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ABSTRACT
This progress report summarizes work performed by Argonne National

Laboratory on long-term embrittlement of cast duplex stainless steels in LWR
systems during the 12 months from October 1984 to September 1985.
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LONG-TERM EMBRITTLEMENT OF CAST-DUPLEX STAINLESS STEELS
IN LWR SYSTEMS:

ANNUAL REPORT?
October 1984--September 1985

EXECUTIVE SUMMARY

A program is being conducted to investigate the significance of
in-service embrittlement of cast-duplex stainless steels under light-water
reactor operating conditions. Data from roomtemperature Charpy-impact tests
for several heats of cast stainless steel aged up to 10,000 h at 29C, 320,
350, 400, and 450°C are presented and compared with results from other
studies. Microstructures of cast-duplex stainless steels subjected to long-
term aging up to eight years either in the laboratory or in reactor service
have been characterized. The results indicate that at least two processes
contribute to the low-temperature embrittlement of duplex stainless steels,
viz., weakening of the ferrite/austenite phase boundary by carbide precipita-
tion and embrittlement of ferrite matrix by the formation of additional phases
such as G-phase, Type X, or the a' phase. Carbide precipitation has a
significant effect on the onset of embrittlement of CF-8 and -8M grades of
stainless steels aged at 400 or 450°C. The existing correlations do not
accurately represent the embrittlement behavior over the temperature range 300
to 450°C.

8NRC FIN Budget No., A2243; NRC Contact: J. Muscara.
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LONG-TERM EMBRITTLEMENT OF CAST DUPLEX STAINLESS STEELS
IN LWR SYSTEMS:

ANNUAL REPORT
October 1984-September 1985

Principal Investigators:
0. K. Chopra and H. M. Chung

I. INTRODUCTION

The primary objectives of this program are: (1) to investigate the
significance of in-service embrittlemeut of cast-duplex stainless steels under
light-water reactor (LWR) operating conditions, and (2) to evaluate possible

remedies to the embrittlement problem for existing and future plants.

The scope includes the following: (1) characterize and correlate the
microstructure of in-service reactor components and laboratory-aged material
with loss of fracture toughness and identify the mechanism of embrittlement,
(2) determine the validity of laboratory-induced embrittlement data for pre-
dicting the toughness of component materials after long-term aging at reactor
operating temperatures, (3) characterize the loss of fracture toughness in
terms of fracture mechanics parameters in order to provide the data needed to
assess the safety significance of embrittlement, and (4) provide additional
understanding of the effects of key compositional and metallurgical variables
on the kinetics and degree of embrittlement. The relationship between aging
time and temperature for onset of embrittlement will be determined by micro-
structural examination and measurements of hardness, Charpy-impact strength,
tensile strength, and JIc fracture toughness. The kinetics and fracture
toughness data geuerated in this program and from other sources will provide
the technical basis for assessing the in-service embrittlement of cast
stainless steels under LWR opera*ting conditions. Estimates of the degree of
embrittlement will be compared with data obtained from examination of material
from actual reactor service. Data pertaining to the effects of compositional
and metallurgical variables on the embrittlement phenomenon will help in
evaluation of the possible remedies for in-service embrittlement of components

in existing and future plants.
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Table 1. Chemical Composition and Ferrite Content of Cast Stainless Steel

Composition, wt % Hardness [ferrite Content, %
Heat Grade  Mn  Si Mo  Cr Ni N c Ry calc.®  Meas.P
Cast Slabs®

68 CF-8 0.67 1.13 - 20.85 8.08 0.06 0.05 B84 .6 18.8 23.4
74 CF-8 0.77 121 - 20.73 8.17 0.11 0.06 85.8 10.5 18.4
69 CF-3 0.69 1.20 - 20.49 8.43 0,03 0.02 83.7 25.7 23.6
70 CF-8M 0.70 0.74 2.64 19.37 .13 0.05 0.07 - 86.5 15.8 18.9
75 CF-8M 0.59 0.67 2.40 21.07 9.02 0.05 0.06 89.5 27.1 27 .8

Keel Blocksd

56 CF-8 0.60 1.16 0.30 19.33 8.93 0.03 0.06 82.5 8.1 10.1
60 CF-8 0.71 1.01 0.26 21,02 8,07 0.05 0.07 86.7 16.9 21.1
51 CF-3 0.66 1.06 0.28 20.36 8.69 0.05 0,02 83.8 17.5 18.0
66 CF-8M 0.71 0.60 2.36 19.41 9.13 0.03 0.06 85.2 17.9 19.9
64 CF-8M 0.70 0.71 2.41 20.87 9.01 0.03 0.05 89.7 32.2 28 .4

8calculated from the chemical composition with Hull's equivalent factor.
asured by ferrite scope Auto Test FE, Probe Type FSP-1).

CChemical compositions obtained from the vendor.

Chemical compositions obtained at Argonne National Laboratory.
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Fig. 3. Microstructures from Three Locations of the Static Cast Slabs of
CF-3 (Heat 69) and CF-8 (Heat 73) Stainless Steel.
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Table 2. Charpy-Impact Data Obtained at Room Temperature
for Thermally Aged Cast Stainless Steel
Ferrite Impact Energy,® J
Content, Aged for 3000 h at
Heat % Unaged 290°C 320°C 350°C 400°C 450°C
CF-8
56 10.1 165 147 151 146 134 105
59 13.5 183 147 161 135 132 95
61 13.1 201 149 155 152 148 100
60 21.1 158 135 150 149 64 51
Cl 2.2 47 - - 41 46 48
Pl 24,1 178 208 170 158 45 53
CF-3
52 13.5 198 149 175 189 174 146
47 16.3 184 172 245 179 151 140
51 18.0 161 150 143 164 131 125
P3 1.9 241 - 273 225 292 312
P2 15.6 321 362 357 - 212 158
I 17.1 156 - 152 156 - 105
CF-8M
63 10.4 199 - 137 166 125 126
66 19.9 177 149 204 166 113 84
65 23.4 179 154 147 141 51 51
64 28.4 160 - 140 120 40 42
P4 10.4 182 175 198 108 74 36

3Tests performed on instrumented drop-weight impact machine

with V=notch impact bars (ASTM specification E-23).
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Table 3. Chemical Composition and Ferrite Content of Cast Stainless Steel

Chemical C sition. wt % Ferrite Content, %
-

Heat  Si s Ni Cr Mo C N Calculated® Measured?

Experimental Heats

60 1.01 0471 8.07 21.02 0.26 0,070 0,050 16.9 21

51 1.06 0.66 8.69 20.36 0,28 0,025 0,048 17.5 18
Commercial Heat

Pl 1.07 0.56 8.10 20,49 0,06 0,032 0,053 18.8 24

Pump Cover Plate from KRB Reactor®
KRB 1.17 0,31 8.03 21.99 0.17 0,062 0.038 1 S 26
Georg Fischer Heat s

280 1.37  0.50 8.00 21,60 0,25 0,028 0,029 38.6 40

278 1.00 0,28 8.27 20.20 0.3 0.038 0.027 19.0 15

286 1.33 0,40 9.13 20,20 2.44 0.072 0.063 18,7 22
Framatome Heat®

B 0.93 0.83 10056 20.[2 2052 0.053 0.0‘02 14.0 -

ACalculated from chemical composition with Hull's equivalent factor.
asured by ferrite scope (Auto test FE, Probe Type FSP-1).
matevial was in service for ~12 yr at 284°C. A 75% capacity factor is assumed.
dfractured Charny=-impact bars were obtained from Georg Fischer Co., Switzerland,
for microstructural evaluation. Charpy-impact test data from Ref. 1.
€Charpyv-impact test data from Ref. 7.
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Fig. 10. Normalized Impact Energy at Room Temperature for CF-8 Cast
Stainless Steel after ~12-yr Service at ~284°C.

Materials from two centrifugally cast pipes and a static cast pump
impeller, aged up to 10,000 h at 400 and 350°C, were sent to Materials
Engineering Associates (MEA), Washington, for J-R curve determination and
tensile tests. Tensile specimens (with a 5.l-mm diameter and an 18.5-mm gauge
length) and 1-T compact tension specimens were fabricated from the aged mate-

rials. Mechanical tests are in progress at room temperature and at 290°C.

Ce Microstructural Characterization

Microstructures of the aged and fractured impact test specimens were
characterized by TEM, SEM, optical microscopy, and small-angle neutron
gcattering (SANS) techniques. The results of a microstructural examination
of the GF materials and the KRB pump cover plate have been reported previ-
ou.ly,2'5’6'8 The microstructural characteristics were correlated with the
fracture behavior of the impact specimens to provide a better understanding of
the embrittling mechanism(s) of cast-duplex stainless -tcell.s The results

showed that three phases were responsible for the embrittlement of the ferrite
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Fig. 15. Relative Population of Precipitates vs Guinier Diameter
Obtained by Small-angle Neutron Scattering Technique for
the G. Fischer Cast-Duplex Stainless Steel Heatl 278 after

Aging at 400°C for 1.2 yr (A) and 7.6 yr (B).
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3 Grain Boundary Precipitate

A distinct difference between the microstructures of the laboratory-
aged GF materials and the reactor pump-cover material involves precipitation
of a grain boundary phase in the latter. Bright- and dark-field morphologies
and an SAD pattern of the grain boundary phase are shown in Fig. 16. The
phase was observed on the boundary between the austenite and ferrite grains,
examples of which appear as the dark and light areas, respectively, in
Fig. 16(A). Several different zone axes similar to that of the SAD pattern in
Fig. 16(C) were obtained. Indexing of the diffraction patterns showed that
the grain boundary precipitates were My3C carbides, which were of cube-on-
cube orientation relative tc austenite. The overall distribution of the grain
boundary phase could be more clearly observed in low-magnification optical
micrographs. For example, in Fig. 16(D), ~60% of the austenite-ferrite grain
boundaries are decorated by the phase; this observation indicates a possible
weakening of the grain boundaries. The lacy morphology of the ferrite is
evident from Fig. 16(D). Aging of Heat 60 also yielded grain boundary
precipitation of .he M;4Cg¢ carbide, Fig. 14(B). The chemical composition of
Heat 60 is very similar to that of the reactor pump material. However, the
grain boundary M,3C¢ carbide was not observed in the low-carbon Heat 51 after
aging at 400°C for ~l1.2 yr. The absence of grain-boundary carbide precipi-
tates in Heat 51 and the GF materials, i.e., Heats 280 and 278, is most likely
related to the low-carbon contents (Table 3) compared to the higher carbon

contents of the reactor pump and Heat 60 materials.

The precipitation of grain boundary carbides appears to be respon-
sible for the rapid reduction in the impact energy for the high-carbon Heat 60
compared to that for Heat 51 ([Fig. 11(a)]. However, the microstructural char-
acteristics of the ferrite matrix are similar for the two heats and, as
expected, the hardnesses of the ferrite phase are comparable [Fig. 11(b)].
The grain-boundary My3Cq precipitation in Heat 60 was significantly smaller
after aging at 350°C for 10,000 h than after aging at 400°C for similar
times. This is believed to be one of the factors which contribute to the
higher impact energies for Heat 60 aged at 350°C relative to those aged at

higher temperatures. However, the lower hardness of the ferrite phase for the
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