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ABSTRACT

The materials that are present in the local region of the clad layer
of RPV steel were evaluated for tensile properties and fracture
toughness before and af ter irradiation damage. Residual stresses in
the clad region were determined. The information described herein was
used to understand the behavior of surface cracks embedded in the clad
layer in beam tests conducted in another phase of this investigation.
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|
, 1. INIRODUCTION
l

Research performed to evaluate the severity of surface cracks embedded
in the clad layer of reactor vessels has shown the importance of
having an understanding of the mechanical properties of each material
involved. In the present project, the principal objective was to
simulate the surftee crack embedded in cladding with four point loaded
bend specimens. This report presents the results of auxilliary tests i
which involved several metallurgical evaluation like mini studies,
each of which deserved more detailed presentations than would be
appropriate to a main report.

The material acquired for this proj ec t was made in simulation of a
commercially clad reactor pressure vessel. A 203 mm (8 in.) thick
plate of A 533 B steel with plan view dimensions of 0.3 m (12 in.) by
1.09 m (43 in.) was sliced at the mid plane to make two 101 mm (4 in.)
thick slabs. All four surfaces were clad layered using a three wire,
submerged are welding process typical of that used in older vessel
construction. See Fig. 1. Two hot wires were 308 stainless steel and
the surfaces were made in just one pass. The one cold wire was 304
stainless steel. A very short section (50 to 75 mm) at one end on one
of the surfaces was given a second layer so that clad material could
be tested as full size specimens. Hot wires of 30d and 304 stainless
steel were used in the second layer. Table 1 shows the weldina,
parameters used. The procedure included stress relief annealing. To
prevent warpage during cladding, the two plates were tack welded back
to back, clad layered, and then stress relief annealed at 670'c
(1125'F) for 8 hours. They were then separated, turned, re tack
welded and the other two surfaces (the skin surfaces of the original
plate) were then clad layered. An 8 hour stress relief anneal was
applied for a second time giving the clad surfaces used in the present
experiment a total of 16 hours of temper. The base metal used herein
was entirely from near the midplane of the original 203 mm thick slab.
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Table 1 Welding Parameters

First Layer Second Layer

Amps 480 480
Volts 25-26 25-26
Travel 8 IPM 8 IPM
Flux Arcos S-4 Arcos S-4

Hot Wire: Size 5/32 in dia. 5/32 in dia.
No. 1 Type 308 Stainless Steel 308 Stainless Steel

Ht. No. 9967 9967

i

Hot Wire: Size 5/32 in. dia. 5/32 in. dia.
No. 2 Type 308 Stainless Steel 304 Stainless Steel

,

Ht. No. 9967 646093;

i
.

Cold Wire: Size 5/32 in. dia. 5/32 in. dia.
j Type 304 Stainless Steel 304 Stainless Steel
.: Ht. No. 646093 646093

1

'

Ferrite Measurement. Avg. 4.8 7.2
:
i

,

,

.I

J

|

1

1

I

i
,1

3



.. . .. .

... - _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ .

2. RESIDUAL STRESS MEASURImarf

Residual stresses that develop in the clad layer are attributed to
"stress relief annealing." It is generally believed that the stress
build up is due to the difference in thermal contraction between
stainless and ferritic steels during cool down from stress relief
anneal. The effect that such secondary stresses could have on the
surface crack analysis was unknown at the beginning of this program.
Therefore, a task was undertaken to measure residual stresses. This
study had been done by Rybicki, et al., at the University of Tulsa
(Ref. 1,2), integrating experimental work and analytical predictions
of residual stress. Figure 2 represents the typical residual stress
measurement for replicate determinations vs. the position with respect
to thickness. The data had replicated well and it was conclusively
shown that the residual stress in the stainless layer was tensile and
of the order of the yield strength of the stainless steel (about 310
to 380 MPa). The material in the HAZ metal (most likely to fracture
by cleavage) sees some compressive stress of low magnitude. This
pattern was generally confirmed by the computational mod.el from the

I computer simulation.
|

|

|
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3. MATERIA 1. PROPERTIES

Tensile properties and chemical composition are reported in Table 2.
'Transition temperature curves from Charpy V (C ) impact tests arey

shown in Fig. 3. Specimens of clad metal and HAZ were less than fell
thickness (5 mm) because of the obvious material dimensional
limitations. Base metal specimens were always full size C and ITy

compact specimens. Therefore, a few of the following comparisons may
be a bit tenuous because of a potential size effect influence. A |
transition temperature index for full size C specimens is defined at
41 J. The comparable criterion for half th15kness C specimen is noty
specified. Therefore, wo arbitarily chose 20 J. Transition tempera-

tures so chosen are listed in Table 3. Heat affected zone metal
appears to have superior transition temperature toughness compared to
base metal. For upper shelf energy, base metal seems to have higher
toughness. A characteristic noted here and recently by others
(Ref. 3) is that austenitic stainless steel in the form of cladding ;

displays unexpectedly low upper shelf toughness and a transition '

cleava ;e like fracture mechanismtemperature behavior, even though a e

is not known to develop in FCC (austenttic) crystallographic
microstrectures. Metallurgical studies conducted at Oak Ridge
National 1.aboratory (Ref. 4) have identified the mechanism as
temperature dependent failure in delta (6) ferrite. This is a
relatively scarce constituent in the microstructure but it is highly
effective in this case because it is dispersed in a network along
austenite grain boundarys. See Fig, 4.

Transition temperature curves can also be established from compact
specimens, but the characteristic temperature will almost certainly be
different from that defined from C specimens. K values determinedy ye
from compact specimens involve the interpretation of test records
which must be varied according to fracture mode. See Fig. 5. If the

growth. ge (Ref. 5) for
is obtained from Jtest temperature is upper shelf, Kyc r

If the testthe onset of (significant) slow stable crack
temperature is in the transition regime, K is the elastic plastic !

3e
stress intensity factor at the onset of cleavage

ins t ab ility/m,
The t.

at 100 Mpa and 'transition temperature is determined from the curve
because fracture mechanics is used, specimen size effects are

.

diminished. See Fig. 6 and Table 3. Again, as with the C results. |y
the llAZ material is indicated to have improved transition temperature
over that of the virgin base metal.

R curves were obtained at upper shelf temperature (100*C) for the [
three aforementioned clad zone materials. See Fig. 7, Clad metal has >

the lowest R curve. These R curves are also temperature sensitive as
can be seen in Fig. 8. The loss in ductile tearing resistance had l

been seen earlier in C results in the form of an apparent transiticny
temperature behsvior due to cleavage in delta ferrite. Cleavage does
not occur in clad, weld metal on a gross scale in any case.

I

!

1
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Table 2 Mechanical Properties (Room Temp.)

Material Condition Yield Tensile : El Upper Shelf
Strength St mgth CVN

MPa MPa J

Base Metal * As received 409 582 29 155

D
Meat Affected Zone As received 396 584 35.9

bIlest Affected Zone 1rradiated
19 2

4.5 x 10 n/cm 586 738

Clad Metal * As welded 281 632 54

1

1

Chemical Composition (Wt. %)"

C Mn P S Si Ni Cr Mo V Co Cu
,

,

Base Plate 0.21 1.38 0.017 0.006 0.17 0.61 - 0.55 - - 0.17

Cladding 0.05 1.46 0.023 0.015 0.76 8.73 18.9 0.12 0.04 0.04 0.16
__

* 6.35 an dia. tensile specimen
b 5.08 mm dia. tensile specimen

** cuevara

e A~ /-

,
/sc 4' - 4,. 1

'

ser
M b' waz
v

N.%g
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Table 3 Transition Temperatures and C Energy fory
Materials in the Region of the Clad Layer

C Index C Upper Shelf K
J 0100 bha /E

y y

Base Metala 7.Cc 157 -50'c

Heat Affected Zone -50'Cd 66 -90'C

Clad Metal O'Cd 27 -b-

-

a Pull sized C specimeny

b Kje > 100 HPa/E at all test temperatures
c 0 41 J
d 9 20 J

,

8

u _. - -

_ _ _ .
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4 CRACK ARREST W1111 CIAD METAI.

The presence of a layer of austenitic stainte vs i n al on the interior
surface of a reactor vall has been viewed 13 the past as protection
against uncontrolled running under clad cracxs. C;ad metal, because
it was believed to have high toughness, was espected to influence
retardation of crack speed and hence promote scack arrest. In the
belief that ths net effect of the presence of clad metal can never be
negative, safety assessments were made ignoring the existence of the
cladding, and because of this, the analysis was considered c.onserva-
tive. Only the margin of safety was subject to question.

,

To verify the hypothesis, two 1/2T compact specimens were made to test
the crack retardattor, capability of the present cladding material.
These were "duplex specimens" of the type used by Franatome (Ref. 6)
in their cladding evaluations. The specimens were sampled so that the
veld fusion line was on the midplane as shown in Fig. 9. The tempera-
ture for test was 100*C, chosen so that the HAZ toughness would be

j lower than that of clad metal. Figure 10 represents a comparison of
cladding toughness for onset of stable crack growth, (extracted from
Fig. 4), vs. Kyc of HAZ material. Clad metal toughness was about 2
times that of HAZ material.

,

There was cleavage fracture in RAZ at the expected Kyc levels (Fig.
10). The cracks arrested almost at the point of ligament separation ,

in RAZ. Figure 9 shows a photo of ons of the heat tinted fracture '

surfaces, and it is clear from this that the crack in the HAZ had
i dominance over the ductile tear resistance of the clad metal. It

<

therefore appears from this demonstration that clad metal has very |

little ability to retard and arrest running cracks in ferritic vessel
material.'
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5. IRRADIATION EFFECTS ON MLACIURE TOUCHNESS

A few selected specimens of clad metal and HAZ mgerial were exposed
in the UBR test reactor to a fluence of 4.5 x 10 n/cm (E > 1 MeV)
at 288*C. The specimens were four 1/2T compacts and four C of eachy
material. Again, all specimens were 5 mm thick.

Table 2 shows the . increase in strength of the HAZ from irradiation.
The magnitude of transition temperature shif t was of greater interest
to this study, and the result is given in Fig.11. The temperature
elevation of the C index is 105*C, based on the adopted 20 Jy
criterion. The 100 MPa[5 criterion used on K fr a compact specimensJcindicated the same 105*C transition shift. Note that one compact

significantly greater toughness than the otherspecimen shows a
three. This is to be expected because of inhcmogeneity of HAZ
material.

Using the base metal chemistry along with Regulatory Cuide 1.99
(Rev. 2), a transition temperature shift of 97 C to 115*C is

predicted; depending upon the choice between base metal or veld metal
chemistry factor.

Irradiation damage to clad metal on the other hand was relatively
minor as can be seen from Fig. 12. C upper shelf was reduced buty
there was no apparent change in the relationship between toughness vs.
test temperature. The plot of K from compact specimens is derivedje
entirely from fracture toughness at onset of slow stable crack
growth. This characterization of fracture toughness was improved by
irradiation damage, presumably accompanied with a slight increase in
clad metal strength. Irradiated clad metal tensile tests were not
made in the present experiment. However, experiments by W. J. Mills
(Ref. 7) on austenitic stainless steels used on structurals in liquid-
metal fast breeder reactors had shown significant material
strengthening from irradiation damage. Crack initiation resistance
was improved but evidence of toughness loss was developed in the form
of tearing modulus, T, which quantifies the resistance against slow
stable crack growth. T is defined as:

1

T- I1)2

o

where
E elastic modulus-

o, material flow strength-

dJ/da J . curve slope-
R

Table 4 shows that the R curve slope is reduced by irradiation
damage. This fracture pattern is once again consistent with Cy
indications as had been shown earlier with the transition temperature
behavior of the as received clad metal.

18
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After4.5x10{j)n/cmofgladMetalSpecimens,Beforeand
Table 4 R-Curve Slope

Irradiation, 5-am Thick Specimens.

Test Temp. T Before T After

100*C (212'F )' 247 139

| 50*C 212a 67

-50'c 47 37
i

j -100*C (-148'F) 46 62

| -150*C (-238'F) 25 (Not Available)
!

i

! An approximate value because T came from a 12-mm thick 1/2T*

specimen out of the double layered cladding. In addition, its
actual test temperature was +25'C.
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6. CONCLUSIONS

This report presents the background information needed to understand
the material properties and conditions that could impact the perform-
ance of an embedded surface crack in welded cladding material. The
following observations were made:

* Residual stresses measured within the clad layer were
tensile and of the order of the yield strength of the clad
metal.

The HAZ material had improved toughness over that of base*

.netal only in the form of lower transition temperature.

* Clad metal has very poor fracture toughness in comparison
to ordinary commercial gr ades of ferritic pressure vessel
steels.i

* The crack initiation toughness of clad metal was
moderately improved by i'; radiation exposure. J (K )yc y
crack initiation toughness was improved but there was
slightly reduced toughness against continued slow-stable
crack growth.

* The cladding material appears to have negligible capacity
to retard running cracks in the underlying ferritic
substrate raterial,

e The transition temperature shift in HAZ material was
AT - 105'C. Charpy tests and compact speciraen tests
indicated an identical index temperature AT shift.
However, the indexed transition temperatures themselves
are test method dependent, as might have been anticipated.
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