2420 W. 26th Avenue, Suite 100D, Denver, Colorado 80211

April 14, 1986
Fort St. Vrain
Unit No, 1
P-86293

Federal Emergency Management Agency Mr. Alton D. Cook
Denver Federal Center
P.0. Box 25267

Denver, CO 80225-0267
ATTN: Dr. Floyd Shoemaker
Docket No. 50-267
SUBJECT: Radiological Alarm in Platteville, Colorado

Dear Mr. Cook:
In a recent phone conversation with Dr. Floyd Shoemaker he requested technical information on the subject siren we have installed in Platteville as a backup to the radio alert system. Rather than furnish a few bits of information I believe it is prudent to furnish all the information. Therefore I have enclosed a copy of the Siratone model EOWS manual for your use.

Please call if we can be of further assistance.

8604220129860414
 PDR ADOCK 05000267
 PDR

Very truly yours,

DWW/JRR:bb
Enclosure
cc: M. H. Holmes

L'r Mrem biuny
D. W. Warembourg, Manager Nuclear Engineering Division

SIGNAL DIVISION
Federal Signal Corporation

Model EOWS

SiraTone ${ }^{\text {TM }}$

DIYISION

The following are changes that should be made to the Installation and Service Instructions to make the manual compatible with the equipment as presently shipped from the factory.
A. The EOWS rotator circuit has been changed to provide a greater range of available current for extremely cold weather. Disregard figures 4-3 and 7-1 in the Installation and Service Instructions and use the Control Unit wiring diagram included in this supplement. The changes that are reflected in the new diagram are:

1. The rotator fuse and fuseholder have been deleted.
2. The battery wire (+) that went to the fuseholder is now connected to the rotator relay socket, pin 8.
3. Pins 1 and 8 are jumpered together.
4. Pins 4 and 6 are not jumpered.
5. Pins 3 and 6 are jumpered together.
6. The 70 -ampere main fuse (ecross battery) has been replaced with a 100-ampere.
B. The following changes should be made to the diagram and parts list on pages 7-4 and 7-5.
7. The value of the item 11 fuse should be changed to 100 amp . , JJN 100A (part no. 148A140A).
8. Delete fuseholder, item 36.
9. Add: Desiccant, part no. 288A339A, qty. 2.
10. Add: Vapor Capsule, part no. 288A340A, qiy. 1 .
C. Control of Condensation $2 . \mathrm{L}$ Corrosion in the Control Unit Cabinet.
11. The two packets of desiccant should be placed in the bottom of the Control Unit Cabinet.

NOTE

The desiccant packs should be replaced or dried (per instructions on package) whenever the cabinet door is opened.
2. The vapor capsule has an adhesive backing and is to be installed on the inside of the cabinet door. At time of installation, the date should be written in the space provided on the capsule. The capsule has a maximum life of one year.
3. When possible, the service and inspection of the cabinet should not be done in inclement weather conditions. Prior to closing the door, all excess moisture should be removed.

Federal Signal Corporation

Model EOWS

SiraTone ${ }^{\text {tw }}$

TABLE OF CONTENTS

Paragraph Page
SECTION I - GENERAL DESCRIPTIONGeneral1-1
Siren Description 1-1
Signal Description 1-3
Options 1-3
SECTION II - SPECIFICATIONS
System Power 2-1
2-1
Control Unit 2-1
Control Module 2-1
Amplifier Module 2-2
Power Supply 2-2
Speaker Array - Physical 2-3
SECTION III - SYSTEM PLANNING
Contol Unit 3-1
3-1
Siren Location 3-1
SECTION IV - INSTALLATION
Physical 4-1Electrical Connections4-3
SECTION V - PRE-OPERATION CHECKOUT AND TEST
Initial Checkout 5-1
5-1
Level Adjustment 5-2
5-3 Final Tests 5-3
SECTION VI - THEORY OF OPERATION
6-1
General 6-1
6-2 Control Module 6-1
6-3 Amplifier Module 6-3
6-4 Power Supply 6-4
6-5 Radio Receiver/Decoder 6-5
6-6 Model EOWS*115 and EOWS*1212 Speaker Array 6-56-7
Model EOWS*612 Speaker Array 6-5
SECTION VII - MAINTENANCE
7-1 General 7-1
7-2 Control Unit 7-1
7-3 Speaker Arrays 7-2

SECTION
 GENERAL DESCRIPTION

Figure 1-1. Model EOWS Control Unit and Battery Box.

1-1. GENERAL.

The Federal Model EOWS SiraTone (Electronic Outdoor Warning Siren) products are a family of dual-tone, electronic sirens that are capable of producing high intensity warning signals and voice communication over a large area, These electronically produced warning signals more nearly resemble the distinctive, penetrating sound of an electromechanical siren. A highly efficient circuit design and battery power system enable the siren to produce a high sound level, while making moderate demands on the user provided power source.

1-2. SIREN DESCRIPTION.

The SiraTone system consists of a high power Speaker Array and a Control

Unit with batteries. Three types of speaker arrays are presently available. Models EOWS*115 and EOWS *1212 are stationary and omnidirectional. Model EOWS*612 is rotating, unidirectional.

The Model EOWS * C / B is the only control unit necessary. It comes equipped with batteries and six amplifiers.

A. Model EOWS*C/B Control Unit.

The Control Unit consists of two cabinets, channel mounted for ease of installation (see figure 1-1). The upper cabinet (NEMA 4 enclosure) houses all the necessary electronics and controls for producing and amplifying up to seven signals (six standard plus one optional) and public address (PA). It also contains a diagnostic testing eircuit that allows system checkout without alarming the public, a command verification digital counter, signal length timer, automatic battery charger, manual siren controls, automatic speaker incrementing which automatically positions the speaker to the next zone after completion of a transmission and the optional Federal Siratrol radio control for remote activation of the siren. The Federal Siratrol is the subject of separate instructions. The tone generator circuitry (Control Module) and amplifier (Amplifier Module) are all modularly constructed for easy removal without disconnecting a large number of wires.

The lower cabinet, which complies to a NEMA 3R rating, houses two maintenance free, lead-calcium deep-cycle rechargeable batteries. The lower and upper cabinets are interconnected via conduit, which is sealed to prevent any harmful vapors from entering the control area. The batteries provide primary power to the siren, while the charger in the upper cabinet maintains the charge on the batteries. This arrangement
provides power to the siren in the event of a power failure and can provide thirty minutes of continucus signalling power to the siren.

B. Speaker Array.

Three different speaker arrays are available for use with the EOWS*C/B Control Unit. Each speaker array is supplied pre-wired, ready for installation with 50 feet of speaker cable. The speaker arrays have converient eyebolts which provide an adequate lifting point for ease of installation. Each speaker array model is the subject of separate installation instructions. The general description of each speaker array is contained in the following paragraphs.

1. Model EOWS*115 (figure 1-2). This speaker array is a cluster of twelve exponentially flared re-entrant, fiberglass speaker projectors which are nonrotating, omni-directional. Two tiers of six speakers produce a uniform sound distribution to within $\pm 3 \mathrm{~dB}$ for a complete 360 degree radial perimeter. This speaker array is designed for low vertical sound dispersion while maximizing the uniform horizontal sound distribution.

Figure 1-2. Model EOWS* 115 Speaker Array.
2. Model EOWS*1212 (figure 1-3). This speaker array is a cluster of twelve exponentially flared re-entrant, spun aluminum speaker projectors which are non-rotating, omni-directional. Two tiers of six speakers produce a uniform sound distribution to within $\pm 5 \mathrm{~dB}$ for a complete 360 degree radial perimeter. This speaker array is designed for "long throw" wide area coverage.
3. Model EOWS*612 (figure 1-4). The Model EOWS*612 rotating uni-directional speaker array uses six exponentially flared re-entrant, spun aluminum speaker projectors. The rotator mechanism rigid bearing assembly, idler bearings, brush and collector rings and speaker drivers are all located in the sectional protective enclosure. This enclosure has sectional rear panels for easy servicing. Each speaker circuit has four brush contacts which provide continuous reliable energy transfer and stall free rotation of the array.

This speaker array is designed for "long-throw" wide area coverage. The dual-tone coverage of this unit provides an effective warning signal as well as necessary listening time.

Figure 1.3. Model EOWS* 1212 Speaker Array.

Figure 1.5. Signal Characteristics.

1.3. SIGNAL DESCRIPTION.

Model EOWS is capable of producing six standard signals plus one optional signal for a maximum of seven signals. A graphic representation of the six standard signals is shown in figure 1-5. As indicated in the figure, three of the six signals are either a wailing, dualtone signal or a variation of a wailing dual-tone signal. Similarly, the remaining three signals are either a steady dual-tone signal or variations of the steady dual-tone signal. In some of the signals, both tones are produced simultaneously, while in others the tones are present alternately.

14. OPTIONS.

A. Auxiliary Tone.

If required, an optional seventh signal can be added to the SiraTone. The circuitry required for the production of the optional signal is contained in an easily installed tone module. A tone module can be factory installed in the Control Unit, or the-module can be installed by the user. In addition, a tone module can be changed, if signalling requirements change. Optional tone modules available for use with the SiraTone are: Yelp, Yeow, Slow Whoop, *Temporal Slow Whoop, Bell, Gradual Horn and Westminster Chimes. Westminster Chimes is suggested as a pleasant method of daily scheduled SiraTone testing.

B. Radio Control.

The siren can be activated by a radio signal if an optional Federal SiraTone is incorporated into the Control Unit. Activation by radio control has the advantage that control lines are not required between the siren control site and the siren location. Public address and tone signals can be controlled by a Siratrol receiver with either Two-Tone Sequential or DTMF (Dual Tone Multiple Frequency) control. The Federal Siratrol is the subject of a separate instruction manual.
C. Home/Remote Control Positioning: (Rotating speaker array system only)

The rotating speaker array can be positioned to operate selected zones. Up to 8 zones can be selected and set at the time of installation. Radio or land-line activation can then position the speaker array to any desired zone for a specific area announcement. The standard automatic speaker incrementing function will still be operative and will move the speaker array to the next zone after completion of a transmission.

This option will also "Home" the speaker array to zone 1 (predetermined at installation) which could be a position away from the general direction of inclement weather or the position of primary signalling and/or PA announcements. Homing automatically occurs after four minutes of speaker array inactivity. The option can be factory installed or added to existing SiraTone systems.

[^0]
SECTION il

SPECIFICATIONS

2-1. SYSTEM POWER.*

Operating Voltage $120 / 240 \mathrm{Vac}, 47-440 \mathrm{~Hz}$, single phase
Current Requirements 4 amps. at 120 Vac
2 amps . at 240 Vac
Operating Power*
Operating Voltage 24 V de
Operating Current when used with: EOWS *115 52 amps . (nom.) EOWS*612 60 amps. (nom.) EOWS*1212 . . 60 amps . (nom.)
Standby Current (Control, 6 amplifiers, Radio and Decoder) 0.25 amps .

Operating Time . 30 minutes

Standby Time (with minimum 5
minute full signal reserve). . . greater than 168 hours (7 days)
2-2. CONTROL UNIT.
Output Power 1200 watts (nom.)
Output Voltage (to speaker drivers) . 32 Vrms (nom.)
Operating Temperature $-35^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} * *$
Dimensions (HWD) $58^{\prime \prime} \times 20^{\prime \prime} \times 15^{\prime \prime}$
($1473 \mathrm{~mm} \times 508 \mathrm{~mm} \times 381 \mathrm{~mm}$)
Weight (approx. incl. batteries) . . 240 pounds (109 kg)

Enclosures

Upper (Control). NEMA 4
Lower (Batteries) NEMA 3R

2-3. CONTROL MODULE.

Signal

Wail

Pulsed Wail

Alternate Wail
Steady
Pulsed Steady
Alternate Steady

Dual-Tone Freq. Range
$300 / 360-850 / 1020$
$300 / 360-850 / 1020$
300/360-850/1020 $850 / 1020 * * *$.
N.A.

850/1020*** $\quad 1.5 \mathrm{sec}$.
850/1020*** $\quad 1.5 \mathrm{sec}$.
2.3. CONTROL MODULE (continued).

Signal Duration (Auto reset) $2-5$ minutes
Input Impedance
Local 5 K Ohms
Remote 500 Ohms
Signal Output
Tone 5 Vrms
Audio 3.5 Vrms
Audio Distortion for output level
from 0.1 volt to full rated output . . 1\% maximum
Frequency Response (300 to 4 KHz). . $\pm 2 \mathrm{~dB}$ (ref. 1 KHz)
Maximum Load 50 Ohms
Activation, Minimum Contact Closure . 200 ms at 0 Ohms 300 ms at 100 Ohms
2-4. AMPLIFIER MODULE.
Operating Current 8.75 amps . at 24 Vdc
Input Impedance 33 K Ohms
Bias Trigger Level (Max. sensitivity). 125 mVrms
Signal Output
Tone $32 \mathrm{Vrms}=$
Audio 22 Vrms
Audio Distortion for output level from 2 volts to full rated cutput . . 3% maximum

Frequency Response (300 to 4 KHz). . $\pm 2 \mathrm{~dB}$ (ref. 1 KHz) Maximum Load 5 Ohms

2.5. POWER SUPPLY.

Charge Current 6 amps .
Battery Voltage (at full charge) . . 27.8 Vdc
Batteries
Number 2
Type Deep discharge (lead-calcium
Losd Test Current maintenance free chargeable)
. 360 amps
Reserve Capacity 115 minutes at 25 amps .
*System power refers to power supplied to the system from user-supplied commercial power. The operating power is the self-contained primary and back-up power system.
**The siren can operate throughout this temperature range provided the battery temperature is maintained at $-18^{\circ} \mathrm{C}$ or higher.
***Frequencies for steady, pulsed steady and alternate steady are peak frequencies. The signal itself includes "build-up" and "coast down", similar to a mechanical siren.

2-6. SPEAKER ARRAY-PHYSICAL.

```
Number of Speakers
\(\longrightarrow\) EOWS*612
    EOWS*1212 and EOWS*115 . 12
Dimensions (HWD)
\(\longrightarrow\) EOWS*612
    \(81.5^{\prime \prime} \times 51.6^{\prime \prime} \times 32.8^{\prime \prime}\)
    ( \(207 \mathrm{~cm} \times 131 \mathrm{~cm} \times 83 \mathrm{~cm}\) )
    EOWS*1212 . . . . . . \(58^{\prime \prime} \mathrm{H}\) ( \(88^{\prime \prime}\) incl.mtg. brckt) \(\mathrm{x} 60^{\prime \prime}\) Dia.
    ( \(147.3 \mathrm{~cm} \times 152.4 \mathrm{~cm}\) )
    EOWS*115 . . . . . . \(55^{\prime \prime} \mathrm{H} \times 54^{\prime \prime}\) Dia.
Weight
( \(144 \mathrm{~cm} \times 137 \mathrm{~cm}\) )
    EOWS*612
    \(480 \mathrm{lb} .(218 \mathrm{~kg})\)
    EOWS * 1212 . . . . . . \(540 \mathrm{lb} .(245 \mathrm{~kg})\)
    EOWS*115 . . . . . \(360 \mathrm{lb} .(163 \mathrm{~kg})\)
```


SECTION III
 SYSTEM PLANNING

3-1. CONTROL UNIT.

The information in this paragraph provides the user with guidelines necessary for installation to achieve total benefit of the Control Unit's features.

Control Unit mounting location must first be considered. The Control Unit can be mounted indoors as well as outdoors. In order to avoid losses in speaker power, it is recommended that the speaker array and Control Unit be installed so that the 50 -foot interconnecting cable (supplied) will not have to be lengthened. If it is necessary to make a longer cable run, increasing the wire size to 12 AWG or larger is recommended.

Whether the Control Unit is installed indoors or outdoors, it should be located out of the reach of vandals. The control and battery enclosures are both supplied with hasp and staple for padlocking security.

The system is operated from 120 or 240 VAC which necessitates minimal installation requirements.

Several methods of both signal and voice can be used to activate the Control Unit. Land-line control can be used through normally open contact switches. These connections should be made directly to the control module terminal block. The SiraTone can also be remotely activated via the optional Siratrol receiver. When this option is selected, the receiver is pre-wired and located in the Control Unit cabinet.

The entire Control Unit is shipped mounted on an aluminum channel with four mounting holes for $1 / 2$-inch bolts . The total weight of the Control Unit/ Battery Box Assembly is approximately 240 poiunds (109 kg .) including batteries. Therefore insure that the mounting surface and fasteners can safely sustain the weight of the assembly.

3.2. SIREN LOCATION.

The information in this paragraph provides guidelines to aid the user in the selection of an installation site that makes optimum use of the siren.

Careful consideration of the factors affecting the propagation of sound from the siren and the response of the human ear to the sound will optimize the ability of the siren to effectively warn the community.

The reduction of signal intensity as the distance from the siren increases and the minimum desired signal level at the fringe of the area to be covered are important considerations when choosing a siren installation site. As the distance from the siren increases, sound level losses accumulate. These losses are a result of weather conditions, the terrain, obstructions in the sound path, the pitch of the sound and the height of the siren. Optimum sound propagation conditions exist when there are no obstructions in the sound path, the terrain is flat, and the air is calm. Under these conditions, each time the distance from the siren is doubled, the sound level decreases by approximately 8 dB . For example, the sound level 100 feet (30.5 m) from the siren is 115 dB . At 200 feet (61 m), the sound level drops to 107 dB ; at 400 feet (122 m) the sound level drops to 99 dB : etc. This is referred to as the "loss per distance doubled".

A loss per distance doubled of 8 dB is seldom experienced. This is because buildings and other obstructions are frequently present in the sound path. In addition, the atmosphere is rarely calm, and the terrain may not be flat. As a result, a typical loss per distance doubled in residential areas may be 10 dB , and as high as 12 dB in areas having tall buildings.

Experience indicates that an individual with normal hearing will probably hear a warning signal whose intensity is at least as high as the ambient noise level. Experience has also shown that the ambient noise level in industrial districts is typically 90 dB . Therefore, for a person to hear a warning signal in an industrial area, the sound level intensity of that signal must also be approximately 90 dB . In this situation, any point receiving a signal having less than 90 dB intensity is considered to be outside the effective range of the siren.

In business districts an ambient noise level of 80 dB is common and in residential areas, 70 dB of ambient noise is typical. Assuming a 70 dB minimum sound level, the effective range of a

Model EOWS* 115 SiraTone is approximately 3000 feet (914 m). (From 3000 to 6400 feet (914 to 1950 m) depending on speak. er array used.)

Wind speed and direction often affect the propagation of sound from the siren. Consequently, the direction of the prevailing wind may also be a factor to consider when selecting the installation site(s) of a small, one or two-siren system. For example, if the prevailing wind is from the west, it may be desirable to install the siren toward the western edge of $t: 0$ area to be covered.

Other factors to consider before selecting the installation site include the availability of electrical power, the ease of installation and maintenance, and the height of surrounding obstructions.

SECTION IV
 INSTALLATION

4-1. PHYSICAL.

A. General.

Most SiraTone installations are one of two types: Pole Mount or Flat Surface Mount. These two configurations make it possible to install the SiraTone in almost any situation. If neither of the installations in this paragraph is suitable. modification of one of the configurations described may be practical.

A SiraTone is typically installed 35 to 40 feet (11 m , to 12 m .) above the ground. If the siren is less than 35 feet (11 m.) above the ground, sound intensity at close range may increase but the effective range of the siren is reduced. Conversely, if the siren is located more than 40 feet (12 m .) above the ground, the effective range of the siren may increase, but the sound may skip over areas closer to the siren. These variables may make it desirable to test the siren sound coverage at various heights and locations whenever possible.

B. Pole Mounting .

A typical SiraTone pole-mounted installation. using the Model EOWS*115 Omni-directional Speaker Array, is shown in figure 4-1. Depending upon the subsurface conditions at a particular speaker array installation site, it may be advisable to use a Class I timber utility pole. The stability of the footing may make the in stallation of guy wires to the pole neces sary. To install the SiraTone on a timber utility pole, proceed as follows:

1. Install the timber utility pole in accordance with accepted standards and practices.
2. Mount the speaker array on the pole following the instructions supplied with the array. The Control Unit and Battery Box are attached to a length of $4^{\prime \prime}$ channel. There are five pre-drilled holes in the channel: one $1-1 / 4^{\prime \prime}$ hole and four $5 / 8^{\prime \prime}$ holes. The $1-1 / 4^{\prime \prime}$ hole provides

Figure 4-1. Pole Mounted Installation.
a convenient point for lifting the Control Unit/Battery Box assembly. The four $5 / 8^{\prime \prime}$ holes are for attaching the assembly to the pole. To attach the Control Unit/ Battery Box to the pole proceed as follows:
3. Use a crane to lift the Control Unit/Battery Box assembly to the desired height along the pole. It is recommended that the assembly be attached to the pole at a height that is accessible to service personnel, but discourages vandalism.
4. Use the crane to hold the Control Unit/Battery Box assembly against the pole. Using the four $5 / 8^{\prime \prime}$ holes in the channel as a template, locate four hole locations on the pole.
5. Drill a $3 / 8^{\prime \prime}$ hole at each of the four locations. Drill each hole at least $3-1 / 2^{\prime \prime}$ (90 mm .) deep.
6. Attach the Control Unit/ Battery Box assembly to the pole, using four user-supplied $1 / 2^{\prime \prime} \times 5^{\prime \prime}$ lag bolts. Slide a user-supplied $1 / 2^{\prime \prime}$ flat washer onto each bolt before threading the bolt into the pole.
7. Mount a user-supplied fused disconnect switch on the pole beneath or the opposite Control Unit/ Battery Box assembly.

C. Flat Surface Mount.

It may be practical to mount the siren on a flat-roofed building, depending on the location of the speaker array. When installing the siren on a flat roof, always be sure that the loudspeakers clear parapets or other obstructions by at least ten feet.

1. Install the speaker array on the roof, following the instructions supplied with the array.

The Control Unit and Battery Box are attached to a length of $4^{\prime \prime}$ channel. There are five pre-drilled holes in the channel: one $1-1 / 4^{\prime \prime}$ hole and four $5 / 8^{\prime \prime}$ holes. The $1-1 / 4^{\prime \prime}$ hole provides a convenient point for lifting the Control Unit/Battery Box assembly. The four $5 / 8^{\prime \prime}$ holes are for attaching

Figure 4-2A. Flat Surface Mount with Plattorm (EOWS*115).

Figure 4-28. Flat Surface Mount with Platform
the assembly to a wall or other substantial vertical surface. If the Speaker Array is installed on the roof of the building, it may be desirable to install the Control Unit/Battery Box inside the building, if practical.

Total weight of the Control Unit/Battery Box assembly is approximately $240 \mathrm{lb} .(109 \mathrm{~kg}$.) including batteries. Therefore, make sure that the mounting surface and mounting method selected can safely sustain the weight of the assembly. In addition, the mounting method used must be able to withstand external mechanical stresses that may be applied to the assembly.
2. Locate the Control Unit/ Battery Box at the installation site. Attach the Control Unit/Battery Box assembly to the mounting surface, using the appropriate user-supplied hardware.
3. Install a user-supplied. fused, disconnect switch.

4.2. ELECTRICAL CONNECTIONS.

A. General.

Install the siren electrical sys. tem in compliance with local electrical codes and NEC recommendations.

As a safety precaution to protect both personnel and equipment, it is highly recommended that all siren units be solidly connected to an earth ground. If the siren is installed on a building, ground the system to a metallic object known to be grounded. For pole mounted installations, drive a metal rod or bar at least eight feet into the ground, as close as practical to the base of the pole. For maximum protection, use a separate,-continuous 6AWG or larger wire from the siren frame to ground and from the cabinet of each siren unit to ground.

B. Signal Connections.

Connect the Speaker Array to the Control Unit, following the instructions supplied with the array.

C. Power Connections.

1. As shipped from the factory, the battery charger, in the Control Unit, is configured for 120 V ac operation. However, the battery charger power input circuitry can be easily configured for 240 Vac operation. If it is necessary to reconfigure the battery charger power input circuitry, proceed as follows:
(a) Turn off the power to the control unit. The charger is located behind the hinged doors of the upper enclosure. Remove the screws holding the doors closed and remove the four screws
that hold the battery charger to the bottom of the Control Unit enclosure. Retain the screws.
(b) Tilt the battery charger outward 90° so that the rear of the power transformer is accessible. Slide the charger back into the enclosure.
(c) Remove the jumper wires between power transformer terminals 1 and 3 and between terminals 2 and 4.
(d) Install a jumper wire between terminals 2 and 3 on the power transformer. DO NOT disconnect the input leads from terminals 1 and 4 of the power transformer.
(e) Remount the battery charger in the Control Unit enclosure.
(f) Replace the 5A fuse in the fuseholder with a user-supplied 2.5 A 3AG fuse.
2. Route $1^{\prime \prime}$ conduit (steel preferred) between user-supplied, fused disconnect switch and the remaining concuit fitting in the bottom of the Control Unit enclosure.
3. Route two user-supplied wires through the conduit that was just installed between the Control Unit and the fused disconnect switch. Use wires no smaller thatn 14AWG. DO NOT connect the wires.
4. Connect the power wires and lightening protector (see figure 4-3 and 4-4) to the terminal strip directly in front of the charger (bottom) panel in the interior Control Unit. Close both panels, in the interior of the Control Unit, and replace the screws.
5. Remove the cover from the Battery Box enclosure. Remove the battery hold down bracket.
6. Install the batteries in the Battery Box, making sure that the positive terminal of both batteries is toward the front of the enclosure. It may be necessary to temporarily relocate the wiring in the enclosure before installing

Figure 4-3. Control Unit Wiring Diagram.
the batteries. The polarity of the battery terminals is clearly marked on the battery case.

A fuse is mounted in back of the Battery Box enclosure. A length of red wire is connected to each side of the fuseholder. Each of these wires is equipped with a lug. The hole in one of the lugs is larger than the hole in the other. Connect the lug having the smaller hole to the negative (rear) terminal of the battery on the left by removing the wing nut and sliding the lug over

Figure 4-4. Lightning Protector Wiring Diagram. the threaded battery terminal. Replace the wing nut and tighten securely. Similarly, connect the lug having the larger hole to the positive (front) terminal of the battery on the right. Make sure that both lugs are positioned so that they are not short circuited to any metal parts in the enclosure.
7. Four red wires and four black wires enter the Battery Box enclosure through the conduit at the upper left of the enclosure; two 10AWG and two 12AWG of each wire color. Connect the four red wires to the positive (front) terminal of the battery on the left. Similarly, connect the four black wires to the negative (rear) terminal of the battery on the right.

D. Control Connections

1. All control interconnecting wiring can be accessed by sliding out the control module, located at the upper right in the Control Unit. To gain access to the wiring, proceed as foliows:
a. Remove the screw which
secures the control module.
b. Slide out the control module until it stops.

NOTE

All control module interconnecting wiring is routed through a grommeted hole at the rear of the control.
2. If desired, a user-supplied remote micropbone can be connected to the SiraTone. Connect the microphone to TB2-8, 9 and 10 , as shown in figure 4-3.
3. A user-supplied auxiliary audio amplifier, having an input impedance of at least 500 ohms, can also be connect ed to TB2 in the Control Unit. Connect the user-supplied amplifiers to TB 1-5, 6, and 7, as indicated in figure 4-3.
4. If the SiraTone is to be landline controlled, install one user-supplied pushbutton switch, such as Federal Model SO, for each function, at the control site. If the siren control site is greater than 2000 feet (610 m .) from the siren installation, install a SPST teiephone relay, such as the Federal Model TRC*1020 between the two sites for each function, as indicated in figure 4-5. In addition, a 48 Vdc power supply, such as the Federal Model PS, is required for telephone relay operation. Telephone relays and a power supply are NOT required if the length of the control lines is less than 2000 feet $(610 \mathrm{~m}$.). Connect each push-button directly to the appropriate terminals of TB1, as shown in figure 4-3.

Figure 4.5. Landline Control Circuit.

The use of landline control is not necessary if the optional Federal Siratrol is incorporated into the SiraTone

Control Unit. J3 of the control module is dedicated to this purpose. If the optional Siratrol is included in the siren, all interconnections between the Siratrol and the SiraTone are pre-wired. However, the Siratrol antenna must be
installed. When installing the antenna, make sure that the aitenna is at least 3 feet (910 mm) from all metal parts. On pole mounted installations, attach the antenna to the side of the pole closest to the control transmitter.

SECTION V PRE-OPERATION CHECKOUT AND TEST

5-1. INITIAL CHECKOUT.

Temporarily remove the fuses from the front panel fuseholder on all amplifier modules. Connect the electrical wiring, previously installed in 4-2.C. 3 to the fused disconnect switch. Apply power to the SiraTone. Turn on the charger power switch. The pilot light on the charger panel should illuminate. In addition, the voltmeter should indicate 24 volts and the ammeter should indicate some charging current. The amount of current indicated depends upon the battery charge level. If the pilot light is not illuminated, check the panel mounted fuse. Replace if defective.

If the fuse checks good, an electrical problem external to the Siratrol probably exists. If the pilot light is lit. check all Control Unit indicators (figure 5-1). Depress the PULSED STEADY pushbutton. The SIG. A and SIG. B indicators should flash and rotating speaker arrays should rotate. Depress the CANCEL pushbutton. The SIG. A and SIG. B indicators should light
continuously for approximately eight seconds and rotating speaker arrays should stop rotating.

With an ohmmeter capable of measuring resistances of less than 10 ohms, depress the push-to-test pushbutton of each amplifier and measure the resistance at the output test points of that amplifier. The resistance should be approximately 2.7 ohms. A different reading indicates a possible wiring error or faulty driver in the speaker array. Since the speaker circuits are comprised of two speaker drivers in parallel, if one of the drivers in a circuit were to open. approximately 5.4 ohms would be measured.

Rotating speaker array systems have an option of either P-T-T override of tone signals during speaker incrementing (signal will not be activated as speaker travels to the next zone) or P-T-T override "on" only when P-T-T is held (dekeying of microphone will immediately sound emergency signal previously activated). The unit comes from the factory

Figure 5-1. Control Unit Front Panel.
with tone signal override during incrementing. If $\mathrm{P}-\mathrm{T}-\mathrm{T}$ override only when P-T-T is held is desired, remove CR21 from control module printed circuit board (see figure 7-5). Replace the fuses in all amplifiers.

5-2. LEVEL ADJUSTMENT.

Signal duration, frequency, frequency cut-off, increment timing and microphone output level are adjustable from inside the control module. Frequency and frequency cut-off are factory set and should not be readjusted. Damage to the amplifiers may result.

To gain access to these adjustments open the door of the Control Unit by loosening the screws holding the door clamps. Remove and retain the fuses from the front panel fuseholder on each of the amplifier modules. Most adjustments can be made without activating amplifiers and speakers. Remove and retain the 6-32 screw which secures the control module to the Control Unit. Slide the control module out until it reaches the stops.

For location of adjustments refer to figure 5-2. All adjustments involve setting a thumbwheel potentiometer and require no special tools.

A. Frequency.

R102 adjusts the frequency of out put tone signals from the control module. The frequency is factory set, but if readjustment is necessary, proceed as follows:

1. Connect an audio range frequency counter to the SIG. A or SIG. B output.
2. Activate the steady signal and adjust the output tone signal frequency. SIG. A should be 1020 Hz and SIG. B should be 850 Hz .

B. Frequency Cut-off.

R103 adjusts the frequency at which the output signal will terminate upon cancelling or automatically resetting
(time out) one of the six standard signals. This control is preset at the factory and should not be re.djusted unless absolutely necessary. To aujust, proceed as follews:

1. Connect an audio range frequency counter to the SIG. B output.
2. Activate the steady signal and then cancel it. The counter should not indicate a frequency lower than 250 Hz .

C. Signal Duration.

R101 adjusts the length of time a signal will continue once activated. Reactivation or activating another signal will automatically restart the time period.

Figure 5-2. Control Unit Adjustment Locations.

To reset the time, activate the pulsed steady signal and observe that SIG. A and SIG. B indicators flash on the front parel. At the end of the signnal cycle, both signal indicators will illuminate steadily for eight seconds. The steady illumination indicates that the signal is "coasting" down. If the signal duration is too long or too short, adjust R101 to increase or decrease the signal duration within the $2-5$ minute range. Recheck adjustment by repeating this procedure.

D. Local and Remote Microphone.

R104 and R105 adjust the P.A. output levels for the local and remote microphones, respectively. The local microphone input is via the panel mounted microphone jack. In order to prevent audio feedback, this jack should only be used when the Control Unit is located in a building, audibly isolated from the speaker array. The remote microphone input is via TB2 terminals.

Adjustment of the P.A. output levels requires two people. An operator must be at the microphone location and a technician at the SiraTone site to perform the adjustments. Radio or telephone communication between the two sites will make the adjustment procedure easier to perform. To perform the adjustment, proceed as follows:

1. Depress the microphone push-to-talk switch and speak into the microphone in a normal voice. The P.A. IN USE indicator lamp will illuminate when the push-to-talk switch is depressed.
2. Adjust R104 or R 105 (local or remote microphone inputs) to a level which will begin to cause the SIG. A and SIG. B indicators to flicker. The flickering indicators are an indication of the audio clipping level and should be minimal for low distortion. If any audio inputs are not used, they should be adjusted completely clockwise.

$$
\text { E. } \frac{\text { Increment Timing (rotating }}{\text { speaker arrays only) }}
$$

R106 adjusts the time interval for the speaker array to rotate between P.A.
announcements. The rotator control relay is activated each time the microphone push-to-talk switch is dekeyed. The relay is held for a period of 4 to 18 seconds while the speaker array rotates to another zone for another announcement.

The number of zones for P.A. announcement must be determined prior to makeing this adjustment (2,3 , up to 8 zones). If the speaker array rotates beyond or short of the next desired zone, adjust R106 and repeat the procedure. A series of activations will best determine the accuracy of the adjustment.

The speaker array can be automatically "homed" and remotely activated to a desired zone by use of the Model EOWS*H/RCP option, subject to separate instructions.

Slide the control module back into the Control Unit and replace the screw that was previously removed. Replace all amplifier fuses.

5-3. FINAL TESTS.

WARNING

> The output sound level of a SiraTone siren is capable of causing permanent hearing damage at short distances. Therefore, ALWAYS wear hearing protection when performing tests or maintenance on the siren.

If the siren is installed in an electrically noisy envirorment, one or more of the siren amplifiers bias circuits may be activated. Each siren amplifier contains solid-state circuitry to reduce standby current, by de-activating the bias current applied to the amplifier output stages, when signalling has stopped. The BIAS ON light emitting diode (LED) indicates when this circuit is activated. either by illuminating continuously or illuminating erractically while no siren signal or PA audio is being produced. This condition can be eliminated by reducing amplifier sensitivity by slowly rotating R2 (see figure 7-9) counterclockwise until the BIAS ON LED extinguishes. The LED extinguishes approximately 5 seconds after amplifier signa!
detection ceases. To avoid excessive reduction of amplifier sensitivity, do not rotate R2 any further than absolutely necessary. If R2 is rotated too far, the amplifier may not be activated by a PA signal.

The SIG OUTPUT LED indicates that the amplifier output signal level is sufficient for siren signal operation.

If desired, all six siren signals can be tested at this time by momentarily depressing the appropriate pushbutton on the control module front panel. If an optional seventh signal is installed, it can be tested by momentarily pressing the AUX switch. The CANCEL switch causes all signals to "coast down" except for the optional auxiliary signal. The optional auxiliary ceases immediately.

Systems using rotating speaker arrays should note speaker rotation upon signal activation. Speaker rotation will halt, when the signal begins to "coast down", upon activation of the CANCEL switch. Momentarily grounding the P-T-T should cause the speaker array to rotate to the next zone.

If included, the optional radio interface should be tested at this time. Follow instructions supplied with the radio interface.

After the installation is complete, and it has been established that the siren is operating properly, Federal recommends that the Control Unit and battery box be padlocked to discourage vandalism.

SECTION VI THEORY OF OPERATION

Figure 6.1. System Diagram.

6-1. GENERAL.

Figure $6-1$ is a diagram of the SiraTone system.

The system is powered by two 12 volt deep cycle batteries which are maintained at full charge through a 24 -volt power supply charger.

The control module is activated via land lines (normally open contacts), or optional Siratrol radio control. The control module supplies timing and signalling to the amplifiers as well as control output to the rotating speaker arrays. It also has front panel visual indicators which indicate signal output and P.A. in use. A counter indicates total number of activation and cancel inputs.

The amplifiers provide the necessary power to drive all of the speaker array drivers.

6-2. CONTROL MODULE.

The SiraTone can be remotely con * trolled by either radio (modulated with
two-tone sequential or dual-tone multiple frequency) or momentary pushbutton switches. The pushbutton switches can be directly connected to the SiraTone or connected via land lines. Refer to the control module functional block diagram (figure 6-2) and schematic diagram (figure 7-4) when reading the following paragraphs.

RC networks C $30-\mathrm{C} 36$ and R 76-R 82 keep the signal activation inputs stable. When a signal input is grounded, one of the capacitors (C $30-\mathrm{C} 36$) discharges and input drivers (IC17 or IC 18) activate the control encoder (IC8). The control encoder output activates the signal timer (IC2) and produces a binary code. IC2 is momentarily reset before each activation. Each time IC2 is reset, the counter is pulse driven by Q2 and Q3. During the time of signal activation, the binary code present at the control encoder is fed to three AND gates of IC 13, which latch the signal code as long as the signal timer remains on. Diodes CR12, CR13, and CR14 serve as feedback information for these binary latches.

Figure 6-2. Control Module Functional Block Diagram.

The binary code held at pins 3, 4, and 10 of IC13 (referred to as control bits 0,1 and 2) control several functions. These functions include signal control voltage, pulse selector, 2 Hz oscillator, and signal selection. IC 6 contains an operational amplifier (A) which functions as a 2 Hz oscillator for HI-LO or pulsed signal timing. The other operational amplifier (B) serves as the control device for creating a sweeping voltage for wail signals. The rate at which C 10 charges and discharges (R16 and R15, respectively) is controlled by the output of IC6(B). Voltage divider network R14, R18 and R19 set the level at which the transitions in the wail signal occur. Activation of and steady signal results in control bit 0 going high, Q10 turning on and charging C10 steadily; independent of the IC 6 output.

The voltage across C10 is applied to VCO IC3. The RC network composed of R7, R102 and C8 set an output frequency at pin 4. This output frequency is fed to IC 4 and IC5 which divides the frequency by 5 and 6 . The output at pin 2 of the integrated circuits are applied to IC 7, a dual J-K flip-flop, which divides the frequencies further (by 2) and creates a symmetrical waveform. The sig. nals from pin 1 and 15 of IC 7 form what is now referred to as Signal A and Signal
B. These signals are now applied to IC9 and IC 10 data selectors and two AND gates of IC15. The second input to these AND gates receives its input from the 2 Hz oscillator andsthe 2 Hz compliment via an inverter configuration at pins 2 and 3 of IC 3 . Pin 3 of IC 15 pulses signal A ($\vdots 5)$ and pin 11 pulses signal B ($\div 6$) alternately. These two signals are mixed and applied to IC9 and IC 10, data selectors for HI-LO (alternate) signals. IC9 and IC 10 pass one of the eight inputs to the preamplifiers, dependent upon the control bits at pins 9,10 and 11 .

Upon termination of one of the six standard signals, the signal output from the data selectors will return to selecting x_{0} signal which follows the discharge rate of C10 through R15. At this time, IC 2 (555 timer) turns off. All latches are returned to zeros (IC13), C10 discharges through CR20 and Q8 turns on. Q8 is a source of voltage for the adjustment made at R103. This voltage is a reference volt age at pin 5 of IC14. The decaying voltage of C10 is buffered by operational amplifier IC 14(A) and applied to pin 6 of the same IC. The output of pin 7 remains low as long as the voltage in the "-" input remains higher than the " + " input. When the voltage of C 10 decreases to a point which produces an output frequency which is lower than desired, pin 7 goes
high and Q6 turns on discharging C 10 quickly. At this point the VCO turns off and the output ceases. During standard signalling the base of Q7 is high, the emitter is low and the tran sistor is "on". This keeps Q6 from turning on and allows C 10 to charge and discharge normally. When an auxiliary tone is activated, the emitter of Q7 goes high from the AND of IC 15, pin 4 (all three control bits high) and Q7 remains off. Now Q6 remains "on" from the high out put of IC14, pin 7 (operational amplifier B) and C10 is kept grounded. This also allows instant cutoff of standard siren signals, when the auxiliary signal is activated without a tone module.

Tone signais from the data selectors are fed to dual amplifier IC 12 for final drive to the output pins and amplifiers. The outputs of IC 12 (pins 2 and 13) have level detectors which half-wave rectify signals into an RC network. The output of each network is applied to the input of an operational amplifier (IC11) which functions as a comparator The compared input is set by a divider network which has a level of a clipped sine wave signal. If the signal output exceeds the clipping level, the operational amplifier's output goes high and turns on the appropriate front panel SIG. L.E.D.

Both local and remote microphone inputs are capacitively coupled to two single transistor pre-amplifiers, Q9 and Q10. The bias to these pre-amplifiers remains off until the P-T-T circuit is grounded. When the P-T-T input is grounded, Q11 turns on and supplies bias to the microphone pre-amplifiers. Q11 also activates the inhibit lines of data selectors IC 9, IC 10 and VCO IC3. It also stops the 2 Hz oscillator. This condition provides stable, undistorted transmission of audio to the same signal pre-amplifiers (IC12) as used by the tone signals.

Pins 18 and 19 provide a connection point for the rotator relay, used in Control IVnits for rotating speaker arrays. The relay is activated by either Q14 or Q22. The collector of Q14 goes to ground when the signal timer (IC2, pin 3) is high. It can be turned off by a P-T-T activation
where Q24 bypasses the base current of Q14. The rotator relay can also be activated by another function via Q22. As the P-T-T circuit is activated (grounded) then returned to open. transistor Q23 turns off and then returns to the "on" state. When Q23 is off, the voltage across C 39 is equalized via R 92 and R95. As the P-T-T is de-keyed. Q23 immediately sources the negative side of C39 to ground. The positive side momentarily goes to ground and recharges through R92. This momentary ground activates IC 16 (555 timer) and increments the rotating speaker arrays. The output of IC 16 , pin 3 drives the base of Q22 which energizes the rotator relay. The timing basis of IC 16 is RC network R93, R106 and C38. The output of IC 16 can also inhibit the tone signals, if CR21 is installed. CR21 provides a voltage source to data selector and VCO inhibit lines similar to P-T-T activated Q11.

The control board is powered by a regulator circuit which is composed of Q1. CR2 (11 volt zener diode) and associated components. CR1 provides reverse voltage protection.

Remote activation connections

 should be made via TB 1 or J3. Signal lines and relay output should be connect ed to pins on the printed circuit board.
6.3. AMPLIFIER MODULE.

Refer to amplifier module functional block diagram (figure 6-3) and schematic diagram (figure 7-8) when reading the following paragraphs.

A. Amplifier Stages.

IC1 amplifies the input signal to a power level necessary and applies it to the primary of transformer T1. The out put of IC 1 is coupled through C9 and damping resistor R 6 to the T 1 primary. T1 provides a large voltage gain and a paraphase input to the push-pull amplifier stages. Driver transistors Q3 and Q4 and output transistors Q5 and Q6 provide the necessary current and power gain, coupled through transformer T 2 , to drive the speaker.

Figure 6-3. Amplifier Module Functional Block Diagram.

The network consisting of TH1, R11,
R12, CR5, CR6 and Q1 is a biasing circuit which prevents any "crossover notch" by slightly turning on the driver and output transistors.

B. Bias Activation Circuitry.

Input signals are applied to IC 2A. IC 2 A along with CR3 form a precision half-wave rectifier. Since the rectifier exhibits no breakover characteristic, small amplitude signals pass through. The rectified input signal is applied to threshold comparator IC 3A which determines if the input is greater than the reference level set by R2. When the input signal exceeds the reference level, IC 3A pin 1 goes high and immediately charges C 6 through CR6.

CR2, C6, R7 and IC3B form a bias turn-off delay circuit. The dis charge time constant set by $C 6$ and R. determines how long pin 5 of comparato. IC3B remains greater than the reference level. Consequently, C6 and R7 determine how long IC 3 B pin 7 is high and the bias circuitry is active.

C. Signal Output Indicator.

IC 2B compares a full-wave rectified sample of the output to a reference level set by R18 and R19. As long as the output sample's amplitude is greater than the reference, IC 2B pin 7 is high and CR11 is energized. CR13, a fullwave bridge rectifier, is employed to isolate the speaker leads from the chassis.

6-4. POWER SUPPLY.
The power supply consists of two series connected deep cycle batteries and a charger. The output of the power supply is diode protected to prevent reverse current to the charger, when system power is off and the batteries are connected.

Servicing the power supply should be limited to replacing the complete charger. The power supply is adjusted at the factory to properly charge and supply voltage to the batteries and the system. Should re-adjustment be necessary, proceed as follows:
A. Turn off power to the Control Unit.
B. Open the battery box cover and charger door of the Control Unit.
C. Disconnect the fused link between the batteries.
D. Connect the negative lead of a voltmeter to the battery post with the black wires and the positive lead to the battery post with the red wires. Turn on power to the Control Unit. Set the VOLTAGE ADJUSTMENT control (see figure 6-4) for 27.8 Vdc .
E. Disconnect voltmeter. Reconnect the fused link. Adjust the CURRENT LIMIT control (see figure 6-4) for a reading of 6 amperes on the front panel meter. NOTE: If the batteries are at full charge.

this adjustment cannot be made unless the batteries are discharged enough to require charging.
F. Replace the battery box cover and charger door .

6-5. RADIO RECEIVER/DECODER.

The SiraTone can be remotely controlled by a radio signal modulated with a two-tone sequence or a dual-tone multiple frequency coded signal (DTMF).

When radio control is used, a usersupplied tone encoder and radio transmitter are located at the system control site. The purpose of the tone encoder is to generate the tone sequences for controlling siren signals and functions. Each siren signal and function is assigned a distinct and separate tone sequence. The tone encoder is connected directly to the radio transmitter.

A siren signal or function is initiated when the appropriate tone encoder control (s) is (are) operated. When the Siratrol receiver at a given SiraTone site receives the tone-modulated radio frequency signal. the decoder in the receiver decodes the tones. The decoded tones then produce the signal necessary to activate the appropriate timer control circuitry.

Refer to the Service Manual supplied with each Siratrol for a complete theory of operation.

6-6. MODEL EOWS*115 AND EOWS* 1212 SPEAKER ARRAYS.

Both of these speaker arrays cont ain the necessary drivers and speaker projectors for producing the omnidirectional dual-tone siren sounds. Speakers are mounted on a series of six individual panels. Each panel has two speakers and two drivers parallel connected to an amplifier in the Control Unit. Signal lines are connected to the speakers in such a manner that adjacent speaker panels receive a different signal (Example: Panel B receives an amplified signal B and panels A and C receive amplified Signal A). A wiring diagram can be found in Section VII.

6.7. MODEL EOWS*612 SPEAKER ARRAY.

The Model EOWS*612 uses six projectors to bre deast the audible siren sounds. Each speaker uses two drivers. Dual-tone signals are connected in such a manner that signal A is applied to the right half of the speaker array and signal B is applied to the left half. Each signal and rotator power circuit is coupled through a slip ring and quad brush assembly which provides continuous stall-free speaker rotation. The speaker array rotates when 12 or 24 volts dc from the Control Unit is applied to the rotator motor. The rotator motor is belt coupled to the gear box which provides the necessary gear reduction to rotate the speak er array. A wiring diagram can be found in Section VII.

3

SECTION VII

MAINTENANCE

7.1. GENERAL.

Federal Electronic Outdoor Warning Sirens are designed to require a minimum of maintenance. However, if ε siren failure does occur, Federal will provide technical assistance with problems that cannot be handled locally. A list of all Federal Authorized Service Centers is available from the Service Department. If assistance is needed, contact :

Service Department Federal Signal Corporation 2645 Federal Signal Drive University Park, IL 60466

It is recommended that the siren be tested for proper operation at least once a month. However, a daily test of the siren at noon curfew, or other selected time, provides a more reliable test of system readiness. In addition, the daily test enhances the usefulness of the siren and instills public confidence in the reliability of the warning system.

It is recommended that a maintenance check be conducted within 30 days of siren installation. Thereafter, it is recommended that the maintenance checks be performed at least once a year. The following paragraphs describe the maintenance checks for the SiraTone system.

7.2. CONTROL UNIT.

A. Amplifier Output.

Each pair of speakers in the Speaker Array is driven by a power amplifier in : the C ontrol Unit. Each amplifier module ant its associated speaker pair is designated A, B, C, D, E, or F. Each amplifier has test points for testing the resistance of its associated speaker pair.

To measure the resistance of a given speaker pair, proceed as follows:

1. Remove and retain the fuse from the appropriate amplifier
2. Set an ohmmeter to its lowest resistance range, and connect the ohmmeter to the output test points.
3. Depress the PUSH-TO-TEST button and observe the dc resistance of the speakers. Normal dc resistance of a speaker pair is approximately 2.7 ohms. A dc resistance measurement of less than 2.5 ohms indicates that one or both of the speakers is probably shorted. A reading of approximately 5.4 ohms indicates that one of the speakers in the pair is open; a reading of infinity indicates that both speakers are open.
4. If a resistance is abnormal, perform resistance checks on each speaker individually at the Speaker Array.

If desired, an oscilloscope or digital multimeter (DMM) can also be connected to the amplifier module test points to observe amplifier output. NOTE: DO NOT press PUSH-TO-TEST button. However, do NOT connect a speaker across the test points because damage to the amplifier module could result.

WARNING

The output sound level of a SiraTone siren is capable of causing permanent hearing damage at short distances. Therefore, ALWAYS wear hearing protection when performing tests or maintenance on the siren.
B. Signal Operation Check.

1. Remove and retain fuses from all amplifiers.
2. Activate each of the signals and observe the signal indicators on the control module. Observe counter operation.
3. Insert one of the previously removed amplifier fuses. Depress the PUSH-TO-TEST pushbutton of the fused amplifier. Activate a signal and observe that SIG. OUTPUT and BIAS ON indicators illuminate, indicating amplifier operation. Cancel the signal and allow the signal to coast down and shut off. Release the PUSH-TO-TEST pushbutton and remove the fuse. Test the remaining amplifiers in the same manner.
4. Replace all amplifier fuses.
C. Check the batteries. The voltage of a fully charged set of batteries should be approximately 28 Vdc , and charge current should be less than one ampere.

Each battery is equipped with a built-in hydrometer. When the hydrometer "eye" is green, the battery is charged. If the "eye" is dark, the battery needs cherging. If the "eye" is light in color, the battery is low on fluid and should be inspected for leaks.

Check the battery terminals for corrosion. Clean connectors and terminals, if necessary.
D. Check rotator incromentation (EOWS*612 Speaker Array only). Activate the P-T-T circuit by momentarily shorting the P-T-T to ground. The Speaker array should rotate to the next speaker zone.

7.3. SPEAKER ARRAYS.

NOTE

Remove the control module fuse prior to checking the Speaker Array. This precaution will prevent any signal from sounding or the speaker arrays from rotating.
A. All Speaker Arrays.

1. Examine Speaker Array mounting for loose bolts or weak supports.
2. Examine cable and terminations for frayed insulation or corrosion.

B. Rotating Speaker Arrays Model EOWS*612.

Check rotator unit as follows:

1. Remove the Speaker Array upper panel.
2. Check brush alignment to insure that complete contact is made to the collector rings. Insure that the fastening bolts for the collector ring stack are securely fastened.
3. Check brush springs for normal tens.on. The brushes should move freely in the assembly.
4. Clean any contaminents or dirt from the collector rings. The four brushes can sufficiently maintain clean collector ring contact with regular system testing.
5. Check pulley set screws and belt tension. The belt should be relatively loose. Pinching the belt between the pulleys stould draw it to within approximately one-inch of touch. ing.
6. Check to ensure that the gear reducer and bearing housing mounting bolts are secure.
7. Observe the gear case for any leaks, especially around the high speed shaft. Check oil level by removing oil level plug (upper plug on gear ease). If oil level is low, replace with Meropa \#2 or equivalent.
8. The motor has permanently lubricated sealed bearings. Remove the brush cap protector and examine the brush and spring assembly.
9. Check the idler bearings at the lower portion of the speaker array. The rollers should be adjusted so that the maximum clearance of any free rollers to the pole is approximately $1 / 32$ inch. Free rollers should spin freely. Lubricate if necessary.

Figure 7.1. Control Unit Wiring Diagram,

ELECTRONUC OUPDOOR WARMONG SIREN
PPL 0183
हOWSMC/B
OCTOBER 1984

Item No.	Description	Part No.	Qty
$\frac{1}{2}$		95498022	
	Cabinet, Battery Shelf $^{\text {c }} 18^{\prime \prime} \times 10^{\prime \prime} \times 12^{\prime \prime}$	1700 C 221	1
4	Shelf Screw, Batiery Pan Hd. Phl. Stl., 8-32	9549C014	1
5		7000A 408 -06	22
6	Battery, 12V. Delco 1059 (seperate carton)	$\frac{7058 A 022}{155 A 120}$	27
8	Terminal , Battery Post, To $\frac{5}{\text { Pattery }}$ Post 16 (Deg.)	$155 A 120$ $233 A 143$	$\frac{2}{2}$
9		233A143-01	$\frac{2}{2}$
10	Bracket, Battery, Hold Down	3549 B047	1
11	Fuse. 70 Amp. Tron JJN70A	143 A 115	1
12	Screw, Pan Hd. Phl ; $\frac{\mathrm{Stl}}{16}$. 8 -32	148 A137	1
13	Bolt Nut Hex Hd $\cdot \frac{3}{\text { Hex }}+\frac{88}{16}+3,8-16$	7000A408-07	6
15	Nut, Hexwasher, 3 , Split, 55,3 , 8 Scr.	$7002 A 009-16$ 7059 A 063	${ }^{8}$
16		7074A046	12
17	Nut, Hex, Dol. Chmf.,$\frac{10}{59,1} 4+20$	9000A311-16	15
18	Lockwasher, Split, 35,14 Scr.	7039A020	4
19	Conduit, Thinwall Adhesive. RTV 150 Steel,$\frac{1^{\prime \prime} \times 5}{}$	T074A016	4
21	Adhesive, RTV 1508, SII. Rubber, 3 oz , phg Protector, Lightning	R70-04-01	$\frac{1}{2}$
22		288A256	1
23		8287A200	3
24		$7065 A 033$ 7072 A 035	3
25	Locknut, Steel , Pan Sd . 12	$\frac{7072 \mathrm{~A} 035}{7065 \mathrm{~A} 021}$	2
27	$\frac{\text { Screw }}{\text { Hinge, }}$, Pan Hd. Charger Door $\frac{\text { Phl. }}{}$, Stl. , y-32	7000A408-05	$\frac{1}{13}$
28	Hinge, ${ }^{\text {Hinge, }}$, $\frac{\text { Radio }}{\text { Rat }}$ Door	$\frac{8549 \mathrm{~A} 027}{85494026}$	13
$\frac{29}{30}$	Panel, Charger	$\frac{8549 \mathrm{~A} 026}{55498040}$	1
31	$\frac{\text { Meter }}{\text { Mater }}$, $\frac{30 \mathrm{Amp}}{30 \mathrm{Volr}}$	55498040 2898253	1
32	Meter, Panel,$\frac{30 \text { Volt }}{\text { Radio }}$	2888253 2888252	1
33	Pracket, , Pantio . Stoo Assembly	-35498023	1
34	$\frac{\text { Bracket }}{\text { Rivet }, ~ A l m . ~ P a n e l ~}$. Pop . Pan Hd ., 18×15	$\frac{85498031}{40991103-15}$	
35	Counter ${ }^{\text {alm. }}$, Por. Pan Hd. , 110×25 E4	$\frac{7099 A 103-15}{-2838972-02}$	$\frac{1}{5}$
36	Fuse Mounting	$\frac{.2838972-02}{134104}$	1
37 38	Track. Relay	$\frac{143 A 104}{2888229-02}$	
38	Socket Label,$\frac{\text { Octal }}{\text { C-B }}$, $\frac{\text { Pin }}{}$	$\frac{\text { 2888229-02 }}{138 \mathrm{~A} 131}$,
49	$\frac{\text { Label : A-B }}{\text { Cabinet, Control }}$, $\mathrm{C}-\mathrm{E}-\mathrm{F}, \cdots \cdots, 3 \mathrm{Amp} 3 \mathrm{Ag}$	$\frac{135 A 131}{161 A 302}$	
41	Cabinet. Control Amplifier Assembly, EONS ${ }^{\circ} \mathrm{C}$ B	170 D 223	
	Amplifier Assemoly, EOWS*C/B-4	$200 \mathrm{D916}$	5 AR
42	Control Assembly, Eows ${ }^{\text {a }}$,	200D816	4 AR
43	Bolt, Hex. Hd, SS, 3 8-16 < 1-1 4	8549 D 051 $7002 \mathrm{~A} 009-20$	
44 45	Switoh, Toggle . SPDT	122A143 ${ }^{\text {1020 }}$	4
$\frac{45}{46}$		147A102-01	
47	Lamp. ${ }^{\text {Leon }}$	147A102-02	
48	Holder, Fuse. 34002	$\frac{147 \mathrm{Al}}{143+106-03}$	
49	Fuse, 5 Amp, 3 Ag .	143A106	
51	Sracket, , Cabiset Mounting	$149 A 139$ 45498034	
52	$\frac{\text { screw }}{\text { Washer }}$, Pan Hd. , Plat, Neopreme . $\frac{\text { Thd, Frm. }}{0.204 \mathrm{DD}} \times \frac{55}{1.200} \frac{\text { No }}{00}$	7011A101-12	
53	Lockwasher. Split, Ex. Dty, No, 0 Sor.	7072A070	
54		$\frac{7074 \mathrm{~A} 097}{4027+185}$)
$\frac{35}{56}$	Charger Assembly, Eows*		
57	Diode, 368AR	113 A311	
58	Mounting Kit Screw, Hex Hd . , Side , 1/4-20	124 A033	
59	Boerd, , Terminal , ${ }^{\text {Ten }}$, - 4-20	7000A311-36	3
60	Panel Assembly	5442A032	
61	Bracket, Cabinet Mounting	$\frac{5549 \mathrm{D} 053}{5549 \mathrm{Co35}}$	
62	Kit : Adapter, Straight (includes)	$\frac{35498035}{124 A 020}$	
62a	L'HF Adapter, Straight W 23 8 Hex Nuts	139A137-01	
52 b	Lockwasher, int. Tth. 3 y \$cr.	7075 A038	
62. ${ }^{\text {c }}$	Washer, Flat, 5 g Sor.	7072A039	
Rotator Relay		1A137	
	Manual. Lnstalletion and Service	2354185	AR
	Wire Set, EOWS*	310A821	

DO NOT ORDER PARTS BY ITEM NUMBER.
Give model, voltage, description, and part aumber.
Refer to PARTS PRICE LIST (Part No. 1001) for prices of parts.

Federal Signal Corporation

Signal Division
Printed in U.S.A.

4027 (IC7)

4532 (IC8)
 4051 (IC9,8 10)

LM358(IC6,II, 8, 4)

4081(IC13, 8. 15)

4584 (IC17, 8, 18)

EOWS CONTROL PARTS LISI

Figure 7.6. Control Module Internal View.

Figure 7.7. Amplifier Module Internal View.

Figure 7.9. Amplifier Module Component Location Diagra

PARTS LIST

EOWS AMPLIFIER MODULE ASSEMBLY

Figure 7.10. Model EOWS' 115 Wiring Diagram.

dETAIL A

SECTION B-B

(19) (8) (20) (23)

29061795
EOWS
мimatiom
"nciers Sple Corporsion
PARTS INDEX
MODEL

(4) (3) (13)

\square

ELEECRRONIC OUTDOOR WARNONG SUREN

PPL 0180
PARTS LIST
EOWSM M
OCTOBER 1984

Item No.	Description	Part No,	Qty.
1.	Plate, Base Assembly	8549B012	1
2	Frame, Support, Welded Assembly	8549B010	1
3	Driver, 100 Watt, Cray	8287B321	12
4	Nameplate, Cone	8146A282-01	12
5	Projector, Atlas CJ-46	132B133	12
6	Screw , 1/4-20, Hex Hd.	7000A311-14	118
8	Lockwasher, Split, $1 / 4$ Scr.	7074 A 016	118
8	Panel Assembly, Speaker Mtg.	8549B029	6
10	Framer, Support, Welded Assembly	85498005	1
11	Bracket, Hoisting. Weided Assembly	8549 B010-01	1
12	Screw 1/2-13, Hex Hd.	$7000 \mathrm{~A}^{320}-20$	1
14	Lockwasher, Split, $1 / 2$ Scr.	7074A025	3
15	Plate, $\frac{\text { Colt }}{\text { Cover }}$ Eye, 1/2-13	85498007	1
16		7003 A 003	1
17	Washer, Flat,$\frac{\mathrm{Rbr}}{}$, 9 / $16 \mathrm{DD} \times 1-3 / 4 \mathrm{OD} \times 1 / 8$	7072 A 095	1
18	Gasket (supplied with projector, item 5)		1
19	Wireset, Speaker Array, EOWS	3104816	1
20	Clamp. Thinwall Conduit $1 / 2$	150A129	2
21	Bolt, Hex Hd. , 3 8-16 $\times 1-1 / 4$	7002A009-20	2
22	Lockwasher, Split, $3 / 8$ Scr.	7074A046	6
23	Nut, Hex, 3/8-16	7059A063	6
Not Shown			
	Bracket, Pole Mtg. Assembly	8549A170	3
	Bracket, Brace, Pole Mtg.	8451C037 $=$	1

DO NOT ORDER PARTS BY ITEM NUMBER.
Give model, voltage, description and part number.
Refer to PARTS PRICE LIST (Part No. 1001) for prices of parts.
Federal Signal Corporation Signal Division
Printed in U.S. A.
2645 Federal Signal Drive
University Park, Illinois 60466

CCTOBER 1984

Item No.	Description	Part No.	Qty.
1	Plate. Base Assembly	85498012	1
2	Lockwasher, Split , $144^{\text {" Scr }}$, S, S.	70744016	
3	$1 / 4-20 \times 7 / 8 \mathrm{Scr}_{\text {c }}$, Hex Hd. . S. S.	7000A311-14	28
	Frame, Support, Welded Assembly_ (base)	85498010	
5	Decal (indicates panel "A ")	8146 B062	1
6	Nameplate, FOWS * 1212	8146A829-08	1
	$1 / 4-20 \times 7 / 16$ Scr , Hex Hd, S, S.	7000A311-07	18
9	Brace, Panel Assembly, Middle	8549 A116	6
10	Driver, 100 Watt , Gray	85498174	
11	Projector and Cone, Machined Assembly	$8549 \mathrm{Cog1}$	12
	(complete with screen, label, and hartware		
	Screen (for replacement only_)	8549 C 060	AR
12	Cover. Top Assembly	8549 B 005	1
13	Frama, Support, Welded Assembly, (top.)	8549B010-01	1
14	Bracket, Hoisting, Welding Asseminly	8549A008	1
15	Lockwasher, Split, $1 / 2^{\prime \prime} \mathrm{Sc}$].	7074A025	2
16	- $/ 2-13 \times 1-1 / 4$ Scr, HoxHd. Unslot Indt,	7000A320-20	2
17	plate, Cover	8549B007	1
18	1/2-13 $\times 3-1 / 4$ Bolt, Eye, Pltd.	7003A003	1
19	Washer Flat, $1 / 2$ ID $\times 1-3 / 40 D \times 1 / 16$	7072A095	1
20	Washer, Flat, Rubber $9 / 16 \mathrm{ID} \times \overline{1-3} 4 \overline{O D \times 1 / 8}$	7072A038	1
21	Wireset, Speaker Array , EOWS * 1212	3104816	1
22	Clamp. Thinwall, $1 / 2$ Conduit	150A129	2
23	Nut, Hex, $8-18, \overline{\text { s }},{ }^{\text {S }}$	7059A063	6
24	Lookwasher, Split , 3/8"Scr. , S.S.	7074 A 046	6
25	3/8-16 $/$ 1-1 $/ 4$ Bolt , Hex. S. 5.	7002A009-20	6
Net Shown -		-02A009-20	
	Angle Assembly, Roof , Egyptian Gray	5540C017-03	1
	Plate, Brace, Egyptian Gray	-541-037-02	1
	Bracket, Pole Mtg - Welding Assembly	8549A170	3
	Accessory Kit, Mtg. Hardware	8549 A 055	1

DO NOT ORDER PARTS BY ITEM NUMBER.
Give model, voltage, description, and part number.
Refer to PARTS PRICE LIST (Part No. 1001) for prices of parts.
Federal Signal Corporation
Signal Division
2645 Federal Signal Drive
University Park, tllinois 60466

Figure 7.13. Model EOWS* 1212 Wiring Diagram.

DETAIL "A"

DETAIL" B^{\prime}

OETAIL " C"

ELEETRONIC OUPDOOR WARNON® SVREN
PPL 0191
PARTS LIST
\rightarrow EOWS第B12

Item No.	Description	Part No.	Qty.
$\frac{1}{2}$	Wire Set, Spkr, Cable EOWS*812	3104870	
	Conoector, Cord Grip $1^{\prime \prime}$	140 A198	1
4	Looknut, Sealing $\frac{1}{0-32}$ - ${ }^{\text {cow }}$	7065 A 033	2
5		700.an068-08	4
6	Terminal , 16 Pos.	1708239	1
7	Lug, 6 Spade Crimp Term.	2294 A117	1
	Conduit, Flexible, Liquatite, ${ }^{\text {J }}$ Ls	R92-10-04	14
9	Pipe Base, EOWS 612	8549 C 167	1
11	Panector Paneltom: Liquid-Tight	8549 A108	2
12	Pacel , Bottom Right Assembly EOWS*	8549 Cl 163	
13	Plate, Soller Ad/ust	85498074	
15	Roller	8549 A076	
17	Wa sher, Flt., S5, $0.40600 \times 1.0 \mathrm{OD} \times 0.063$	7072A035	12
18		-058A012	12
19	Washer, Flt. $:$ St1. 0.344 ID $\times 77800 \times 0.125$	7002A009-20	8
21	Screw, Hex Hd, $58,1,4-20$	7072A032	6
21	Washer, Flt. , 58.	7072A024	75
$\frac{22}{23}$		7074A016	93
24		7000A319-12	93
25	Bracket Driver	70374027	12
26	Bracket, Dual Driver	$\frac{3549 A 148}{3549 A 149}$	12
27	Screw, Hex Hd. S8, 1/4-20	7000A311-16	18
29	Nut, Hex. 10-32	7059A020	18
30	Drivel Coupler, $\frac{100 \text { Watt }}{\text { Driver }}$, Gray	82878321	12
31	Nut, Jam, Hex, $\frac{1-3 / 8-18}{}$	O542A108	6
32	Washer, Fiber	8542A167	
${ }^{33}$	$\frac{\text { Screw }}{\text { Lockwasher }}$, $\mathrm{Cap}, \frac{\mathrm{Hex} \mathrm{Hd}}{\text { Solit }}, 12-2-13$	7002A015-28	36
35	Lockwasher, Split, $1 / 2$	7074 A 025	
36	Screw, Cap, Hex Hd, , 3-1/8-16	7059 A 077	
37	Lockwasher, Solit, 3	7002A007-16	3
38	Plate, Mountiog, Rotator	95498153	1
39	Screw, Cap, Hex, 1/2-13	7002A016-24	4
40	Rotator Mechanism	8549 C 147	1
41	Bolt, Eye, 1/2-13	7003 A 007	$\frac{1}{2}$
42	Wa sher, Flat, 1-3/8OD 0.562 ID	7072A115	4
43	Washer, Flat, Rubber, 9 / $16 \times 1-3 / 4 \times 1 / 8$	7072A038	$\frac{1}{2}$
4	Frame, Angle, EOWs*912	85490164	
45	Panel, Back, Assembly	85498181	
46	Panel, Top	8549 Cl 55	
47	Panel , Side. Assembly	45498162	2
48	Decal, Siren 2	91468062	
49	Washer, Flat, $55,0.203 \times 7.16 \times 0.032$	72 A 015	
50	Screw, Rd. Hd. , Slt. $\cdot \frac{10-32}{\text { S }}$	$7000 \mathrm{~A} 070-08$	24
51	Lockwasher, Split , 35, 10 Scr.	\%074.7010	24
52	Nut, Hex, 10-32	2059A016	24
53	Screen. Proiector	5549C060	6
54	Nameplate, F8, Flat	-146त767	8
55	Rivet Nut, $10-32 \times 1 / 2$	70658000	
56	Sorew, Rd. Hd., Sth. , 58, 10-32	2000A070-16	¢
57	Projector and Cone. Haohined	-53+98176	s
58	Panel, Front, Lower, Assembly	4549 C168	
59	Nameplate. EOW ${ }^{\text {che }} 12$	8146A829-07	
60	Brace, Speaker	$9549 \mathrm{Al51}$	4
61	Brace, -Speaker, Horizontal	-549A150	+
62	Flange, Side Panel	45498143	
63	Panel, Side. Top Assembly	55498162-01	
64	Panel, Front, Upper Assembly	$6549 \mathrm{C} 160-01$	
65	Sign, Danger Equipment Starts Automatically	\$2874396	
Not Sh	wn		
	Bracket, Pole Mtg., Welding Assembly	$9549 \mathrm{Al70}$	4
	Accessory Kit Mounting Hardware	-549A083	
	Accessory Kil. EOW $* 408 / 812$	-549A122	
	Wire set , Drivers EOWS*512	3104905	I

DO NOT ORDER PARTS BY ITEM NLMBER.
Give model, voltage, description, and part number,
Refer to PARTS PRICE LIST (Part No. 1001) for prices of parts.
Federal Signal Corporation
Signal Division
2645 Federal Signal Drive
University Park, IIInols

[^0]: *National Fire Protection Association recommended temporal pattern for the National Standard Fire Alarm evacuation signal.

