Docket No. 50-423 B13051

Attachment 1

Proposed Revision to Technical Specifications End-of-Life Moderator Temperature Coefficient

PDR ADOCK 05000423

REACTIVITY CONTROL SYSTEMS

MODERATOR TEMPERATURE COEFFICIENT

LIMITING CONDITION FOR OPERATION

- 3.1.1.3 The moderator temperature coefficient (MTC) shall be:
 - a. Less positive than +0.5 x $10^{-4} \Delta k/k/^{\circ}$ f for all the rods withdrawn, beginning of cycle life (BOL), condition for power levels up to 70% RATED THERMAL POWER with a linear ramp to 0 $\Delta k/k/^{\circ}$ F at 100% RATED THERMAL POWER.
 - b. Less negative than $-4.75 \times 10^{-4} \Delta k/k/^{\circ}F$ for the all roos withdrawn, end of cycle life (EOL), RATED THERMAL POWER condition.

APPLICABILITY: Specification 3.1.1.3a. - MODES 1 and 2* only**. Specification 3.1.1.3b. - MODES 1, 2, and 3 only**.

ACTION:

- a. With the MTC more positive than the limit of Specification 3.1.1.3a. above, operation in MODES 1 and 2 may proceed provided:
 - Control rod withdrawal limits are established and maintained sufficient to restore the MTC to less positive than the above limits within 24 hours or be in HOT STANDBY within the next 6 hours. These withdrawal limits shall be in addition to the insertion limits of Specification 3.1.3.6;
 - The control rods are maintained within the withdrawal limits established above until a subsequent calculation verifies that the MTC has been restored to within its limit for the all rods withdrawn condition; and
 - 3. A Special Report is prepared and submitted to the Commission, pursuant to Specification 6.9.2, within 10 days, describing the value of the measured MTC, the interim control rod withdraval limits, and the predicted average core burnup necessary for restoring the positive MTC to within its limit for the all .ods withdrawn condition.
- b. With the MTC more negative than the limit of Specification 3.1.1.3b. above, be in HOT SHUTDOWN within 12 hours.

*With K_{eff} greater than or equal to 1. **See Special Test Exceptions Specification 3.10.3.

MILLSTONE - UNIT 3

REACTIVITY CONTROL SYSTEMS

SURVEILLANCE REQUIREMENTS

4.1.1.3 The MTC shall be determined to be within its limits during each fuel cycle as follows:

- a. The MTC shall be measured and compared to the BOL limit of Specification 3.1.1.3a., above, prior to initial operation above 5% of RATED THERMAL POWER, after each fuel loading; and
- b. The MTC shall be measured at any THERMAL POWER and compared to -4.0 x 10⁻⁴ $\Delta k/k/^{\circ}F$ (all rods withdrawn, RATED THERMAL POWER condition) within 7 EFPD after reaching an equilibrium boron concentration of 300 ppm. In the event this comparison indicates the MTC is more negative than -4.0 x 10⁻⁶ $\Delta k/k/^{\circ}F$, the MTC shall be remeasured, and compared to the EOL MTC limit of Specification 3.1.1.3b., at least once per 14 EFPD during the remainder of the fuel cycle.

3/4.1 REACTIVITY CONTROL SYSTEMS

BASES

3/4.1.1 BORATION CONTROL

3/4.1.1.1 and 3/4.1.1.2 SHUTDOWN MARGIN

A sufficient SHUTDOWN MARGIN ensures that: (1) the reactor can be made subcritical from all operating conditions, (2) the reactivity transients associated with postulated accident conditions are controllable within acceptable limits, and (3) the reactor will be maintained sufficiently subcritical to preclude inadvertent criticality in the shutdown condition.

SHUTDOWN MARGIN requirements vary throughout core life as a function of fuel depletion, RCS boron concentration, and RCS T and The most restrictive condition occurs at EOL, with T at no load operating temperature, and is associated with a postulated steam line break accident and resulting uncontrolled RCS cooldown. In the analysis of this accident, a minimum SHUTDOWN MARGIN of 1.6% $\Delta k/k$ is required to control the reactivity transient. Accordingly, the SHUTDOWN MARGIN requirement is based upon this limiting condition and is consistent with FSAR safety analysis assumptions. With T less than 200°F, the reactivity transients resulting from a postulated steam line break cooldown are minimal. A 1.6% $\Delta k/k$ SHUTDOWN MARGIN is required to provide protection against a boron dilution accident.

3/4.1.1.3 MODERATOR TEMPERATURE COEFFICIENT

The limitations on moderator temperature coefficient (MTC) are provided to ensure that the value of this coefficient remains within the limiting condition assumed in the FSAR accident and transient analyses.

The MTC values of this specification are applicable to a specific set of plant conditions; accordingly, verification of MTC values at conditions other than those explicitly stated will require extrapolation to those conditions in order to permit an accurate comparison.

The most negative MTC, value equivalent to the most positive moderator density coefficient (MDC), was obtained by incrementally correcting the MDC used in the FSAR analyses to nominal operating conditions.

REACTIVITY CONTROL SYSTEMS

BASES

MODERATOR TEMPERATURE COEFFICIENT (Continued)

These corrections involved: (1) a conversion of the MDC used in the FSAR safety analyses to its equivalent MTC, based on the rate of change of moderator density with temperature at RATED THERMAL POWER conditions, and (2) subtracting from this value the largest differences in MTC observed between EOL, all rods withdrawn, RATED THERMAL POWER conditions, and those most adverse conditions of moderator temperature and pressure, rod insertion, axial power skewing, and xence concentration that can occur in normal operation and lead to a significantly more negative EOL MTC at RATED THERMAL POWER. These corrections transformed the MDC value used in the FSAR safety analyses into the limiting MTC value of $-47.5 \text{ pcm/}^{\circ}\text{F}$. The MTC value of $-40.0 \text{ pcm}/^{\circ}\text{F}$ represents a conservative MTC value at a core condition of 300 ppm equilibrium boron concentration, and is obtained by making corrections for burnup and soluble boron to the limiting MTC value of $-47.5 \text{ pcm}/^{\circ}\text{F}$.

The Surveillance Requirements for measurement of the MTC at the beginning and near the end of the fuel cycle are adequate to confirm that the MTC remains within its limits since this coefficient changes slowly due principally to the reduction in RCS boron concentration associated with fuel burnup.

3/4.1.1.4 MINIMUM TEMPERATURE FOR CRITICALITY

This specification ensures that the reactor will not be made critical with the Reactor Coolant System average temperature less than 551. This limitation is required to ensure: (1) the moderator temperature coefficient is within it analyzed temperature range, (2) the trip instrumentation is within its normal operating range, (3) the P-12 interlock is above its setpoint, (4) the pressurizer is capable of being in P: OPERABLE status with a steam bubble, and (5) the reactor vessel is above its minimum RTNDT temperature.

3/4.1.2 BORATION SYSTEMS

The Boron Injection System ensures that negative reactivity control is available during each mode of facility operation. The components required to perform this function include: (1) borated water sources, (2) charging pumps, (3) separate flow paths, (4) boric acid transfer pumps, and (5) an emergency power supply from OPERABLE diesel generators.

With the RCS average temperature above 200, a minimum of two boron injection flow paths are required to ensure single functional capability in the event an assumed failure renders one of the flow paths inoperable. The boration capability of either flow path is sufficient to provide a SHUTDOWN

MILLSTONE - UNIT 3