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ABSTRACT

The materials that are present in the local region of the clad layer
of RPV steel were evaluated for tensile properties and fracture
toughness before and after irradiation damage. Residual stresses in
the clad region were determined. The information described herein was
used to understand the behavior of surface cracks embedded in the clad
layer in beam tests conducted in another phase of this investigation,
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1. INTRODUCTION

Research performed to evaluate the severity of surface cracks embedded
in the clad layer of reactor vessals has shown the importance of
having an undersranding of the mechanical properties of each material
involved. In the present project, the principal objective was to
simulate the surf:.e crack embedded in cladding with four-point loaded
bend specimens. This report presents the results of auxilliary tests
which involved several metallurgical evaluation-like mini-studies,
each of which deserved more detalled presentations than would be
appropriate to a main report,

The material acquired for this project was made in simulation of a
commercially clad reactor pressure vessel. A 203.mm (8-in.) thick
plate o€ A 533.B steel with plan view dimensions of 0.3-m (12-in.) by
1.09-m (43-in.) was sliced at the mid-plane to make two 101.mm (4-in.)
thick slabs. All four surfaces were clad layered using a three wire,
submerged arc welding process typical of that used in older vessel
sonstruction. See Fig. 1. Two hot wires were 308 stainless steel and
the surfaces were made in just one pass. The one cold wire wvas 304
stainless steel. A very short section (50 te 75.-mm) at one end on one
of the surfaces was given a second layer so that clad material could
be tested as full size specimens. Mot wires of 308 and 304 stailuless
steel were used in the secord layer. Table 1 shows the welding
parameters used. The procedure included stress relief annealing. To
prevent warpage during cladding, the two plates were tack welded back
to back, clad layered, and then stress relief annealed at 670°C
(1125°F) for 8 hours, They were then separated, turned, re-tack
welded and the other two surfaces (the skin surfaces of the original
plate) were then clad layered. An 8-hour stress relief anneal was
applied for & second time giving the clad surfaces used in the present
experiment a total of 16 hours of temper. The base metal used herein
was entirely from near the midplane of the original 203.mm thick slab.







Table 1| Welding Parameters

First Layer Second Layer
Amps 480 480
Volts 25-26 25-26
Travel 8 IPM 8 IPM
Flux Arcos S-4 Arcos §S-4
Hot Wire: Size $/32 in dia. 5/32 in dia.
No., 1 Type 308 Stainless Steel 308 Stainless Steel
Ht, No. 9967 9967
Hot Wire: Size $/32 in, dia. 5/32 in. dia.
No. 2 Type 308 Stainless Steel 304 Stainless Steel
Ht. No. 9967 646093
Cold Wire: Size $/32 in. dia. 5/32 in. dia,
Type 304 Stainless Steel 304 Stainless Steel

Ferrite Measurement, Avg.

4.8

7.2
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3. MATERIAL PROPERTIES

Tensile properties and chemical composition are reported in Table 2.
Transition temperature curves from Charpy-V (2,) impact tests are
shown in Fig. 3. Specimens of clad metal and HA{ vere less than full ‘
thickness (5-mm) Dbecause of the obvious material dimensional |
limitations. Base metal specimens were alvays full size C, and 1T
compact specimens. Therefore, a few of the following comparisons may
be a bit tenuous because of a petential size-effect influence, A
transition temperature index for full size C, specimens is defined at
41 J. The comparable criterion for half-thickness C, specimen ls not
specified. Therefore, we arbitarily chose 20 J. Transitlon tempera-
tures so chosen are listed in Table 3. Heat affected zone metal
appears to have superior transition temperature toughness compared to
base metal. For upper shelf energy, base metal seems to have higher
toughness . A characteristic noted here and recently by others
(Ref. 3) is that austenitic stainless steel in the form of cladding
displays unexpectedly low upper shelf toughness and a transition
temperature behavior, even though a cleavage-like fracture mechanism
is not known to develop in FCC (austenitic) erystallographic

microstructures. Metallurgical studies conducted at Oak Ridge
National Laboratory (Ref. 4) have ({dentified the mechanism as
temperature-dependent fallure in delta (§) ferrite. This 1is a

relatively scarce constituent in the microstructure but it is highly
effective in this case because it 1is dispersed in a network along
austenite grain boundarys. See Fig. 4.

Transition temperature curves can also be established from compact
specimens, but the characteristic temperature will almost certainly be
different from that defined from C, specimens. K, values determined
from compact specimens involve the interpretation of test records
vhich must be varied according to fracture mode. See Fig. 5. If the
test temperature is upper shelf, K, is obtained frowm J, (Ref. 5) for
the onset of (significant) slow-stable crack growth, If the test
temperature is in the transition regime, K, is the elastic-plastic
stress fintensity factor at the onset of cleavage instability.  The
transition temperature is determined from the curve at 100 MPa/m, and
because fracture mechanics 1is wused, specimen size effects are
diminished. Sce Fig 6, and Table 3. Again, as with the C, results,
the HAZ material is indicated to have {mproved transition temperature
over that of the virgin base metal,

R-curves wvere obtained at upper shelf temperature (100°C) for the
three aforementioned clad zone materials. See Fig. 7 Clad metal has
the lowest R-curve. These R-curves are also temperature sensitive as
can be seen in Fig. 8. The loss in ductile tearing resistance had
been seen earlier in C, results in the form of an apparent transitien
temperature behavior due to cleavage in delta ferrite. Cleavage does
not occur in clad, weld metal on a gross scale in any case.
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4. CRACK ARREST VITH CLAD METAL

The presence of a layer of austenitic stainlcus « .2l on the interior
surface of a rveactor wall has been viewed {- ths past as protection
against uncontrolled rumning under-clad cracas. Clad metal, because
it was believed to have high toughness, was « pected to influence
retardation of crack speed and hence promote .cack arrest. In the
belief that the net effect of the presence of clad metal can never be
negative, safety assessments were made ignoring the existence of the
cladding, and because of this, the analysis was considered conserva-
tive. Only the margin of safety was subject to question,

Toe verify the hypothesis, two 1/2T compact specimens were made to test
the crack retardatiosn capability of the present cladding material.
These were "duplex specimens® of the type used by Framatome (Ref. 6)
in their ¢ladding evaluations. The specimens were sampled so that the
veld fusion line was on the midplane as shown in Fig. 9. The tempera-
ture for test was -100°C, chosen so that the HAZ toughness would be
lower than that of clad metal. Figure 10 represents a comparison of
cladding toughness for onset of stable crack growth, (extracted from
Fig. 4), va. K, of HAZ material. Clad metal toughness was about 2
times that of material.

There wvas cleavage fracturs in HAZ at the expected K, levels (Fig.
10).  The criucks arrested almost at the point of ligament separation
in RAZ. Figure 9 shows a photo of onsy of the heat tinted fracture
surfaces, and it s clear from this that the crack in the HAZ had
doninance over the ductile tear resistance of the clad metal. It
therefore appears from this demonstration that clad metal has very
little :Nltty to retard and arrest running cracks in ferritic vessel
materia
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3, IRRADIATION EFFECTS ON FRACTURE TOUGHNESS

A few selected specimens of clad metal and HAZ n’serial were exposed
in the UBR test reactor to a fluence of 4.5 x 10 n/cn (E > 1 MeV)
at 288°C. The specimens were four 1/2T compacts and four C, of each
material. Again, all specimens were 5-mm thick.

Table 2 shows the Increase in strength of the HAZ from irradiation.
The magnitude of transition temperature shift was of greater interest
to this study, and the result is 3lvon in Fig. 11. The temperature
elevation of the C, index {s 105°C, based on the adopted 20 J
criterion., The 100 MPa/m criterion used on K from compact specimens
indicated the same 105°C transition shift. Note that one compact
specimen shows a significantly greater toughness than the other
three. This is to be expected because of inhcmogeneity of HAZ
material.

Using the base metal chemistry along with Ro;ulatory Guidc 1.99
(Rev, 2), a transition temperature shift of 97°C to 115°C {is
predicted; depending upon the choice between base metal or weld metal
chemistry factor.

Irradiation damage to clad metal on the other hand was relatively
minor as can be seen from Fig. 12. C, upper shelf was reduced but
there was no apparent change in the relationship between toughness vs.
test temperature. The plot of K;. from compact specimens is derived
entirely from fracture toughncss at onset of slow stable crack
growth. This characterization of fracture toughness was improved by
irradiation damage, presumably accompanied with a slight increase in
clad metal strength. Irradiated clad metal tensile tests were not
made in the present experiment. However, experiments by W. J. Mills
(Ref. 7) on austenitic stainless steels used on structurals in liquid-
metal fast-breeder reactors had shown significant material
strengthening from irradiation damage. Crack initiation resistance
was improved but evidence of toughness loss was developed in the form
of tearing modulus, T, which quantifies the resistance against slow
stable crack growth. T is defined as:

E 4
Te . 2 da (1)
0
where
E = elastic modulus
o = material flow strength

o
dl/da = JR-curvc slope

Table 4 shows that the R-curve slope {s rediced by {rradiation
damage . This fracture pattern is once again consistent with C,

indications as had been shown earlier with the transition tcnporaturo
behavior of the as-received clad metal.
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Table 4 R-Curve Slope i;) of Clad Metal Specimens, Before and
After 4.5 x 10°” n/em® Irradiation, 5-mm Thick Specimens.

Test Temp. T Before T After
100°C (212°F ) 247 139
50°C 2128 67
-50°C 47 37
=100°C (-148°F) 46 62
-150°C (-238°F) 25 (Not Available)

An approximate value because T came from a 12-mm thick 1/2T
specimen out of the double layered cladding. In addition, its
actual test temperature was +25°C.
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