- c. Containment Phase B isolation and Containment Ventilation isolation, and Containment Spray ONLY would be actuated.
- d. Containment Phase B isolation and Containment Ventilation isolation, Containment Spray, and Main Steamline isolation would be actuated.

Answer C	Exam Level B	Cognitive Level C	Comprehension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 013 A3.01	RO Value:	3.7 SRO Value:	3.9 Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolutio	n Engineere	ed Safety Features	s Actuation Syste	m					
	Input channels and log								
Explanation of Answer		uation and CNMT or manual MSLI) or		ated. Ma	ain Steam Iso	olatio	on comes in a	uto on a	a rate CNMT

Reference Title/Facility Reference Number	Section/Page	Revisio	L. O.
ESF Setpoints/ EF-2 CS/ MCB indications/ CS-1, CS-2 Chp 61 ESF lesson plan	CS/Phase B sig CS Actuation sig	5 3 5	7,8
Material Required for Examination Question Source: New	Question Modification	Method:	

Question Source Comments:

Comment Type Comment

Page 47 of 127

Prepared by WD Associates, Inc.

Friday, July 24, 1998 4:34:14 PM

FW Isolation - P14

The following conditions exist on Unit 2:

- RCS temperature 340°F
- RCS pressure 900 psig
- All MSIVs for the S/Gs are closed
- The MSIV Bypass valves are open
- The FW-035s, Feedwater Tempering Isolation Valves, are open
- The FW-034s, Feedwater Tempering Flow Control Valves, are closed (opened periodically for level control)
- Feedwater pump 2C is reset and latched on turning gear
- The Start Up Feedwater pump is running

The level in the S/G 2B rises to S0%. How is the plant affected?

- a. No actuation occurs because of the position of the MSIVs.
- b. The 2C Feedwater pump and Start Up Feedwater pump trip.
- c. The 2C Feedwater pump trips and FW-035 valves close.
- d. The 2C Feedwater pump and Start Up Feedwater pump trip, the FW-035 valves close, and the MSIV Bypass valves close.

Answer C Exam Level	R Cogniti	ve Level Comp	rehension	Facility:	Braidwood	ExamDate:		9/14/98
	O Value: 3.7		.9 Section:	SYS	RO Group:	1 SRO Group:	1	
System/Evolution E	ingineered Safet	ty Features Actu	uation Syste	m				
KA Knowledge MFW isolati	of Engineered Safet	ty Features Actuatio	n System desig	gn feature(s	s) and or interloci	k(s) which provide fo	or the following	j :
Explanation of Having L Answer	oop Isolation St	ops closed does	s not defeat	P-14.	•			
Reference Title/Facility Refere	ence Number		Section/Page	1		Revisio	L. O.	
Feedwater simple/ FW-1			FWI signals			4		
SGWLC/ FW-2		S	/U Flowpath	IS		0		
Chp61 ESF lesson plan						5	7	
Material Required for Exam Question Source: New	ination		Que	stion Mod	lification Method	d:		

Question Source Comments:

Comment

Comment Type

ROD BOTTOM Alarm operation

During a reactor startup, when does the ROD AT BOTTOM alarm become active for each control bank?

The alarm will actuate for a dropped rod for

- a. any Control Bank whenever Control Bank A DRPI output is above 9 steps.
- b. each Control Bank whenever that Control Bank demand position is above 3 steps.
- c. each Control Bank whenever that Control Bank DRPI output is above 9 steps.
- d. Control Banks A, B and C whenever their Control Bank demand position is above 9 steps, and for Control Bank D whenever Control Bank D demand position is above 3 steps.

Answer C	Exam Level R	Cognitive Level	Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 2.4.31	RO Value:	3.3 SRO Val	ue: 3.4	Section:	SYS	RO Group:	2	SRO Group:	1	
System/Evolutio	n Rod Posit	ion Indication S	System							
KA Explanation of Answer	Knowledge of annuncia Note that the RO when rod position	D BOTTOM co	mes direfc	tly from th			poir	nt of 9 steps;	the alarm	n actuates
Reference Title/Fa	cility Reference Num	ber	Se	ction/Page				Revisio	L. O.	
ROD at Bottom	18wAR 1-10-E6							2		
Chp 29 rod Pos Lesson plan	ition Indication sys	•						9	4,5	

Material Pequired for Examinati	on	
Question Source: New		Question Modification Method:
Question Source Comments:	Millstone 3 11/90 NRC Exam	

Comment Type Comment

Significantly Modified

SR NIS discriminator failure

How would the failure of the pulse height discriminator to a low value affect the indication of the affected Source Range channel?

The output would...

- a. decrease due to electronic filtering which narrows the pulse height window.
- b. decrease due to failure in counting the higher amplitude neutron generated pulses.
- c. increase due to counting of the gamma generated pulses ONLY.
- d. increase due to counting of the gamma generated pulses and decay alpha generated pulses.

Answer d	Exam Level B	Cognitive Level	Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 015 A2.02	RO Value:	3.1 SRO Val	ue: 3.5	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolution	on Nuclear In	strumentation	System							
ка	Ability to (a) predict the procedures to correct, of Faulty or erratic operation	control, or mitigate	the consequence	ences of the	se abnorm	on System and all operation:	(b) ba	ased on those pre-	dictions, u	JSC
Explanation of Answer	Pulse height discr event associated of product daughters	with neutron de	etection. G	amma an	d other i	nteractions s	uch	as the alpha d	lecay of	to be from f fission

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Source Range Detector schematic	NI-4	4	
Chp 31 Source Range Nuclear Inst		6	3

Material Required f	or Examination
Question Source:	New
Question Source C	omments:
Comment Type	Comment

Question Modification Method:

SR NIS - loss of control power The following conditions exist on Unit 1:

- RCS at NOT NOP
- Reactor trip breakers closed
- Source Range readings:
 - N31 18 cps
 - N32 22 cps

What indication would the operator observe if Control Power was lost to the N31 Drawer?

The N31 meter would read....

- a downscale, the associated drawer bistable lamps NOT lit, and reactor trip breakers closed.
- b. downscale, the associated drawer bistable lamps lit, and reactor trip breakers open.
- c. 18 cps, the associated drawer bistable lamps NOT lit, and reactor trip breakers closed.

a. 18 cps, the associated drawer bistable lamps lit, and reactor trip breakers open.

Answer d	Exam Level B	Cognitive Level	Comprehension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 015 K2.01	RO Value:	3.3 SRO Val	ue: 3.7 Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolution	on Nuclear I	nstrumentation	System						
KA	Knowledge of electrica NIS channels, compor	nents, and intercont	rections						
Explanation of Answer	Control power los Power source.	ss affects bistat	les which trip but N	OT draw	er instrument	indi	cation which	is from I	nstrument

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Source Range Detector Schematic	NI-4 loss of		
	Control power	4	
Ch 31 Source Range Nuclear Inst		6	8.b

Material Required for	Examination
Question Source:	New
Question Source Con	mments:
Comment Type	Comment

Question Modification Method:

Eval for 1/M - Eightfold increase

The following conditions exist on Unit 1:

- A reactor startup is about to be performed
- All shutdown banks are fully withdrawn
- All control banks are fully inserted
- An ECC records the following: Predicted Critical Position (ECP) - 130 steps on CBD Max rod position - 231 steps on CBD Min rod position - 58 steps on CBD

The following parameters were recorded during the rod withdrawal:

ROD HEIGTH	N31 cps	N32 cps
0 on CBA	25	23
178 on CBA	34	31
178 on CBB	58	62
178 on CBC	116	106
80 on CBD	200	182
92 on CBD	237	225

When was the first time the operator was required to determine the Predicted Critical Position?

1

a. At 50 steps on CBA, with N32 as the designated Source Range detector.

b. At 113 steps on CBC, with N31 as the designated Source Range Detector.

c. At 80 steps on CBD, with N31 as the designated Source Range detector.

d. At 92 steps on CBD, with N32 as the designated Source Range detector.

Answer C	Exam Level R	Cognitive Level	Comprei	hension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 015 K5.06	RO Value:	3.4 SRO Va	lue: 3.7	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolutio		nstrumentation								
KA	Knowledge of the open Subcritical multiplication	rational implication	s of the follow	ving concept	s as they a	pply to the Nucle	ear Ir	strumentation	System:	
Explanation of Answer	During reactor SI steps withdrawn. increase holdpoin	U, hold point fo The actual de	r ICRR de	termination of Predict	on is perf ed Critica	ormed for eac al Position is	ch C requ	ontrol Bank lired at the	at 50 steps eight-fold co	and 113 unt
Reference Title/Fa	cility Reference Num	ber	Se	ection/Page				Revision	L. O.	
BwGP 100-2 F	Reactor Startup			1BwGP	100-2A1			12		
BwGP 100-2A Material Require Question Source	ed for Examination			Que	estion Mod	dification Metho	d:	13	2	
Question Sourc										

Friday, July 24, 1998 4:34:19 PM

Page 55 of 127

NR RTD Failure effects

The following conditions exist on Unit 1:

Reactor pow RCS Tave -		569°F (B);	569°F (C);	570°F (D)
RCS Thot -				
RCS Tcold -				
Pzr pressure	- 2235 ps	sig		

If loop B Thot output channel fails LOW, what is the response of Pzr level ?

Pressurizer level will...

Question

- a. increases to 60%.
- b. remains the same.
- c. decreases to 25%.

a. decreases to the letdown isolation setpoint.

Answer b Exam Level E	3 Cognitive Level	Comprehension	Facility: Braidwood	ExamDate:	9/14/98
KA: 016 K3.02 RO Va	alue: 3.4 SRO Valu	e: 3.5 Section:	SYS RO Group:	2 SRO Group:	2
	Nuclear Instrumenta				
KA Knowledge of th PZR LCS	e effect that a loss or mail	unction of the Non-Nucle	ar Instrumentation System v	will have on the follo	owing:
Explanation of Thot fails to Answer level progra		old of 537°F, loop Ta	ve is now 524°F. Auc	tioneered HIGH	Tave is used for Pzr
eference Title/Facility Reference	Number	Section/Page		Revision	L. O.
PZR Level Control Schematic	C	RY-3		2	
1BwOA Inst-2 lesson plan				15	1
chp 12 RCS lesson plan Material Required for Examinati	ion .			8	13
Question Source: Facility Exa		Que	stion Modification Method	: Concept Used	d -
Question Source Comments:	Zion 2/92 NRC Exam (instead of dual conditio		Change includes failure o	f Thot loop, failure I	low and conditions

Comment Type Comment

Friday, July 24, 1998 4:34:20 PM

Page 56 of 127

CETC failure effect on Subcooling Monitor/Iconic Display

With Unit 1 at 100% power and with normal operating parameters, how would the failure of the HOTTEST Core Exit Thermocouple affect the reading of subcooling margin on the SPDS Iconics (CETC/SMM display) for each of the two situations below:

Situation 1 - The CETC output fails high slowly Situation 2 - The CETC output fails low slowly

- Situation 1: Subcooling margin will decrease to saturation then rise in superheat, and return to normal when CETC output reaches 2300°F.
 Situation 2: Subcooling margin will increase, then stabilizes when the CETC output is smaller than TEN other TCs.
- Situation 1: Subcooling margin will decrease to saturation then rise in superheat, and return to normal when CETC output reaches 1200°F.
 Situation 2: Subcooling margin will remain constant.
- c. Situation 1: Subcooling margin will increase to saturation then rise in superheat, and return to normal when CETC output reaches 1200°F. Situation 2: Subcooling margin will decrease, then stabilizes when the CETC output is smaller than TEN other TCs.
- a. Situation 1: Subcooling margin will Increase to saturation then rise in superheat, and return to normal when TC output reaches 2300°F.

Situation 2: Subcooling margin will remain constant.

Answer a	Exam Level R	Cognitive Level	Compreh	ension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 017 K4.01	RO Value:	3.4 SRO Valu	e: 3.7	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolutio	n In-Core T	emperature Mon	itor Syste	m						
ка	Knowledge of In-Core Input to subcooling mo		r System de	esign featur	e(s) and or	interlock(s) which	ch pr	ovide for the folio	wing:	
Explanation of Answer	Fail high - Since 2300°F. Fail low valid. When it re (assuming other	- subcooling ma aches the 11th h	rgin will s ighest val	lightly inclue, the s	rease as	temperature	fall	s and input to	averag	e remains
Reference Title/Fa	cility Reference Num	ber	Se	ction/Page				Revision	L. O.	
	nadequate Core C							7	5,6	

 Material Required for Examination

 Question Source:
 Facility Exam Bank
 Question Modification Method:
 Significantly Modified

 Question Source Comments:
 Braidwood 1997 NRC Exam. Difference in all answer choices - similar premise in theory, but different wording.

 Comment Type
 Comment

day, July 24, 1998 4:34:21 PM

RCFC operations requirements

The following conditions exist on Unit 2:

- RCS Temperature 342°F
- Pzr pressure 375 psig
- 2A, 2B, and 2D RCFCs are operating in high speed
- Unit 2 RCFC Dry Bulb temperatures are recorded as follows:.
 - -2A RCFC 119°F
 - 2B RCFC 118°F
 - 2C RCFC 127°F
 - 2D RCFC 121°F

Which of the following identifies the equipment status and actions for the above conditions?

What are the MINIMUM requirements for operation for the Reactor Containment Fan Coolers (RCFCs)?

- An additional RCFC must be started because the average of ALL the RCFC temperatures exceeds the limit.
- An additional RCFC must be started because ONE of the operating RCFCs temperatures is above the limit.
- c. NO action is necessary because ALL temperatures are within their appropriate limit.
- a. NO action is necessary because the average temperature of ALL operating RCFCs is below the limit.

A	nswer d	Exam Level R	Cognitive Level	Comprehension	Facility: Braidw	ood ExamDate:	9/14/98
K	A: 2.1.32	RO Value:	3.4 SRO Valu	e: 3.8 Section:	SYS RO G	oup: 1 SRO Group	p: 1
s	ystem/Evolutio	on Containm	ent Cooling Sys	tem			
· K	A						
		Ability to explain and a					
	xplanation of nswer	Limits on CNMT	temperature det	ermined by average	e of temperature	es for OPERATING F	RCFC outlet temps.
Ref	erence Title/Fa	cility Reference Num	ber	Section/Page		Revision	L. O.
RC	FC Start up	1BwOP VP-5					
		shiftly daily Op sur	v				
	wOS-0.1-1,2						6 100
chp	42 Contain	ment Vent system	lesson plan			4	6, 10a
N	laterial Require	ed for Examination					
C	uestion Sourc	e: New		Que	stion Modification	Method:	
G	uestion Sourc	e Comments:					
C	omment Type	Comment					

Friday, July 24, 1998 4:34:21 PM

Page 58 of 127

Topic

Question Sequence for securing CNMT Spray

The following conditions exist on Unit 1:

- A LOCA has occurred
- Transition has been made to BwEP ES-1.3 "Transfer To Cold Leg Recirculation"
- Containment Spray actuated due to high containment pressure
- All systems and components operating as expected

What conditions allow for termination of Containment Spray?

- a. ONE pump is stopped when containment pressure is less than 15 psig. The other pump is stopped when RWST LO-3 level is reached.
- b. ONE pump is stopped when containment pressure is less than 20 psig. The other pump is stopped after it has operated for a period of at least T³WO hours
- c. BOTH pumps are stopped when containment pressure is less than 15 psig and have operated for a period of at least TWO hours.
- d. BOTH pumps are stopped when containment pressure is less than 20 psig and RWST LO-3 level is reached.

Answer C Exam Level B Cognitive Level	Comprehension	Facility: Braidwood	ExamDate:	9/14/98
KA: 026 A2.08 RO Value: 3.2 SRO Valu	e: 3.7 Section:	SYS RO Group:	2 SRO Group:	1
System/Evolution Containment Spray Syste	m			
KA Ability to (a) predict the impacts of the follo procedures to correct, control, or mitigate to Safe securing of containment spray when	the consequences of tho		based on those predict	ions, use
Explanation of Answer Title:				
Reference Title/Facility Reference Number	Section/Page		Revision	L. O.
Containment Spray Schematic	CS-1/CS te	m	3	
Loss of Reactor or Sec Coolant/1BwEP-1			18 WOO	9-1B
Ch 59 Containment Spray sys Lesson plan Material Required for Examination			6	14
Question Source: New	Que	stion Modification Meth	nod:	
Question Source Comments:				
Comment Type Comment				

Page 59 of 127

Pump operation interlocks

The following conditions exist on Unit 1:

- LOCA is in progress
- Containment pressure 15 psig
- Containment Spray actuated due to high containment pressure
- Containment Spray signal has been reset
- The actions of BwEP ES-1.3 "Transfer To Cold Leg Recirculation" have been completed
- Offsite power is then lost and the D/G output breakers have just closed onto ESF buses

How are the Containment Spray Pumps re-started?

- a. The pumps will auto start 15 seconds following closure of the D/G output breakers.
- b. The pumps will auto start 40 seconds following closure of the D/G output breakers.
- c. If the operator immediately places the CS & PHASE B ISOL switches for both trains to ACTUATE, the pumps will auto start 15 seconds following closure of the D/G output breakers.
- a. If the operator immediately places the PP 1_TEST switches for both pumps in TEST, the pumps will auto start 40 seconds following closure of the D/G output breakers.

Answer C	Exam Level R	Cognitive Level C	omprehension	Facility: Braidwood	ExamDate:	9/14/98
KA: 026 A4.01	RO Value:	4.5 SRO Value:	4.3 Section:	SYS RO Group:	2 SRO Group: 1	
System/Evolution	on Containm	nent Spray System				
KA	Ability to manually ope CSS controls	erate and/or monitor in t	he control room:			
Explanation of Answer		uation input signal is nt restarted following		uation input has bee	en reset, manaul actuation	is required

Question Modification Method:

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Chp 59 Containment spray sys lesson plan		6	8,9

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

1

Friday, July 24, 1998 4:34:23 PM

Page 60 of 127

Charcoal Filters response to deluge

Annunciator 0-33-C3, FILTER 1VP05FA TEMPERATURE HIGH, alarms in the Control Room while 1VP02CA CNMT Charcoal Filter Fan is operating. The alarm condition is verified locally.

Which of the following describes the actions taken and/or the system response for the Containment Ventilation System?

- a. The deluge valve FP244A will automatically open and the fan will automatically stop.
- b. The control room operator will open the deluge valve FP244A and the local operator will then stop the fan.
- c. The local operator will open the deluge valve FP244A and the fan will automatically stop.
- d. The local operator will open the deluge valve FP244A and the control room operator will then stop the fan.

Answer C	Exam Level R	Cognitive l	Level Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 027 A4.03	RO Value:	3.3 SR	O Value: 3.2	Section:	SYS	RO Group:	3	SRO Group:	2	
System/Evolutio	n Containm	ent lodine	Removal Syst	em						
KA	Ability to manually ope CIRS fans	rate and/or n	nonitor in the conti	ol room:						
Explanation of Answer	Operation of fp ca	omponents	s associated w	ith charco	al filter is	local. But far	n trij	ps when delug	ge system	1

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Filter 1VP05FA Temperature High			
/1BwaR 1VP01j-1-A1		1	
chp 42 Containment vent 7 purge		4	8

Material F	Required fo	or Examination
Question	Source:	New
Question	Source Co	omments:

Question Modification Method:

Comment Type Comment

Question RWST Purification Loops

The following conditions exist:

- Unit 1 20% power with load increase in progress
- Unit 2 MODE 5 following refueling outage
- Unit 2 Spent Fuel Pool Cooling Loop is in service.
- Spent Fuel Pool Pump 1FC01P is OOS.

Which of the following is allowed under this situation?

Alignment and operation of...

- a. both Unit 1 PWST purification and Unit 2 RWST purification with flow through the Unit 2 Spent Fuel Pool Demineralizer and Unit 2 Spent Fuel Pool Filter.
- Spent Fuel Pool purification and Unit 1 RWST purification with flow through the Unit 1 Spent Fuel Pool Demineralizer and Unit 1 Spent Fuel Pool Filter.
- c. Unit 2 RWST purification with flow through the Unit 1 Spent Fuel Pool Filter ONLY.
- d. Unit 2 RWST purification with flow through the Unit 2 Spent Fuel Pool Demineralizer and Unit 2 Spent Fuel Pool Filter.

Answer d	Exam Level R	Cognitive Level Me	emory	Facility: B	raidwood	ExamDate:	9/14/98
KA: 033 K1.05	RO Value:	2.7 SRO Value:	2.8 Section:	SYS F	RO Group:	2 SRO Group:	2
System/Evolutio	on Spent Fuel	Pool Cooling Sys	tem				
KA	Knowledge of the physic RWST	cal connections and/or	cause-effect relation	nships betwee	en Spent Fuel Po	ol Cooling System	and the
Explanation of Answer	The lineup allows time due to comm the Unit's RWST n Demin/filter for the	on input path via I may be aligned thr	Refueling Water ough the same l	Purification	n Pumps. With in and filter tra	h the cooling lo ain. Simultaneo	op inservice only, ous use of
Reference Title/Fa	acility Reference Numb	er	Section/Page	,		Revision	L. 0.
S/U purification	sys to purify or						

Reference Title/Facility Reference Number	Section/Page	Revision	L. U.
S/U purification sys to purify or			
Reciculate the RWST/ BwOP FC-7		7	
Fuel Pool Cooling Schematic	FC-1	3	
Chp 51 Spent Fuel Pool Cooling			
And Cleanup		5	3
Material Required for Examination			
Question Source: New	Question Modificati	ion Method:	
Question Source Comments:			

Comment Type

Comment

Steam Dump input malfunction

The following conditions exist on Unit 1:

- Reactor power was 65% when the turbine tripped
- An ATWS occurred
- The reactor tripped 15 seconds later when B reactor trip breaker was locally opened
- Reactor trip breaker A is failed closed
- RCS Tave 559°F
- Pzr pressure 2255 psig
- Steamline header pressure 1100 psig
- No controls other than control rods and boration controls have been operated

What is the status of the Steam Dump valves?

Steam Dumps are ...

- a. modulated open due to steam header pressure.
- b. modulated open due to Tave above no-load Tave.
- c. closed because Tave is NOT greater than 3°F above Tref.
- d. closed because the dumps are NOT armed.

Answer b	Exam Level B	Cognitive Level	Comprehe	ension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 041 A3.02	RO Value:	3.3 SRO Val	Je: 3.4	Section:	SYS	RO Group:	3	SRO Group:	3	
System/Evolution	on Steam Du	ump System and	Turbine E	Bypass Co	ontrol					
KA	Ability to monitor auto RCS pressure, RCS to	emperature, and rea	ctor power							
Explanation of Answer	The "A" reactro to closed, the steam minutes sensed does operate on	n dumps respon on PT-506) am	d to event l ing the dur	ike load r	rejection ce the "E	, with C-7 loa " RTP was o	ad re	ejection (10% ed, the stean	load dec	rease in 2
Reference Title/Fa	acility Reference Num	nber	Sec	tion/Page				Revisin	L. O.	
Steam Dumps	s/ Schematic			MS-4				4		
Chp 24 Steam	Dumps Lesson	Plan						7	3,4	
Material Requir Question Source	ed for Examination :e: New			Que	stion Mod	incation Metho	od:			
Question Source	e Comments:									

Comment Type Comment

Question Turbine Control response to Failed Impulse Channel

The following conditions exist on Unit 1:

- Reactor power 28%
- All systems normal
- Turbine EHC Panel settings: Turbine REFERENCE DEMAND - 580 MW Turbine REFERENCE - 330 MW
- The GO pushbutton is LIT

What would be the DEHC System response to a slow failure to ZERO for the turbine impulse pressure channel that feeds into the DEHC?

Turbine load will...

- a. decrease until the difference between REFERENCE and impulse pressure exceeds 30%, the operator would then be alerted to select MANUAL control.
- b. decrease until the difference between REFERENCE DEMAND and impulse pressure exceeds 30%, then load will stabilize in MANUAL control.
- c. increase until the difference between REFERENCE and impulse pressure exceeds 30%, then load will stabilize in MANUAL control.
- d. increase until the difference between REFERENCE DEMAND and impulse pressure exceeds 30%, the operator would then be alerted to select MANUAL control.

	Answer C	Exam Level R	Cognitive Level	Compreh	ension	Facility:	Braidwood		ExamDate:		9/14/98
	KA: 045 K1.20	RO Value:	3.4 SRO Val	ue: 3.6	Section:	SYS	RO Group:	3	SRO Group:	3	
	System/Evolutio	n Main Turt	bine Generator	System							
	KA	Knowledge of the phys Protection system									
	E Vanation of Answer	When the different AUTO transfer in				e impulse	e pressure (IM	IP I	N) channel ex	xceeds, c	ircuit
1	TV/GV Contro		ber	Sec	EHC-3	Impulse	9		Revision 1	L. O.	
	And Protection	n turbine Control							5	52	2

Material Required for Examination	
Question Source: New	Question Modification Method:
Question Source Comments:	
Comment Type Comment	

S/G Level program - low power

The following conditions exist on Unit 1:

- Reactor power 35%

- All systems normal

What failure would cause a decrease in feedwater flow to all S/Gs?

-

a. ONE condenser steam dump ONLY fails open.

b. Main steamline pressure PT-507 fails low.

c. ONE HD pump flow control valve ONLY fails open.

d. Main feedwater header pressure PT-508 fails low.

Answer b	Exam Level B	Cognitive Level	Comprehension	Facility:	Braidwood	ExamDate:	9/14/98
KA: 2.1.7	RO Value:	3.7 SRO Valu	e: 4.4 Section:	SYS	RO Group:	1 SRO Group:	1
System/Evolutio	n Main Fee	dwater System					
KA							
	instrument interpretati	on.	nake operational judgm				
Explanation of Answer	PT-507 fails low in a decrease of		np speed to decrea	se which	reduces FV	V pressure. This v	would initially result
Reference Title/Fa	acility Reference Num	ber	Section/Page			Revision	L. O.
Fw EH controls			EHC-6	DP		1	
Chp 27 SGWLC						6	16
Materiai Require	ed for Examination						
Question Sourc	e: New		Que	stion Mod	ification Metho	od:	
Question Sourc	e Comments:						

.....

.....

Examplate

Comment Type Comment

Page 67 of 127

Prepared by WD Associates, Inc.

0/1 4/00

Effect of failure of S/G steam pressure channel

The following conditions exist on Unit 1:

- Reactor power 100%
- All systems normal
- FT-512 selected for steam flow input into SGWLC for S/G 1A

What is the initial effect of the pressure transmitter associated with FT-512 failing low?

- a. S/G 1A level will decrease and feed pump speed will decrease.
- b. S/G 1A level will decrease ONLY.
- c. S/G 1A level will increase and feed pump speed will increase.
- d. S/G1A level will increase ONLY.

Answer a	Exam Level R	Cogni	tive Level Co	ompre	hension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 059 K1.04	RO Value:	3.4	SRO Value:	3.4	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolution											
КА	Knowledge of the physical S/GS water level continues of the second secon	rol syste	m		-						
Explanation of Answer	Steam flow is our causing feed pur							D	elta-P progran	n will dec	crease

Section/Page

EHC-6/DP

FW-2/ 512 loop

Reference Title/Facility Reference Number FW EH controls/ schematic SGWLC schematic Chp 27 SGWLC lesson plan Material Required for Examination Question Source: New

Comment

Question Source Comments:

Comment Type

Question Modification Method:

Revision

1

0

6.

L. O.

16

Friday, July 24, 1998 4:34:27 PM

Page 68 of 127

AFW Startup

The following conditions exist on Unit 1:

- The reactor tripped from 40% power
- The trip was caused by RCS loop 1C low flow condition due to undervoltage for RCP 1C bus
- Power Range NIS channel N42 failed at 100% on the trip
- ESF bus 141 undervoltage occurred
- 1A D/G automatically started and ACB 1413 is closed
- S/G levels lowest readings were 19% (A); 25% (B); 22% (C); 20% (D)

What is the status of the Auxiliary Feedwater (AF) Pumps on Unit 1 for these conditions at ONE minute following the trip?

- a. Both AF pumps are running.
- b. ONLY the 1A AF pump is running
- c. ONLY the 1B AF pump is running.
- d. Neither AF Pump is running

Answer b	Exam Level B	Cognitive Level	Comprehension	Facility: Braidwood	E	xamDate:	9/14/98
KA: 061 A3.01	RO Value:	4.1 SRO Valu	e: 4.2 Section:	SYS RO Group:	: 1 s	RO Group:	1
System/Evoluti	on Auxiliary	/ Emergency Fee	edwater System				
KA	Ability to monitor autor AFW startup and flows		he Auxiliary / Emergency	Feedwater System inc	luding:		
Explanation of Answer	SG levels are ab	ove AF actuation	setpoints and the	motor driven AF pu	imp starts	s on the dete	cted undervoltage

seference Title/Facility Reference Number	Section/Page	Revision	L. O.
Aux Feedwater System		2	5
Chp 26 AFW sys lesson plan		9	3,5
Chp 9 EDG lesson plan		7	7
Material Required for Examination			
Question Source: New	Question Modification Ma	thod:	

Question Source Comments:

Comment Type Comment

Friday, July 24, 1998 4:34:28 PM

Page 69 of 127

AFW flow requirements for cooldown Question W hich of the following describes the designed MINIMUM AFW pump and S/G configuration necessary to remove all of the reactor decay heat load following a reactor trip from 102% power? a. The 1A AF pump supplying 500 gpm to at least ONE S/G with S/G blowdown manually isolated. b. The 1B AF pump supplying 740 gpm to at least ONE S/G with S/G blowdown in service c. The 1A and 1B AF pump supplying 500 gpm total flow to at least TWO S/Gs with S/G blowdown in service. d. The 1A and 1B AF pump supplying 740 gpm total flow to at least TWO S/Gs with S/G blowdown manually isolated. Exam Level B Cognitive Level Memory Facility: Braidwood ExamDate: Answer a 9/14/98 3.6 Section: SYS 1 SRO Group: 1 3.2 SRO Value: RO Group: KA: 061 K5.02 **RO Value:** Auxiliary / Emergency Feedwater System System/Evolution Knowledge of the operational implications of the following concepts as they apply to the Auxiliary / Emergency Feedwater System: KA Decay heat sources and magnitude **Explanation** of Answer Reference Title/Facility Reference Number Section/Page Revision LO. 9 1.11 AFW system lessson plan ch26 Material Required for Examination **Question Modification Method:** Significantly Modified **Question Source:** New

Comanche Peak 11/93 NRC Exam

Question Source Comments:

Comment

Comment Type

DC bus battery charger

The following conditions exist on Unit 1:

- Reactor power - 100%

Investigation has located a ground on the 125 VDC Normal supply to the 1A D/G from DC 111. What action is required to transfer DC Control Power to the reserve source?

The Reserve power breaker from...

- a. DC 111 will be closed after opening the Normal power breaker and the Reserve power breaker at the D/G control panel.
- DC 111 will be closed after swapping the no-blow link at the Normal and Reserve power fuse blocks at the D/G control panel.
- c. DC 112 will be closed after opening the Normal power breaker and the Reserve power breaker at the D/G control panel.
- d. DC 112 will be closed after swapping the no-blow link at the Normal and Reserve power fuse blocks at the D/G control panel.

Answer b Exam Level B Cognitive Level	Memory Facility: Braidwood	ExamDate:	9/14/98
KA: 2.1.30 RO Value: 3.9 SRO Va	lue: 3.4 Section: SYS RO Group	: 2 SRO Group: 1	
System/Evolution D.C. Electrical Distribution	on		
KA			
Ability to locate and operate components	, including local controls.		
Explanation of Answer			
. eference Title/Facility Reference Number	Section/Page	Revision L. O.	
125 VDC system/schematic	DC-1	0	
DC Control power transfer from			
Normal to reserve source/ BwOP-DC-6A1		51	
Chp 8a 125 VDC lesson plan		6 4,6	5
Material Required for Examination			
Question Source: New	Question Modification Me	thod:	
Question Source Comments:			
Comment Type Comment			

Sequencing of ESF pumps - SI & SI w LOP

Unit 1 was being synchronized to the grid when the following occurred:

- Trip of 345 KV breakers resulted in deenergizing the SATs
- A steamline break occurred that resulted in containment pressure reaching 20 psig 20 seconds after the D/Gs output breakers have closed

When would the 1A SX pump re-start?

- a. Always following start of the 1A CS Pump.
- b. Between the start of the 1A CV pump and the 1A RH pump on the SDRA contacts (UV).
- c. Between the start of 1A CC Pump and the 1A AF Pump on the SARA contacts (SI).
- a. Coincident with the starting of the 1A and 1C RCFCs.

Answer C	Exam Level B	Cognitive Level	Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 064 A3.07	RO Value:	3.6 SRO Val	ue: 3.7	Section:	SYS	RO Group:	2	SRO Group:	2	
System/Evolutio	n Emergen	cy Diesel Gener	ators							
KA	Ability to monitor autor Load sequencing									
Explanation of Answer	The SX pump wo starts in following present); CC pun now present but	g sequence: C) nps (20 sec); S)	/ (0 sec); \$ < pumps (2	SI ((5 sec)); RH (10	lsec); CS (15	-18	secs, if actua	tion signa	l
Reference Title/Fa	cility Reference Num	ber	Se	ction/Page				Revision	L. O.	
"/G Relaying/ s	chematic			DG-2/	sequenci	ng order		1		
np 9 EDGs an	d Aux sys lesson p	plan						7	7	
	al Service Water s									
Lesson plan	ed for Examination							7	8	
Question Sourc	e: New			Que	stion Mod	lification Metho	d:			
Question Source	e Comments:									
Comment Type	Comment									

RCDT operation - effect of CNMT Isolation

The following conditions exist on Unit 1:

- Unit is in MODE 3
- A cooldown had just been initiated
- Steam Dump Bypass Interlock control switches have just been taken to BYPASS
- No other operator actions have been performed
- The Steam Dump valves fail open and the following parameters are observed:
- RCS temperature 537°F (A); 539°F (B); 538°F (C); 538°F (D)
- Pzr pressure 1820 psig
- Pzr level 10%
- S/G pressure 850 psig (A); 740 psig (B); 800 psig (C); 715 psig (D)
- S/G flow 1.0 Mlb/hr (A); 1.5 Mlb/hr (B); 1.1 Mlb/hr (C); 1.6 Mlb/hr (D)
- The level in the RCDT has risen to the alarm setpoint (80%) for REACTOR COOLANT DRAIN TANK UNIT 1 LEVEL HI-LO

Assuming all systems are functioning correctly, what is the status of the RCDT system?

- a. BOTH RCDT pumps are running and flow is directed to the Holdup Tanks.
- b. BOTH RCDT pumps are running and flow is recirculated back to the RCDT.
- c. ONE RCDT pump is running and flow is directed to the Holdup Tanks.
- d. NEITHER RCDT pump is running and NO flow exists for the system.

Answer d	Exam Level B	Cognitive Level	Comprehension	Facility: I	Braidwood	ExamDate:	9/14/98
KA: 068 A4.04	RO Value:	3.8 SRO Val	ue: 3.7 Section:	SYS	RO Group:	1 SRO Group: 1	
System/Evolution	on Liquid Ra	dwaste System	1				
KA	Ability to manually ope Automatic isolation	erate and/or monito	r in the control room:		•		
Explanation of			RCS temp. actuate			AT Phase A Isolation sig	nal

Answer isolates RCDT valves out. Closure of valve RE9170 cuses pumps to stop.

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
PRT and RCDT/schematic	RY-4	2	
Chp 48a Liquid Rad Waste lesson plan		6	11
Ch61 ESF lesson plan		5	7

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

CNMT Sump sources of input during normal operations

During at-power operations with systems in their normal alignment, what is a normal source of water to the Containment Floor Sump?

a. Output from the reactor cavity sump.

b. Leakoff from the #2 RCP seals.

c. Leakoff from the reactor vessel flange.

d. Valve packing leakage from the CVCS letdown isolation valves.

Answer a	Exam Level R	Cogni	tive Level Me	emory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 068 K1.07	RO Value:	2.7	SRO Value:	2.9	Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolutio	n Liquid Ra	dwaste	e System								
ка	Knowledge of the phys Sources of liquid wast			cause-e	effect relation	nships betv	veen Liquid Rad	wast	e System and the	following:	
Explanation of Answer	Rx cavity sump of directed to PRT	utput t	o CNMT Floo	or sum	p, #2 sea	ls directe	d to RCDT, F	RV f	lange to RCD	T , valve	leakoffs

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Chp 46a Liquid Radwaste System		6	12

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

Waste Gas Decay Tank Operations

When aligned for normal operation (BWOP GW-1), how does the Waste Gas System respond to high pressure sensed at the in-service Gas Decay Tank?

An alarm is generated that...

- a. alerts the operator to place an alternate Gas Decay Tank in service.
- indicates auto swap of in-service Gas Decay Tank to selected backup Gas Decay Tank, and alerts the operator to align another standby Gas Decay Tank.
- c. indicates auto swap of in-service Gas Decay Tank to selected standby Gas Decay Tank and auto swap of standby Gas Decay Tank to new standby Gas Decay Tank.

d. shuts down the Waste Gas Compressors and isolates the in-service Gas Decay Tank.

Answer b	Exam Level R	Cognitive Level M	emory	Facility:	Braidwood	ExamDate:		9/14/98
KA: 071 A4.05	RO Value:	2.6 SRO Value:	2.6 Section:	SYS	RO Group:	1 SRO Group:	1	
System/Evolutio	on Waste Ga	as Disposal System						
ка		erate and/or monitor in th uding valves, indicators,						
Explanation of Answer	Indicates auto sy	vap to standby WG	D Tank at 95 psi	g.				
Reference Title/Fa	acility Reference Num	ber	Section/Page			Revision	L. O.	
Gas waste sys	S/U & Operation/							
BWOP GW-5						5		
GDT sel sw rep	osition req'd/ 0GW	/02J-A1				51		
Chgp 46 Gas R	adwaste sys lesso					6	6	
Question Sourc			Que	stion Mod	lification Metho	d:		
Question Source	e Comments:							

Comment Type Comment

12 4

Check Source operation

Area Radiation Monitor for Fuel Bldg Fuel Handling Incident (ORE-AR055) is being manually Check Source tested. What is the response when the monitor's CHECK SOURCE (C/S) pushbutton is depressed at the RM-23 panel?

a. The alarm and automatic action output will be blocked, and the RM-23 amber INTLK LED will be lit.

b. The alarm and automatic action output will be blocked, and the RM-23 green AVAIL LED will be lit.

c. The alarm will be actuate when value is reached, and the RM-23 amber INTLK LED will be lit.

d. The alarm will be actuate when value is reached, and the RM-23 red HIGH LED will be lit.

Answer b	Exam Level R	Cognitive Level Me	emory	Facility:	Braidwood		ExamDate:		9/14/98
KA: 072 A4.03	RO Value:	3.1 SRO Value:	3.1 Section:	SYS	RO Group:	1	SRO Group:	1	
System/Evolutio	Area Radi	iation Monitoring Sy	stem						
ка	Ability to manually ope Check source for open	rate and/or monitor in th ability demonstration	e control room:						
Explanation of Answer	Depressing the C	/S blocks the alarm		on of the	minitor but th	ne A	VAIL litght ren	mains lit.	
Control Function		ber	Section/Page				Revision	L 0.	
AR/PR-11A26	Energized/BwOP		B.1				1		

Rad Monitor Sys lesson plan chp 49

Material Required for Examination

Question Source: New

Question Source Comments:

Comment Type Comment

Question Modification Method:

Friday, July 24, 1998 4:34:33 PM

Page 77 of 127

Prepared by WD Associates, Inc.

3,8

7

Loss of FHB Overhead Crane rad monitor

The following conditions exist on Unit 2:

- Refueling operations are in progress

While using the Fuel Handling Building Crane to move new fuel into the Spent Fuel Pool, the radiation monitor ORE-AR039, Fuel Handling Building Crane Monitor, goes into alarm. What action is affected?

- a. Traverse of the Fuel Handing Building Crane bridge and trolley.
- b. Both lowering and raising the Fuel Handing Building Crane hoist.
- c. Traverse of the Fuel Handing Building Crane trolley and raising the hoist.
- a. Raising the Fuel Handing Building Crane hoist.

Answer d	Exam Level B	Cognitive Level C	omprehension	Facility: B	Iraidwood	ExamDate:	9/14/98
KA: 072 K3.02	RO Value:	3.1 SRO Value:	3.5 Section:	SYS I	RO Group:	1 SRO Group:	1
System/Evolutio		iation Monitoring S	4.1		1 *** 2.		
ка	Knowledge of the effect Fuel handling operation		ction of the Area Radi	ation Monitor	ing System will	have on the following	g:
Explanation of Answer	Rad monitor prev	ents raising hoist.					
Reference Title/Fa	cility Reference Num	ber	Section/Page			Revision	L. O.
Chp 49, Radia	ation Monitors less	on plan				7	4.a.3)

Material Required	for Examination
Question Source:	New
Question Source	Comments:
Comment Type	Comment

Question Modification Method:

1 42

Evaluation of eqpt affected for slow loss

The following conditions exist on Unit 1:

- A unit startup is in progress with reactor power raised above 18%.
- Turbine is at 1800 rpm ready to be synchronized to grid.
- Motor driven feedwater pump is supplying the S/Gs with Feed Reg Bypass valves in AUTO.
- Steam Dump demand in AUTO at 12%.
- Instrument air header pressure begins to slowly drop due to a leak

If the leak CANNOT be isolated and instrument air pressure continues to drop, which of the following would occur?

(Assume NO operator action taken.)

- a. AF recirculation flow to the CST would be lost due to AF recirc failing closed.
- Pressurizer level would increase due to 1CV121 failing open.
- c. The main turbine would auto runback due to Diaphragm Interface Valve (DIV) opening.

a. RCS temperature would drop to 550°F due to steam dumps failing open.

Answer b	Exam Level B	Cognitive Level	Compreh	ension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 078 K3.02	RO Value:	3.4 SRO Value	3.6	Section:	SYS	RO Group:	3	SRO Group:	3	
System/Evolutio		t Air System								
KA	Knowledge of the effect Systems having pneum	natic valves and conti	ois							
Explanation of Answer	Charging flow goo 'a' is incorrect bec	es to maximum d cause both 1A & e steam dumps f	1B AF pu	mp recirc	ng open, c valves f	and letdown fail open . 'c'	isol mai	1CV459 & 10 n turbine not c	CV460 lirectly	fail closed. affected. 'd'

aference Title/Facility Reference Number	Section/Page	Revision	L. O.
Loss of Instrument Air Lesson Plan 1BwOA SEC-4	Table A	52	
Chp 53 IA/SA lesson plan		8	9
-			

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

F

Effect of loss of DC - CO2 actuation

With the fire protection systems in their normal alignment, what is the affect of a loss of DC power?

Loss of DC control power to the ...

- a. halon control cabinet will cause halon release in the OA Control Room HVAC Room.
- b. battery control panel will cause automatic start of the diesel driven fire pump.
- c. fire detection system will cause start of the motor driven fire pump.
- carbon dioxide system will cause the master discharge valve to fail open pressurizing the CO2 header.

ExamDate: 9/14/98 Comprehension Facility: Braidwood Answer d Exam Level 8 **Cognitive Level** 2 SYS **RO Group:** 2 SRO Group: 3.3 Section: KA: 086 K4.06 **RO Value:** 3.0 SRO Value: Fire Protection System System/Evolution Knowledge of Fire Protection System design feature(s) and or interlock(s) which provide for the following: KA CO2 Explanation of EMPCs uses DC control power. On loss of power, the master EMPC valves fail open which in turn cause the master discharge/selector valve to open, charging the affected header. Answer

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Chp 57, Fire Protection System lesson plan		5	8

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

Evaluate conditions - unwarranted rod withdrawal

The following conditions exist on Unit 1:

- Reactor power is 30%.
- Rod control is in Automatic
- Tref 564°F
- Tave values 564°F (A); 565°F (B); 565°F (C); 564°F (D)
- Power Range NI 31% (N41); 29% (N42), 30% (N43); 30% (N44)
- Control bank D is at 156 steps.

Which condition would result in continuous rod withdrawal?

- Jurbine first stage pressure PT-505 fails upscale.
- b. Power Range channel N41 fails upscale.
- c. Loop A Tcold fails downscale.
- d. Tref signal fails downscale.

d for to
1

Question Modification Method:

Material Required for Examination Question Source: New

Question Source Comments:

Comment Type Comment

P/A vs. Group Step Counters

A Control Bank D rod was dropped from 156 steps. The P-A converter was NOT zeroed when directed by the procedure.

Select the effect of NOT performing this action?

- a. While performing the procedure, the C-11 Rod Stop will be received prior to realigning the rod.
- b. While performing the procedure, the Rod Insertion Limit Alarm will be received at a lower rod position than required.
- c. After the procedure is complete, Bank C control rods will begin insertion at a lower value of Control Bank D.
- d. After the procedure is complete, Bank C control rods will begin insertion at a higher value of Control Bank D.

Answer a	Exam Level B	Cognitive Level	Application	Facility:	Braidwood		ExamDate:		9/14/98
KA: 003 AK3.1	0 RO Value:	3.2 SRO Val	ue: 4.2 Sectio	n: EPE	RO Group:	2	SRO Group:	1	
System/Evolution	on Dropped	Control Rod							
ка	Knowledge of the reas RIL and PDIL	ons for the followin	g responses as they	apply to Dropp	ed Control Rod:				
Explanation of Answer	The bank overlag converter provide was withdrawn to outward motion.	es step informat	ion to rod positio	n indication	including the	C-1	1 circuit. As	the indiv	vidual rod
Reference Title/Fa	acility Reference Num	ber	Section/P	age			Revision	L. O.	
RD Data loggin	g/ rod stops schem	natic	RD-5/F	RD-1					
			P/A & (C-11 rod sto	p		0/0		
an 28 Rod Co	introl eve loccon n	an					12	10.	10

ip zo Rod Control sys less	un pian		1 2-
Material Required for Examination	ion		
Question Source: New		Question Modification Method:	Editorially Modified
Question Source Comments:	D.C. Cook 6/13/1995		

Comment Type Comment

Stabilized RCS temperature with failure of Steam Dumps

On Unit 1, a loss of all circulating water pumps has resulted in a reactor trip. All control systems respond as expected. Significant decay heat causes RCS temperature to increase following the trip.

At what RCS temperature should temperature stabilize?

Temperature should stabilize at the saturation temperature for

- a. 1030 psig.
- ь. 1092 psig.
- c. 1115 psig.
- d. 1175 psig.

Answer C	Exam Level B	Cognit	live Level Ap	plicati	ion	Facility:	Braidwood		ExamDate:		9/14/98
KA: 007 EA1.03	3 RO Value:	4.2	SRO Value:	4.1	Section:	EPE	RO Group:	2	SRO Group:	2	
System/Evolutio	Reactor T	'rip									
КА	Ability to operate and RCS pressure and ten			as they	apply to Re	eactor Trip:					
Explanation of Answer	The condenser w Th S/G pressure	would	stabilize base		the seocn						

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Steam dumps/schematic	MS-4/ C-9	4	
Chp 24 Steam dumps lesson plan		7	4
Chp 23 Main steam lesson plan		8	3
Material Required for Examination			
Question Source: New	Question Modification	n Method:	

Question Source Comments:

Comment Type

Comment

Question Reactor Trip requirements			
If Unit 2 is operating at full load, which group of conditions will result in an au directly or indirectly?	tomatic rea	actor trip e	ither
a. RCP bus frequency(Hz):56.9 (Bus 156) 57.1(Bus 157) 56.9 (Bus 158)	57.2 (Bus	159)	
	(N44)		
c. PZR pressure (psig): 2375 (PT-455) 2380 (PT-456) 2385 (PT-457) 2	2380 (PT-4	58)	
d. S/G C NR level (%): 35 (LT-537) 38 (LT-538) 38 (LT-539) 37 (LT-558	B)		
Answer a Exam Level R Cognitive Level Memory Facility: Braidwood	ExamDate:		9/14/98
KA: 007 EK2.03 RO Value: 3.5 SRO Value: 3.6 Section: EPE RO Group: 2	SRO Group:	2	
System/Evolution Reactor Trip			
KA Knowledge of the interrelations between Reactor Trip and the following: Reactor trip Watus panel			
Explanation of Trp condition RCP UF - 2/4 RCP buses < 57.0 Hz. Other trip setpoints: Rx po Answer Title: 2/4 > 2385 psig	ower - 2/4 >10	09%; Pzr pn	essure
Reference Title/Facility Reference Number Section/Page	Revision	L. O.	
ESF Setpoints/ schematic EF-1/Rx trip	4		
2BwEP-0 Reactor Trip or SI lesson plan	3	6	
Chp 60b RPS lesson plan	6	4	
Material Required for Examination Question Source: New Question Modification Method:	Significantly	Modified	
Question Source Comments: Comanche Peak 11/94			
Comment Type Comment			

Topic

Tail-Pipe conditions

With the RCS at normal operating pressure and temperature, what is the condition of the steam entering the PRT at normal conditions, if a PORV opens? (Assume an ideal thermodynamic process).

- a. Superheated steam at 239°F.
- b. Superheated steam at 222°F.
- c. Saturated steam-water mixture at 239°F.
- d. Saturated steam-water mixture at 222°F.

Answer d Exam Level R	Cognitive Level	Application	Facility: Braidwoo	d ExamD	ate: 9/	14/98
KA: 008 AK1.01 RO Val	ue: 3.2 SRO Val	ue: 3.7 Section:	EPE RO Grou	p: 2 SRO Gr	oup: 2	
System/Evolution Press	urizer Vapor Space	Accident				
		of the following concept of open or leaking valve		ssurizer Vapor Spa	ce Accident:	
		lg = 1154 BTU/lb. S Therefore PRT cond				2235
Reference Title/Facility Reference N	lumber	Section/Page		Revisi	on L.O.	
Steam Tables						
Chp 14, Pressurizer lesson p	blan			9	25e	
Material Required for Examination	n Steam T	ables				
Question Source: New		Que	estion Modification M	ethod: Signific	antly Modified	
Question Scurce Comments:	South Texas 9/95					

Comment Type Comment

Calculation of subcooled margin on Iconics

What are the parameters used to calculate Subcooling Margin in the SPDS Iconics if only the 1C RCP and 1D RCP are running?

a. RCS wide range pressure from loop C hot leg and core exit thermocouple temperatures.

- b. Pressurizer pressure and core exit thermocouple temperatures.
- c. RCS wide range pressure from loop A and loop C hot leg, and RCS loop A and loop C hot leg temperatures.

a. Pressurizer pressure and RCS loop A hot leg temperature.

Answer a Ex	am Level B	Cognitive Le	vel Compret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 009 EA1.10	RO Value:	3.8 SRO	Value: 3.9	Section:	EPE	RO Group:	2	SRO Group:	2	
System/Evolution	Small Bre	eak LOCA								
	bility to operate and afety parameter disp		following as they	apply to Smi	all Break I	LOCA:				
Explanation of Answer										
Reference Title/Facil	ity Reference Num	ber	So	tion/Page				Revision	LO.	
SPDS Display sch	ematic			CX-1/sub	cooling			1		
Ch34b Inadequate	Core Cooling			2						
esson plan								7	6	

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

RCP trip criteria evaluation

The following conditions exist during performance of BwEP-0.

- Train A ECCS pumps failed to start.
- RCS pressure is 1350 psig.
- Containment pressure of 7 psig.
- Bus 142 has an overcurrent trip on the normal feeder breaker.
- SI actuated due to High Containment Pressure.
- The highest critical safety function is Yellow on Heat Sink.
- All other equipment and components operated as expected.

Based on the RCP Trip Criteria, the RCPs should ...

- NOT be stopped because NO SI pumps or Charging Pumps are running.
- NOT be stopped because RCS pressure is above the trip setpoint.
- c. be stopped because SI flow is established to the RCS.

a. be stopped because CC flowpath to the RCP motor oil coolers is isolated.

Answer a	Exam Level B	Cognitive Level	Application	Facility: Braidwood	ExamDate:	9/14/98
KA: 011 EA1.0	3 RO Value:	4.0 SRO Valu	e: 4.0 Section:	EPE RO Group	: 2 SRO Group:	1
System/Evoluti	on Large Bre	eak LOCA				
KA	Ability to operate and Securing of RCPs	/ or monitor the folio	wing as they apply to Li	arge Break LOCA:		
Explanation of Answer	The trip criteria is	s < 1425 psig, wi	th NO cooldown in	progress, and HHS	SI flow > 50 gpm or SI	flow > 100 gpm.

ference Title/Facility Reference Number	Section/Page	Revision	L. O.
JAS for 1BwEP-0	Trip RCPs	1C	
1BwEP-0 lesson plan	RCP trip criteria	11	2,5

Material Required for Examination Question Source: New Question Source Comments: Watts Bar 3/3/1995

Comment

Comment Type

Question Modification Method:

Significantly Modified

Friday, July 24, 1998 4:34:43 PM

Page 93 of 127

Eval loss of cooling flow

On a loss of seal injection to the RCPs, what criteria is used to determine if the RCPs should be tripped?

a. High temperatures on the RCP seal or bearing outlet temperatures.

b. Time elapsed since loss of seal injection.

c. RCP Thermal Bearing Cooling Water low flow alarms.

d. #1 seal leakoff flow rate decreases to zero.

Answer a	Exam Level B	Cognitive Leve	Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 015 AA2.1	0 RO Value:	3.7 SRO V	ilue: 3.7	Section:	EPE	RO Group:	1	SRO Group:	1	
System/Evolution	on Reactor C	Coolant Pump	Malfunction	IS						
KA	Ability to determine an When to secure RCPs				actor Coola	int Pump Malfun	ction	S :		
Explanation of Answer	Seal & bearing te	emperatures a	e monitore	d for trip s	etpoint.					
Reference Title/Fi	acility Reference Num	ber	Se	ection/Page				Revision	L. O.	

2

Reference Title/Facility Reference Number Loss of seal cooling 1BwOA RCP-2 Losss of Seal Cooling lesson plan Section/Page Revision 54 6 4

Material Required for Examination Question Source: New

Question Source Comments:

Comment Type Comment

Question Modification Method:

Eval of RCP seal failure

Unit 1 is operating at 100% power when the following alarm is received:

- RCP SEAL LEAKOFF FLOW LOW (1-7-C3)

The NSO investigates and reports the following additional information:

- RCP 1A seal injection flow is 10.7 gpm

- #1 Seal Leakoff Flow on 1A RCP is 0.4 gpm

- RCP 1A Seal Water Outlet Temperature is 140°F and STABLE

- RCP 1A Bearing Outlet Temperature is 145°F and STABLE

Based on the above information, which of the following events has occurred?

a. RCP 1A #1 Seal has failed closed

b. RCP 1A #1 Seal has failed open.

c. RCP 1A #2 Seal has failed closed.

d. RCP 1A #2 Seal has failed open.

Comment

KA: 015 AK2.07 System/Evolutio	n Reactor (Knowledge of the inte	2.9 SRO Value Coolant Pump Ma		Facility: EPE	RO Group:	ExamDate: 1 SRO Group:	1	9/14/98
Explanation of Answer Jerence Title/Fa	cility Reference Num e/ 1BwOA RCP-1 lesson plan	ber	Section/Page	1		Revision 55B 7	L. O. 5	
 Material Require Question Source Question Source 		ink aidwood bank	Qu	estion Mod	lification Method:	: Editorially Mo	dified	

Comment Type

VCT level transmitter malfunction

Given the following:

- The plant is at 90% power with ALL controls in AUTO. -
- VCT level transmitter, LT-112, fails HIGH causing a letdown diversion.

What will occur if NO operator action is taken?

VCT level decreases...

- a. until Auto makeup starts and maintains VCT level.
- b. with NO auto makeup capability and charging suction shifts to RWST.
- c. faster than auto makeup input and charging suction shifts to RWST.
- d. until charging pumps lose suction and start to cavitate.

Answer d Ex	am Level B	Cognitive Level Ap	oplication	Facility:	Braidwood		ExamDate:		9/14/98
KA: 022 AA1.08	RO Value:	3.4 SRO Value:	3.3 Section:	EPE	RO Group:	2	SRO Group:	2	
System/Evolution		eactor Coolant Mak							
V	CT level	/ or monitor the following							
Answer 1	NPSH is lost to th	for AUTO makeup t he CENT CHG pum m will be generated	p(s). Transfer v	will NOT a	occur to RWS	en, t ST s	hen level will ince both cha	continue annels are	to fall until e required
Reference Title/Facil CVCS notes/sch Cho 15a CVCS	nematic	ber	Section/Page CV-2/L	T 112 ta	able		Revision 3 10	L.O. 11,	14

10 Chp 15a CVCS lesson plan

Material Required for Examination **Question Source:** New **Question Source Comments:**

Question Modification Method:

Comment Type Comment

Time/amount E-boration for condition

Given the following after a reactor trip:

- THREE rods remain withdrawn.
- Due to equipment malfunctions boration is only available from the RWST.
- Charging flow rate 132 gpm.
- RCS boron concentration was 1050 prior to the trip.
- 120 gpm letdown in service.

Of the listed times, which would be minimum acceptable time that boration from the RWST would have to occur?

- a. 1 Hour
- b. 2 Hours
- c. 3 Hours
- d. 4 Hours

Answer b	Exam Level B	Cognitive Level A	oplication	Facility:	Braidwood		ExamDate:	9/14/98
KA: 024 AA2.05	RO Value:	3.3 SRO Value:	3.9 Section:	EPE	RO Group:	1	SRO Group:	1
System/Evolution	n Emergenc	y Boration						
	Ability to determine and Amount of boron to add	to achieve required S	DM					
Explanation of Answer	1BwEP ES-0.1 re 10,800 gallons. If based on counting	quires 3600 gallor net change over is 2 rods and/or bor	120 gpm, then i	required	time is 10,80	0/12	0 = 90 minut	es. Other answers
	ility Reference Numb tergency Boration	er	Section/Page				Revision 55B	L. O.
1BwOA Pri-2 les							1	4,6
1BwEP-0 lesson	plan						11	3
Material Require	d for Examination	1BwEP ES-	0.1, page 6 (ste	p 5)				
_ Question Source			Que	stion Mod	ification Metho	d:		
Question Source	Comments:							
Comment Type	Comment							

Friday, July 24, 1993 4:34:47 PM

Page 99 of 127

Calc of time to saturation/core boiling

The following conditions exist on Unit 1:

- The plant was shutdown 81/2 days ago to repair a steam generator tube leak.
- Reactor vessel level is at 397' 1" with Thot at 212°F.
- A loss of RHR pumps due to cavitation has occurred

Which of the following is the smallest amount of flow that meets the minimum makeup flow required to maintain current RCS level?

- a. 80 gpm
- ь. 72 gpm
- c. 59 gpm
- d. 45 gpm

Answer b	Exam Level B	Cognitive Level	Comprehension	Facility: Braidwood	ExamDate:	9/14/98
KA: 025 AK1.01	RO Value:	3.9 SRO Vai	e: 4.3 Section:	EPE RO Group:	2 SRO Group: 2	
System/Evolution		tesidual Heat Re				
	Knowledge of the ope Loss of RHRS during			ts as they apply to ! oss of	Residual Hoat Removal System	n:
	04/0 dave is 204	after chuidour	The out o chours	minimum flow at an	provimately 70 apm	

Explanation of 81/2 days is 204 afters shutdown. The curve shows minimum flow at approximately 70 gpm. Answer

Reference Title/Facility Reference Number Loss of RH cooling/1BwOA Pri-10	Section/Page	Revision 56	L. O.
1BwOA Pri-10 Lesson plan			4

Material Required for Examination	Figure 1BwOA PRI 10-1
Question Source: New	Question Modification Method:
Question Source Comments:	

Comment Type Comment

Page 100 of 127

Alternate RCS cooling

The following conditions exist on Unit 2:

- MODE 5 operation during normal cooldown
- RCS temperature 195° F
- RCS pressure 325 psig
- Train A RH in service, train B RHR tagged out for repairs

What is the preferred method of core cooling if a loss of RH cooling occurs?

Alternate RCS cooling using ...

- a. bleed and feed using reactor head vents.
- b. the S/Gs.

- c. normal charging and RHR letdown.
- a. SI Pump cold leg injection

Answer b	Exam Level B	Cognitive Level	Comprehension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 025 AK3.0	1 RO Value:	3.1 SRO Value	a: 3.4 Section:	EPE	RO Group:	2	SRO Group:	2	
System/Evoluti	on Loss of R	esidual Heat Ren	noval System						
KA	Knowledge of the reas Shift to alternate flowp	ons for the following ath	responses as they app	ly to Loss o	of Residual Heat	Rem	oval System:		
Explanation of Answer	Steaming Intact/n	ion-isolated SGs	is the preferred all	ternate d	ecay heat rei	mova	al method if th	he RCS	is intact.
Reference Title/Fa	acility Reference Num	ber	Section/Page				Revision	L. 0.	

s of RHR Cooling/18wOA Pri-10

Table A

Question Modification Method:

Revision 56

4

Material Required for Examination Question Source: New Question Source Comments:

Comment Type Comment

Friday, July 24, 1998 4:34:48 PM

Page 101 of 127

Evaluation of CCW leak

The following conditions exist on Unit 1:

- The reactor is shutdown.
- RHR is in shutdown cooling.
- RCS temperature is 300°F.
- RCS pressure is 160 psig.
- CCW surge tank level is decreasing

What leak locations will produce these indications?

- a. RHR Heat Exchanger
- b. Thermal Bearing Heat Exchanger
- c. Letdown Heat Exchanger
- d. Seal Water Heat Exchanger

Answer d	Exam Level B	Cognitive Level	Comprehension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 026 AA1.05	5 RO Value:	3.1 SRO Valu	e: 3.1 Section:	EPE	RO Group:	1	SRO Group:	1	
System/Evolutio	n Loss of C	omponent Cooli	ng Water)						
KA	Ability to operate and / The CCWS surge tank	k, including level con	troi and level alarms, a	nd radiation	n alarm				
Explanation of Answer	The seal water H pressure. RHR H pressure should t	HX approx. 165	osig; L/D Hx press	e the CC ure shoul	pressure wou d be approxi	uld b mate	e lower than t ely 160 psig; &	the proc Therm	cess fluid nal barrier

Question Modification Method:

Reference Title/Facility Reference Number	Section/Page	Revision	L 0.
CCW malfs/ 1BwOA Pri-6	Att B	56	
3wOA Pri-6 lesson plan	Att B	6	3

Material Required for Examination

Question Source: Facility Exam Bank

Question Source Comments: Zion 7/13/92

Comment Type Comment

Page 102 of 127

Prepared by WD Associates, Inc.

Significantly Modified

Pressure controller step change

The following conditions exist on Unit 2:

- Reactor power is 100%
- Pressurizer pressure control is in automatic.

What is the immediate response of the pressure control system if the Master Pressure Controller setpoint is inadvertently changed to 2330 psig (step change)?

- a. PORV RY455A open. and spray valves open.
- b. PORV RY455A opens, spray valves open, and all heaters energize.
- c. Spray valves open and proportional heaters go to minimum.
- d. Spray valves close and proportional heaters go to maximum.

Answer d	Exam Level B	Cognitive Level	Application	Facility: Braidwo	ood ExamDate	: 9/14/98
KA: 027 AA1.0	RO Value:	4.0 SRO Value	: 3.9 Section:	EPE RO Gro	oup: 1 SRO Grou	p: 2
System/Evolutio	n Pressuriz	er Pressure Contr	ol Malfunction			
KA	Ability to operate and PZR heaters, sprays,	and PORVs	-			
Explanation of Answer			ces the output from spray valve closur		and raises the dema hing fully on.	anded pressure
Reference Title/Fa	cility Reference Num	ber	Section/Page		Revisio	L. O.
Pzr Pressure Cont	rol/ schematic		RY-2/PK-655A in /	Auto	3	
Chp 14 Pressurize	r lesson plan				9	30
Material Require	ed for Examination					
Question Sourc	e: New		Que	stion Modification	Method: Significan	tly Modified
Question Sourc	e Comments: Ca	Ivert Cliffs 11/97				
- Comment Type	Comment					

Non-Controlling channel failure

The following conditions exist on Unit 1:

- Reactor power is 100%
- All systems are in automatic
- Channel I Pressurizer Pressure Channel (PT-455) was declared inoperable and taken out of service with the appropriate bistables placed in the tripped condition.
- Controlling pressurizer pressure channel (PT-457) fails high

Assuming NO operator action, what is the plant response to the channel failure?

- a. Both PORVs and both spray valves open resulting in a reactor trip from low pressurizer pressure followed by SI actuation.
- The reactor will trip immediately on high pressure, and safety injection will actuate on low pressure due to spray valve operation.
- c. Pressurizer proportional heaters will de-energize and spray valves will open resulting in an OTdT runback prior to tripping, and safety injection will actuate due to low pressurizer pressure.
- d. Both PORVs and both spray valves remain closed while pressurizer heaters de-energize.

Answer b	Exam Level B	Cognitive Level	Applicat	ion	Facility:	Braidwood		ExamDate:		9/14/98
KA: 027 AA2.1	5 RO Value:	3.7 SRO Valu	ie: 4.0	Section:	EPE	RO Group:	1	SRO Group:	2	
System/Evolutio	n Pressurizo	er Pressure Cor	trol Malfu	inction						
KA	Ability to determine an Actions to be taken if F	ZR pressure instru	ment fails hi	gh						
Explanation of Answer	TWO PZR pressu The sparys wil ha also opened on the actaute the low p	ave modulated find the failure of PT-	ully open 457, but v	resulting i would clos	n actual se when t	pressure dec he PZR pres	sure	sing (PORV 1) fell to 2185 p	RY455	A would have

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Pzr Pressure Control/ schematic	RY-2/ PZR press	3	
Chp 14 Pressurizer lesson plan		9	30
Material Required for Examination Question Source: New	Question Modification Method:	Significantly I	Modified
Question Source Comments: BV 8/91			

Friday, July 24, 1998 4:34:50 PM

Comment Type

Comment

Page 105 of 127

Failed level channel low.

The plant is operating at 100% power with all control systems in AUTO. The following parameters are noted:

- Letdown Hx outlet flow (FI-132) 75 gpm
- Charging Header flow (FI-121) 87 gpm
- Total seal injection flow (FI-142 -FI -45) 33 gpm

What is the effect on total seal injection flow initially if controlling Pzr level channel LT-459 fails LOW?

Total seal injection flow will...

- a. decrease to 0 gpm.
- b. decrease to approximately 20 gpm.
- c. remain approximately 33 gpm.
- d. increase to greater than 40 gpm.

Answer d	Exam Level B	Cognitive	Level Co	mpreh	ension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 028 AK3.0	RO Value:	3.7 SF	RO Value:	4.1	Section:	EPE	RO Group:	3	SRO Group:	3	
System/Evolutio	n Pressurize	er Level C	ontrol Mal	functio	on						
ка	Knowledge of the reas Actions contained in E				as they app	ly to Press	urizer Level Contro	ol N	falfunction:		
Explanation of Answer	The failure of the seal injection flow the same and sea	is norma	lly increas	ed by	throttling	rging flov close on	w and charging CV182 to incl	g di rea	icharge heade ise backpress	er press ure, the	e result is
eference Title/Fa	cility Reference Numb hematic	ver			ction/Page V-2/cvcs				Revision 2	L. O.	
	tt C lesson plan								9	1	
Material Require Question Sourc	ed for Examination e: Facility Exam Bar	nk			Que	stion Mod	ification Method	:	Significantly M	odified	

Question Source Comments: Braidwood 1996 NRC exam. Modified premise from failed controller to failed level channel. Changed location of correct answer based on different response (increasing flow instead of decreasing flow).

Comment Type Comment

Friday, July 24, 1998 4:34:51 PM

Page 106 of 127

AMS conditions

The following conditions exist on Unit 1:

- At t= 0 sec, Turbine load was decreased below 352 MW (30% power)
- At t=240 sec. The running main feedwater pump tripped.
 - The reactor did NOT trip due equipment malfunction.
- At t=250 sec. All feedflow indications decrease to 0% flow
- At t=320 sec. All steam generator levels dec ase below 15%.

Based on this information, AMS would...

- a initiate at t=320 sec.
- b. initiate at t=345 sec.
- c. initiate at t=360 sec.

d. NOT initiate because C-20 is cleared.

Answer b Exam	Level B	Cognitiv	ve Level Ap	plication	Facility:	Braidwood		ExamDate:		9/14/98
KA: 2.4.48	RO Value:	3.5	SRO Value:	3.8 Section:	EPE	RO Group:	2	SRO Group:	1	
System/Evolution	Anticipate	d Trans	ient Without	Scram						
KA										

Ability to interpret control room indications to verify the status and operation of system, and understand how operator actions and directives affect plant and system conditions.

AMS remains armed for 6 minutes(360 sec) following decrease below 30%(C-20). The actuation siganl is Explanation of generated after 3/4 SGs level have fallen 3% below the LO-2 (reactor trip) setpoints of 18% for a period of 25 Answer seconds. C-20 would clear @ t=360sec. AMS actuation occurs at 320 + 25 = 345 sec.

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
//S/ schematic	PN-3/ logic 1 schem	2	
-np 60b		6	7

Material Required for Examination Question Source: New

Question Modification Method:

Question Source Comments:

Comment Type Comment

Page 107 of 127

Evaluation of SR NIS voltage failure

The following conditions exist on Unit 1:

- Reactor startup in progress
- Intermediate power range indication: 2.5E-5 amp N35 & 2.8E-5 amp N36
- SOURCE RANGE PERMISSIVE P-6 permissive light clear
- SOURCE RANGE TRIP ACTIVE permissive light clear
- Source Range Channel N31 High voltage power supply fails to half its normal value

What indication(s) would be available to alert the operator to this failure?

- None, until power is lowered below the P-6 setpoint, and then the Source Range N31 indication will indicate lower than expected.
- b. None, until power is lowered below the P-6 setpoint, and then the Source Range N31 indication will indicate higher than expected.
- c. Annunciator SR HIGH VOLTAGE FAILURE (1-10-B1) will alarm when power exceeds P-10.

a. Annunciator SR HIGH VOLTAGE FAILURE (1-10-B1) will re-flash when the voltage source fails.

Answer a	Exam Level B	Cognitiv	ve Level Co	mpret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 032 AK1.01	RO Value:	2.5	SRO Value:	3.1	Section:	EPE	RO Group:	2	SRO Group:	2	
System/Evolutio	n Loss of S	ource R	ange Nuclea	ar Inst	rumentati	on					
	Knowledge of the oper Effects of voltage char	iges on p	erformance								
Explanation of Answer	Based on Gas fill Alarm and voltag	ed dete e input	ctor curve (F to SR detect	Region or is b	lll), the r	number o ntil both l	f events colle R NIS fall bel	low t	he P-6 setpoi	(counts int.	drop).

ference Title/Facility Reference Number	Section/Page	Revision	L. O.
SR High Volt Failure/ 1BwAR 1-10-B1	setpts/notes	1	
Source Range detector/schematic	NI-4	4	
Chp 31 source range nuclear inst Lesson plan		6	2,3,11,12
- Material Required for Examination			
Question Source: New	Question Modification	Method:	

Question Source Comments:

Comment Type Comment

Friday, July 24, 1998 4:34:52 PM

Page 108 of 127

Eval of failed IR channel on SU

The following conditions exists on Unit 2:

- Plant shutdown is in progress.
- All power range channels indicate 6% reactor power.
- Intermediate range channel N-36 fails HIGH.

What is the plant response to this failure?

- The reactor will trip on high IR flux, and source range trip will reinstate when N-35 decreases below P-6.
- b. The reactor will trip on high IR flux, and source range trip will NOT be reinstated.
- c. The reactor will NOT trip immediately, but will trip when the source range trip is reinstated when N-35 decreases below P-6
- d. The reactor will NOT trip, and source range trip will NOT be reinstated.

Answer b	Exam Level B	Cognitive Level A	pplication	Facility: Braidwood	ExamDate:	9/14/98
KA: 033 AA2.0	4 RO Value:	3.2 SRO Value:	3.6 Section:	EPE RO Group:	2 SRO Group:	2
System/Evoluti	on Loss of In	termediate Range	Nuclear Instrum	entation		
KA				is of Intermediate Range h d power-range instrument		n:
Explanation of Answer	resulting in react	wer is < P-10 setpo or trip. SR will NOT required to remove	T be reinstated a	, the IR trip setpoint a utomatically because	at 25% EICAwill be only one IR chan	e exceeded inel will fall below
'rtermediate R	acility Reference Num ange/ schematic iate range nuclear		Section/Page NI-3		Revision 4	L. O.
Lesson plan	late range nuclear	mst			6	4,8,9,10
Material Requir	ed for Examination ce: New		Que	stion Modification Metho	od: Significantly N	lodified
Question Source	ce Comments: Wa	tts Bar 8/94				

Comment

Comment Type

Monitors for S/G Tube leakage

The following conditions exist on Unit 1:

- Reactor power is 75%
- Troubleshooting has commenced due to reduced condenser vacuum with the air ejectors out of service.
- Hogging vacuum pumps are aligned to the main condenser to aid in maintaining vacuum.

What would be an indication of a Steam Generator Tube Leak under these conditions?

- a. Increasing radiation level on 1RE-PR027, "SJAE/Gland Steam Exhaust Monitor".
- b. Decreasing S/G level for ONE S/G.
- c. Increasing feedwater flow to ONE S/G.
- a. Decreasing charging header flow to RCS.

Answer a	Exam Level R	Cognitive Level	Compret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 037 AA1.02	RO Value:	3.1 SRO Va	lue: 2.9	Section:	EPE	RO Group:	2	SRO Group:	2	
System/Evolutio	n Steam Ge	enerator Tube I	eak							
КА	Ability to operate and Condensate exhaust s		owing as they	apply to St	eam Gene	rator Tube Leak:				
Explanation of Answer	The Hogger disc	harge is aligned	d through the	ne Off Ga	s header	which is mor	nitor	ed by 1RE-PI	R027.	
Reference Title/Fa	cility Reference Nam	iber	Se	ction/Page				Revisio	L. O.	
SGTR lesson pl	an/ BW0A Sec 8							6	4	
Ch 49 rad monit	ors lesson plan							7	14	
	d for Examination									
Question Source	: New			Que	estion Mod	ification Metho	d:			
Question Source	Comments:									
Comment Type	Comment									

Loss of subcooling

BwEP-3 "Steam Generator Tube Rupture" is being performed in response to a tube rupture on 2C S/G. The cooldown has just been completed but the target temperature value selected by the operators was higher than that stipulated in the procedure.

What condition could result because of this error?

- a. Loss of RCS subcooling before RCS and ruptured S/G pressures are equalized.
- b. Increase in pressure of the ruptured S/G with resultant lifting of the S/G Safety Valve.
- Increase in pressure of the non-ruptured S/Gs with resultant lifting of their S/G Safety Valves.
- a. Filling the Pressurizer solid during the subsequent depressurization.

Answer a Exam L	Level B Co	gnitive Level	Application	Facility:	Braidwood	ExamDate:		9/14/98
KA: 038 EK3.06	RO Value: 4	.2 SRO Value:	4.5 Sect	ion: EPE	RO Group:	2 SRO Group:	2	
System/Evolution	Steam Gener	rator Tube Ru	oture					
	dge of the reasons contained in EOP 1							
Explanation of Answer			0					
Reference Title/Facility R	eference Number		Section/	Page		Revision	L. O.	
GTR lesson plan 1B	wEP-3					12	1	
ERG basis								
Material Required for E	xamination							
Question Source: No	ew			Question Mod	dification Method	1: Editorially Mod	dified	
Question Source Comm	nents: Salem 6	5/94						
Comment Type Co	mment							

Steamline isolation

The following conditions exist on Unit 1:

- The Unit was in MODE 3 at normal operating temperature and pressure prior to the event.
- A faulted steam generator has occurred.
- RCS hot leg temperatures 547°F (A), 544°F (B), 545°F (C), 547°F (D)
- RCS cold leg temperatures 545°F (A), 530°F (B), 543°F (C), 545°F (D)
- S/G pressures 700 psig (A), 635 psig (B), 690 psig (C), 705 psig (D)
- S/G flow 0.85 MLB/hr (B)
- Containment pressure (Channel) 8 psig (1), 7.5 psig (2), 7.5 psig (3), 8 psig (4)

Based on these conditions, a main steam line isolation should...

- a. have occurred because of the low pressure in at least ONE S/G.
- b. have occurred because the steamline high negative rate occurred in S/G 1B.
- c. NOT have occurred because Containment pressure is below the setpoint for the CNMT High-2 pressure signal.
- d. NOT have occurred because THREE S/Gs have pressures above the isolation setpoint and do NOT indicate high steam flow.

Answer a	Exam Level B	Cognitive Level	Applicati	on	Facility:	Braidwood		ExamDate:		9/14/98
KA: 040 AA1.01	RO Value:	4.6 SRO Va	lue: 4.6	Section:	EPE	RO Group:	1	SRO Group:	1	
System/Evolutio	on Steam Lir	ne Rupture								
ка	Ability to operate and / Manual and automatic		lowing as they	apply to St	eam Line F	lupture:				
Explanation of Answer	The steamline iso one SG. CNMT p initial condition ha	pressure is belo	ow the MSL							

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
ESF Setpoints/schematic	EF-2/ Stmline isol	5	
Ch 23 Main steam Sys lesson plan		8	5,13,15,16
Ch 61 ESF lesson plan		5	7
		8 5	5,13,15,1 7

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

Eval of Leak

The following conditions exist on Unit 1 following a trip from 100% power:

- Pressurizer level is 0%
- Pressurizer pressure is 1500 psig
- Containment Pressure is 16 psig.
- Tcold is 420°F for all loops.

Where is the location of the leak?

- a. On one loop RCS cold leg.
- b. On a Main Steam Line inside containment.
- c. In a Steam Generator Tube.
- d. On a feedwater line between FWRV and Associated FWIV, 1FW009.

Answer b	Exam Level B	Cognitive Level	Comprehens	ion Facility:	Braidwood	ExamDate:	9/14/98
KA: 040 AK1.06	6 RO Value:	3.7 SRO Valu	e: 3.8 Sec	tion: EPE	RO Group:	1 SRO Group:	1
System/Evolution	on Steam Lir	ne Rupture					
КА	Knowledge of the open High-energy steam line	e break consideratio	ns				
Explanation of Answer	Secondary LOCA CNMT pressure f indcated by cons	for steam/feed b	reak. SGTR I	not indicated s	loops and RCs ince CNMT pre	S tcold is not co essure is elevat	onsistent wth given ied. LOCA condiiton
Reference Title/Fa	cility Reference Num	ber	Section	/Page		Revisio	L. O.
	tor Trip or SI lesso					3	6,7
1BwEP2 Faulte	d S?g isolation les	son plan				7	2,4
Material Require	ed for Examination						
Question Sourc	e: New			Question Mod	ification Method:	Editorially Mo	dified
Question Sourc	e Comments: St.	Lucie 10/13/97					

- Comment Type Comment

Page 114 of 127

Question Eval of conditions		
In accordance with BwOA SEC-3, "Loss of Condenser Vacuum", which of t requires the operator to trip the reactor? a. LOW POWER TRIP BLOCKED P-8 annunciator - LIT	the following s	sets of conditions
Turbine load - 200 MW Condenser pressure - 5.2 " HgA		
 LOW POWER TRIP BLOCKED P-8 annunciator - LIT Turbine load - 300 MW Condenser pressure - 6.3" HgA 		
c. LOW POWER TRIP BLOCKED P-8 annunciator - CLEAR Turbine load - 600 MW Condenser pressure - 7.2" HgA		
 LOW POWER TRIP BLOCKED P-8 annunciator - CLEAR Turbine load - 900 MW Condenser pressure - 7.8" HgA 		
Answer b Exam Level B Cognitive Level Application Facility: Braidwood	ExamDate:	9/14/98
KA: 051 AA2.02 RO Value: 3.9 SRO Value: 4.1 Section: EPE RO Group:	1 SRO Group:	1
System/Evolution Loss of Condenser Vacuum		
KA Ability to determine and interpret the following as they apply to Loss of Condenser Vacuum: Conditions requiring reactor and/or turbine trip		
Explanation of P-8 permissive active below 30% power (annunciator lit). At 480 MW and condenser pressure is 5.5 in HgA. At 600 MW minimum acceptable pressure greater, minimum acceptable pressure is 8.0 in HG	below, the minin ire is 7. 8 in HgA	num acceptable A. At 610 MW and
Section/Page	Revision	L. O.
lesson plan	6	5
Material Required for Examination Figure 1BwOA SEC 3-1		
Cuestion Source: New Question Modification Method		
Question Source Comments:		
Comment Type Comment		

Page 1155 of 127

Identification of RCP seal LOCA/cooldown

Select the primary basis for rapidly depressurizing the steam generators during a Loss of All AC.

- a. To provide maximum core cooling until power can be restored.
- b. To minimize RCS inventory loss from RCP seals.
- c. To enhance restoration of S/G level from the diesel driven AF pump.
- d. To increase subcooling of the RCS.

Answer b	Exam Level B	Cognitive Level	Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: 055 EK3.02	RO Value:	4.3 SRO Valu	e: 4.6	Section:	EPE	RO Group:	1	SRO Group:	1	
System/Evolution	n Station Bl	ackout								
	Knowledge of the reas Actions contained in E				ly to Statio	n Blackout:				
Explanation of Answer	The rapid cooling	g allows depress	suring the	RCS red	ucing the	e leak rate via	the	RCP seals		
a success of the second of the	cility Reference Numb ower/ 1BwCA 0.0 on plan			ction/Page aution 2				Revision 1B Wog 4	L.O. 1B	

Material Required for Examination Question Source: New

Question Modification Method:

Question Source Comments:

Comment Type Comment

Reset of sequencer

How would the sequencer operate if a Safety Injection (SI) actuation occurs while the sequencer is sequencing loads in response to an ESF bus undervoltage condition?

- a. There will be no change in operation; the undervoltage sequence overrides the SI sequence.
- b. The undervoltage sequencing stops, the sequencer immediately resets and SI loads NOT already running will sequentially start.
- c. The undervoltage sequencing stops, all started loads are shed, and SI loads will sequentially start.
- d. The undervoltage sequencing completes its cycle, then resets to SI mode, and SI loads NOT already running will sequentially start.

Answer b Exam Level B	Cognitive Level Cor	nprehension	Facility:	Braidwood	ExamDate:		9/14/98
KA: 056 AA1.21 RO Value:	3.3 SRO Value:	3.3 Section:	EPE	RO Group:	3 SRO Group:	3	
System/Evolution Loss of O	ff-Site Power						
KA Ability to operate and / Reset of the ESF load	or monitor the following a sequencers	as they apply to Lo	ss of Off-Si	te Power:			
Explanation of The UV sequence Answer	e is stopped and the	SARA sequen	cing is ini	tiated from st	ep 1.		
Reference Title/Facility Reference Num	Revision	L. O.					
D/G Relaying schematic	1						
Ch 9 EDG and Aux sys lesson	plan				7	7	
Ch 4 AC Electrical distribution	lesson plan				8	10,16	
Ch 61 ESF lesson plan					5	7,8	
Material Required for Examination							
Question Source: New		Que	stion Mod	ification Method	I: Significantly M	Modified	
Question Source Comments: Vog	gtie - 5/91						
Comment Type Comment							

Eval of electric bus status

The following conditions exist on Unit 1:

- Bus 141 is powered from its normal source
- D/G 1A surveillance is being performed with the D/G paralleled to the bus

What would occur if a failure of the undervoltage relay results in a sensed undervoltage condition on Bus 141?

- a. SAT feeder breaker ACB 1412 and D/G feeder breaker ACB 1413 remain closed. The Safe Shutdown loads will NOT sequence and CANNOT be manually started from the control room.
- b. SAT feeder breaker ACB 1412 and D/G feeder breaker ACB 1413 will open. After a 10-second delay, ACB 1413 will close and the Safe Shutdown loads will sequence.
- c. SAT feeder breaker ACB 1412 will open but D/G feeder breaker ACB 1413 will remain closed. The Safe Shutdown loads will sequence normally.
- d. SAT feeder breaker ACB 1412 will open but D/G feeder breaker ACB 1413 will remain closed. The Safe Shutdown loads will NOT sequence and CANNOT be manually started from the control room.

Answer d	Exam Level B	Cognitiv	e Level Cor	npret	nension	Facility:	Braidwood		ExamDate:		9/14/98
KA: 056 AA2.4	6 RO Value:	4.2	SRO Value:	4.4	Section:	EPE	RO Group:	3	SRO Group:	3	
System/Evolution	on Loss of O	ff-Site P	ower								
A	Ability to determine an That the ED/Gs have s	d interpret tarted aut	the following a omatically and	s they that the	apply to Los e bus tie bre	akers are o	te Power: closed				
Explanation of Answer	On sensed UV, th and the control sy							ker v	vould also hav	e opene	ed if closed)

Reference Title/Facility Reference Number	Section/Page	Revision	L. O.
Ch 4 AC Electrical Distribution		8	10,16

Material Required for Examination Question Source: New Question Source Comments: Comment Type Comment

Question Modification Method:

Eqpt affected on bus loss

On Unit 1 power is lost to 120 VAC Instrument Bus 111

How are the ESF and Safe Shutdown loads affected?

a. "A" Train ESF loads will NOT load on an SI signal, but Safe Shutdown loads will load on a U/V signal.

"B" Train loads are NOT affected.

- b. A" Train ESF loads will load on an SI signal, but Safe Shutdown loads will NOT load on a U/V signal.
 "B" Train loads are NOT affected.
- c. "A" Train ESF loads will NOT load on an SI signal, and Safe Shutdown loads will NOT load on a U/V signal.

"B" Train loads are NOT affected.

d. "A" Train AND "B" Train ESF loads will NOT load on an SI signal, but Safe Shutdown loads will load on a U/V signal.

Answer C Exam Level B Cognitive Leve	Comprehension Fa	cility: Braidwood	ExamDate:		9/14/98
KA: 057 AA2.19 RO Value: 4.0 SRO V	alue: 4.3 Section: El	PE RO Group: 1	SRO Group:	1	
System/Evolution Loss of Vital AC Instrum	nent Bus				
KA Ability to determine and interpret the fol The plant automatic actions that will occ	lowing as they apply to Loss of cur on the loss of a vital ac elec	Vital AC Instrument Bus: trical instrument bus			
Explanation of Answer					
Reference Title/Facility Reference Number	Section/Page		Revision	L. O.	
SwOA Elec 2 Loss of inst bus	Table A		7		
h 60a SSPS lesson plan			3	11	
1BwOA elec 2 lesson plan			6	3,5	
I and C system notes Material Required for Examination	I & C 1				
- Question Source: New	Questio	n Modification Method:			
Question Source Comments:					
Comment Type Comment					

Operations required for transfer

Select the method used for transferring controls to the remote shutdown panels PL04/05J.

- a. Placing applicable transfer switches in LOCAL on RSP.
- b. Opening the isolation switches in the Auxiliary Electric Room.
- c. Deenergizing normal control power to individual controls.
- d. Taking local controls out of the PULL-TO-LOCK position.

Answer a Exam Level B Cognitive Level Mem	ory Facility: B	raidwood	ExamDate:	9/14/98
KA: 068 AA1.21 RO Value: 3.9 SRO Value:	4.1 Section: EPE F	RO Group: 1	SRO Group:	1
System/Evolution Control Room Evacuation				
KA Ability to operate and / or monitor the following as Transfer of controls from control room to shutdow		vacuation:		
Explanation of Answer				
Reference Title/Facility Reference Number	Section/Page		Revisio	L. O.
RSP PL04/5J/ schematic	PN-1		2	
Control Room Inaccessbility 1BwOA Pri-5 lesson plan	Att. A		57B	
Ch 62 Remote shutdown Panel Lesson plan Material Required for Examination	c		3	3,4
Question Source: New	Question Modific	cation Method:		
Question Source Comments:				
Comment Type Comment				

Major action categories Question When inadequate core cooling exists, which of the following sets of actions state he proper sequence of the major action categories to be performed in accordance with BwFR-C.1, "Ray ETO INADEQUATE CORE COOLING", for removing decay heat from the core? a. Reinitiation of safety injection; RCP restart; rapid secondary depressurization. b. Reinitiation of safety injection; rapid secondary depressurization; RCP restart. c. RCP restart; reinitiation of safety injection; rapid secondary depressurization. RCP restart; rapid secondary depressurization; reinitiation of safety injection. Cognitive Level Comprehension Facility: Braidwood 9/14/98 Answer b Exam Level B ExamDate: 4.5 SRO Value: 4.9 Section: EPE RO Group: 1 SRO Group: 1 KA: 074 EK1.03 **RO Value:** Inadequate Core Cooling System/Evolution Knowledge of the operational implications of the following concepts as they apply to Inadequate Core Cooling: KA Processes for removing decay heat from the core Explanation of Answer L. O. Section/Page Revisio Reference Title/Facility Reference Number 5 2,3 Function Restoration Procedures BwFR-C.1, C.2, 20 -C.3 lesson plan Material Required for Examination **Editorially Modified Question Modification Method:** New **Question Source:**

Question Source Comments: VC Summer 5/94

Comment Type Comment

Actions for reducing activity

High coolant activity has been detected and chemistry has determined that it is due to corrosion product activation.

dentify the effect of placing the cation demineralizer in service.

The cation demineralizer

- a, will remove lithium so it should NOT be used in this condition.
- b. will cause the activity level to decrease as soon as it is placed in service.
- c. is NOT effective in removing corrosion product activity.
- a. is less effective than the mixed bed demineralizer so it is placed in service ONLY if decontamination factor is less than 10

Answer b KA: 076 AA2.02 System/Evolutio		Cognitive Level Me 2.8 SRO Value: tor Coolant Activity	3.4 Section:	Facility: EPE	Braidwood RO Group:	ExamDate 1 SRO Grov (p:	9/14/98 1	В
KA	Ability to determine and Corrective actions requ	interpret the following ired for high fission proc	as they apply to Hig duct activity in RCS	h Reactor	Coolant Activity:			
Explanation of Answer	The cation demin	is highly effective i	n removing con	osion pro	oducts from th	ne coolant.		
Reference Title/Fa	cility Reference Numb	er	Section/Page			Revision	L. O.	
1BwOA Pri-4 Hig ch 15a CVCS le	gh coolant Activity sson plan	lesson plan				1 10	4,5 4	

aterial Required for Examination **Question Source:** New **Question Source Comments:**

Comment

Comment Type

Question Modification Method:

Friday, July 24, 1998 4:35:01 PM

Interlocks affecting reestablishment of feed

The following conditions exist on Unit 1:

- Reactor power was 8% prior to the event below.
- A failure in the feedwater control system caused ONE S/G level to exceed P-14.
- The main turbine tripped.
- S/G levels have returned to their normal level range
- The Startup FW Pump is running

What are all the conditions that would have to be met to feed the S/Gs using the FW034's Feedwater Tempering Flow Control valves?

- a. The FW Isolation Aux Relays would have to be reset and FW035 Feedwater Tempering Isol valves opened.
- b. The reactor trip breakers would have to be cycled, the FW Isolation Aux Relays would have to be reset and FW035 Feedwater Tempering Isol valves opened.
- c. The FW Isolation Main Relays and Aux Relays would have to be reset and FW035 Feedwater Tempering Isol valves opened.
- d. The reactor trip breakers would have to be cycled and FW Isolation Main Relays and Aux Relays reset and FW035 Feedwater Tempering Isol valves opened.

Answer a	Exam Level B	Cog live Level	Applicati	on	Facility:	Braidwood		ExamDate:	9/14/98
KA: E05 EK2.1	RO Value:	3.7 SRO Va	ilue: 3.9	Section:	EPE	RO Group:	2	SRO Group:	2
System/Evolutio	n Loss of S	econdary Heat	Sink						
KA	Knowledge of the inte Components, and fun and manual features.	ctions of control ar	Loss of Second safety syste	ndary Heat ms, includir	Sink and th og instrume	e following: ntation, signals, i	nter	locks, failure mod	les, and automatic
Explanation of Answer	The P-14 signal, present. So rese throttling of FW0	eting the FW Is	ly mainaiths olation Aux	s FWI sign relay allo	nal via th ws opein	e FW Isol Aux g of FW035s	(no	lays if NO read rmal feed pati	ctro trip signal is h at low power) and
Reference Title/Fa	cility Reference Num	ber	Se	ction/Page				Revision	L. O.
ESF setpoints/	schematic		E	F-2/ reset	FWI			5	
Feedwater Sim	ole/SGWLC		F	W-1,2/ re	set FWI			0	
Ch 61 ESF less	on plan of for Examination							6	4,7,8
Question Sourc				Que	stion Mod	lification Method	d:		
Question Sourc	e Comments:								
Comment Type	Comment								

Friday, July 24, 1998 4:35:02 PM

Page 124 of 127

Topic

Question Identification of heat removal process

The following conditions exist on Unit 1:

- A leak developed on the RCS loop C flow instrument piping.
- Coincident with the RCS leak, on the reactor trip a S/G PORV failed open and was later isolated.
- FR-P.1 was entered to due to an ORANGE PATH condition.
- SI actuated and has been reset.
- All RCPs are stopped.
- Conditions required to support an RCP start are met.

What is the basis for operation of a RCP?

Under the current conditions starting the RCP will ...

- a. cause excessive thermal stresses in the stagnant loops.
- b. cause a pressure surge that will aggravate the PTS condition.
- c. provide mixing of the ECCS injection flow thereby decreasing the likelihood of PTS.
- a. increase the RCS cooldown rate thereby increase the likelihood of PTS.

Answer C	Exam Level B	Cognitive Level	Comprehension	Facility:	Braidwood	ExamDate:		9/14/98
KA: E08 EK2.	2 RO Value	e: 3.6 SRO Valu	e: 4.0 Section:	EPE	RO Group:	1 SRO Group:	1	
System/Evolution	on Title:	Pressurized Then	mal Shock					
ка		val systems, including	relations between Pres primary coolant, emerge tems to the operation of	ncy coolan	t, the decay hear		nd relations	
Explanation of Answer								
Reference Title/Fa	acility Reference Nu	mber	Section/Page			Revisin	L. O.	
FRP 1BwFR P.	1, 2, lesson plan					4	3,4	
Status Trees			ST-I/ Integr	ity				
Material Requir	ed for Examination							
Question Source	e: New		Que	stion Mod	lification Metho	d:		

day, July 24, 1998 4:35:02 PM

Question Source Comments:

Comment

Comment Type

Natural Circ conditions and limits

Why is it important to run the CRDM vent fans when performing a natural circulation cooldown?

- a. Aids the operator in maintaining subcooling in the reactor vessel head.
- b. Aids in natural circulation flow through the RCS head region.
- c. Minimizes stresses on the reactor vessel head due to uneven cooldown.
- d. Aids in natural circulation flow through the RCS.

Answer	a	Exam Level	В	Cognit	ive Level N	lemory		Facility:	Braidwood		ExamDate:		9/14/98
KA: E09	EK3.1	RO	Value:	3.3	SRO Value:	3.6	Section:	EPE	RO Group:	1	SRO Group:	1	
System/Ev	olutio	on Nat	tural Ci	rculatio	on Operatio	ns							
KA		Facility operat	ing chara	cteristic	s during transi	ent condi	tions, includ	ing coolant	l Circulation Op chemistry and t ing characteristi	he el	ons: fects of temperat	ure, pressu	ure,

Answer

 Reference Title/Facility Reference Number
 Section/Page
 Revision
 L. O.

 1BwEP -0 Reactor Trip or SI Lesson plan
 11
 3,4,6

2

Material Required for Examination Question Source: New

Question Modification Method:

Question Source Comments:

Comment Type Comment

Friday, July 24, 1998 4:35:03 PM

Reason for rapid S/G depressurization

Why are the S/Gs depressurized to less than 670 psig according to BwCA-1.1, "Loss of Emergency Coolant Recirculation"?

- a. To allow maximum AFW flow to the S/Gs.
- b. To ensure adequate subcooling for restart of the RCPs.
- c. To set up conditions for controlled injection to the RCS from the accumulators.
- To decrease RCS temperature and pressure which reduces break flow in a LOCA condition.

Answer C	Exam Level B	Cognitive Level	Memory		Facility:	Braidwood		ExamDate:		9/14/98
KA: E11 EA1.1	RO Value:	3.9 SRO Val	ue: 4.0	Section:	EPE	RO Group:	2	SRO Group:	2	
System/Evolution	Loss of E	mergency Coola	ant Recircu	ulation						
КА	Ability to operate and a Components, and fund and manual features.	ctions of control and							les, and a	utomatic
Explanation of Answer	The concern is m RCS can be initia into the RCS.	naximizing coolir ated (while main	ng volume taining sul	s that sup bcooling)	piy wate to the po	r to RCS. By int where the	COC SI i	oling RCS, dep accumulators	pressuri inject th	zation of neir volumes
Reference Title/Fa	cility Reference Num	iber	Sé	ction/Page				Revision	L. O.	
Loss of Emerge	ncy Coolant Recin	c/ 1BwCA-1.1						1B WOG 18	В	
1BwCA 1.1 and	1.2 lesson plan							7	3	
Material Require Question Sourc	ed for Examination e: New			Que	stion Mod	ification Method	1:	Editorially Mod	ified	

Question Source Comments: South Texas 9/92

Comment Type Comment

Friday, July 24, 1998 4.3...04 PM

at wi