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PREFACE

The Heavy-Section Steel Technology (HSST) Program, which is spon-
sored by the Nuclear Regulatory Commission, is an engineering research
activity devoted to extending and developing the technology for assessing
the margin of safety against fracture of the thick-walled steel pressure
vessels used in light-water-cooled nuclear powcr reactors. The program
is being carried out in close cooperation with the nuclear power industry.
This report covers HSST work performed in October 1987-March 1988. The
work performed by Oak Ridge National Laboratory (ORNL) and by subcontrac-
tors is managed by the Engineering Technology Division (ETD) of ORNL.
Major tasks at ORNL are carried out by the ETD and the Metals and Ceramics
Division. Prior progress reports on this program are ORNL-4176, ORNL-
4315, ORNL-4377, ORNL-4463, ORNL-4512, ORNL-4590, ORNL-4653, ORNL-4681,
ORNL-4764, ORNL-481o, ORNL-4855, ORNL-4918, ORNL-4971, ORNL/TM-4655
(Vol. II), ORNL/TM-4729 (Vol. II), ORNL/TM-4805 (Vol. II), ORNL/TM-4914
(Vol. II), ORNL/IM-5021 (Vol. II), ORNL/IM-5170, ORNL/NUREG/TM-3, ORNL/
NUREG/TM-28, ORNL/NUREG/TM-49, ORNL/NUREG/TM-64, ORNL/NUREG/TM-9'4, ORNL/
NUREG/TM-120, ORNL/NUREG/TM-147, ORNL/NUREG/TM-166, ORNL/NUREG/TM-194,

!ORNL/NUREG/IM-209, ORNL/NUREG/IM-239, NUREG/CR-0476 (ORNL/NUREG/TM-275),
NUREG/CR-0656 (0RNL/NUREG/TM-298), NUREG/CR-0818 (ORNL/NUREG/TM-324),

! NUREG/CR-0980 (ORNL/NUREG/TM-347), N!! REG /CR-1197 (ORNL/NUREG/TM-370),
NUREG/CR-1305 (ORNL/KUREG/TM-380), NUREG/CR-1477 (ORNL/NUREG/TM-393), i

NUREG/CR-1627 (ORNL/NUREG/TM-401), NUREG/CR-1806 (ORNL/NUREG/TM-419), '

NUREG/CR-1941 (ORNL/NUREG/IM-437), NUREG/CR-2141, Vol.1 (ORNL/TM-7822),
NUREG/CR-2141, Vol. 2 (ORNL/TM-7935), NUREG/CR-2141, Vol. 3 (0RNL/IM-
8145), NUREG/CR-2141, Vol. 4 (ORNL/TM-8252), NUREG/CR-2751, Vol.1

,

(ORNL/TM-8369/V1), NUREG/CR-2751, Vol. 2 (ORNL/TM-8369/V2), NUREG/CR-
2751, Vol. 3 (ORNL/TM-8369/V3), NUREG/CR-2751, Vol. 4 (ORNL/TM-8369/V4),
NUREG/CR-3334, Vol. 1 (ORNL/TM-8787/V1), NURLG/CR-3334, Vol. 2 (ORNL/TM-
8787/V2), NUREG/CR-3334, Vol. 3 (ORNL/TM-8787/V3), NUREG/CR-3744, Vol. 1
(ORNL/IM-9154/V1), NUREG/CR-3744, Vol. 2 (ORNL/TM-9154/V2), NUREG/CR-
4219, Vol.1 (ORNL/TM-9593/V1), NUREG/CR-4219, Vol. 2 (ORNL/TM-9593/V2),
NUREG/CR-4219, Vol. 3, No.1 (ORNL/TM-9593/V3&N1), NUREG/CR-4219, Vol. 3,
No. 2 (ORNL/TM-9593/V3&N2), Nt' REG /CR-4219, Vcl. 4, No.1 (ORNL/TM-9593/
V4&N1), and NUREG/CR-4219 Vol. 4, No. 2 (ORNL/TM-9593/V4&N2).
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SUMMARY

1. PROGRAM MANAGEMENT

The Heavy-Section Steel Technology (HSST) Program is arranged into
12 tasks: (1) program management, (2) f racture methodology and analysis,
(3) material characterization and properties, (4) special technical
assistance, (5) crack-arrest technology, (6) irradiation effects studies,
(7) stainless steel cladding evaluations, (8) intermediate vesssi tests
and analyses, (9) thermal-shock technology, (10) pressurized-thermal-
shock (PTS) technology, (11) Pressure-Vessel-Research Users' Facility
(PVRUF), and (12) shipping cask material evaluations. Progress reports
are issued on a semiannual basis, and the report chapters correspond to
the tasks.

The work is performed by the Oak Ridge National Laboratory (ORNL)
and through a number of research and development (R&D) subcontracts.
During the report period, 32 program briefings, reviews, or presentations
were made; 23 technical documents were published.

2. FRACTURE METHODOLOGY AND ANALYSIS

Analytical and experimental studies were performed to provide an
improved basis for estab11ching fracture critoria governing inelastic
crack propagation-arrest behavior la reactor pressure vessel (RPV)
r.t e els . Viscopla9 tic-dynamic fracture computer programs were modified
for improved ef ficiency and applied to analyses of large-scale (wide-
plate) and small-scale specimen = to assess the impact of including visco-
plastic effects in computational models. Experimental ef forts focused on
small-specimen testing techniques, including refinement of crack propaga-

,

tion time-length measurements, development of new stress wave loading
procedures for crack-arrest toughness determination, and establishment of
explosive and impact loading methods of measuring crack initiation tough-
noss in RPV steels. Cleavage-fibrous transition studiat were carried out
on 72W veld ectal specimens, und optical topography was used to study
regions of two wide-plate fractures where cleavage arrest war followed by
a fibrous-tear reinitiation. Additional high stra.in-rate tests of A 533

grade B class 1 steel were performed for purposes of characterizing
viscoplastic constitutive modela used in inelastic crack-arrest studies.

3. MA1FRIAL CHARACTER 1ZAT10N AND PROPERTIES
;

Compact crack-arrost tests were conducted with the A 533 grade B
chemistry base metal used for the clad plate studies. Specimens of three
dif f erent sizec -fere tested in the L-T orientation at temperatures from
-25 to 75'C; the nil ductility temperature (NDT) of the asterial is 36'C.

values ranging f rom 1 23 to 2.49.The results showed K ,/Kggg

._. __ _ _ _ - - . __ .
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Development of fabrication and testing procedures for 50-mm-thick
duplex crack-arrest specimens continued. Meta 11ographic and microhard-
ness studies were conducted to assist in an understanding of the impor-
tance of the electron-beam (EB) welding, microstructural, and welding
parameters on crack arrest. Successful tests have been cor. ducted with
2 1/4 Cr-1 Mo specimens, but very limited success has been achieved with
A 533 grade B class 1 steel and submerged-are welds. The studies are
continuing with EB weld procedures as well as potential changes in speci-
men geometry, specifically, the side-grooving practice.

4. SPECIAL TECHNICAL ASSISTANCE

In recognition of the virtual completion of the environmental crack-
growth studien within the HSST Program in conjunction with the numerous
relatively short-term topics of interest to the Nuclear Regulatory Com-
mission (NRC) that arise on a continuing basis, Task 4 has been redefined
to provide coverage of these topics. During this reporting period, the
specific topics that were activo included (1) the evaluation of the
possible enhanced low-temperature, low-flux irradiation embrittlement of
RPV supports; (2) an assessment of boiling-water-reactor (BWR) vessel
ictegrity; and (3) a reevaluation of the applicability of various formu-
lations of the J-integral in assessing relatively large amounts of crack
extension.

5. CRACK-ARREST TECHNOLOGY

Thirteen wide plate, crack-arrest tests have been completed to date
(one during this repor tir.g period). When combined with other large-
specimen test results, the wide-plate crack-arrest toughner.s values form
a consistant trend, showing that arrest can and does occur at tempera-
tures up to and abuve that which corresponds to the onset of Charpy
upper-shelf behavior. Also, the me46ured K , values extend above theg

limit 11 Sect. XI of the ASYS Code.
Preparations were continued for testir.g of the stub panel, inter -

mediate-sire, crack-arrest specimens with emphasis on onptrimental
uefinition of data acquisition requirements.

6. IRRADIATION EFFECTS STUDIES
,

All planned testing for the Fifth Irradiation Series on K curveyc
shift has now been completed. Final analyses of test results are under
way as are various statistical analyses of the data obtained. A t e r. t a-
tive procedure for analysis of small cleavage instabilities (oop-in.,) 'as

.
h

also been selected.
In the Sixth Irradiation Series on the K , curve shift, the first ofg

two crack-arrest irradiation capsules has been disassembled, and the

__.
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dosimeters are being analyzed. The second capsules should be completed |
by the end of June. The remote hot cell fixture for crack-arrest testing '

has been used to test unirradiated specimens in the laboratory. Several
enhancements to the fixture are under way, based on the results of those
tests before its installation in the hot cell.

In the Seventh Irradiation Series on cladding, Charpy and tensile

tests were completed for the three-wire, series-arc, stainless steel
cladding specimens irradiated to 2 and 5 x 1019 neutrons /cm2 ()g gey),
At those fluences, the room temperature yield strength increased 20 and
16%, respectively; the Charpy 41-J transition temperature increased 13
and 28'C, respectively.

7. CLADDING EVALUATIONS

The work within the cladding evaluation task during this reporting
period included the completion of the second experimental study of the

!
,

effect of cladding on the propagation of small surface flaws using clad
| plates. In addition, nondestructive examination of both the BWR and

pressurized-water-reactor (PWR) clad vessel argments was completed.

8. INTERMEDI ATE VESSEL TESTS AND ANALYSIS

| There was no activity in the intermediate vessel tests and analysis
task for this period.

,

9. THERMAL-SH0CK TECHN0i.0GY

; There was no activity in the thermal-shock technology task for this
period.

10. PRESSURIZED-THERMAL-SHOCK TECHNOLOGY
4

The feasibility and utility of idditional PTS experiments are being
investigated. Potential experiments with a : lad vessel and with a low- ,

upper-shelf weld are being considered. Effects of cladding are pertinent
because it has not been demonstrated whether cladding is always a benefit
with respect to fracture. An experiment with a flaw in a low-upper-shelf!

weld would clarif y questions raised by experiments PTSE-1 and -? about:

! the analysis of stable and unstable ductile tearing.

i

|
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11. Fl AW DENSITY STUDIES FOR PRESSURE-VESSEL-RESEARCH
USERS' FACILITY

ORNL undertook an initiative in concert with the NRC and Department
of Energy (DOE) to establish a Pressure-Vessel-Research Users' Facility.
The facility is to be centered around a complete PWR pressure vessel and
is to provide unique R&D opportunities for a number of organizations.

The overall research plan and conceptual design of the facility to j;
house the vessel will begin when appropriate funding is arranged. Ini-

tial R&D activities, however, will proceed with the vessel in its tempo- ;

rary location at the K-25 Plant in Oak Ridge. One early HSST-funded task :

; will characterize the density, size, location, and orientation of flaws j
in this vessel for use in probabilistic integrity assessment methods.'

,

Detailed plans for the flaw detection were prepared and initiated
during this report period. The first activities included modification of i

'
the facility to allow for nondestructive examination of the vessel in its
current location and horizontal position.

,

j

12. SHIPPING CASK MATERIAL EVALUATIONS
i

:
'

There was no reportable activity in the shipping cask material
evaluations task for this period. L
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HEAVY-SECTION STEEL TECHNOLOGY PROGRAM SEMIANNUAL ,

PROGRESS REPORT FOR OCTOBER 1987-MARCH 1988* I

W. R. Corwin

ABSTRACT

The Heavy-Section Steel Technology (HSST) Program is
conducted for the Nuclear Regulatory Commission (NRC). The
studies relate to all areas of the technology of materials
fabricated into thick-section primary-coolant containment
systems of light-water-cooled nuclear power reactors. The
focus is on the behavior and structural integrity of steel

pressure vessels containing cracklike flaws. The program is
orgar.ized into 12 taskst (1) program management, (2) frac-
ture methodology and analysis, (3) material characterization
and properties, (4) special technical assistance, (5) crack-
arrest technology, (6) irradiation effects studies, (7) clad-
ding evaluations. (8) intermediate vessel tests and analysis,
(9) thermal-shock technology, (10) pressurized-thermal-shock
(PTS) technology, (11) Pressure-Vessel-Research Users' Facil-
'ty (PVRUF), and (12) shipping cask material evaluations.
During this period, imorovements were made in the compute-
tional efficiencies of fracture-analysis codes, and enhance-

ments were made in the constitutive models and inelastic
f racture criteria ia the dynamic-viscoplastic f racture vet-
sion of the AD'INA-OR!! GEN-ORVlRI analysis codes at Oak Ridge
Na',lonal Laboratory (GRht)e Elastodynamic analyses and
dcyolopment work on viscuplastic f racture-analysis techniques
were perf srmed by ORNL and the Southwest Research Institute4

(SVRI) in support of both small specimen testing and the
widc-plate, crack-arrest tests that are taing performed by
the National Enreau of Standards (N8S) for the HSST Program.

Three aew tress of NRC topical suprort were beguns (1) the
evaluation of poraibic enhanced low-temperature, low-flux
irradiation eenheittlenent of reactor pressure vessel

supports: (2.) an assessurnt of boiling-water-reactor vessel
integrity; and (?) a reevaluation of the applicability of
various fr raulatiors of the J-integral in assessing rela-

tively large amounts of crack extention. One additional
uide-plate, crac!5-arrest test was performed by NBS, bringing

'

to 1? the total of such tests. Crack-arrest and other frac-
turo characterization data were obtained for clad-plate test
materials. Testing of all specimens war completed in the

shifts forFif th HSST Irradiation Series for the study of Kge

*This report is written in terms of metric units. Conversions from
Si to English units for all S1 quantities are listed on a foldout page
at the end of this report.

_ _ _ _ _
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welds with dif ferent copper contents. All irradiated Charpy
V-notch and tensile testing was completed for the second
phase of the Seventh HSST Irradiation Series on cladding.
Nondestructive examinations were completed on a segment of a
clad pressurized-water r6 actor (PWR) vessel. The remainder
of the second series of the clad plate f ractute tests of )
reactor vessel steels were performed. The report on the l

'

second PTS test (PTSE-2) was published. The detailed plan-
ning of the nondestructive flaw assessment of the PWR pres-
sure vessel to be used in the ORNL PVRUF was completed and a
modification of the temporary facility begun.

1. PROGRAM MANAGEMENT

W. R. Corwin

The Heavy-Section Steel Technology (HSST) Program, a major safety
program sponsored by the Nuclear Regulatory Commission (NRC) at Oak Ridge
National Laboratory (ORNL), is concerned with the structural integrity of
the primary systems (particularly, the reactor pressure vessels (RPVs))
of light-water-cooled nuclear power reactors. The structural integrity
of these vessels is onsured by (1) designing and f abricating RPVs accord-
ing to standards set by the code for nuclear pressure vessels, (2) detect-
ing flaws of significant size that occur during f abrication and while in
service, and (3) developing methods of producing quantitative estimates
of conditions under which f racture could occur. The program is concerned
mainly with developing pertinent fracture technologv, including knowledge
of (1) the asterial used in these thick-walled vessels, (2) the flaw-

Igrowth rate, and (3) the conbination of flaw size and load that would
cause fracture and, thus, limit the life and/or operating conditions of |

thic type of reactor plant. |
IThe program is coordinated with other government agencies and with

the manuf acturing and utility sectors of the nuclear power industry in)

the United States and abroad. The overall objoetive is a quantification

of safety assessments for regulatory agencies, professional codo-writing
bodies, and the nuclear power industry. Several activities are conducted
under subcontract by research facilities in the United States and through .

an informal cooperstive ef fort on an international basis. Seven research I

and development subcontracts are currently in force.
The program tasks are arranged according to the work breakdown

structure shown in Fig. 1.1. Accordinglf, the chapters of this progress
report correspond to these 12 tasks. |

I During this period, nine program briefings, reviews, or presentations )
'

were made by the HSST staff during program reviews and visits with NRC
staff or others. Five topical reports,1-5 two foreign trip reports,6-7 !

and fourteen technical papers -21 were published. In addition twenty-8

22-31 at the Fifteenth Waterthree technical presentations were made: ten

1
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Reactor Safety Information Meeting held at the National Bureau of Stan-
dards (NBS) in Gaithersburg, Maryland, on October 26--29, 1987; three32-34
at the ASME Pressure Vessel and Piping Division Fall Conference held in
Knoxville, Tennessee, on October 23, 1987; three35-37 at the Society for
Experimental Mechanics Fall Conference held in Savannah, Georgia, on

38October 26-28, 1987; one at the Conference of Materials for Nuclear
Applications held at the University of Missouri-Rolla on October 26,

391987; one at the Nordic Materials Research Seminar held in Copenhagen,
te oN>vember 25-26, 1987; one at the ASTM Mini-Symposium on Fracture Tough-

41ness Shif t held in Albuquerque, New Mexico, on January 28, 1988; one at

the First UTAM Symposium on Recent Advances in Nonlinear Fracture Mechan-
ics held at California Institute of Technology on March 14-16, 1988;

n2-43etwo at the Engineering Technology Division Inf ormation Meeting held
,

at ORNL, Oak Ridge Tennessee, on March 17-19, 1988; and one'''' at the
Engineering College, Arkansas State University on March 31, 1988.

|
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2. FRACTURE METHODOLOGY ANIS ANALYSIS

2.1 Summary of Viscoplastic-Dyrsmic Fracture
Analyses of the WP-1 Series of

Wide-Plat- Tests

J. Keeney-Walker *B. R. .Rass*
SchwartzC. W.

2.1.1 Introduction

The role of ncolinear rate-dependent effects it. the interpretation
of crack run-arrest events in ductile materials is being investigated by

the Heavy-Section Stcel Technology (HSST) Progrot through the development
and upplicaticn of viscoplastic-dynamic finite-element analysis tech- l

I niques. During this report period, a draft version of a topical report
.

was preparel to describe the studies in which various viscoplastic con-
stitutive sadels and several proposed nonlinear fracture criteria have'

been installed in general purpose ( ADINA)2 and special purpose (VISCRK)3
finite-element computer programs. The constitutive models implemented in

5 yt,co.these computer prograns include the Bodner-Partom" and the Perzyna
plastic faraulations; the proposed f racture criteria include three parame-
ters based on energy principles. The predictive capabilities of the non-
linear tecaniques are being eval:4ated partly through applications to a
series of HSST wide-plate crack-arrest tests. In the topical report.1
values of fracture parameters calculated in elastodynamic and visco- *

plastic dynamic analyses of the wide plate tests are compared with one'

another to assess the effect of ir.cluding viscoplastic ef fects in the ,

couputational models. A summary of the results from enese analyses
'

follows.

|

2.1.2 Summary of viscoplastic-dynamic f rac[ure, ,

analyses of the kP-1 series'

'

.l Viscoplastic-dynamic fracture analysos of vide-plate teste Vi*1.2 to
7WP-1.7 (WP-1 seriew)6 were conducted with the ADINA/VPF progras et ORNL.

Fini t e-ele men t models having improved mesh refinement ne/r the pl.ine of,

4

crack propagation were generated for these analyses. The finite-element
;

model used to analyaa tests WP-1.2 t: 1.6 is shov, in Fig. 2.1(a); the'

model used for test VP-1.7 is shewn in Fig. 2.1(b). Both modelu consist
of 2258 node * and 715 eight-noded isuporauetric elemunes. For the two |
models, Fig. 2.2 depicts the viscoplastic element group (consis:ing of

>

429 elements) adjacent to the plane of crack propagation. The dinansions
of the elements along the crack path in Fig. 2.2 are 20 by 20 ns.

_ !

*Computinj and Telecommunications Division, Martin Marietta Energy |
'

Systems, Inc.. Oak Ridge National Leboratory Oak Ridge, Tennessee.
i epartment of Civil Engineering Ualversity of thryland, CollegeD

!Park.
|
|

l

I

f
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Fig. 2.1. Finite-eleine nt models used in dynamic analyses of tests
WP-1.2 through WP-1.7. (a) Model of WP-1.2 through kP"1.6, (b) codel ol
WP-1.7.

:

For each analysis, the measured fracture load (from Table 2.1) was I

applied at the approximate location of the load-pin h>1e to determine the
initial conditions for the crack run-artest event. For the dynamic )
analyses, the applied load was fixed at the value that prevailed at ini- i

ciation. The in-plane thermal bending of the plate caused by the imposed
linear temperature gradient in each test was ignored in these analyses.
The Causs point rule selected for the integration of the finite-element
model was 2 x 2 for the stif fness matrix and 3 x 3 for the consistent )
r.:a s s ma t rix. The time step was set at at = 2 s for the elastodynamic

!
|

|
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Fig. 2.2. Crack-plane viscoplastic-element group of finite-element
models used in dynamic analyses of tests WP-1.2 through WP-1.7.

analyses and at at = 1 ps for the viscoplastic-dynamic analyses. The
Bodner-Partom constitutive model defined in Ref. 8 was used exclusively
for the viscoplastic analyses.

Generation-mode dynamic analyses of vide-plate tests WP-1.2 to 1.7
were performed using the estimates of crack position vs time given in !

Ref. 6. A summary of the six test results is presented in Figs. 2.}-2.9
and in Table 2.2. For each viscoplastic-dynamic analysis, the following
results are given as a function of times crack-tip position; maximum
ef fective viscoplastic strain rate; and the fracture parameters T* (f rom
Ref. 9), 3 (from Ref. 10), and Y (from Ref. 11) expressed as pseudo-
stress-intensity factors (Ky = /EI). Values of the fracture parameters
computed in elastodynamic analyses are also given for comparison with the
viscoplastic analyses.

Results from the analysis of wide-plate test WP-1.2 for the first
3 ms of the dynamic event are presented in Fig. 2.3. Tha interval of

crack arrest beginning at time t = 1 ms [ Fig. 2.3(a)} coincides with a
sharp drop in the maximum ef fective viscoplastic strain rate (Fig.
2.3(b)]. (For the analyses presented in this section, the maximum effec-
tive viscoplastic strain rate is plotted as a function of time f rom the*
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Table 2.1. Soamary of HSST wide-plate crack-arrest test conditions
for A 533 grade B class 1 steel WP-1 series

Crack Crack-tip Initiation Arrest Arrest Arrest
location t'8Perature load location temperature T - AfgotN* (ca) ('C) (MN) (ca) ('C) ('C)

WP-I.1" 20 -60 20.1 50.2 51 74

VP-1.2A 20 - 33 18.9 55.5 62 85
WP-1.2B 55.5 62 18.9 64.5 92 115

DWP-l.3 20 ~51 11.25 48.5 54 17

D8
| WP-1.4A 20.7 8 -63 7.95 44.1 29 52

WP-1.4B 44.1 29 9.72 52.7 60 83

bVP-1.5A 20 - 30 11.03 52.1 56 79

WP-1.58 52.1 56 11.03 58.0 72 95

bVP-i.6A 20 -19 14.50 49.3 54 77

| WP-1.65 49.3 54 14.50 59.3 80 103
,

bWP-1.7A 20.2 ~24 26.2 52.s 61 84
WP-1.78 52.8 61 26.2 63.5 88 lit

aSpecimen was warm prestressed by loading to 10 MN at 70'C; spectmen was
also preloaded to 19 MN.

DCrack front was cut to chevron configuration.

#Pillow Jack was used to apply pressure load to specimen's machined notch.

Table 2.2. Sumury of dynamic analyses of the VP-1 series
of wide plate crack-arrest teste

d " * 'Material 'o o 10 *f T
f "IfTest

fg*fmodel (a) ('C) (MPa*6) (a) ('C) (MPa.6)g

WP-1.2 EL 18.9 0.20 -33 227.35 0.56 62 394.9
EL 18.9 0.56 62 522.9 0.64 92 659.4
VP 18.9 0.20 -33 211.17 0. 56 62 204.4
VP 18.9 0.56 62 405.9 0.64 92 301.3

VP-l.3 EL 11.25 0.20 -51 135.33 0.49 54 217.0
VP 11.25 0.20 -51 136.56 0.49 54 168.5

WP-1 4 El 7.952 0.20 -43 95.65 0.44 29 142.6
VP 1.952 0.20 -63 95.65 0.44 29 137.7

WP-1.5 EL 11.03 0.20 - 30 132.68 0.52 56 213.8
VP 11.03 0.20 - 30 127.95 0.52 56 169.6

VP-1.6 EL 14.50 0.20 - 19 174.42 0.50 54 260.0
VP 14.50 0.20 - 19 160.70 0.50 54 181.6

WP-1.7 EL 26.20 0.20 -24 213.53 0.53 61 326.2
VP 26.20 0.20 -24 204.5 0.53 61 201.5

#EL = elastodynamic; VP = viscoplastic dynamic.
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Fig. 2.8. Tensile load vs time curve used in generation-mode
dynamic analyses of wide plate test WP-1.7.

computed results sampled at the element Gauss points at 60 ps time in-
tervals.) Generally, the maximum strain rate values in Fig. 2.3(b) occur
at a Gauss point immediately ahead of the crack tip and closest to the
plane of crack propagation. These mximum values depend partly on the
finite-element mesh refinement and on the Gauss point rule selected for
the analysis. The K -values computed in elastodynamic and viscoplastic-_t
dynamic analyses of WP-1.2 using the finite-element model of Fig. 2.1(a)
are compared in Fig. 2.3(c). The inelastic values of K at crack arrest

g

given in Fig. 2.3(o) and in Table 2.2 are lower than those reported in
Ref. 7 for less refined models, indicating that convergence of the solu- ,

tion has not been established.
Results from analyses of the singiu crack run-arrest event recorded

in test WP-1.3 are depicted in Fig. 2.4. As indicated in Fig. 2.4(a),
crack arrest occurred at t = 0.75 ns and at a crack depth ratio of a/w =

) 0.5. Beginning with test WP-1.3, the crack front was cut into a trun-
cated chevron to initiate the crack at a lower load than was achieved in
the previous tests. The lower initiation load recorded in test WP-1.3
(FIN = 11.25 MN from Table 2.1) leads to less pronounced plasticity
eftects in the dynamic analysis as compar6d with results from test WP 1.2.

Results for the first of two cleavage run-arrest events observed in
test WP-1.4 are presented in Fig. 2.5. In that test, the tensile load on

6the specimen was mintained constant at 7.95 MN while a pillow jack

- _ _ -
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placed in the specimen notch was pressurized to produce crack initiation.
The tensile load was low enough to achieve a completely stable arrest at
t = 0.57 ms and at a crack depth ratio of a/w = 0.44 (see Fig. 2.5(a)).
The relatively low crack-driving force in the first run-arrest event
leads to very limited viscoplastic ef fects for the results f rom analyses
presented in Fig. 2.5(b) and (c).

Tests WP-1.5 and WP-1.6 both exhibited multiple cleavage run-arrest
events before the onset of unstable ductile tearing. Results from analy-
ses of the first event are presented in Fig. 2.6 for test WP-1.5 and in
Fig. 2.7 for test WP-1.6. The first crack arrest occurred in test WP-1.5
at t = 0.72 ms and a/w - 0.52 (Fig. 2.6(a)] and in test WP-1.6 at t = 0.62
ms and a/w = 0.49 (Fig. 2.7(a)). A higher initiation load was achieved
in test WP-1.6 (Fig = 14.5 MN) as compared with test WP-1.5 (Fig = 11.03
MN) by increasing the initial crack-tip temperature of WP-1.6 (TCT "
-19'C) above that of WP-1.5 (T -30'C). The higher tensile loads led
to increased viscoplastic effectsCT =in the analysis of test WP-1.6 as com-
pared with that of test WP-1.5. For both tests, subsequent cleavage
events began ~8 ms af ter the first crack arrest.6 Viscoplastic dynamic

] analyses of these late cleavage events will be performed in futurn crack-
arrest studies.,

Results from analyses of test WP-1.7 (Ref. 12) are given in Figs. 2.8
and 2.9. Test WP-1.7 used a 152-ma-thick specimen and an alternate set of I

'

pull plates; one-half of the assembly is represented in the finite-element !
'

model given in Fig. 2.l(b). During test WP-1.7, the wide-plate assembly ,

; was subjected to two loading cycles that are represented (approximately)
by Fig. 2.8. The second loading cycle became necessary when the crack ,

failed to initiate before reaching the tensile load capacity of the test-
ing machine, 26.7 MN. The fracture initiated in the second loading cycle
at a tensile load of 26.2 MN, causing two cleavage crack run-arrest

events (see Table 2.1). In the finite-element analysis of the test, the
model was loaded according to the two cycles of Fig. 2.8 to determine the
initial conditions of the dynamic event. Results from analyzing the (
first cleavage-fracture event are presented in Fig. 2.9. Figuce 2.9(a) !

indicates that crack arrest occurred at t = 0.68 ms and at a crack depth |

I ratio of a/w = 0.53. As indicated in Fig. 2.9(b) and (c), the relatively (
high tensile load on the specimen produced significant viscoplastic '

effects in the dynamic analysis of the first event.' i

| Additional generation-mode analyses of test WP-1.7 were performed
using data f rom the first 8 ms of the dynamic event described in Ref. 12.
Included in this time interval is a cleavage-reinitiation event at t =

7.4 ms, followed by crack arrest at t = 7. 7 ms and a/w = 0.64. A visco- |

; plastic-dynamic analysis (not shown here) produced effective plastic |
; strain values >10% in the region near the crack plane during the second
; cleavage arrest (t = 7.7 ms). Since these strain values violate the

small-strain assumption upon which the analysis was based, results for
the latter portion of the time interval are not valid. The above results

| indicate that a viscoplastic-dynamic fracture formulation incorporating a
large strain option is required to perform a valid inelastic analysis of;

! the late cleavage event in WP-1.7; such a formulation is not now avail-
able in ADINA/VPF.

These fracture analyses of portions ot the dynamic events recorded

} in the six wide plate tests WP-1.2 to -1.7 indicate that the effects of

i
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including viscoplasticity in the fracture-parameter calculations are
significant. Dissipative processes that occur in the developing plastic
zone lead to reduced energy flow to the crack-tip region and, hence, to
lower values for the fracture parameters (compared with elastodynamic
values). However, a more definitive evaluation of the utility of these
f racture parameters in predicting crack run-arrest behavior in wide

| plates must await results f rom other numerical studies. As described in
Ref. 13, a comparison of results f rom wide-plate analyses performed by
Oak Ridge National Laboratory (ORNL), Swedish Plant Inspectorate, and
Southwest Research Institute (SwRI) revealed that values of the inelastic
f racture parameters (such as T*) decrease as the mesh is refined along "

| the crack plane (for ratios of element width-to plate width as low as
1/80). Not yet established is the degree of mesh refinement necessary to
get convergence of the f racture parameters or whether the parameters will
converge to nonzero values. Development plans include mesh-refinement
studies to determine whether the proposed f racture parameters (such as
T*) converge to nonzero values in viscoplastic-dynamic analyses or
whether they are controlled by the element length used along the path of
crack propagation.

2.2 Elastodynamic and Viscoplastic-Dynamic
Fracture Mechanics

,

H. F. Kanninen* E. Z. Polchi
S. J. Hudak, Jr.* P. E. O'Donoghue*

4

R. J. Dexter * J. D. Achenbach*
'

IH. Couque* C. H. Popelar

2.2.1 Introduction and summary

The HSST program is directed toward the development of fundamentally
based procedures needed for the prediction of crack arrest at the high
upper-shelf toud ness conditions involved in postulated pressurized (h
thermal-shock (PTS) events. The objective of the SwRI contribution to
the overall HSST effort is to provide analysis methods for pressure-
vessel integrity assessments that are derived from small-scale test
specimens. These methods include the dynamic ef f ects and large-scale
inelastic and time-dependent material deformation that could arise in
both of these tests and in PTS conditions. The objective is thereforet

* Engineering and Materials Sciences Division, Southwest Research
Institute, San Antonio, Texas.

t ormerly Southwest Research Institute; presently at Digital Equip-F

t ment Cot poration, Colorado Springs, Colorado.

* Department of Civil Engineering, Northwestern University, Evanston,
Illinois.

I ngineering Mechanics Department. Ohio State University, Columbus, !E,

Ohio.

!
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being accomplished by combining dynamic f racture mechanics finite-element
analyses, viscoplastic-material characterization testing, small-scale
f racture experimentation, near-tip matheuatical inalyses, and elastic-
plastic tearing instability computations. Figure 2.10 shows the result-
ing internal interactions and the interactions between the SwRI ef f ort
and related elements in the HSST Program.

A specific goal of this project is to develop crack-arrest toughness
data applicable to PTS conditions through small-scale test specimens. As
shown in Fig. 2.10, this research goal uses compact duplex (A 533 grade Bi

class 1/4340 steel) laboratory fracture specimens provided by ORNL. The
fracture propagation-arrebt data drawn from the analyses of these experi-
ments will be applied to the National Bureau of Standards (NBS) wide-
plate tests in the proof-of-principle mode. Satisfactory agreement will
validate a crack-arrest assessment procedure that should then be valid
for the entire range of PTS cond;rtons.

Analysis done during this reporting period has centered on SwRI's
viscoplastic-dynamic fracture-mechanics finite-element code VISCRK.
Ef ficiency improvements have been implemented and complete documentation
has been prepared as a necessar_ precursor to the detailed analyses of
crack propagation-arrest events in duplex specimens, analyses that pre-
vious work has shown necessary.14 15 The experimental work has focusede
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on developing and verif ying crack propagation time-length measurement
techniques suitable for A 533 grade B class 1 steel in the appropriate
temperature regime. For this purpose, several small duplex experiments
have been completed and strain records analyzed. In addition, a new

stress-wave loading procedure developed at swr 1 has been pursued and
found to have considerable promise for extending the measurement
capability range.

2.2.2 Viscoplastic-dynamic fracture-mechanics
finite-element analyses

During the previous year of work on this project, the viscoplastic-
dynamic f racture-analysis program VISCRK was tested and used to perform
benchmark demonstration problees.14 Work in this period has focused on
the documentation of VISCRK and on the implementation of improvements to
increase the utility and efficiency of the analyses. In particular,

timing of the subroutines in preliminary VISCRK runs revealed that over
60% of the time was being spent within subroutines that integrated the
constitutive equations. Ef ficiency improvements have theref ore focused
on these subroutines.

The integration scheme involves some iterations for the solution of
a highly nonlinear equation. The tolerance level of the iterations, pre-
viously set to an absolute value of the plastic Lagrange parameter, has a
varying effect on the resulting level of error in the stress. Therefore,

a scheme was derived to calculate the level of error in the stress, with
a stress-based tolerance level being defined.

Several nonlinear interpolation schemes were investigated for in-
clusion in the iteration algorithm to find the root. Pade, cubic poly-
nouial, and biquadratic schemes were tested. The be s t results were
obtained with the Pade scheme. However, the cost of this scheme (i.e.,
2.43 ps per call) was considerably higher than that of the existing
linear scheme (i.e., 1.44 ps per call). It was therefore decided to
implement a scheae whereby the Pade interpolation would only be used for
high changes in slope on either side of the root. Prior interpolations

remote f rom the root will be perf ormed with the linear interpola-more
tion. This scheme will be implemented in VISCRK. At ORNL, preparations
have been made for a new set of analyses done on the CRAY with this new
procedure.

Documentation of the development, use, and applications of VISCRX is
now complete. This documentation is contained in three reports that have
been prepared as chapters for a forthcoming SwRI topical report. The

titles and brief descriptions are

1. Viscoplastic Characterization of A 533 Grade B Steel This chapter

describes the Bodner-Partom constitutive model and the method of
determining the material parameters.

2. Development of Dynamic Viscoplastic Finite-Element Fracture Mechanics
Computer Program This chapter explains the underlying theory for
the development of VISCRK.

3. Fracture Mechanics Analyses of Wide-Plate and Duplex Tests: This
chapter gives a summary of the applications and findings that have
been made with VISCRK to date.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ J
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An appendix containing complete instructions on how to use the pro-
gram has also been prepared and is included in the topical report. This
topical report will be submitted soon.

Analyses of NBS wide-plate tests and SwRI small duplex experiments
have continued. Typical results obtained from an analysis of the small-
duplex (SD) experiment SD6 (13AKB03) are shown in Fig. 2.11. As shown in
Fig. 2.12, the mesh f or these analyses was composed of eleunts having
linear dimensions of about 12 mm.
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K. (a) Polynomial-least-squares fit to crack extension history,
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Fig. 2.12. Coarse finite-element mesh for analysis of duplex
specimen.

Figure 2.11(a) shows the polynouial fit to the crack-extension nis-
tory. The crack-extension histories in the 4340 steel and the A 533
grade B class 1 steel have been fitted separately over their individual
ranges of crack extension. This procedure clearly reflects the change in
velocity evident in the experimental records as the crack traverses the
electron-beam (EB) weld. At the same time, this procedure retains the
desirable averaging ef fects of the polynomial fit.

Earlier analyses have shown that the cocputed K values are not sig-
nificantiv affected by changes in the fit to the experimental crack-
extension history, provided that the average velocity remains the same.I'
Thus, the computed pseudo-stress-intensity factor history shown in Fig.
2.11(b) should be reliable.

In Fig. 2.11(a), a sharp increase occurs in K at the same time that
the crack traverses the EB weld. This finding corresponds to the tice of
the observed crack acceleration, an increase that can be correlated with
the arrival tice of the reflection (tensile) of the unloading wave from
the crack-initiation event.

Although the crack-extension history shown in Fig. 2.11(a) continues 6

out to several hundred microseconds, the latter portion is apparently very
slow crack extension. The choice has been cude to determine the dynamic
Kg value at the end of rapid crack mpagation but before the complete
arrest. This point is indicated in 2.11(a). Ine latter stages of

crack e.< tension may not be continuous aid crack extension, but rather
may consist of a series of suall reinitiation, propagation, and arrest
events. Note that. w i t h t he large gradient of the K history at the
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\
arrest point, the K value is very sensitive to the location of the pointg
that ends rapid crack extension.

Because these analyses were carried out with relatively coarse
meshes, it is not expected that the computed strain histories would cor-
relate well with the experimentally measured strain histories described
below. Finer mesh analyses are to be performed and the comparisons made
in future work on this project.

Results similar to those of Fig. 2.11 we re published previously14,15
h for the duplex experiment SD2 (13AK22E). The values of X as a function

of crack-velocity resulting from these analyses are shown in Fig. 2.13.

Figure 2.14 shows the K values plotted with the ORNL equation for K ,g g,
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Fig. 2.13. Pseudo-stress-intensity factor vs crack velocity for
A 533 grade B class 1 steel test piece (excluding 4340 starter section)
for two duplex specteens SD2 and SD6 (w = 127 cm, 33 en thick).
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Fig. 2.14. Pr audo-stress htensity f actor at the instant of crack j

arrest determined from SwRI viscoplastic-dynamic finite-element analyses o

i
[results include sidegroove correction of (4/3)1/2), |.4

: r

!. ,

and the ASME KIR curve. Sintlarly, the Kg values for a1\ SwRI analyses
of the first crack-extension event in the NBS wide plate experiments are '

.

| shown in Fig. 2.14. The latter figure, which constitutes a key result of I

i this work, shows that results equivalent to those obtained with wide-
plate specimens can be obtained with specimens that are several orders of ,

I

1,

magnitude scaller.

2.2.3 Dynamic crack propagation experimentation !

The experimental research is directed toward obtaining dynamic crack-
propagation data in A 533 grade B class 1 steel using small-scale speci-.

For this pu: pose, a series of duplex A $33 grade B clas.s 1/4340mens.
steel specimens of effective width, w = 127 me, were instrumented and
tested at 23'C. As noted in Fig. 2.10, these specimens were supplied by;

1 ORNL. Crack growth was monitored on both surfaces of each specimen using r

; crack gages, whereas a crack-line displacement . ras measured using an [

eddy-current transducer. Dyr.asic-strain acasi.rements were also obtained |
'

-|
and used to examine the detailed interaction betvetn stress-vave prcpaga-
tion and crack-growth response. !

]
The crack-gage response on one side of the specimen was recorded |

j ' tith the Nicolet digital reco. der. Th.e hig s-speed counter developed at *

!.%RI was used to record the responsr. on the other side. Both recorders
| vere calibrated simultaneously by .ising a lirinted circuit to simulate the j

response of the crack gage. Fast switches having 10 ns response were
,

) '

4

|
[

!
l
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used to represent the breaking of the crack gage. A delay of 5 ps be-
tween switchcs was monitored using resistance capacitors. The responses
of both recorders were in agreement at 0.1 ps. Such excellent resolution
implies that crack-velocity measurements in duplex speciuens can be per-
formed with either the high-speed counter or the Nicolet digital recorder.

The correspond 1:nce between the crack-gage response and the actual
crack position has been investigated with duplex specimens SD6 and SD7.
The duplex specimen SD7 was instrumented with three strain gages located
above crack gages 6, 7, and 8 at a distance of 6.5 mm f rom the side
groove, as shown in Fig. 2.15. The time dif ference between the succes-
sive strain peaks and between the f ailure times of the crack gages are
similar.

The peak strain occurs at an earlier time than does the failure of
the crack gage. As indicated f rom the results of the experiments SD6 and

|
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SD7 in Table 2.3, this delay corresponds with a strain peak ahead of the
crack tip with an angle of ~73'. This angle is similar to the peak-
strain angle of 70' for the elastostatic-plane stress field. Based on
this estimate, the f ailure of the crack gage occurs 2 ps bef ore the crack i

reaches the crack-gage location.

Table 2.3. Comparison of strain gage
! and crack-gage data

,

Strain gage Crack-gage
a -- a strain peak failure t

2 ~~) E
l 4

(mm)o time t time C (N'
(ps) 3 ( s) 2

Duplex SD-6
,

20 18.8 25.0 6.2 73.5
23 36.8 43.5 6.7 72.8

Ouplex SD-7

20 48.8 52.5 3.7 71.4
23 53.8 57.3 3.5 72.5
26 79.8 83.8 4.0 79.0 +6.0

<

Such an angle cannot be measured with precision when large crack-
velocity variations occur, such as for the specimen SD7 at crack gage 8 t

(see Fig. 2.15). However, this measurement can be improved by using
crack gages with smaller spacings. Strains up to 12% were recorded with
a strain gage located on the crack path between crack gages 7 and 8, a
finding that is shown in Fig. 2.15. This strain level, reached at !

10.9 ps before the failure of crack gage 8, corresponds with the strain
,

limit of the adhesive of tho strain gage. Using VISCRK, this neasurement
will be compared with the strain measurement from the analysis when
results obtained with suitably refined meshes become available (see Sect.
2.2.2).

|A new technique developed at swr 1 enables two relatively small
specimens to be tested simultaneously using stress-wave loading from
Hopkinson-type pressure ba r s . Trial experiments were conducted by pre-

y loading the pressure bars, connected through a starter specimen, to about
100 kips. The test specimens were then inserted into slots in the bars
and secured with wedges. Next, fracture of the starter specimen was
initiated by introducing a sharp cut into the circumferential notch,
which then released in the bars en unloading wave that imparted a rapid

,

crack-opening-displacement rate to the test speciaens. The test configu- ,

|ration is shown in Fig. 2.16.
<
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Fig. 2.16. Schematic diagrao of the coupled pressure bar experi-
ment.

I

!

Precracked compact-type A 533 grade B class 1 steel specimens,
without side-grooves and having an effective width v = 44 me, have been
tested at 23 and 37'C. Crack growth of ~15 arm was achieved. Two A 533
grade B class 1 specimens with side-grooves and a mdified f astening
sect.enism to the pressure bars are being prepared for testing at tempera-
tures ranging f rom 37 cc 50'C. Under such conditions, complete failure

of the specimens is expected.
Figure 2.17 compares the A 533 grade B class 1 steel specimens from

the coupled pressure bar experiment with larger specimens that were
tested previously at swr 1 of the same heat of mterial. The accomplish-
ment is a significant one. Note that previous tests using the large

1

i



- - - .-. .. _

|

31

car ncro xosu

4M';'n'
..m,-...

|
y

(3)I.L, ,

-

5.i
4

h'..,
t;~

. . . . -

.

i

e' @)

, -

r,r 3=r mm (
: I
i

'

I
!

'
1
I

1 Fig. 2.17. Comparison of the neasure aent capacity of various
'fA 533 grade B class 1 specimens. (a) Monolithic specimen (w = 203 ma)

| tested at -50' C , (b) 4340/ A 533 gradi: B class 1 duplex speciuens (w = !
,

|
127 mm) test ed at 25'C, (c) pressure-bar loaded specimen (v = 44 aa)

!

| tested at 37'C.

! .

1 !
L l

i
I i

l t

i monolithic specimens (w - 203 mn) were successiul only at inducing rapid !

! fracture to -50*C, whereas the next smaller-sized duplex 4340/ A $33 grade f
,

B class I steel specimens (w = 127 ma) have only been successf ul to ;

|25*C.
The fact that dynamic initiation, propagation, and arrest dat a can '

frelatively small specimen is also an attractive,

; be measured on the sane
t feature of the newly de veloped tes t technique. Moreover, the successful f
f demonstration of dynaale crack propagatica in A 533 grade B class I steel |

I at 64'C above NUT is a very prouising result, particularly with the
e

j specimen size used. These small s pe c i r.e ns will also be particularly
helpful in determining the influence or stress state on dynaute propaga-i

| tion and crack arrest. This research issue will be a focal point of the ,

Iwork planned for tnis year.
l
i,

| l
I

1

L

,
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2.3 Investigation of Damping and Cleavage-Fibrous
pansition in Reactor-Grade Steel at

the University of Maryland *

W.L.Fourne{i G. R. Irwini
D. B. Barker J. W. Dallyi
C. W. Schwarts* X.-J. Zhangt

Work at the University of Maryland (UM) over the past 6 months in-
cludes (1) cleavage-fibrous transition studies, (2) optical examinations
of selected wide plate tests, (3) dynamic crack-initiation testing, and
(4) dynamic computational support of crack-arrest testing.

2.3 1 Cleavage-fibrous transition model studie_s

At the October 1987 ASM International meeting in Cincinnati, a paper
by X.-J. Zhang, R. W. Armstrong, and G. R. Irwin was presented on "Cleav- |
age Behavior in the Upper Transition Temperature Range for Pressure Ves- I

sel Steels." (The paper was not published.) In it, the main cleavage )
behavior characteristics reported in Ref s.17 and 18 were reviewed. Also, |

measurements of the change in cleavage orientation, with the passage of |
cleavage through ferrite grain boundaries, were reported and discussed.

The change of cleavage orientation can be represented by three
angles (total, twist, and tilt), as shown in Fig. 2.18. For nuclear
vessel steels, even at low testing temperature, the surface orientation
changes in "smooth curve" fashion across the grain boundary. A sharp in-
dication of the grain boundary, as depicted in Fig. 2.18, is not visible.
In the UM work, twist and tilt angles were calculated as though the grain
boundary line were normal to the apparent direction of cleavage advance-
me nt before grain boundary passage. For this reason, the UM-calculated
angles of twist and tilt are less significant than the orientation
changes in terms of the total angle.

| The measurement results shown in Table 2.4 and Fig. 2.19 were ob-

| tained using specimens of 72W weld metal. Typical isolated cleavage
regions (1CRs) of substantial sise were used for the higher temperatureI

| results. The low-temperature f racture surf ace. was all cleavage. Mea-
surements pertaining to the low temperature were done using selected
regions of similar size, within which directions of f racturing and the

| transit of cleavage through grain boundaries were wat clearly indi-
cated. Although this measurement-region selection process night be,

| thought to reduce the observed changes of cleavage orientation, the

i actual results for total angle change, shown in Fig. 2 19, indieste
1

l

* Work spon'.ored by the HSST Frogram under Subcontract No. 7778
between Martin Marietta Energy Syttems Inc., and the University of
Maryland.

i epartment of Mechanical Engiacering, University of Maryland,D

College Park.
* Department ef Civil Engineering, University of Maryland, College
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Tig. 2.18. Change of cleavage orientatic.n represented by three !

angles (total, twist, and tilt). The river matrkings shown here are not !
,

J typical of those seen in the transition tempetature range. SouNel |
'

J H. L. Ewalds and R. J. H. Wanhill, Fmotun Me ehMLss, p. 239.
i

!
!

1

i nearly random changes of total angle betecen aeto and 75', in contrast, 7

iat the higher temperature, all of the total angle ,:hanges were <30'.
These results indicate a pronounced change in the resistance to the'

,

passage of cleavage through grain boundaries wit;h a temperature increase i

such that the spread of cleavage across grain boundaries is further :;

J limited to a smaller degree of crystallographic mismatch. The expected |

| result is a decreasing ability of a spreading unit of cleavage to adjust I

to changes in tensile stress direction, leading to larger late-breaking*

| connections. As noted in Ref. 19, the increasing density and size of (
' late-breaking connections beteeen regions of cleavage with increasing

]
temperature contribute importantly to the elevation of fracture toughness

; in the transition temperature range. {
t
t

i

;

i
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Fig. 2.19. Frequency graphs of various tilt, twist, and total I

angles across grain boundary passages of M-CVN specimens of 72W weld |

setal at temperatures of 81 and -196'C. (a) Tilt angle (81'C), (b) twist (
angle (81'C), (o) total angle (81'C) (d) tilt angle (-196*C). (e) twist
angle (-196'C), (d) total angle (- 196'C).
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Table 2 4. Tilt, twist, and total angle measurements |
for two M-CVN specimens of 72W weld metal tested :

at ~196'C and 81'C, respectively :

[
:

Specimen A (-196*C) Specimen 8 (81'C) I
(deg) (deg) j

Measurement

f"'
Tilt Twist Total Tilt Twist Total
angle angle angle angle angle angle j

i

1 36 39 47 5 18 19 ;

2 67 42 68 4 12 13 ;

3 17 52 52 5 6 8 I

4 12 28 29 14 2 15 !

l 5 50 9 50 8 1 8 !

6 1 37 37 16 7 18 [

l 7 28 1 28 2 19 19 |

| 8 48 48 58 22 14 26 t

9 8 33 33 9 13 16 -'

. 10 13 33 34 4 12 13 '

i 11 11 6 13 2 22 22 ,

12 3 2 3 t

i 13 4 6 7 }
j 14 1 4 4 ;

i 15 5 1 5 t

16 13 8 15 i
!,

i Average 26 30 41 7 9 13 !

! [

4 i

'

f

taproved scanning electron microscopy (SEM) equipment is now avat!- ;

) able at the University of Maryland and has been used to obtain photo- |y
graphs of cleavage-initiation regions at higher magnification. Figure !

|
2.20 shows a cleavage-origin region in 72Y weld metal that is adjacent to I

,

; a broken silicate particle. Figure 2.21 shows a cleavage origin in A 508 [
steel that is near a particle clump. Very small (4.1-pm) particles are i.

present within the region where the development of a cleavage embryo of L'

j adequate sise must have occurred. Requiring further study is the issuo [

of whether or not the indicated density of such particles is unusually ,8
,

high in cleavage-initiation regions. :

', f
*

|
2.3.2 Optical topography results from wide-plate crack-arrest [

_

_ tests WP-CE-1 and W-1. 7
]

I During recent years, topographic analysis of f racture surf aces using j

,

stereo-SIM and relative height measurements has received increasing ;

I attention. An optical stereographic technique has been used successfully i

i

)
! |
4 :
J !

. .. -- - - --- - _.- _ -_-_I
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Fig. 2.21. Low-voltage SDt f ractograph showing details in a region

|
of cleavage initiation adjacent to a particle clump in A $08 steel.

|

(Ref. 20) to determine the local sequences of .eparation for the initia-
tion region of a wide-plate fracture, test VF-2.4. Thi s me t hod doe s no t
require sectioning the broken halves of the test plate. Optical topogra-
phy was used in this study to examine regions of two vide-plate fractures
in which cleavage arrest was followed by a fibrous-tear reinitiation.

| Results f or specimen WP-CE-1 (100 m thick) and specimen WP-1.7 (l$2 m i

thick) are presented. The method of relative height measurenents is !

ldiscwased la Ref. 21.
2.3.2.1 Specise n WP-CE-1. A 102-tsm-thick specimen of A 533 grade B f

dass 1 steel, provided to ORNL by Combustion Engineering, Inc., was used I
,

for this test. The initial loading provided a single cleavage run-arrest |

f event. After several minutes, loading was continued and produced a long !

; segnent of fierous tearing. The plate temperature pertaining to crack I

| arrest and reinttiation was 30*C.
[ Figure 2.22 snows the area of the fracture sariace used for topo-

fI graphic analysis and the location of the lines along which height c.e a-
surement s were ca d e . Relative heigmts were determined along seven lines. !

!

I
i
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Fig. 2.22. Area of the f racture surf ace of WP-CE-1 specimen
selected for optical topographic analysis.

Lines A1, A2, and A3 w re estimated crack-f ront contours in the cleavage
region. Lines B1, B2, and B3 were estimated ferward-crack-extension
lines crossing the crack arrest. Line C1 was an estimated crack-front

; contour line in the region of fibrous tearing. For each of the mating
fracture surfaces, one surf ace point was selected for reference. All
height measureuents were made relative to the surface height at that
point.

Figure 2.23 shows measurement results on lines A1, A2, and A3- The
results are arranged as if the upper and lower fracture surfaces were>

| held a small distance apart. The ordinate scale measures the separation
of measurement points from a flat surface (the middle line) held above it

!
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(tor the lower surtace) and below it (for the upper surface) If frac-

turing were nearly siuultaneous at all points on the measurement lines,
the average local separation between the two f racture surf aces would be
nearly constant. A significant deviation from this behavior would sug-
gest that regions of larger separation broke earlier than other regions.
The results indicate that a small portion at the right extremities of
lines A1, A2, and A3 may have been drawn too f ar f rom the crack-arrest
position. Otherwise, the separations are uniform, as expected if the
lines represented previous locations of the crack front. The abscissa
scale has its zero at the left end of each line. To provide the abscissa

- _ _ _ _____ - - _
|
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points, distances between measurement points were measured parallel to
the line and summed.

Similarly, Fig. 2.24 shows separations between the f racture surf aces
along lines B1, B2, and B3. The abscissa increases in the direction of
crack extension. Figure 2.25 shows results for line C1 in the region of
fibrous tearing. For line C1, the increase of separation away from the
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Fig. 2.24. Relative height measurements along lines B1,. B2, and
83 showing separations between surfaces (the abscissa increases in the
direction of crack extension). (a) Line B1-B1, (b) lins B2-B2, (o) line
B3-83.
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Fig. 2.25. Relative height measurement along line C1 within the
fibrous region.

midregion of the plate suggests that the crack front was leading in these
regions by an amount larger than that indicated by the curvature of the
assumed crack-front line.

Large f racture-surf ace irregularities, introduced by midplane im-
purities, assisted the development of a pronounced inverse curvature of
the crack front. In the cleavage portion of the fracture, where plastic ,

strain is too small to produce lamination-type midplane separations, the
crack-f ront and -surf ace irregularities are much less af fected by mid- ,

1 plane effects.
For lines B1, B2, and B3, a method somewhat like that used for J IC

determinations seemed reasonable and was used. For each meaourement
line, Fig. 2.26 shows estimates of residual crack-opening displacement
(RCOD) for positions of the crack f ront within the fibrous region. These
estimates were obtained by subtracting each measured opening separation

; in the fibrous region from the opening measured in the cleavage region
very close to the crack-arrest position. The result was a graph of RCODi

(at the cleavage edge position) as a function of apparent forward motion
of the fibrous tear. Assuming that RCOD was proportional to J, the graph

is similar to those of J vs 64 used in both JIC and J-R testing. Use of
a blunting line, from the equation RCOD equals twice Aa, in place of the
zero abscissa line had little influence on the results. Large fracture-
surface irregularities introduced substantial irregularities into clie
measurement results. Lacking evidence for curving trends in RCOD in-
crease with crack extension, it was assumed that a uniform rate of RCOD4

increase was a reasonaole choice for on-average behavior. "Least
squares" straight lines through the fibrous region data points resulted
in estimates of crack-tip-opening displacement (CTOD) for the three'

lines - B1, B2, and B3 - of 0.00, 2.03, and 1.78 mm, respectively, for an

: average of 1.19 mm.
In future trials of this nature, a larger number of height measure-

ments should be used to compensate for the influence of f racture-surface
,

irregularities. liowever, the above-average value of CTOD can be shown in
i

1
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several ways to be a plausible rough approximation. The equation relat-
ing CTOD to K is

i K2=Ea CTOD, (2.1)e

where

CTOD = 1.19 x 10-3 m.

E = 206 x 103 MPa,

c = 517 MPa (75 ksi).

Tensile test results for this wide plate are not yet currently available.
From other A 533 grade B class 1 plate data, 517 MPa was selected as an
intermediate value between the slow-load values forgield and ultimate
strength. The resulting estimate of K is 356 MPa*(m. Reference 22 pro-

vides two dynamic-calculation estimates of K at crack arrest: 170 and
159 MPa*/s. No dynamic program calculations of the reinitiation K are
now available for this test. The large elevation of the reinitiation K
above the K at crack arrest corresponds well to the elevation of the
reinitiation K obtained in other tests by means of dynamic calculations
that have provided both results.

A second comparison feature is provided by measurements af ter the
test of plate-thickness reduction, as shown in Fig. 2.27. Here again,

some averaging is necessary. The arrested crack-f ront curves across the
plate thickness from a position (at 38 cm) where thickness reduction was
~0.5% to a position at 42 cm where thickness reduction was 2%. The aver-
age thickness reductiors was assumed to be 1.5 mm. Unpublished experi-
ments* in the 1960s at the Welding Institute in England (Ref. 23) and at

i Frankfurt Arsenal in Philadelphia indicated a direct proportionality
between thickness reduction at the tip of a stationary crack and either
measured values of CTOD or values of CTOD derived from the equation for 1

K. The proportionality factor indicated that the thickness reduction }2

and CTOD were of similar magnitude. Using the thickness reduction of
2

; 1.5 mm in place of CTOD in the K equation gives a K-value for reinitia-
| tion of 400 HPa*/m. Although the uncertainties of both the topographic

estimate of CTOD and the thickness-reduction estimates are large, the two
estimates of reinitiation K have some value. They support other indica-
tions that a high K-value is necessary for the start of fibrous tearing
from an arrested cleavage crack in the upper transition temperature

,

range.
2.3.2.2 Specimen WP-1.7. A 152-mm-thick plate of A 533 grade B

'

class 1 steel from ORNL was used for this test. The initial run-arrest
event ended near the middle of the plate, where the plate temperature was ;

'

61'C. This event was followed immediately (7-as pause) by a short

* Unpublished data on CIOD measurements in comparison with thickness
reduction at the crack tip were obtained by F. M. Burdekin in 1963.
These results suggest that CIOD would nearly equal thickness reduction.

.

i

1
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Fig. 2.27. Fracture surface and posttest reduction-in-thickness
contours of WP-CE-1 specimen. (a) Fracture surf ace (scale on plate

{ front surface), (b) postlest reduction-in-thickness contours.

segment of fibrous tearing that converted to cleavage. The second cleav-
age event was divided at midthickness because of the development of lami-
nation-type tearing in that region. The optical topography study cen-
tered attention on the position where the first cleavage event arrested.

,

Figure 2.28 shows this region of the test plate. Dashed li t.e s show thei

|
measurement paths selected for height determinations. Ihree lines on

|

|

1
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Fig. 2.28. Fracture surface of WP-1.7 specimen. Lines 1--6 show
the location where relative height measurements were performed.

each side of midthickness were positioned to avoid the most pronounced
midthickness surface irregularities.

Figure 2.29 shows the change of separation of the fracture surfaces
in the same manner as shown for plate WP-CE-1. Determinations of RCOD
values at cleavage positions very close to the start of fibrous tearing
are shown in Fig. 2.30. Using the method of "least squares," straight
lines through the fibrous separation positions gave CTOD values of 2.30,
0.81, 0.27, 0.66, 0.27, and 2.30 mm for lines 1 through 6, respectively.
The average CT0D was 1.10 mu. Using Eq. (2.1), with oy = $17 MPa + 138
MPa = 655 MPa and E = 206 x 103 MPa , the CT0D for fibrous tear reinitia-
tion corresponds to a K-value of 385 MPa* 6. Values of 592 and 456
MPa* 5 were the dynamic-analysis estimates for this reinitiation provided
in Ref. 24.

Comparing the thickness-reduction measurements, as shown in Fig.
2.31, reveals that they dif fered considerably on the top and bottom
halves of the plate at this crack-arrest location, ranging f rou slightly
>2% to <1%. Using a rough average value of ).25%, the thickness reduc-
tion was 1. 91 rua . Setting CTOD equal to 1.91 ma in Eq. (2.1) results in
a K-value of 508 MPa* 6. (Note that 138 MPa was added to the slow-load
value of o as an adjustment f or rapid loading. )y

. _ .
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Fig. 2.31. Thickness reduction measurements for WP-1.7 specimen.
(Hessurements provided by R. Fields, NBS.)

Obviously, large uncertainties exist in the topographic estimates of
K for cleavage reinitiation in this test plate, as they did for plate
WP-CE-1. However, the uncertainty can be reduced substantially by im-
proving the topographic mapping of the regions of interest. In addition,
eliminating out-of plane bending of specimens through electroslag welding
Can be expected to result in improved uniformity of the crack f ront. The
possibility of obtaining useful estimates of K from plate-thickness re-
duction is also of special interest and deserves continued attention.

2.3.3 Dynamic crack initiation

Ef forts to establish new methods of measuring crack-initiation
toughness in reactor steels have followed two different i.ines of study,
including explosively loaded notched short bars and impact-loaded notched
round bars. A description of the status of both series of experiments
follows.

2.3.3.1 Explosively loaded notched short-bar experiments. After
using dynamic photoelasticity to establish the feasibility of explosively
loading a short bar dog-bone specimen with four symmetric charges deto-
nated siuultaneously, the method was applied to steel specimens. The
first specimens were made f rom 4340 steel that was heat treated to Rc of
51. In the first .; e s t , the amount of explosive used was excessive, and



.
,

)

51

fracture occurred at the ends of the specimen as well as at the center.
In the second test, the amount of explosive was reduced to about 8 g (2 g
on each corner of the specimen). Strain-gage records were obtained, as
indicated in Fig. 2.32. These records indicated that kid was 53.0 MPa*/E
and that failure began within 2 ps af ter the arrival of the strain wave.
This value of dynamic-initiation toughness is about the same as that mea-

25sured by Zehnder and Rosaskis f or 4340 steel with about the same hard-
ness.

With progress made in developing the testing parameters for 4340 i

steel, attention was directed to specimens made from A 533 grade B class
1 steel. The material available was in blocks ~50 x 200 x 200 mm. The

l dog-bone specimen was redesigned to be made f rom three pieces cut from
those blocks and included two identical end pieces and a center piece.
These pieces were metal inert gas (MIG) welded together with series 70
wire to produce an extended bar, as shown in Fig. 2.33. The bar was
extended to a length of 400 mm in the straight bar region to move the
strain gages away f rom the explosive charges and to allow more time for
the wave to propagate to the center notch. The additional time and
distance is also beneficial in shielding the instrumentation from

electrical noise at detonation and from the blast wave.
;

'
,
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The center notch will be fatigue sharpened, and testing of the A 533
grade B class 1 steel under very high rates of loading will begin during

'

the next report period.
2.3.3.2 Impact-loaded notched round-bar experiments. The impact-

i

loading device used with the notched round-bar specimens can introduce
nominal strains of 0.0014 into the large-diameter region of the bar. The
nominal strain rate approaches 20/s. The actual strains and strain rates
at the notch are much higher because of the 4/1 area ratio and because of
the large strain concentration that occurs at the tip of the rs ut redius.
Initial tests indicated that the notched bar would not fail with a fall
height drop of 1.78 m when the root radius was 0.13 mm. No attempt was
made to nachine a sharper radius; instead, the notch was sharpened by 1

!loading the bar in axial compression. Loads of 55 x 103 kg were imposed
on the A 508 specimens, causing the center region of the bar to yield and

'
the walls of the notch in the local region of the root radius to close

| together. The localized yielding action produced a pseudocrack abour
O.3 mm deep, as indicated in Fig. 2.34.

'

Five specimens made from the A 508 steel with compression-formed
pseudocracks were tested in axial impact. In all of the tests, loading
was accomplished by dropping the 58.6 kg weight a distance of 1.78 m.
All five specimens f ailed, and data were obtained that permitted the

The results obtained are shown in Table 2.5. Thedetermination of kid.
i values of K show remarkable consistency when compared with more conven-Id

tional forms of fracture-initiation testing. This finding was surprising
because data f rom the six strain gages mounted on the notched round bar
showed considerable deviation. However, when four to six gage readings
were averaged and this average strain at fracture initiation was used to
determine K, the results were repeatable. The largest deviation was with
Test No. 4, which had a dynamic-initiation toughness of 66 MPa*/m. The h

,
l

strain-gage records in this test were atypical and indicated that initia- [,

! tion was followed by arrest rather than by a complete rupture of the re-
duced section. The fracture surface of this specimen will be analyzed in '
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Table 2.5. Dynamic initiation
toughness in A 508 steel

at 20'C
.

Test No. Id
*

(MPa*/m)

1 51.2
2 49,6
3 50.9
4 66.0
5 52.0

Average 53.9

- more detail. Initial fracture examination at UM showed excessive notch
closure and transverse, rather than concentric, crack extension.

'

As these five specimens were tested over an extended period, improve-
ments were made in the instrumentation system used to record the strain-
gage signals. These improvements included installing better grounding to;

reduce noise, providing a single gate to trigger all six channels of data
at the same instant, and reducing the time resolution to 100 ns. As

j these improvements were incorporated, some unusual dynamic behavior in
the strain-time traces was observed. Several of these records are being

| examined to better understand the dynamics of the specimen just before
'

and immediately after crack initiation. Apparently, it is possible to i

observe premature pop-ins and arrest before the main f racture initiation.

| It is also possible to observe some effects of stress-wave propagation in
" the specimen caused both by the loading wave and the unloading waves
I produced by initiation.

2.3.3.3 Fractographic analysis. An extensive analysis of the frac-
ture surf ace of specimen DWiT-4 (Test No. 3) was performed to character-
1:e the crack tip, the initiation site, and the degree of cleavage befora '

; and after initiation. A typical strain-time record for this specimen,
shown in Fig. 2.35, indicates two premature pop-ins (at B and c) before
the major initiation leading to failure at D.

,

An optical fractograph of the fracture surfaces of the specimen is.

presented in Fig. 2.36. The f racture surface is planer and was containeda

'

and controlled by the notch. A ridge near the center of the surf ace is
caused by intersecting cracks that have propagated along different planes.,

Much better detail of the fracture-surf ace features can be observed in
the SEM fractograph presented in Fig. 2.37. A large number of cleavage-
initiation regions, ~50, are identified by the small white dots located

: about the periphery of the bar along the pseudocrack tip. Only a few of j
these many initiation sites were of importance in developing the running i

crack. The two main cleavage-initiation regions, indicated by the
letters A and B, are located 120' apart. The cracks formed at these two
sites propagated in the directions shown by the small white arrows.

i
,

'
.
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Fig. 2.37. SEM fractograph of fracture surface of specimen DWIT-4.
Numerous cleavage initiation regions along the precompression crack tip
are indicated by dots, among which A and B are main initiation regions.
Crack propagation directions are indicated by arrows.

These two major cracks joined near the center of the specimen, forming
the ridge most easily observed in Fig. 2.36. The pseudocrack is clearly
evident in Fig. 2.37. It is the dark annular band about the circumfer-
ence of the specimen. It is of uniform depth (0. 5 cn) about the entire
circle, indicating good control of the specimen deformation in the axial,

compression loading.
i
,

)
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I

Detail featutes of initiation region B are presented in Fig. 2.38 i

with two SEM fractographs. In Fig. 2.38(a), three dominant characteris-
tics are evident. The first of these is the precompressed zone that
formed the pseudocrack. The second is a stretched and ductile f racture
zone ~50 pm deep. The third is a cleavage zone tiunt extends over the
remainder of the fracture surface. Where the stretched and ductile zone
meets the cleavage zone, initiation region B is identified within the (
square. Figure 2.38(b) presents an enlargement of this square and ,

clearly locates the initiation site with its adjacent cleavage planes. ,

The surface features of the stretched and ductile fracture zone show i

avidence of plastic deformations in this localized region. !

A similar set of SEM enlargements corresponding to fracture initia- '

tion region A is presented in Fig. 2.39. The stretched and ductile frac- ;
,

I ture zone is larger and more irregular for this region, as shown in Fig. j
2.39(a). The ductility is achieved by void formation and hole coales- |

'

j eence. The initiation region, again located within the square, occurs t

| where the ductile fracture zone meets the cleavage zone. The cleavage- [
initiation origin located at position x in Fig. 2.39(b) indicates that !

'

the micromechanics of the initiation process is associated with particle<

: clump rupture.
'

2.3.3.4 Future plans. Twenty notched round-bar specimens are now 1

i being machined f rom A 533 grade B class I steel and will be tested under (
! impact loading. The temperature will be varied in these tests to deter- (

mine the change in the initiation toughness f rom the lower to the upper .

shelf. I
,

*Further work will characterize the dynamic behavior of the specimen
,

'

| and develop a systematic method to interpret the strain-time traces. A
formal paper describing the loading system, instrumentation method, data, ,

j analysis, specimen dynamics, and f ractographic analysis will be prepared. 1

!Experiments will be conducted with the explosively loaded dog-bonei

specimens of A 533 grade B class 1 steel with the objective of achieving
i failure in <10 ps. |
1 [

. 2.3.4 Nunerical studies at UM f

! !

j Numerical studies performed at Im during this reporting period have I

! continued to focus on two areas: (1) determining and validating appro- !

priate crack-tip velocity va dynamic stress-intensity factor vs tempera- !
4

j ture relations using measurad data f rom the WP-1 and other test series of i

A 533 grade B class I steel, and (2) investigating triaxial constraint !i

| and the transition from plane-stress to plane-strain-yielding conditions I

j in the crack-tip region. (
; 2.3.4.1 Dynamic f racture-propagation relations for A 533 grade B '

' class 1 steel. Although of ten unknown or poorly defined for many mate- r
'

| rials, the relationship between instantaneous crack-tip velocity a,

|
dynsreic strennntensity factor K, and temperature T is a primary input ;

for predictive "application mode" dynamic-fracture finite-element codes. ;
,

hAn estimate of this relationship for A 533 grade B class 1 steel, as in-i

i ferred from posttest "generation mode" dynamic-fracture analyses of tests ;

i WP-1.2, WP-1.3, WP-1.5, and WP-1.6, is presented in Ref. 26. Application- |
| i
! |
;

j
i :

! !

ii

t
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I Fig. 2.38. SEM fractographs of cleavage initiation region B (indi-
cated in Fig. 2.37). (a) 1.ow raagnification SEM f ractograph showing the
precorspression zone (width about 0.5 m), stretch and ductile f racture

I zone, and a cleavage initiation region (box area); (b) the enlargement
of the box area in (a) showing ductile f racture zone with a width of'

about 50 rn and f."e cleavage initiation origin (x) located at the edge
of the ductile fracture zone.
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mode analyses of these same tests using the inferred I vs K vs T relation-
ship were found to produce results acceptably close to experimental and
generation-mode analycical values.

Additional validation of the proposed I vs K vs T relationship is
now in progress. Application-mode analyses using the proposed relation-
ship have been completed for the 0.15-a-thick WP-1.7 test, and the re-
suits are now being interpreted. Similar analyses will also be performed
for the recently completed WP-1.8 test' (which was also 0.15 m thick).
Data from these two tests were not used to infer the I vs K vs T rela-
tionship and thus provide a fair test of the relationship, at least for
the wide plate test geometry. Validation studies of other specimen
geometries are also planned; in particular, data from the small-scale
"stub panel" test specimens at ORNL will be analyn.ed.

2.3.4.2 Investigation of triaxial constraint and yielding in the
crack-tip region. Triaxial constraint effects and the transition from
plane-stress to plane-strain yielding conditions in the crack-tip region
are being investigated through a se;ies of fine-mesh static nonlinear;

three-dimensional (3-D) analyses of a single crack in an infinite plate.
The target element size for the analyses is 1/20 of the specimen thick-
ness.

Because of the enormous number of calculations in these fine-mesh |
analyses, a computationally ef ficient combined boundary-element-finite-
element formulation has been developed for these studies. Finite ele-
ments, which are advantageous for modeling nonlinear material behavior,
are used in the nonlinear near-crack-tip regions; boundary elements,
which are very advantageous for modeling linear infinite-boundary do-
mains, are used to represent the f ar-field conditions. This combined
formulation permits very fine mesh discretization in the crack-tip region
of interest without the overhead of massive numbers of elements and
degrees of freedom in the far field. Details of the combined boundary-
ele ment-finite-eleme nt formulation are presented in Refs. 27 and 28.

Although the fundamentals of the combined boundary-elemenb-finite-
element formulation are relatively straightforward, several difficulties
have been encountered in its application to the 3-D near-crack-tip f rac-
ture problem:

1. The boundary-element formulation for the far-field region is for two-'

dimensional (2-D) plane-stress conditions: this formulation must be
mated to the 3-D finite-element formulation for the near crack-tip
region. Inaccuracies caused by this dimension mismatch should be
negligible provided that the interf ace between the finite-element and )
boundary-element regions is f ar enough f rom the crack-tip region.

,

Work by Parsons, Hall, and Rosakis (Ref. 29) for linearly elastic
conditions suggests that placing the interf ace at a distance of one
plate thickness f rom the crack tip should be sufficienti parame t ric
studies designed to verify this suggestion are under way.

2. The traction-f ree crack f aces within the f ar-field region must be
discretired by boundary elements extending from the interface between
the finite-element-boundary-element regions to the symmetry line (for
mode I fracture) at the center of the crack. However, the crack

|
| 1
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.

faces themselves lie along a symmetry line, creating serious numeri-
cal instabilities for the boundary elements along this line. Solu- ;

tions under investigation for this problem include extending the '

near-field finite-element region back to the center of the crack.

3. The boundary-element f ar-field formulation complicates bandwidth !

optimization for the global stiffness matrix. Modifications to the
bandwidth optimization algorithms are being investigated to minimize
this problem.

These dif ficulties with the combined boundary-element-finite-element {

formulation are surmountable, and work on them is under way. Neverthe- [
1ess, a parallel but separate approach to the problem has been initiated L

based solely on a conventional finite-element formulation. This parallel

approach, which necessitates coarser meshes than desired and a finite-
specimen geometry, will be used to perform scoping analyses and to gener- ;

ate preliminary findings while the dif ficulties with the combined f ormu- |
i
'

lation are resolved.
I
t

,
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2.4 High Strain Rate Testing of A 533 Grade B Class 1 ;

Steel at Various Temperatures j
c

A. Gilat*' >

\
j 2.4.1 Introduction I

[
{

The mechanical behavior of A 533 grade B class 1 steel at high rates r

j of deformation in pure shear is being studied. Tests have been conducted !

at strain rates of ~800 and 5000 s-1 and at temperatures of 20. -40, and |;
-150*C. The results summarized below show that both temperature and i

i

|
strain rate have a significant effect on the material response. !

i

2.4.2 Experimental procedure !

I l

: The torsional split-Hopkinson bar technique is used for the tests. [
i

i In this technique, a short material specimen (thin-walled tube) is placed
! between two bars, as shown schematically in Fig. 2.40. The specimen is |

| loaded by a torsional wave that is generated in the input ba . To gener- [

ate the wave, a torque is stored in the section between the clanp and the'

,

i * Engineering Mechanics Department. Ohio State University, Columbus, ,

I Ohio. j

\ i
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ORNL-DWG 884327 ETD
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Fig. 2.40. Schematic diagram of torsional split-Hopkinson bar,
used in high-strain-rate tests of A 533 grade B class 1 steel.

i

loading wheel by first tightening the clamp and then turning the loading
wheel by a hydraulic system of cables and pulleys. When the clamp is
released, a torsional wave propagates toward the specimen. Once the
specimen is loaded, part of the loading wave reflects back to the input
bar and the remainder is transmitted to the output bar. The history of
the load and deformation in the specimen is determined by toonitoring the
stress waves in the bars that remain elastic during the test. A drawing
of the specimen is shown in Fig. 2.41. The specimen itself is the thin-
walled tube machined in the middle section. The outside diameter of the
flanges on both sides of the specimen is selected so that the impedance
of the flanges will match that of the input and output bars. This match
ensures a smooth propagation of the waves without reflections. The
flanges are glued to the bars with TRA-CON 2106T epoxy. A detailed de-
scription of the torsional split-!!opkinson bar technique and the equa-
tions used in the analysis of a test are given, for example, in Ref. 30.

In the low-temperature tests, a small chauiber is placed around the ,

'specimen, and liquid nitrogen is sprayed into the chamber. The tempera-
ture is measured with a thermocouple that touches the inner wall of the
specimen.

CANLOWG 684328 ETD

--- r se - _

,

--- ____=
_

.

Fig. 2.41. Specimen for the torsional split-Hopkinson bar tests of
A 533 grade B class 1 steel.

I
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2.4.3 Results and discussion

Details of 16 successful tests are summarized in Table 2.6. As an
example of data obtained in a test, the wave signals recorded at the
three gage locations shown in Fig. 2.40 for test OR-22 are shown in
Fig. 2.42. The records show a rise time of <50 s in the input wave.

The history of the strain rate in the specimen, obtained by manipulating
the recorded signals, is shown in Fig. 2.43. For all of the tests listed
in Table 2.6, the stress-strain curves are shown in Figs. 2.44-2.49.

f

Table 2.6. Summary of test conditic os
for high-strain-rate tests of

'
A 533 grade B class 1 steel

""# * #" "Experiment Temperature
No. #"_I" ('C),

OR-16 5000 20
OR-17 4900 20
OR-18 850 20
OR-19 790 20
OR-20 9 00 20
OR-22 5000 20
OR-27 900 -60
OR-28 5100 - 60
OR-29 5000 -60
OR-32 850 -60
OR-33 950 -150
OR-35 910 -150

!
OR-36 5000 -150
OR-37 5000 -150
OR-38 5000 -150
OR-39 5000 -60

'
|

The effects of strain rato and temperature on the flow stresa are I

'

shown in Figs. 2.5&-2.53. In these figures, the data from all of the
T'etests are presented in shear-struss vs shear strain-rate diagrams. n

,

ef f ects of the temperature are also shown separately in Figs. 2.54 and'

2.55, which present the lower yield stress as a function of temperature
for tests at strain rates of 800 and 5000 s-1, respectively.

,

The following two major observations can be made from examining the '

i test results.

1. The material response is af f ected by the strain rate, and the strain-
rate sensitivity increases as the strain rate increases. At room
temperature, for example, the lower-yield stress increases by 45 MPa

:

-- _ _ . _ - . _ _ _ . - - _ - . - - - _ _ _ - - _
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Fig. 2.43. History of strain rate in specimen of A 533 grade B
class 1 steel tested at strain rate of 5000 s-1 and temperature of 20'C.
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Fig. 2.44. Shear stress-shear strain curves for specimeng of A 533
grade B class I steel tested at nominal strain rate of 5000 s" and

temperature of 20'C (tests OR-16, -17, and -22 in Table 2.6).
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Fig. 2.45. Shear stress-shear strain curves for specimens of A 533
grade B class 1 steel tested at nominal strain rate of 800 s-1 and tem-
perature of 20'C (tests OR-18 -19, and -20 in Table 2.6).
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Fig. 2.46. Shear stress-shear strain curves for specimens of A 533 :

grade B class 1 steel tested at noainal strain rate of 800 s-I and tem- i
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Fig. 2.47. Shear seress-shear strain curves from specimens of ,

A 533 grade B class 1 steel tested at nominal strain rate of 5000 s-1
and temperature -60'C (tests OR-28, -29, and -39 in Table 2.6).
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Fig. 2.48. Shear stress-shaar strain curves from specimens of
A 533 grade B class 1 steel tested at nominal strain rate of 800 s~l
and temperature of -150*C (tescs OR-33 and -35 in Table 2.6).
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Fig. 2.49. Shear strews-shear strain curves from specimens of
A 533 grade B class 1 steel tested at nominal strain rate of 5000 s-I

,

and temperature of -150'C (tests OR-3f; -37, and -38 in Table 2.6).
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(12%) when the strain rate increases from 900 to 5000 s-1 In com-

parison, the data from SwRI show an increase of ~17 MPa (6%) when the
strain rate increases from 10-3 to 10-1 s-1 and an increase of 48 MPa
(16%) when the strain rate increases from 1.7 to 900 s~l. (The com-
parison is made by transforming the compression data of SwRI to shear
data.)

2. The temperature has a significant effect on the material response.
In tests at a strain rate of 5000 s-1, for example, the lower yield
stress at -150'C is ~300 MPa higher than at room temperature. This
is an increase of 75%. Figures 2.54 and 2.55 also show that the
increase in stress with decreasing temperature is not linear. The
stress increases more rapidly as the temperature decreases. The tema
perature also has a significant effect on hardening behavior follow-
ing yield. A comparisoa of the stress-strain curves at room tempera-
ture with the curves at -40*C shows that the amount of hardening (the
dif ference between the yield stress and the ultiisate stress) is
smaller at the lower temperature. The curves f rom tests at -150*C
show that at this temperature there is no hardening at all after
yielding. Following yielding, the material sof tens as the stress-
strain curves gradually decline. The reason for this behavior is not
yet clear. Possible explanations may be the formation of twins that
are likely to exist at low temperatures or localization of plastic
flow that will appear as softening on the macroscopic stress-strain
curve. Microscopic examination of the specimens is now being
conducted to better understand this observation.
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2.5 ORNL Unified Inelastic Deformation Model

S.-J. Chang

31-33The unified inelastic deformation model formulated by Robinson
has been shown in other R&D programs to be capable of mathematically de-
scribing many aspects of the viscoplastic deformation behavior of several
structural alloys at high temperatures. Those studies have been aimed
primarily at providing equations for use in component design calculations
that included monotonic and cyclic loadings. In that formulation, creep
and plastic deformation have been represented indistinctively and inter-
actively. The model was first tested for 2 1/4 Cr-1 Mo steel and demon-
strated a high degree of success. ORNI. has recentiv extended the basic
Robinson model for describing strain-aging effects 3I's 35 as exhibited by
the phenomena of yield drop for Inconci 617 at 950'C and the reverse
strain-rate effect for type 304 stainless steel at $50'C. The model can
also describe creep-plasticity interactions such as creep-induced strain
hardening, described by Pugh and Robinson.3g

In the present HSST study, the extended Robinson model is being |
applied to represent the viscoplastic deformation behavior of A 533 '

grade B class 1 steel for use in dynamic fracture analyses. The equa-
tions have effectively modeled similar phenomena of yield drop and
strain-rate sensitivity at 100'C. Some of the preliminary results are
shown in Fig. 2.56, which compares theoretical predictions with test
data. In general, note that the strain-rate dependence of tensile curves
is of ten influenced by the ef fect of strain-aging that can be defined as
time-delayed ef fects caused by the interaction between dislocations and
solute atoms. Different alloys show different degrees of influence by
the strain-aging effect. This ef fect can lead to various rate sensitivi-
ties, even reverse rate sensitivity.

32Numerical implementation of a recent version of Robinson's mode 1'

into a finite-element program was made recently by Hornberger.36 The
current ORNL work will be combined with Hornberger's capabilities, while
Dr. Hornberger is on assignment to the HSST program from July to November
1988 f rom KfK, Karlshrue. Federal Republic of Germany.

The basic equations of the unified deformation model follow.

Flow equation for inelastic strain c

2p * = @(|E|) x F * (E - 5)/ 6 , F > 0 and 5(5 + I) > 0
2

=0, F < 0 or F > 0 and S(S - E) < 0, (2.2)

where

F2 3 /K -(K(|c|} and J2"( )/2 * (2*3))(~ ~

2
,
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!
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|

Growth equation for kinematic variable Et
,

xh=2pH(|h|)xk-RxG5 x 3//I G>C and S E > 0 |G 2 * o

(2.4) f.

xh=2pH(|h|)xk-RxG'x3// C<G or S I < 0 (G o 2 . oo
i
:

where
i

G2 ,g /K and 1 =3 /2 . (2.5) r

2 2
t,

t

4(|Ij) = 1 + C|clY and K(|c j) are material functions to model yield |
stress drop, strain-rate sensitivity, and creep-plasticity interaction. !

! These material functions and coefficients have been evaluated for the !
*

} data obtained earlier by SwRI for A $33 grade B class 1 steel at strain
j rates of 1 and 550 s-1 and at 100'C (see Table 2.7). !

i ;

5 !

1 |
, ,
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I

s
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Table 2.7. Unified constitutive equation material constants
for A 533 grade B class I steel at T - 100*C

" " 0 U
(M$a) ( ) (h) o /h) Io

E
10 7 1.5 0.01/fi 100 0.4//i 1 2.224 14.916 2.5 x 10-5 10 5 0.753

10 15 0.0752550 0.159 14.916 3.5 x 10-4

_ - _ _ _ _ _
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3. MATERIAL CHARACTERIZATION AND PROPERTIES

R. K. Nanstad

Primarily for internal management and budgetary control, the Heavy-
Section Steel Technology (HSST) Program created a separate task (Task
H.3) for the work on material characterization and properties determina-
tions. However, f or the reader's convenience some contributions to this
report are placed within other chapters according to the larger tasks
that correspond to the particular material studies. For example, in
addition to the work reported here, refer to Sect. 7.1 for crack-arrest
studies in clad plates and Sect. 7.2 for nondestructive examination
studies in support of cladding evaluations.

.

3.1 Crack-Arrest Toughness of Clad-Plate Base Metal

S. K. Iskander E. T. Manneschmidt
R. L. Swain

The pretest and posttest material characterization pert'ormed to date
has been reported in Ref s. I and 2, respectively. All eight clad plate

test specimens were machined from a single, specially heat-treated A 533
grade B chemistry plate. In this section, the results of crack-arrest i

toughness tests perf ormed on base metal of the clad plates are presented.
! Pretest material characterization consisted of tensile and Charpy

V-notch (CVh) tests of base metal, heat-af fected zone (RAZ) and cladding,
and a J R curve at room temperature for the stainless steel cladding.I
Posttest material characterizations reported in Ret. 2 included Young's
modulus and stress-strain curves for all three metallurgical zones, as
well as results of room temperature tensile testing that had been per-
formed on the KAZ f rom one of the broken halves of the first plate tested.
The reference nil-ductility-transition (RTNDT) temperature of the base
metal, the variation of hardness across the thickness of the plate, and

!metallographic examinations have also been reported in Ref. 2.i

Crack-arrest specimens were machined from the base metal of clad
plate CP-18, with an L-T orientation, corresponding to the electron-beam
(EB)-induced flaw propagating siong the surface. The base metal is A 533 ,

Besides char- |grade B with a special heat treatment to raise its RTNDT.
acterizing the crack-arrest toughness properties, the specimens were also
used to check a special fixture that will be used in the hot cells. The.'

specimens to be tested in the hot cells are the Sixth Irradiation Series
and are in three sizes -- 25 x 76 x 76 mm, 25 = 152 x 152 mm, and 33 x
152 x 152 mm. Special jigs will be used with each size, and thus crack i

arrest specimens of each of these sizes were fabricated. The starting ;
,

notches were weld embrittled (WE).
The asterial drop-weight nil-ductility transition (NDT) temperature

; is 36'C. The RT determined according to NB-2331 of the ASME B0ilde 7NDT
and Presskva Yessel Cbde Sect. 111 (wnich specifies the use of T-L j

; orientation CVN specimens) is 72'C. Thus, it is the T-L orientation that j

j

|
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controlled the RT determination. However, the orientation for surface
NDT

crack propagation in the clad plates is L-T (which incidently fulfills
both the 68-J and 0.89-mm requirements). Accordingly, the results of the
crack-arrest tests have been normalized using the NDT temperature rather
thtn RTNDT'

The crack-arrest toughness K , was measured according to Americang

Society for Testing and !!aterials ( ASTM) Standard Test Method for Deter-
mining the Plane-Strain Crack Arrest Toughness (E1221-88). The results

are shown in Table 3 1. Figure 3.1 shows Kg plotted vs the test tem-
perature T. Also plotted on the same figure,is the ASME Sect. III K IR,

curve, plotted relative to the NDT of this material. All three resultsJ

at -25'C, as well as one of the results at room temperature for the

.

Table 3.1. Crack-arrest test results f rom L-T
orientation specimens fabricated from base j

material of clad plate CP-18

I Nominal
't

specimen Specimen la
K ,/Kgg! E' ""I*size No. (MPa * E) g

(mm)

33 x 152 x 152 CP8 23 66 1.69
CP9 23 73 1.86
CP7 50 81 1.65

|
CP10 75 83 1.23
CPil 75 86 1.28 i

J

K ,/Kgg (mean) * lc = 1.54 * 0.27] 33 x 152 x 152 g
'

l

25 x 152 = 152 CPI 23 80 2.04
CP2 23 87 2.22 i

CP3 -25 80 2.49
CP4 -25 52a 1/62a

K,41R (mean) i lo = 2.09 * 0.37 !25 x 152 * 152 g

b25 x 76 x 76 CP13 -25 24 0.75
bCP15 -25 23 0.71
8CP18 23 79 2.02 ;

t

K ,/KIR (mean) * lo = 1.81 * 0.40For all valid specimens: g

alnvalid according to ASTM E1221-88 [reusining ligament too
small, but used in analysis of data, not included in calculation ;

of K ,/KlR (mean)].g

b
| invalid (remaining ligament does not meet ASTM E-1221-88,

'

included in calculation of K ,/KIR (mean)].|
not g

|
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Fig. 3.1. Results of crack-arrest tests on special heat-treated
curve. Openclad plate A 533 grade B base cuterial compared to ASME Kla

symbols are invalid according to ASTM Method E1221-88.

smallest specimen size, were invalid according to ASTM Method E1221-88
because the rem *ining ligament was too small. In earlier tests, also at

-25'C, using the smalles'. size specimens, the crack ran almost the entire
ligament. It therefore appears that the WE starter notch induces too
large a driving force K . To reduce the driving force, a machined, sharp

ostarter notch with no brittle veld, perhaps f atigue precracked and/or
warm prestressed (WPS), will be used to obtain data at low temperatures.

Table 3.1 gives the ratio of K ,/KIR, the mean and standard devia-g

tion f or the two groups of specimen sizes, as well as for all usable
results. The results below the KIR curve are obviously outliers and have
been disregarded in the analysis of the data. Two "invalid" values were
included in the computations because previous studies have shown that the
validity criteria of E1221-68 may be tuo restrictive.3 Although the nua-
ber ot test results in this case are too small to enable definite conclu-
sions, it is instructive to compare these averages to those obtained in
the characterization of the A 533 grade B class 1 steel (HSST Plate 13 A)
used in Series 1 of the wide-plate tests. The averages and standard
deviation f rom earlier Oak Ridge National Laboratory (ORht) tests" are
1.46 and 0.20, respectively; while the corresponding values from a

5Battelle Columboa Laboratory (BCL) study on the same HSST Plate 13A are
1.55 and 0.20, respectively. In the latter study, unusually high Kla/NIR
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ratios were not included in the averages as they were considered outliers.

Thus, the mean of the K ,/K!R ratio and standard deviation f rom theg

present study (1.81 and 0.40, respectively) caem to be higher than those
obtained in the two previous investigations on the same material. How-
ever, the scatter of values from each specimen size group in the present
investigation, as measured by the standard deviation, is smaller. The
higher K ,/KIR ratio from the present study may result from the unusualg

heat treatment that the clad plate base material has been subjected to in

order to raise its RTNDT. On the basis of the limited number of results,,

it seems that K , for this material and in the temperature range -25 tog

75'c is only mildly dependent on temperature. These results will be used
in the analysis of the tests on clad plates (see Sect. 7.1 for a descrip-

tion of the tests).

3.2 Development of $0-mm-Thick Duplex Crack-Arrest Specimens
I

! S . K. Iskander E. T. Manneschmidt i
i R. L. Swain J. F. King j

t

Successful crack-arrest testing at temperatures 20 to 40 K above the
NDT is difficult to achieve with WE specimens. Duplex specimens 25 to 35
mm thick, with A 533 grade B and 2 1/4 Cr-1 Mo test sections, have been
used for this purpose.4 5 Also successfully tested were 50-mm-thicke

2 1/4 Cr-1 Mo specimens.3 ' However, thus f ar, the number of successfulej

tests on 50-mu-thick A 533 grade B or weldments at temperatures 20 to
| 40 K above NUT has been small. In general, unsuccessful test * on duplex
! specimens are characterised by the running flaw either arresting or

making a right-angle turn and propagating along the HAZ of the 4340 steel.
To increase the number of successful tests on 50-mm-thick specimens,

the EB-welding parameters have been optimized to reduce the width of the
fusion region as well as its porosity to increase the probability of the
crack jumping across the tough HAZ.

Figure 3.2 shows micrographs of a typical EB-weld of 4340 steel to
j the test section. The plane of the picture is parallel to the crack

j plane. The specimen (No. P1300) from which this micrograph was prepared
; is one of several successful 50-mm-thick specimens tested.5 The test i

section is 2 1/4 Cr-1 Mo material used in the second pressurized thermal
shock test (PTSE-2) as well as in the second series of wide plate tests.

, ,

Figure 3.3 shows a closeup of the midthickness and the porosity that is'
;

; common in specimens of this thickness caused by the two EB-weld passes, [
one from either side. The crack-arrest test was successful, and the lack

'

of fusion apparently did not hinder the crack propagation in this case.
Figure 3.4 shows the variation of microhardness across the fusion

zone at three locations, each characterizing about a third of the spect- |
) men thickness (see Fig. 3.2). Hardness "peaks" in A $33 grade B HAZ are '

2 and !I known to be associated with higher toughness than its base metal
' 'have indeed arrested propagating flaws in the clac-plate tests (see

'Sect. 7). It is not known whether the hardness peaks observed here are
also associated with higher toughness than those of 4340 base metal. The

I
,

I

l

I
i

I
,

4
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Fig. 3.3. Closeup of midthickness of same specitaen shown in '

Fig. 3.2. The porosity did not hinder the crack propagation in this
case.

h a r d n e s :. peaks in the 4340 HAZ. together with the porosity of the mid-

thickness region , may be the cau e of the difficulty of the cracks pene-
trating the fusion zone.

In the esse of 2 1/4 Cr-1 Mo, 50-mm duplex specimens, the tests were
successful. However, for two other materials, A 533 grade B and its weld
metal (designated A73W), the crack-arrest te.ts on Su-ca duplex specieens
were not successful, again becau3e of flaws a r r e s t i ng / d ive r t i n.; in the

,

HAZ of tne 4340. Figure 3.5 shows the varfation of hardness across mid- 1,

'

thickne,s of duplex specinens from twa such unsuccessful tests (un spect-
nen WPISBP and A7 W73, A 533 grade B base and weld metal, respectively).1

The variation of h a r d n e .,s in e uh of these siccinens is sinilar to that
in the successful test. Tnas, the rea ons for the arrest in the RAZ ot
the 4340 of duplex srecimens made of one caterial and nnt in those naJe
from another is unknown at this time. Note that the thernal properties
of all three above naterials are similar.

,_ _. . _ . - _.
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The potential gains to be made by optimizing the EB-weld are di:nin-
ishing. There is probably more to be gained by optimizing the specimen
geometry. One approach to be explored is the side-groove geometry, for
example, reducing its sharpness so that crack initiation is moved from.

the edges toward the center. The initiation site for duplex specimens
generally seems to be at the intersection of the side grooves and the
crack starter hole in the 4340 material. After initiation, the crack
tends toward midthickness and arrests upon reaching the porous midthick-
ness. If the effective toughness of the material towards the surface is
smaller than that at midthickness (conditions similar to those of speci-
mens with no side grooves), the available energy could be used in "tun-

] nelling" across the fusion zone. This may increase the chances for a
successful test.3
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4. SPECIAL TECHNICAL ASSISTANCE

4.1 LVR Vessel Supports

R. D. Cheverton F. B. Kam
R. K. Nanstad C. C. Robinson

4.1.1 Introduction

Late in 1986, a reevaluation of the integrity of the High Flux Iso-
tope Reactor (HFIR)I pressure vessel (Fig. 4.1) was begun in an effort to
extend the permissible life of this vessel.2 Vessel serveillance data.3
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which had not been carefully exasined since 1974, indicated that the
embrittlement rate was significannly greater than had been anticipated on
the basis of data obtained f rom misterials testing reactors (MTRs) in the
early 1960s. The neutron energy sjectra and the irradiation temperatures
f or the HFIR surveillance specime,ne and for specimens in the MTRa were
believed to be essentially the r,ame, and the materials were very similar;

t however, the f ast-neutron fli% (4) in the MTRs was about 10" times that
' in the RFIR specimens. Tb.is , it appeared that the lower flux in HFIR was
i responsible for the relscively large amount of embrittlement per neutreat

that is, there appeared to be a negative fluence-rate ef fect ("rate"
j effect): the lower the fluence rate (4), the greater the embrittle'ent
: per neutron.
| Soon af ter this discovery, it was realized that the rate effect might

; significantly impact the life expectancy for some light-water-reactor
(LWR) vessel supports because the temperatures and fast fluxes associated

3

| with supports, which are located in the cavity between the vessel wall

! a nt'. biological shield (Fig. 4.2), are about the same as for the HFIR
j vr,s s e l . Thus, a study was initiated at the Oak Ridge National Laboratory
]

(ORNL), as a part of the Nuclear Regulatory Commission's (NRC's) Heavy-
Section Steel Technology (HSST) Program, to evaluate the impact.
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4.1.2 Embrittlement rate g,'.

The portion of the HF ' . v v. A that is subjected to the highest
f ast-neutron fluxes is close to the beam tubes (Fig. 41) because the
beam tubes displace beryllium and water that otherwise constitute shield-
ing for the vessel wall. Thus, both shell material (A 212 grade B) and
nozzle naterials (A 105 grade II and A 350 grade LF3) were included in
the HFIR vessel materials surveillance program, and the surveillance cap-
sules, each containing three Charpy V-notch (CVN) specimens and a flux
monitor, were located close to the beam tubes (keys 1-7, Fig. 4 1).

The design of the HFIR vessel considered radiation embrittlement to
the extent that the vessel and nozzle diameters were large enough and the
nozzle caterials initially tough enough that a vessel life of 20 equiva-
lent full power years (EFPY) could be achieved. The criterion that had i

to be satisfied was
,

NDTI + 33'c < T ,
I
'

where NDTT is the nil ductility transition temperature (a measure of the
extent of embrittlement), ano T is the temperature of the vessel. The ,

j minimum value of T was 21*C, which was specified as the minimum permis- !

sible value for pressurization (normal operating temperature for the I
'

vessel is ~49'C). The available embrittlement data used in the design of'

the vessel were obtained from MTRs. included data for A 212 grade B

<93'C(Fig.4.3).gondedtoappropriateirradiationtemperatures,that
steel, and corres is,j

;
|
J HFIR surveillance specimens of A 212 grade B were removed for test-
) ing af ter 15.0 and 17.5 EFPY, and A 105 and A 350 specimens were removed I

] after 2.3, 6.5, 15.0, and 17.5 ETPY. The results, in the f orm of ANDIT

| vs fluence (?), for neutron energy (E) > 1 W!V, are compared with the MTR t

data la Fig. 4.4. If it is assumed that s9ectrum and chemistry etfects

{
are not responsible f or the incongruity of the three sets of data, the >

j comparison indicates a rate ef f ect. To evaluate the possible ef fects of i

J the chemistry and spectrum, HFIR archive A 212 grade 8 material was :
"recently irradiated in the Oak Ridge Research Reactor (ORR), a typicali

| MTR, and the HFIR and ORR A 212 drade B data were plotted as a f unction
of displacements per atom (dpa) f or E > 0.1 MeV (Fig. 4.5).* Although |I

) the HFIR spectrum is somewhat harder, the incongruity still exists. |

j Furthermore, the ORR data point for the HFIR A 212 grade B archive mate- [
|

i
rial falls in the scatter band of the MTR data (Fig. 4.4), and surveil-

] lance data f rom army reactors PM-1 and PM-1 A (Fig. 4.6) (Ref. 5) indicate i

no significant dif f erences in sensitivity between A 212 grade B and A 3501
-

grade LF3. Th&se later data also indicate that for the relatively high .

fluxes in the PM-1 reactors, the increase in NDTT for A 212 grade B at a.

l fluence of 1 re 2 = 1017 neutrons /cm2 is inach less than that obtained |

l from HFIR. Tius, it appears that the rate effect indicated in Fig. 4.4
is a real phet.omenon.

i

) t

i
- ,

{ *To obtain the MIR curve, it was assumed that the calculated |

|
spectrum for the ORR was appropriate for the MTR data. j

! !
'

t

!
,
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,

4.1.3 Application of rate effect to LVR vessel supports

A preliminary evaluation of the tapact of the rate effset on life ;
.

expectancy of LVR vessel supports was conducted by estinati3h the [
increase in NDTT, at 32 EFPY, corresponding to the cavity fluxes in spe- |
cific Babcock, and Wilcox (B&W), Combustion Engineering (CE), Westinghouse ,

(V,), and General Electric (CE reactors for which calculated multigroup |cavityfluxeswereavailable.g7,

Displacements per atom (E > 0.1 HeV)e

was used in lieu of fluence to account for the dif ferent neutron spectra
in HFIR, ORR, and LVR cavities.* As indicated in Tigs. 4.4 and 4.5, it

,

was assumed that curves drawn through the HFIR data points corresponding r

to different flux values were parallel to the MTR curve and that they !

adequately represent vessel support materials. Furthermore, it was y

assumed that for a given value of ANDTT, there is a linear relationship
i

l
'

*The lower limit for E of 0.1 MeV was considered to be adequate for

the purpose of this study.

|

!

t
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|

between log dpa and log (dpa rate) over a limited range (Fig. 4.7).*
Based on these assumptions, the results presented in Table 4.1 were
obtained.

In terms of ANDTT, the impact of the rate effect la quite large,
except for the CE reactors, sich have mare water shielding and thus a
much lower flur, in the cavity. However, it is not intended to imply that
all pressurized-water-reactor (P'n'R) vessel supports will experience these
large shifts. Many of the supporte do not extend vertically into the

* Figure 4.7wasobtainedbycross-plottingdatainFig.4.5for6=2and 1.2 x 10' neutrons /cm *a. The extent of extrapolation2.4 = 10
required is evident from Fig. 4.5.
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high-flux region opposite the core. For example, all but one of the ves-
sela in B&W plants are supported by skirts at the bottom of the vessel,
well away from the core (vessels in GE plants are supported on skirts,
also). Or 2 other hand, shield-tank and long-column-type supports
(Fig. 4.2) do extend the full length of the core,' and some others extend
to and below the top of the core.

The concern over embrittlement is that the probability of cupport
failure as a result of propagation of sharp, cracklike defects (flaws)
increases with increasing embrittlement (increasing NDTT). Most supports
are nominally loaded in compression. and this tends to mininize the
chances of flaw propagation. However, some supports are in bending, at
least under some loading conditions; some are exposed to thermal gradi-.

i. ents that induce significant thermal tensile stresses; and some contain
welds that introduce residual tensile stresses. Thus, assuming flaws to"

exist, presumably the ingredients (flaws, tensile stress, and low tough-'

ness) do exist in some supports for flaw propagation. Therefore, it

appears that the embrittlement rate effect deduced from the HFIR surveil-
lance program may significantly impact the life expectancy of some PWR
vessel supports.

4.1.4 Summary and conclusions

1

| Data from the RFIR pressure vessel surveillance program indicate an
'

! embrittlement rate e2fect that may have a significant impact on the life
; expectancy of some PWR vessel supports. However, the necessity fot ex-

tensive extrapolation of the HFIR data and the correlation of data with
i neutron energien only above 0.1 MeV introduce substantial uncertainties.
i Furthermore, it is premature to state what the effect of embrittlement is

on the life expectancy of the vessel supports. There is, however, suffi-
cient evidence of an embrittlement rate effect to justify a continuing

effort to obtain more definitive answers. This effort is under way at

the request of the NRC.

a

4.2 BWR Vessel Integrity Assessment
;

i R. D. Cheverton D. G. Ball i

L

In November 1987 the NRC requested that ORNL begin to evaluate the |
integrity of BWR vessels when subjected to pressurized-thermal-shock '

'

(PTS) loading. Two specific reasons for concern are that (1) surveil- t

lance data from BWRs indicate that the embrittlement rate may be gteater ;

than expected and (2) the 10-year inspection for flaws specified by the |
ASME code is not required by the NRC for boiling-water-reactor (BWR)
vessels. Previously it was believed that radiation-induced embrittle" )

,

ment of BWR vessels and thus the potential for propagation of flaws ini

the belt-line region of these vessels were essentially negligible. ,

The approach selected for the present evaluation involves the cal- :

culation of the conditional probability of vessel failure in accordance !-

! with the methodologies developed for the Integrated Pressurized-Tharmal
!

)
1

I !
,

. . -, --- - --- . . - , - - - - - - - - - , - - - - - - .-,--,-------------,-_n,--, -, - - - -.
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Shock (IPTS) Program.8 This approach permits consideration of the in-
fluence of in-service inspectf or. on the calculated probability of failure,
because it is necessary to specify flaw density and flaw size distribu-
tion. For the analyses conducted thus far, values of these parameters

,

are consistent with r3 in-service inspection. Details of the method of
analysis for estimating the conditional probability of vessel "failure"
(P(F|E)) and of the pararceters simulated are discussed in Ref s. 8-10. i

Accident scenarios were discussed with S. Hodge (ORNL) and W. Hodges
(NRC), and a more specific transier.t, the design basis accident (DBA), is
doscribed in Ref. 11. Thi6 latter transient involves complete circumfer- *

ential failure of one of the recirculation loops (Fig. 4.8) while the
reactor is at full power. As indicated in Fig. 4.9, the vessel will ;

| depressurize in ~30 s. The low pressure activates the core spray systems [
and the low-pressure coolant injection (LPCI) system. Cold water is in- |

"jected through the core spray system onto the top of the core and through
the LPCI system to the bottora of the core (Fig. 4.10). Within 85 s, the
LPCI cold water, which enters through half of the jet pumps, spille over
the top of the jet pumps, coming in contact with the vessel wall. Thus,

,

j the vessel wall is exposed to a low-temperature coolant, and the vessel
| pressure and bulk coolant temperatures are further reduced (Figs. 4.11

a nd 4.12 ) . Table 4.2 shows the "conservative" estimates of the bulk
coolant temperatures and heat transfer coefficient adjacent to the vessel'

wall.ll As indicated, within 30 s the coolant temperature is down to 138
,

; f rom 288'C, and during this time the heat transfer coefficient is very
;

,

Table 4.2. Bulk-fluid temperatures and fluid-fils

~

hest transfer c. efficient 6t inner surface,

.f vessel wait f.r DBAIA
!

-

Bulk-fluid temperatures Heat transfer coefficients L

ti.;,r Besi.. u ,e,i.. m Besi. u . 81.. m

T'.,)i T',)3
iwec.2. c.F)] tw/:.2. c.F))

h hm
i.c c.c (Stu/ haft 2 (8tu/ haft 2|

I
O 228 (550) 288 (550) 5.68 = 10" (10.000) 5.68 = 10" (10.000)

} 10 260 (500) 260 (500) 5.68 = 10" (10.000) 5.68 = 10" (10.000) |

| 20 199 (390) 199 (390) 5.68 = 10" (10.000) 5.68 = 10" (10.000)
25 149 (300) 154 (310) 5.68 = 10" (10.000) 5.68 = 10" (10.000);

| 30 138 (280) 138 (280) 5.68 (10) 56.8 (10)
40 132 (210) 132 (270) 5.68 ( 10) 56.8 (10) ;.

80 132 (270) 132 (270) 5 68 (10) 56.8 (10)
65 21 (70) 132 (270) 2.86 = 103 (500) 56.8 (10) ;

! 175 21 (70) 127 (260) 2.84 = 103 (500) 56.8 (10)
#

| 500 21 (70) 121 (250) 2.84 = 103 (500) 56.8 (10)
700 21 (70) 116 (240) 2.84 = 108 (500) 56.8 (10),

(1000 21 (70) 110 (230) 2 34 = 103 (500) 56.8 (10)
i

; 2000 21 (70) 101 (225) 2.84 = 103 (50W 56.8 (10)

| 3000 21 (70) 107 (224) 2.84 = 103 (500) 56.8 (10)
>

.

i
::~ ~ . . _ _ . . - , . _
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3. SEPARATOR OUTLET 1020 10.5 X 106 547 1191.5
(STEAM DOME,

4. STEAM LF4E (2nd 985 10 5 X 108 543 1191.5
ISOLATON VALVE)

-

5. FEEDWATER INLET 1045 to 5 X 106 420 397 8
(tJCLUDES CLEAi4#
RETURN FLOW,

6. rec 1RcutATON PUMP 1032 34 2 X 106 532 C264
$UCTION

7. RECIRCULATON PUMP 1206 $4 2 X 106 533 527.6
OfSCHAAGE

4

1e) =

{ (%/ Q kbVdb w/ 4 E MAlH STLAM Flow
TO TURB1HESTEAM DRYERS % h >

* ~~ ~~

STEAM ' " " ' ' ~ ~ ~

$EPARAtoRS % ~

*4
AIN FEED Flow

- o 3 i WW '

ORIVING g.{ [ _
g' {r .. FRoM TURBINE 4

- 'E *-' * - - *
3.mi,n&........

CORE- ,, fJET PUMP

0
-

0-

h i i m@.REClRCUL ATioN | h @,

PUMP - * '

il

-- __.

Fig. 4.8. Schematic of BWR pressure vessel internals and recircu-;

lating system. Source: Ref. 11.

large. There is a brief period of steam blanketing (~50 s); at 85 s the
coolant temperature is 21*C, and the heat transfer coefficient 2.84 x 103

2W/m .ec.
On the basis of the discussions with Hodge and Hodges and the previ-

oua descriptiot. of the DBA, it was tentatively concluded that BWR vessels
may be subjected to thermal-shock loading as a result of sudden loss of

I pressure, but presumably thers is no means for rapid repressurization.
Thus, the conditional probability of failure (P(F|E)] was calculated for ,

thermal-shock loading conditions only. An exponential decrease in cool- |

ant temperature of the form T =Tp + (288 - T )e"$t was considered, and
'

e p
calculations were made for p = = (step change in temperature from 288'c .

.

, - - - . - - - - . - , , . , , , , , - - - , - - - - - , - - - - - - - , . -., . - - - - -
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Fig. 4.9. Vessel pressure and mass fraction following DBA.a

Sotmost Ref. 11.

to Tp) S = 0.15 min-1 ( AT = 167'C for t = 13 min), and Tp = 93 and
121'C. For all cases, the preuure was assumed to be essentially atmos-'

pheric. Two values of the fluid-film, heat-transfer coefficient were
2used (1.70 x 103 and 3.41 x 103 W/m .*C), the lower value representing

natural convection and the higher value moderate forced convection.
Thus f ar, two sets of calculations have been made. For the first)

set, radiation embrittlement was deduced from the PTS embrittlement trend
curve used for the IPTS studies;8 fluence data 12 were taken from a very
early compilation (Table 4.3); copper (Cu) and nickle (N1) concentrations
of 0.35 and 0.80% were used; and the initial value of RT was 18'C.NDT
For both sets of calculations the flaws were axially oriented and two
dimensional (2 D), and the vessel dimensions were 6.50-m inside diameter,

4
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4

;

Table 4.3. Fast-neutron fluence for several ,

j BWR vessels at end of life" ;

(preliminary data)
'

: ;

Thermal power Reactor life Fluence (E > 1 MeV)
'

Reactor 2
(HW) (years) (neutrons /cm ),

1Big Rock Point 157 40 4 x 10 s
: la Crosse 165 20 1x 1019

Oyster Creek 1600 40 9 x 1017
Nine-Hile Point 1500 40 7 x 1017 I

i

Dresden-2 2300 40 2 x 1017
~

Millstone Point 1700 40 4 x 1017i

Browns Ferry 3300 40 4 x 1017
Dresden-3 2500 40 2 x 1017
Quad Cities-1 2500 40 2x 1017 i

i Monticello 1700 40 5 x 1017
'

Vermont Yankee 1600 40 1x 1017

aData taken from Ref. 12. Fluences for BWRs not listed are
19 neutrons /cm ,2reported in FSARs to be <10 ,

i

[

|
;

|
'

, - - . - . . .. - . - - - . _ . - - . _ . . . . - . - . - . _ . . . - , , , . -_
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0.156-m wall, and 3.81 mm of cladding. Also, for both sets of calcula-
tions, the flaw density was assumed to be 0.1 flaws / vessel, consistent
with what was considered to be reasonable for the IPTS studies.8

Results for the first set of calculations are presented in Table
4.4. As indicated for a flu 7 (4) of 1 x 1019 2neutrons /cm , the condi-
tionalgrobabilityofcrackii.itiation[P(I|E)]rangesfrom4x10-6 go

8x 10 , and the conditional probability of a flaw initiating and not
arresting within the inner 95% of the wall [P(F|E)} ranges from 2 x 10-7
to 7 x 10-5 [0f course, the slower the thermal transient and the
smaller the value of the surface heat transfer coefficient (h), the lower
the probability of "failure.") For fluences of 3 x 1018 and 1 x 1018

2neutrons /cm , the probabilities are about 2 and 5 orders of magnitude
less, respectively.

,

Table 4.4. Calculated values of P(I|E) and P(F|E) corresponding
to two postulated transients and a flaw'

i density of 0.1 flaw / vessel
1

| Fluence (E > 1 MeV)
2i (neutrons /em )

Transienta
/m **C) P(I|E)0 P(F|E)d

1x 1018 3x 1018 1 x 1019 1 x 1019

1 1.70 x 103 4 x 10-5 2 x 10-6<

: 1 3.41 x 102 5x 10-9 5x 10-6 8x 10-4 7 x 10-5 |
2 1.70 x 103 4x 10-6 2 x 10-7 !

2 3.41 x 103 4 x 10-5 5 x 10-6 ;
;-- ..

,

aTransient 1: step change in coolant temperature from 288 to :
93'C and in pressure from normal operating pressure to essentially
atmospheric.

j Trant,ient 2 exponential decrease in coolant temperature (T =
j 93'C + 194e-St. S - 0.15 min-1, T in 'C) and step change in pressure ;

j to essentially atmospheric.

bj Surface heat transfer coefficient.
'

| # onditional probability of crack initiation.C

: dConditional probability of crack initiation without crack arrest
| within the inner 95% of the wall.

|
f

,

k

i Preliminary information from the NRC (W. Hodges) indicates that ~50 i
] depressurization transients have occurred at BWR plants. There are ~30
i BWR plants, and they have an average operating time of ~10 years. Thus,

the f requency of "f ailure" associated with the depressurization tran-
sients is about a factor of 5 less than the values of P(F|E). It is

,

'

1 [

I !
'

i

:
!

!
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apparent that even for the very severe conditions considered, all of the
plants except possibly Big Rock Point and La Crosse have very low esti-
mated frequencies of failure.

For the second set of calculations an updated compilation of vessel

chemistry, initial RTNDT, and fluence data were used;I3 on the basis of
information in Ref.14 and discussions with Neil Randall,15 Regulatory
Guide 2.99 Rev. 2 was used in lieu of the PTS trend curve. (As indicated
by Figs. 4.13 and 4.14, even Regulatory Guide 1.99 Rev. 2 may under-
estimate the damage rate in BWRs.)

For the first set of calculations referred to above, copper and 4
were simulated and used as independent variables. In the most recent
study, ART was used as an independent variable instead, and the dis-NDT
tribution for 6RT was obtained using the Regulatory Cuide 2.99 Rev. 2

NDT
trend curve and Monte Carlo techniques. In this study Cu, Ni, and @ were

was, of course, the dependentused as independent variables, and ARTNDT
with Cu = 0.30%, Ni = 1.0%,variable. A typical distribution for ARTNDT

and @ = 3x 1018 neutrons /cm2 is shown in Fig. 4.15. The distribution is
not quite normal, but the use of a normal distribution tends to be con-
servative. As indicated in Table 4.5, the standard deviation is a mild

ORN1 -0WG 884165 ETD
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Fig. 4.13. BWR weld shif t data vs Regulatory Cuide 2.99 Rev. 2.
Source Ref. 14.
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|

Table 4.5. Calculated ARTET standard
deviation as a function of fluence (4)

(based on Regulatory Guide 1.99
Rev. 2 with copper = 0.30%,

nickle = 1.0%)

Standard deviation
Fluence

(% of mean)

2E19 9
1E19 10
3E18 13
1E18 16
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************************************************ 9743
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****************************** 6063
145 ******************** 3889

s|125
*********** 2169
****** 1154

% *** 596
105 ** 335

* 173
85 * 124

* 62
65 * 29

| * 23
; 45 * 15'

* 6
25 * 7

* 3
5 * 25

....+-___+-___+____+ ___+ ___+-___+ __+ ___+ __

DEPENDENT VARIABLE: ARTNDT

INDEPENDENT VARIABLE: MEAN STANDARD DEVIATION TRUNCATON

FLUENCE 3 X 1018 9 X 1017 >= 0.0
,

% COPPER 0.3 0.025 <od
% NICKEL 1.0 0.0

Fig. 4.15. Distribution for ART based on Rogulatory Guide 1.99
NDT

Rev. 2.

f unction of the mean value of the fluence. For this second set of cal-
culations of P(F|E), a normal distribution w2th a standard deviation of'

16% of the mean was used for 6RTNDT'
Thus far, calculated values of P(F|E) and P(I|E), based on Regula-

tory Guido 1 99 Rev. 2 and using ARTNDT as the independent variable, have
been obtained for step changes in coolant temperature from 288 to 93'C

3and f rom 288 to 121'C, a fluid-film heat transfer coef ficieist of 3.4 x 10
2 8, N results areW/m ..C, and three valves of RTNDTo

.,

presented in Figs. 4.16 and 4.17 for P(FjE) and Figs. 4.18 and 4.19 for
P(I|E).

The results in Figs. 4.16-4.19 are based on one flaw per vessel. As

mentioned previously, based on the studies in Ref. 8, a flaw density of
0.1 flaw / vessel is more realistic. Thus, the values in Figs. 4.16-4.19
can be multiplied by 10-1

,

k

|
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Based on the recent compilation of chemistry, RTNDT aM W W
o

fluences for all BWR vesselsl3 and the information in Figs. 4.1 H .19, it

appears that the most susceptible BWR vessel is one with RTNDT = 157'c
NDTo = +4*C.

For this vessel and a step change in coolant tempera-and RT

ture of 194'C P(F|E)<1x 10-9, and P(1|E) = 1 x 10-7; for a step change
of 167'C, P(F f E) < 1 x 10-9, and P(I|E) < 1 x 10-9

If the actual time dependence of the coolant temperature were in-
cluded, the results would not be significantly different because the
initial decrease in temperature (Figs. 4.9 and 4.12) is so rapid. How-
.a7, if the lower value of T indicated in Table 4.2 were veed (21'C),y

PO |E) would be substantially greater.

i
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A decrease in P(F|E) can be achieved by using a more realistic flaw
.

shape (three dimensional (3 D) as opposed to 2 D]. However, results of
8 indicated that the effect was not large. Perhaps thej the IPTS studies

greatest reduction in the cale.ulated frequency of failure can be achieved *

,

by thoroughly examining the f requency of events.
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4.3 Evaluation of J-R Curve Validity Requirements

R. K. Nanstad J. C3 Merkle
S. Druce

The specific problem concerns the continued operation of PWRs with
low-upper-shelf weld toughness. Already, 2 plants have fallen below the
legal screening limit of 68 J, and it is anticipated that an additional
15 plants will do su before reaching the end of their original design
lives. It is intended that continued operation below the 68-J limit can
be justified using an instability (J-T) analysis demonstrating that
unstable crack propagation will not occur. A draft ASME document using
this approach suggests that crack extensions up to 0.7 in. (18 mm) may be
required. Furthermore, it la proposed that Jmod should be used rather
than the conventional deformation J (J ). However, the use of Jmod mayD
be premature, because some J-delta a data are known to exhibit an upward
curvature that is physically unacceptable. Further doubts arise from an

Ianalysis of the HSST intermediate test vessel V-8A where the experimen-

tally observed instability is predicted using JD but not using Jmod'
A series of ad hoc working group meetings have been held to pursue

informal discussion with two objectives:

1. examine which J parameter is the more correct and define ranges of
validity, in particular, the allowable amount of crack extension; and

2. determine how small specimen (ata may be extrapolated and applied to
s t ructure s.

Means for extrapolation of data are required as surveillance speci-
mens, even when available, are generally either 0.5T or IT compacts. A
specimen size effect program is being conducted at Materials Engineering
Associates using a plate of A 302 grade B steel with homogeneous proper-
ties and a low-upper-shelf energy of ~68 J. The tests are to be con-
trolled to the highest capability of modern unloading compliance tech-
niques to provide an accurate data set on appropriate material for the
evaluation of the previous two issues.

Apart from the specific problem that requires some progress on a
short time scale, the questions being addressed are generic to most
structural integrity problems. In particular, the questions are germane
to leak-before-break situations. Conclusions f rom the discussions to
date are summarized as follows.

1. There remains considerable uncertainty regarding which J-like
parameter is fundamentally more correct and its range of applica-
bility.

2. At present, for conservatism, it would appear prudent to continue
with deformation theory J, although with further advances in defining

limits of applicability Jmod may be preferred.
3. For many materials, existing crack growth (delta a) limits in testing

standards now appear unduly conservative s 30% of tha remaining liga-
ment appears more appropriate.

_-
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4. In testing high-toughness materials, it is more difficult to obtain
"valid" data covering a fixed amount of crack extension. For these
materials, J limitations are likely to be more restrictive than crack
extension limits; thus, it is unlikely that any increase in allowable
crack extension would be of particular benefit. This is likely to be
the case with modern high purity reactor pressure vessel steels and

3

austenitic stainless steels.
5. There is a continuing need for development of elastic-plastic

fracture-mechanics (EPFM) testing techniques to assist in the evalua-
tion of dif ferent EPFM parameters, their ranges of applicability, and
means of extrapolation to larger crack extensions.

6. Current approaches to defining allowable J and delta a limits are ;

incomplete because they do not include a material sensitivity factor |

relating crack growth to changes in crack-tip constraint.
I

During the next report period, participation in the working group will
: continue, and a summary report will be compiled on the current state-of-

the-art assessment methods for low-upper-shelf welds in general.
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5. CRACK-ARREST TECHNOLOGY

D. J. Naus !

51 Background

The primary objective of the crack-arrest studies under the Heavy-
Section Steel Technology (HSST) Program is to generate data for under-
standing the crack-arrest behavior of prototypical pressure-vessel steels
at temperatures near and above the onset of the Charpy upper-shelf region.
Program goals include (1) extending the existing K , data bases beyondy
those associated with the upper limit in the American Society of Neohanf-
cal Engineers Boiler and Pressure Vessel Code (ASME B&PVC); (2) clearly
establishing that crack arrest occurs before fracture-mode conversion; ;

(3) observing the relationship between arrest data and machine / specimen i

compliance behavior; and (4) validating the predictability of crack
arrest, stable tearing, or unstable tearing sequences for ductile mate-

i rials. Also, the tests and analyses provide bases for obtaining and i

Iinterpreting dynamic f racture data (with relatively long crack runs) and
' for validating viscoplastic fracture models and analysis methods. During L

this report period, the program objectives and goals were investigated.

for a prototypical pressure-vessel material, A 533 grade B class 1 steel.
The wide plate tests are being conducted at the National Bureau of

Standards (NBS), Gaithersburg, Maryland, under an interagency agreement.
The tests are designed to provide f racture-toughness measurweats at tem-

3

peratures approrching or above the onset of the Charpy upper-shelf regime|

in a rising tough $ess region and with an increasing driving force. In
;

i addition to providing crack-arrest data, the wide-plate tests provide
information on dynamic f racture (run and arrest) processes that are being
used by researchers at Oak Ridge National Laboratory (ORNL), Southwestj

- Research Institute (SwRI), and the University of Maryland (UM) to develop
and evaluate improved fracture-analysis methods (see Chap. 2). |

j Crack-arrest work is also being conducted at ORNL to develop the
capabilities to perform small-specimen high-K , tests. These activitiesg

Jare reported in Sect. 5.6.
(

5.2 Wide-Plate Crack-Arrest Testing * :

*

| R. deWitt S. R. Lovi
R. J. Fieldst4

i 5.2.1 Introduction i

)
: The HSST wide plate crack-arrest tests are being performed with the

'

27-MN-capacity testing machine at NBS. The first series of six tests

'

* Work sponsored by the HSST Program under Interagency Agreenent,

|
No. DE-A105-840R21432 between the U.S. Department of Energy and the

| National Bureau of Standards. t

I racture and Deformation Division, National Bureau of Standards,F

Gaithersburg, Maryland. ,

{t
,

I

0
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(WP-1.1 through WP-1.6) has been completed using specimens made f rom HSST
plate 13A of A 533 grade B class 1 steel. The first four tests using a
low-upper-shelf base material (WP-2.4, WP-2.1, WP-2.5, and WP-2.3) have
also been completed. During this report period, analyses were completed
for two additional tests that used A 533 grade B class 1 materials
(WP-1.7 and WP-CE-1). Each test used a single-edge notched (SEN) plate
specimen that was subjected to a thermal gradient along the plane of
crack propagation. The linear thermal gradient, which provides a rising
toughness field, was achieved by cooling the notched edge of the plate
and heating the other edge. During each test, strain arJ temperature
were obtained as functions of time and position. Also, load, crack-

' opening-displacement (COD), acoustic-emission (AE), and accclerometer
data were obtained during each test as functions of time. Figure 5.1
presents a schematic of a wide-plate crack-arrest specimen, and Fig. 5.2
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shows a specimen positioned in the NBS testing machine. More details on
the specimen assembly are included in Ref. 1.

Tests WP-1.7 and WP-CE-1 were conducted on July 23, 1987, and
September 14, 1987, respectively. The 1 x 1 x 0.15 m specimens (0.1 m
for specimen WP-CE-1) were provided by ORNL. The specimens had been pre-
cracked by hydrogen charging an electron-beam (EB) weld located at the
base of a premachined notch in the plate (Fig. 5.1). The crack front of
specimens WP-1.7 and WP-CE-1 had also been cut into the chevron configu-
ration shown schematically in Fig. 5.3. Table 5.1 presents specific
dimensions for each of the plate specimens.

Table 5.1. Detailed dimensions of wide-plate
crack-arrest specimens

Dimension
("")Specimen feature Symbol"

WP-1.7 WP-CE-1

Initial crack length a, 202 200

: Thickness B 152.4 101.7

Notch thickness B 114.3 76.3N

Chevron thickness B 61.0 40.0C
(thickness a )n

Width W 1000 1000

Pop-in crack length a, NA NA

"See Fig. 5.3.

5.2.2 Instrumentation and testing procedure

NBS welded the plate specimen to pull plates; the overall specimen
dimensions for WP-1.7 and WP-CE-1 are presented in Fig. 5.4. (The length
of pull plates changed frou test to test because of the cutting procedure
used to remove a specimen bef ore the welding of the next specimen.) The
specimens were then instrumented with 40 thermocouples positioned as
shown in Fig. 5.5. Biaxial and uniaxial strain gages were placed on the
specimen and pull plates as shown in Fig. 5.6. Additional instrumenta-
tion included (1) two COD gages installed on the front (F-COD) and back
(B-COD) plate faces at a/w = 0.150 (the gages measured the displacement
between points 30 mm above and 30 mm below the crack plane), (2) an AE
transducer located on the lower pull tab, and (3) two acceleromoters
mounted at the top and bottom pull plates near the pull tabs. A measure-
ment of tensile load applied to the specimen was obtained from the test-
ing machine load cell.

- - - _ _ _ _
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j Af ter being instrumented, the specimen was placed into the testing
i machine and insulated. A temperature gradient was then imposed across
) the plate by cooling the notched edge with liquid nitrogen while the
j other edge was heated. 1,1 quid nitrogen flow and power to the heaters
i were continuously adjusted to obtain the desired thermal gradient. Final
! calibrations of the strain gages, CODS, and load were completed just
j before specimen loading. The specimen was then loaded until crack propa-
! gation occurred.
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Fig. 5.5. Thermocouple locations for HSST wide plate crack-arrest
test specimens WP-1.7 and WP-C3-1.

5.2.3 Test description susaary*

5.2.3 1 Test WP-1.7. 7he WP-1.7 test was performed at NBS on July
23, 1987.2 This seventh test in the WP-1 series was the first to use a
152-mm-thick plate. Af ter a satisf actory thermal gradient was obtained
(Fig. 5.7), the specituen was loaded at an average rate of 17 kN/s (Fig.
5.8). At the testing machine's 26.7-MN tensile-load capacity, the crack
run-arrest event (s) did not occur, so the load was held constant for
176 s. During this constant load period, the crack run-arrest event (s)
still did not occur, so the specimen was rapidly unloaded in an ef fort to
sharpen the crack tip before applying a second load cycle. Also before
that cycle two changes were made in the testing procedure. The crack-tip

temperature was lowered ~5'c to ~23.7'c (Fig. 5.9), and the specimen

*Although the WP-1.7 and WP-CE-1 tests were described in the pre-
vious semiannual progress report, a summary of the material is repeated
as background for the posttest analyses that are described later in this
chapter.

_ _ _ _ _ _ _ _ _ _.
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I

loading rate was increased by a factor of ~5. Approximately 4700 s after
the beginning of the first load cycle, specimen loading was reinitiated i

!at a rate of 90 kN/s. At a load of 26.2 MN (Fig. 5.10), the crack run-
arrest events and ductile tearing initiated and lasted ~27.5 ms. Examin- |

ing the strain-gege records and fracture surf ace indicated that two cleav- |
age crack run-arrest events occurred. '

5.2.3.2 Test WP-CE-1. Test WP-CE-1 was the twellth wide plete :

crack-arrest test and the first that used the A 533 grale B cla e i mate- I

rial provided by Combustion Engineering, Inc.3 Af ter obtaininy a satis- I

f actory thermal gradient (Fig. 5.11), the specimen was loaded at an aver-
age rate of 24 kN/s. At a load of 10.14 MN, cleavage crac's pr.Spagation !

'

initiated with a stable arrest occurring at a/w = 0.37 on the. plate f ront
face and at a/w - 0.42 on the plate back face. After holdirg the load i

'

constant for 150 s, loading was reinitiated at 24 kN/s. A: a load of
15.26 MN, fibrous crack propagation began and was then followed by a
rapid drop in load to about 4.4 MN (Fig. 5.12). After caintaining the f

load at this value for about 30 s, loading was reinitiated at 24 kN/s |
until at a load of 6.34 MN, complete separation of the plate occurred.

,

'Examining the f racture surf ace and strain-gage records indicated that one
l

,
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,

cleavage crack run-arrest event occurred before the onset of ductile {
tearing.

t

t

5.2.4 Test result summary

'.2.4.1 Test WP-1.7. The entire fracture surface of WP-1.7 is k,

shown in Fig. 5.13(a), and a close-up of the cleavage and loss-of-
cleavage regions is presented in Fig. 5.13(b). As noted in the figure,

J two cleavage crack run-arrest events occurred during the test. A region
of fibrous fracture averaging 10 m in width separates the two events.i

Also, there is a significant island of cleavage beyond the second arrest. !

; It is about 30 m:n in diameter and extends to a point 673 m f rom the cold i

edge of the plate (i.e., to a point where the plate temperature was about |
97'C). The cleavtge crack started in the plane of the side grooves; |a

'
however. as it progressed, it deviated f rom this plane. TM maximum i

he lower half [deviation was 15 se below the plane of the side grooves a s

! of the plate at a position corresponding to the second .u t point. j
Figures 5.14-5.17 present strain histories for cou n|.on crack-line j,

1 gages mounted on the front and back surf aces of the plat, specimen.

!
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Figure 5.17 shows the cleavage crack passing gage No. 7 and arresting
just past gage No. 8. Figure 5 18 shows reinitiation followed by the
second crack run-arrest event as detected by companion crack-line gage
Nos. 7 and 8 on the plate front f ace and 19 and 20 on the plate back
face. The second cleavage crack run-arre.' event as detected by gage
Nos. 9 and 10 followed by fibrous f racture past crack-line gage Nos.
10-12 is shown in Fig. 5.19. The response of near- and f ar-field strain
gages is presented in Figs. 5.20-5.22.

Dynamic displacement of the specimen as ocasured 3.539 m below the
crack-line is presented in Fig. 5.23 f or two time resolutions. Figure

5.24 presents the AE record at two levels of time resolution for test
WP-1.7.

Evaluation of the strain-gage records and f racture surf ace were also
used to deduce the crack length (position of the crack front) during the
fracture process, and the results are summarized in Table 5.2. In the

table, the strain-gage positions have been modified from those shown in
Fig. 5.6 to account for the fact that the peak strain occurs at an angla
of 72* in front of the crack tip. A plot of the strain-gage derived
crack-front position vs time from the front-face and back-face strain
gage results f or the first 15 ms of the test is presented in Fig. 5.25(a).
This figure indicates that the crack-front advance at comparable elapsed
times was very uniform across the plate thickness during the cleavage
crack run-arrest events. An expanded plot of the strain-gage derived
crack-front position vs t ime f rom the f ront-f ace and back-f ace strain
gage results over the ~30 ms duration of the test is presented in Fig.
5.25(b). The results presented in this plot indicate that the crack-
front advance across the plate thickness was unif orm throughout the test
duration.

5.2.4.2 Test WP-CE-1. Figure 5.26(a) shows the entire fracture
surface of specimen WP-CE-1. A close-up of the initial crack, the cleav-

age crack run-ar rest region, and the loss-of-cleavage region is shown in
Fig. 5.26(b). Note that one cleavage crack run-arrest event occurred
during the test, with clear delineation of the the cleavage arrest. Also
note that the fibrous f rs:ture appearance f or this material more closely
resembles that obtained with the WP-2 series material (low-upper-shelf)
than with the WP-1 series material (A 533 grade B class 1). The entire

fracture surface produced by this test remained in the plane of the side
grooves. The reduction-in-thickness contour map for the specimen is
presented in Fig. 5.27. As noted in the figure, the greatest reduction-
in-thickness measured was 101, the largest value obtained so far in any
of the wide plate crack-arrest tests. Also, as previous tests hava
shown, significant reductions-in-thickness occur only after the location
corresponding to the arrest point (i.e., a/w > 0.37 for test WP-CE-1).

Figures 5. 28 a nd 5.29 present strain histories for companion crack-
line gages mounted on the front and back surfaces of the plate. Figure

5.28 shows the cleavage crack passing strain gage Nos. 1-4 a nd 13-16.
Figure 5.29 shows the crack arresting bef ore reaching strain gage No. 5
at the plate front face and passing strain gage No. 17 but arresting
bef ore reaching strain gage No. 18 at the plate back f ace. Figure 5.30
presents highly amplified strain histories for crack-line gage Nos. +~12
mounted on the plate front face. Strain histories for near- and far-
field gage Nos. 21-24 are presented in Fig. 5.31. Lo ng-t i me (70-ms)

. - _ _ _ _ _ - _ _ __.



_ _ _ -- - - - - .. _ .

ORNL-DWG8tH207 ETD
j

(X 10 )0-

25 h 3

SGl9
1

2.0

L \
Z' ) \ e

\ kz MN

!1.0
j %A%w_ m ^05 vv +

,

'

L a .>O.0 fyVVN * v

45

3(X 10 )
3.0 ' '

U SG20 C
g 4- A oi%A-

i

k . _12
$ .0

''" <

E ^15 ,

1.0 Wd Wh
05 ,

0.0
-2.0 00 2.0 4.0 6.0 8.0 16.0 -2.0 0.0 10 M M M 0

(X 10 ) j033*

TIME (5) TmaE(s)

Fig. 5.18. Strain histories (expanded time scale) during second
, load cycle for companion crack-line gages showing reinitiation followed
| by the second crack run-arrest event: Test IJP-1.7. (Strain values from

first loading cycle have been subtracted.)
1,

.

,

_ _ _ _ _ _ _ _ - _ _ _ _ _ - . . - . - - , - , _ _ - . _ _ . _ _ - - _ _ _ .



1 ;|l||l |||

U

D I

T
E 0. U

p 3 @I
8
0
2 2,4 1 gW 5 t8 1

8 G n )g 2G S
W W

e .

- vtd
D t ese

n etL 0 otTcN 2
3R r s a

O f e r
r: t

%
rr2b5 )g s oa1 u1 ( f - - s-E n0

M" I eu1 n
_

/ 0 T l r e
c . e

_ / 1

/ yksb
_ cco_
-

m aN e.
.

- 5 d r v-

0 acea
- o gh

* l ea
/ gge.

| s- 0 d a l

0 nvt c.

- oas y.
- ceac.

el p
5 sc g. -

.

0 en-
gd ri
n nud
i ot a
r cco
ueal

0. U d sr-

f t. .

T- 3 @I_ se sg
s , eh sr

it uiG g 5 r ofs g 2 ogr
_- t nb m

siio_

_. ~ i wf r
~ 0 h o f

~

-
! - 2 h y

' nsb s
i e
asd u

5- ) r eels1 ( t gwa
E S aov-

M gl

-- % I l n0 T . eoi
1 9 nf a.

1 i r
.l) t

_- # 5 5 - 9S
k (- 0

f . c .
/ gaog

i rN .
F c0 7r e

_ 0 e g1
ca-
agP

_ 5 f( W)
3 7 2

00 5 0 5 0 00 5 0 5 042
-

1 2 1 1 0 0 12 1 1 0 0
X ,e B -X 7N m
(

(

.

-_

_

_

-
; ' .



132

N

os*g. .
,

' -
~ W _- 7

_ W
o ye

< w n C o

5
-

N _ , ,>
g 'M ' o gg

f w

.I
-

J ./ I j5# ,
" CN

N
' = < s .:

E'5 1. aL* o
o

' .

Oam |

I' o
qi j y-

o q q q o q o q q q o
,. - o o 9 .. g

" " o o 9 "d"d
6 (%) tams E (%)ta m s yC"

"o*/
S u%e

9Q6
N h y"

'

) # t#
,@

o' k = n:.

3 : f
# N 502o

a10*f
E. * Ua Y [ o - .1 - e, mawq c3I N n

i o
1 -1 a* g,;--

NO O
;

'%
. ewN

L lM -

o y gj
'WI

_i.|d Ee5 0
I N

{ ~ ~ ~T C O' Ou
' ,

. ( R 14
1 1 I 3"o

,- c, n
o s. ,n .. n n . e e o n . 9 o - ~ c
"- - - - - - .- - o "* - - - - o o o o

(%) tams-

Ntaas-



. _ _ _ _ _ _

.

CA*.1.-OWG 884210 ETD

4 3(x 0 ) (X 10 )
. . 2.010.0

I SG23
9.0 --- ,

15
80 ---- --

[ 7.0 -- [1.0
q%c ) ; ~

g '' 1

& Y f f %
$ 5.0 - R

- m 05
-

4.0 i --- h1 '

h 6 ,,j
,i

30 I I

2.0 - 1 -05

3(X 10 ) (X 10'3)
1.4 2.0. . -

33 4

1.5
12

71.1 [1.0 b
1.0 --J^

m 0.9 -- g 05

g -J-- - Xa08 l
i

hf0.7

0.6 -05
-1.0 0.0 1.0 24 30 4.0 5.0 6.0 -1.0 0.0 1.0 2.0 3.0 4.0

I
TifE (s) Tr & (s)

Fig. 5.21. Strain histories at two time resolutions during second
load cycle for far-field gages: Test k'P-1.7. (Strain values from first
loading cycle have been subtracted.)



134

M4-DWGes42if ETD
4(X 10 )

10 0 ' I
'R*J

Akk

f,"[r ha'

8 80 ,
a

7.0 y
60

;

60
0 1.o 20 3o 40 50 6

3(X 10 ;
T A1E (s)

4(X 10 )
10 0

S S

%/'1j _

, *80

/
$ 80 1"

fn P
$
" 40 _

l

f

20

1

00
-10 on 'O 20 3n (x ,j ,,d

Tais ts)

Fig. 5.22. Strain history at two time resolutions during second
load cycle for far-field gage: Test WP-1.7. (Strain values from first
loading cycle have been subtracted.)



135

ORNL owc se a212 ETO
44

42

40

*
/_

s '' j ,,r-

k 36
fW p

/34 --

/32 '
--

30

82 0 2 4 6 8 10 (X 17 )
TNE (s)

55
,

i 5.0

|f
q 45

4.0

p/Y'
-

'"

j
3.5 -

3.0
205 0 05 1.0 1.5 20 25 3 0 (X 10 )

Tn).tE (s)

Fig. 5.23. Dynamic displacement history at two time resolutions as
measured 3.539 m below the crack-line during the second load cycle:
Test VF-1.7.



_. . _ _ . _ _ _ _ . _ _ . _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . . _ _ _ _ . _ _ _ _ _ _ _ _ . _ _ _ _ _ .___-_-- - .___ __ . .__

l

i

j 136

ORNLCw Gto420 (TO

10

8 - -

4

|
6

!
--

!
4 --

! E
t

I f l! m_ ,,

g | | f | f\W'''"'T.

{ |
2 - -

4 - .

j
( ry .

1

6 . f'

!

40 0.5 1.0 1.5 2.0 2.5 (X 10 )

I
'

|
t

7 - - - - - - - - _ _ _ _

l

|

1 .-

I 8 i

k !

! 8 |
~ -- - --

i w i

!1;
- -

2 ________:. _ _ _ _

45 0 0.5 to 1.5 20 2.5 30 35 4 0 (X 1g-2)

TtME (s)
|

Fig. 5.24. Acoustic-emission history at two time resolutions
during the second load cycle: Te s t k'P-1. 7.

,

I
1
1

1
_ - - _ _ - - . - - _ _ _ - - - - _ _ _ _ _ - - - _ - - - _ _ _ _ - - _ _



__

137

Table 5.2. Crack position vs time and velocity

bPosition Time Velocity
" #* #a

(mm) (ms) (m/s)

Front-face measur'emente: WP-1.7

Initial crack 202 0
471

SGI 218 0.034
645

SC2 258 0.096
476

SG3 298 0.180
800

SG4 338 0.230
357

SC5 378 0.342
741

SG6 418 0.396
377

SG7 458 0.502
333

SG8 498 0.622
517

Arrest 528 0.680 1.5
Some fibrous growth
Reinitiation (cleavage) 538 7.442

250
SG9 548 7.482

833
SG10 598 7.542

206

Arrest 635 7.722
Reinitiation (fibrous) 635 12.342

25

SG11 698 14.822
29

SG12 793 18.282
22

End of plate 1000 27.482

_ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _
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s

Table 5.2 (continued)

bPosition Time Velocity" ** #a
(aa) (as) (m/s)

Back-face measw'ements: WP-1. 7

Initial crack 202 0-

533
SG13 218 0.030

741
SG14 258 0.084

' 444
SG15 298 0.174,

'! 444
j SG16 338 0.264

SG17 378 0.352 I

571'

SG18 418 0.422.

541 i

SG19 458 0.496
333 |

! SG20 498 0.616 t
"

- 417
! Arrest 528 0.688 15 ;

'Some fibrous growth1

| Reinitiation 538 7.402 346

Arrest 635 7.682 f
Reinitiation 635 12.362 |

1 24 >

{! End of plate 1000 27.482

aGage Positions in the table are all reduced by 32 mm
f rom the actual gage position shown in Fig. 5.6 to account t

for the fact that the peak strain occurs at an angle of 72* I,

in front of the crack tip. |
,

belocity is an average calculated velocity for crack r

propagation between indicator points. t

i

i

f

I*

|

,
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t
-

i !

5

;

| !

:
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strain histories for near- and f ar-field gage Nos. 21-24 ar; presented in -

Fig. 5.32. Short- (6-ms) and long- (60-s) time strain output from far-
field gage No. 25 is presented in Fig. 5.33. Loiig-t iae records for

strain gage Nos. 'r-8 i n Fi g . 5.34 and strain gage Nos. 17-20 in Fig. 5.35
provide some indications of reinitiation and arrest events, but the frac-
ture surf ace does not clearly reflect their occurrence. Figures 5.36-5.40

present strain histories for selected gages for the period of ductile
tearing. (Results for strain gage Nos. 5-10, 15, and 17-20 are not
available because of the large amount of plasticity that occurred follow-
ing arrest to render the gages either inoperable or uninterpretable.)
Note that although the time scales in Figs. 5.3fr-5.40 have been synchro-
nized, the time zero does not necessarily correspond to the onset of duc-
tile f racture because it could not be unambiguously identified.

The strain-gsge records and f racture surf ace were used to deduce the
crack length (apparent position of crack front) during the f racture pro-
cess, and the results are sumaarized in Table 5.3. In the table, the

strain-gage positions are modified f rom those shown in Fig. 5.6 to
account for the fact that the peak strain occurs at an angle of 72' in
front of the crack tip. F igu re 5.41 presents a plot of crack position vs
time derived from the front-face and back-face strain-gage results up to
the time corresponding to arrest of the cleavage crack propagation. (Be-
cause of the large amount of plasticity that occurred after arrest, many
st rain gages becate inoperative or uninterpretable; therefore, the crack-
front position vs time could not be evaluated during fibrous f racture. )
Results (a/w > 0.229) indicate that t he crack f ront advance at comparable
elapsed times during the cleavage crack run-arrest event was more rapid
near the back f ace of the plate than near the front face. As noted
earlier, no results are available for the period of ductile tearing.

_ __ _ _ _ _ _ - ._ ..
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Table 5.3. Crack position vs time and velocity

b
Position Time Velocity

" U* #a
(mm) (ms) (m/s)

Front-face measuremente: WP-CE-1

Initial crack 200 0
853

SGI 229 0.034
741

SG2 269 0.088
690

SG3 309 0.146
526

SG4 349 0.222
244.

Cleavage arrest 370 0.308

Back-face measuremente: WP-CE-1

Initial crack 200 0
853

SG13 229 0.034
1538

SG14 269 0.060
952

SG15 309 0.102
513

SG16 349 0.180
435

SG17 389 0.272
337

Cleavage arrest 420 0.364

#Strain gage positions in the table are all reduced
by 21 mm from the actual gage position shown in Fig. 5.6
to account for the f act that the peak strain occurs at an
angle of 72* in front of the crack tip.

bVelocity is an average calculated velocity for
crack propagation between indicator points.



156

CANLOWG 88 4230 ETD

500

<

400 -

1
'

300 -

i -

2004

<
,

1

I

100 - .e. FRONTFACE

-40 BACKFACE
,

0 . . .

0.0 0.1 0.2 0.3 0.4
TIME (ms)'

Fig. 5.41. Apparent crack-front position history: Test WP-CE-1,

Front- and back-f ace C0D histories fo't both short (6 ms) and long
(60 ms) times are presented in Fig. 5.42. Longitudinal accelerations
recorded by "damped" accelerometers mounted on the specimen's centerline
at 3.714 m above (top) and 3.710 m below (bottom) the crack plane are
presented in Figs. 5.43 and 5.44, respectively. Dynamic displacement of
the specimen, relative to that of the large columns of the testing
machine, as measured 3.710 m below the crack plane, is presented in Fig.
5.45 for several time resolutions.

5.3 Properties of Prototypical Pressure Vessel Materials

5.3.1 WP-1 series

The initial series of wide-plar.e crack-arrest specimens is taken
from the central portion of the 18.73-cm-thick HSST plate 13A of A 533
grade B class 1 steel that 4.s in a quenched and tempered condition.



_-. .__ _ _ _ _ _ _ _ _ _ _ _ - - _ - _ _ __ _ --_.___ . _ _ _ - _ . _ . -.
.

OANL-DWG 884229 ETD
5.0 35

\45 3.0

$ [ l [,
t t ) 5 )2 fgo / be g5 N/

~

8 ) u
( 35 p 2.0

'

/ 8 /s
3.0 A A15

/
FRONTFACE

- '
-

BACK FACE
25 ' ' f i 1.0 t i I

-1 0 1 2 3 4 5 6 (X 10 ) -1 0 1 2 3 4 5 6(X 10 )
3 3

TBAE (s) TBAE (s)
6.0 45 *--

vi

55 - - * ** 4.0 M O

E 5.0 ' k I 35 #* '

t
O 45 g g

-3
3 $

.0
3

U .54.0 2 l,

k h \
,

[M o'

O 35 52.0

3.0 13
'

FRONT FACE --f BACK FACE
15 ' ' 2 ' 1.0 ' ' '

-1 0 1 2 3 4 5 6(X ig2) 1 0 1 2 3 4 5 6(X Ig2)
TNE (s) TNE(s)

Fig. 5.42. F-COD and B-COD histories for both short- (6-ms) and
long- (60-ms) time periods: Te t WP-CE-1.

1

m



OFPA.OvG 884231 ETD

2(x 10 )
4 _ _

3 -

# '

B

- b i 11
I

J ,

.i . ( f

|
-2 -

3 34s o os 1.0 1.5 2.0 2.5 (x 10 ) -1 o 1 2 3 4 5 s(x10 )
(x 3o2) Tate (s) Tate (s) _

3

! allJ ||||||||I'

i 8 11 i b1 Lh
_

U
$o --

8

7- PI'I'FI I I:

-3
! -1 o i 2 3 4 s 6 (x 10 ) -1.0 -0.5 o 0.5 1.o 1.5 (x to 5)2

i Fig. 5.43. Longitudinal acceleration results at various time reso-
' lutions measured by top "damped" accelerometer mounted 3.714 m above the

crack plane: Test WP-CE-1.

!
_ __



159
!

m

E E
h - e $
, n -.

<L[ _
.

_ m
' " O

, - -

r , a
~^

- o
~

A h?
-__ . n, .;;. ta

m - g
$ i3-

- n
" N M C

-- % :$
M Om

- > G
"

~
aa %
9 W

18
83

UO

O A O ? O ? O A O O A O P O D O @ O C
-N - - O 9 ; ; N_ -N - - O 9 7 i G O 9

(0) PO1W37370Y (0)PO1W373OOY ( yy
s E at'

8 b
U Ic

rg Q < @ p
N e4 O

C aJ
w O O

w g 5 .O P
} N bh
J To " *4

m , n CM C

O| $ "% -

- e ,a
. N 4 0 V

e e

d O U
' * e O O

aJ

O O

{ e.:

(N9 4 Q q O q O q O O q O 9 O q O q O
"N " " O 9 7 N r e e O 9 7 7 ye

6(6) PO1W T13 coy (6) PO1W31300Y

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -
.



'

S I !!t :

0 -
- - "

2 2
- .

2 , 3 4 61

o 0 5 0 0 0
. 1
5 2 k

l

i

- e,dt1 lmt aai

-
c o

shn
is o 0
n F
eoi O

3
fg k )l

|a . Mss | 1

p 5 | i
I'
d

ec4
' lme.

ai5 o 1

sm s 3

ue O|
irn

|e D '

3dry
en '

3l a L t. am
|7t i

11 ic . h 4 i

0v 0
ed '

'

m i , i
t s

bop
'-

5!

oe l
I

nE0
<

lt a 1

ohc (wae 1 6
j

t m 5 (
Xt e
1hon g

!|-ef t g | )2
ct r 1 2 2 | : 2 3

6
. 2 , 5 5rhe 0-

aes 0 1

5

-
.0 -c u

kl l
at

lIJ
p r s -

0lg 5aea
n t
ec o |

: os
l e o
uv |

Tmeenr
ss a 0 ll

0 5t l
o 5 L |

ll|
Wf t
P i .

- t m

W)|
I|| .oCh e

Ee f- r 1
I|| ll[t e1 0 1

es 5so
t l

I|| Hi u l[f| On - 2 Rg 0 ] N
1 LI|I
5 O' W2 G

5 ' , B

. -
,

R"2 3 Gl
ao o 3

( ( EX X T
1 1 D
0 0

-

)1 )'



_ _____ _ _ _ _ _ _ _ _ - _ __ _- _ -_____

161

Properties of this plate include
t

1. Young's modulus E = 206.9 GPa,
2. Poisson's ratio y = 0.3,

10-6 eC, and/3. coef ficient of thermal expansion a = 11 x
34. density p = 7850 kg/m .

Temperature-dependent fracture-toughness relations for initiation and *

arrest, based on small-specimen data, are given by

i

0.036(T-RTNDT) I
(5.1) |KIc = 51.276 + 51.897 e ,

k

(~ NDT}*
(5 2)K , = 49.957 + 16.878 e >

,g

I

with units of K and T being megapascals times root meters and degrees
Celsius, respectively. Drop-weight and Charpy V-notch test data indicate
that RTNDT = -23 C and that the Charpy upper-shelf energy is 160 J with
its onset occurring at 55'C.

Analytical studies have used a dynamic fracture-toughness relation
in the following form:

i-
2 (5.3)) KID " KIa + A(T) a ,

:

! where K , is given by Eq. (5.2) and eithery

A(T) = [329.7 + 16.25 (T - RTNDT)] x 10-6 , (5.4)
i

or

| A(T) = (121.71 + 1.296 (T - RTNDT)] x 10-6 (5.5) |,

,

ID, A, a,NDT) is greater or less than -13.9'C, respectively.
Units forif (T - RT

and T, respectively, areK;

| I

| 1. megapascals times root meters,
; 2. megapascals times square seconds times meters to the -3/2,

3. meters per second, and'

; 4. degrees Celsius.

) I
The form of the KID expression in Eq. (5.3) and relations for A(T) (Eqs. ;'

Ij (5.4) and (5.5)] are derived from Ref. 4 by estimating that RTHDT = -4.1 C
i for the material used in that study.

,

!

!
i

|

. ,

y
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5.3.2 WP-CE series

The WP-CE specimens were ma te from a second heat of A 533 grade B
class 1 material that was provided to ORNL by Combustion Engineering
(CE), Inc., in the form of a plate 244 x 1016 x 1016 mm. The material was
characterized by CE, and the detailed results are presented in Ref. 5.
Pertinent material properties include

1. an eltimate tensile strength ranging from ~580 MPa &t rooo tempera-
ture to =560 HPa at 66*C to =520 MPa at 120'C,

2. a nil-ductility transition temperature frou = -34'C to = -23'C,
3. a Charpy upper-shelf energy of =180 to =203 J, and
4. the minimum temperature for fully ductile behavior occurring at =43

to =49'C.

Temperature-dependent f racture-toughness relations for the WP-CE material
used for pretest planning were the same as Eqs. (5.1) and (5.2) with the
RTNDT changed to the appropriate value for the WP-CE material.

5.4 Wide-Plate Analyses at ORNL

B. R. Ba s s J. Keeney-Walker

5.4.1 Posttest analyses of test WP-1.7

5.4.1.1 Posttest three-dimensional (3-D) static analyses. Three-
dimensional static finite-element analyses were perf ormed on the WP-1.7
plate assembly to determine the static-stress intensity factor at the
time of crack initiation. These analyses were performed with the ORMGEN/
ORVIRT (Refs. 6, 7) fracture analysis system and the ADINA-84 (Ref. 8)
finite-element code. The 3-D finite-element model incorporated a segment
of the plate assembly that was 4.4595 m in length measured from the crack
plane to the top of the load pin hole. The crack-tip region of the uodel
included the chevron cutout, the side grooving, and the edge notch, the
dimensions of which are taken f rom Table 5.1. From symmetry conditions
neglecting out-of plane eccentricity, one-quarter of the partial pull-
plate assembly was modeled using 3751 nodes and 720 20-noded isopara-
metric elements.

The thermal deformations computed from a posttest two-dimensional
(2-D) analysis were superposed on a 3-D finite-element model to account
for the in plane thermal bending ef fect in the 3-D analyses. The bound-
ary conditions of the 2-D thermoelastic analysis were based on the
assumption that the heated and cooled edges of the plate were fixed at
T,3x = 182.7'C and Tmin = -74.7 C, respectively, along a 2.4-m length
(centered relative to the crack plano) and that the pull-tab edges were

maintained at T - 20.0'C. The remaining surf aces of the assembly were
assumed to be insulated. The in plane thermal bending produced a load-
line eccentricity (through the top of the load pin hole) of 1.83 cm rela-
tive to the geometric center of the plate.

In the 3-D analysis, thermal stress ef fects were neglected, and a
uniform line-load statically equivalent to the WP-1.7 test initiation

_ - _ - . ._. . _ _ __
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load of 26.2 MN was applied at the location corresponding to the top of
the load pin hole. This analysis resulted in a static stresc-intensity
factor of K = 280.6 MPa* 6 at the center plane of the plate. A ratio of

K /K 2.f1resultsfromcomparingthiscomputedK value with the
statb = initiation value of Klc = 103.7 MPa.6 evaluated from Eq. (5.1)

y g

using the crack-tip temperature of -22.7'C.

5.4.1.2 Posttest two-dimensional (2-D) static and
dynamic analyses

Static and stability analyses using Eq. (5.2) for K ,. Posttest 2-Dy

analyses were done using computer codes based on both quasistatic and
clastodynamic techniques. For the quasistatic analyses, the ORNL com-
puter code WPSTAT (Ref. 9) was used to perf orm both crack-arrest and
crack-stability analyses. As described in Ref. 9, the WPSTAT code evalu-
ates static stress-intensity factors as a function of crack length a and
temperature dif ferential AT = T -T across the plate. Theseux min
factors are computed for fixed-force conditions K (a, AT) and for fixed

load-pin displacement conditions K (a, AT) by superposing contribu-
tions f rom tension and bending finite-element and handbook solutions.
Also, WPSTAT categorizes arrested crack lengths in terms of three types
of instability limits that are enumerated below.

For test WP-1.7, the proposed temperature profile was defined by
specifying a crack-tip temperature of TCT = -19 C at x = 0.20 m and a
midplate temperature of Tgp = 57'c at x = 0.5 m, implying that Tmin "
-69. 7 ' C a nd T = 133.7'C. As indicated in Fig. 5.9(b), the temperaturegg
gradient actually achieved at the time of the run-arrest event deviated
somewhat f rom the proposed profile in the region of 0.2 < x < 0.6. Con-

sequently, the posttest WPSTAT calculations of the static factors K
(a, AT) and K (a, AT) used the actual temperature profile provided in

Fig. 5.9(b) (i.e., TCT = -22.7 * C and Tmid = 54'C). For this specified

temperature profile, the dependence of the arrested crack length and
was investigated withcrack stability on the applied initiation load Fin

WPSTAT, and the results are presented in Fig. 5.46. Figure 5.46 includes

the statically calculated final crack length age, as well as the insta-
bility-limit crack lengths for (1) reinitiation arein (Fin), (2) tensile:

l instability all (Fin), and (3) tearing instability aI2 (Fin). The ten-

| sile instability calculation is based on the average stress in the
! remaining ligament equal to an ultimate stress of o = 550 MPa, whichu
,

represents the lowest value for the temperature range of interest. For

( the tearing instability calculation, the material tearing resistance is
= C(Aa P ,assu.ned to be represented by a power-law J-resistance curve JR

2where C = 0.3539, m a 0.4708, and the units JR and Aa are W/m and .m.
respectively. In Fig. 5.46, the statically computed arrest length corre-
sponding to the measured initiation load Fin = 26.2 MN is given by age =

| 0.635 m. The computed arrest point is above the tensile instability
1

. . . .
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Fig. 5.46. Statically calculated crack lengths (Eq. (5.2)]: Test
WP-1.7.

curve att, implying an unstable condition. The measured initial arrest

point ag = 0.528 m is below the tensile instability curve but above the

tearing instability curve aI2 Figure 5.46 indicates that tearing insta-

bility is expected when the crack length exceeds a0.43 m, which occurs
before the first measured arrest position (see Table 5.2).

In Fig. 5.47, the K , function presented in Eq. (5.2) is evaluatedg

on the arrest crack-length curve ag(F), on the incipient tearing-insta-
bility curve aI2(F), and on the cleavage-reinitiation curve arein(F).
The K function presented in Eq. (5.1) is evaluated on the curveyc
rein (F). Evaluation of the K ,(ag) curve at the initiation load Fin "a g,

toughness of K , = 457 HPa*/m at the computed
'

26.2 HN yields an arrest g

arrest point of age = 0.635 m where the crack-tip temperature would be
T = 87.7'C.

The complete static f racture mechanics and stability analyses are

depicted in Fig. 5.48 for the initiation load of Fin = 26.2 HN. Included

_ -- _ . ..- _ - - __



_ ._ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

165

onut.owG ese.4235 sto
1000

I I i i i i i T g

*' ''
O K AT REINITIATION P0lNT e,,,, -900 -

Toi, 74.7eC i
eK At fNSTAtiLIT$ P0fMT aigiT .. 102.7'C a Kg af REINITIATION POINT a,,a

800 - Ter 22.7'C eK AT ARREST POINT a, -

i
7,64 64 0'C

700 - -

600 - --

500 ~ K = 457 MPA.v7
~

, .-/ 'e
-

3
u 400 - *', *' 2

ev

300 - ,. r' -

.. *,, *'.- _ _ _ d -200 -

4

10 0 ( ,2,7_,_,._4-4-4-4-'~'''
i-a P' C

-

-

! I ' ! ' ! ! '
0

10 12 14 to 18 20 22 24 26 28 30
F (MN)

Fig. 5.47. Determination of arrest toughness at initiation load of
26.2 MN [Eq. (5.2)]: Test WP-1.7.

I C ANL.0WG 48C 4236 f fo
H00 ; ; ; ; ; i ; ; ;

5 KF
1000 - o Kos, - 300,

& Kg, (T)
900 - * Ese (Il - 260

? TEM PER ATU R E
*

800 -

Tom . 74.7'C
- 200

T,.. 18 2.7'C .,700 MTc7 * 22.7'C / 160-

g T .. 54 0'C / ;
y 800 - APPtlED FORCE 26 2 MN e s

3 p ',T
g

'
,00-

2 600 - K , = 4 67 M Ps.NE / e '''' . [i f ,___,,,

'',.v- - 60 2i

400 .- .'', / E g
I e e

/ 3 0
| 300 - ,.v' ,.e ,/ o

-

/ |
200 - f ,o* |

~ '

,
,a*'o ,,,,

***.e*
n

REGIONS OF INSTABILITY 100-

e++** TEARING TENSILE

l ' I I I t I ! I I *150O
0 0.1 02 0.3 04 06 0.6 0? Os 09 i

f A (m)

Fig. 5.48. Complete static and stability analyses for initiation
load of 26.2 tin [Eq. (5.2)]: Test WP-1.7.

,|

- _ _ _. ._ __ _ _ . __ . _



,

166

in the figure are curves for initiation toughness KIc, arrest toughness
DSP

K ,, displacement controlled stress-intensity factor Ky , and force-
7

Fcontrolled stress-intensity factor K . The regions of tearing and ten-y

sile instability and the computed cleavage arrest point afc are also
identified in Fig. 5.48.

Static and stability analyses using Schwartz function for K73 The

analysis was repeated using the Schwartz function for K ,, that is,7

0.03988( T-RTNDT)K = 63.130 + 9.211e (5.6).

.Ia
,

,

In Fig. 5.49, the statically computed arrest length corresponding to the

measured initiation load Fin = 26.2 HN is given by age = 0.562 m, which ;

is closer to the measured initial arrest point of ag, = 0.528 m than the !

results presented in Fig. 5.46. Both the computed arrest point and the
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Fig. 5.49. Statically calculated crack lengths (Eq. (5.6)): Test
WP-1.7.
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first measured arrest point are now between the tensile instability curve
and the tearing instability curve.

In Fig. 5.50, the K , function in Eq. (5.6) is evaluated on the7

(1) arrest crack-length curve af(F), (2) incipient tearing instability
curve aI2, and (3) cleavage reinitiation curve arein(F). Evaluation of

the K ,(ag) curve at the initiation load of Fin = 26.2 MN yields an7 ~

toughness of K , = 433 MPa*[m at the computed arrest point ofarrest
7

afe = 0.562 m, where the crack-tip temperature would be T = 69.4*C. The

complete static f racture mechanics and stability analyses are presented
in Fig. 5.51 for the initiation load of Fin = 26.2 m.

5.4.1.3 Application-mode dynamic analysis (fixed-load boundary
condition) Elastodynamic analyses of wide plate test WP-1.7 were carried
out with the ADINA/VPF (Ref. 10) dynamic crack-analysis code. The 2-D
plane stress finite-element model of the wide-plate configuration used in ,

the analyses consists of 938 nodes and 277 eight-noded isoparametric
elements. A total of 34 spring elements were used in the crack plane to
model propagation of the crack tip. Side grooves were taken into account
by adjusting the resulting stress-intensity factor calculated in each
time-step of the analysis. The in-plane bending of the plate assembly
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Fig. 5.50. Determination of arrest toughness at initiation load of
26.2 M [Eq. (5.6)]: Test WP-1.7.
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Fig. 5.51. Complete static and stability analyses for initiation
load of 26.2 MN [Eq. (5.6)): Test WP-1.7.

caused by the thermal gradient across the plate was also incorporated
into the analyses.

A posttest application-mode analysis of WP-1.7 was performed using
the temperature gradient of Fig. 5.9(b) and the material properties given
in Sect. 5.3.1. For the dynamic analysis, the load point was fixed at
the value of the measured f racture load, 26.2 HN, as a prescribed concen-
trated load. The time step was set at At = 5 ps.

Application-mode analysis using Eq. (5.2) for Kgg. The calculated
crack-depth history f rom this analysis is presented in Fig. 5 52 and indi-

cates a predicted arrest of ag = 0.748 m. Figure 5.53 presents thep

the static toughness Kga, and thedynamic streso-intensity factor K ,

crack velocity a as a function of instantaneous crack length. The crack

propagates into a rising Kt field, followed by a predic'.ed arrent at the
point where the crack-tip temperature would have been T = 115.6'C. The
arrest toughness at the arrest-point temperature was determined to be

K, = 863 MPa*6. The computed arrest length exceeds the measured ini-g

tial arrest length at ag, = 0.528 m (arrest A, front face), where the

.-_ _ , . - . - . __ _ _ _ _ _ _ _ _ . _. _ _ _ _ . . - - _ .- . _ _ _ -
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Fig. 5.52. Dynamic-analysis, crack-depth history [Eq. (5.2)]:
Test WP-1.7.
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length [Eq. (5.2)]: Test WP-1.7.
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crack-tip temperatu:2 T = 61.0'C and the corresponding arrest toughness
K , = 239 MPa *6. There also appears to be a predicted arrest, ag =y
0.666 m, where the crack-tip temperature would have been T = 95.6 b and 5

the arrest toughness KIa = 510 MPa *6. Both predicted arrest points ex-

ceed the last measured arrest point, af, = 0.635 m, where T = 87.8'C and

KIa = 457 MPa * 6. The analyses were terminated at time t = 3 ms, which

precludes any prediction from the analysis of the reinitiation that
occurred in the test at time t = 7.4 ms.

Application-mode analysis using Eq. (5.6) for Kla. The calculated

crack-depth history f rom this analysis is presented in Fig. 5.54 and

indicates a predicted arrest of ag = 0.538 m. Figure 5.55 shows thep
crack propagating into a rising K1 field, followed by a predicted arrest
at a point where the crack-tip temperature would have been T = 63.5'C.
The arrest toughness at the arrest-point teuperature is determined to be
K , = 330 MPa* 6. This prediction is quite close to the measured initialy

arrest length of ag, = 0.528 m, where T = 61.0'C and K , = 326 MPa. 5y

These analyses were also terminated at time t = 3 ms.
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Fig. 5.54. Dynanic-analysis, crack-depth history [Eq. (5.6)]:
Test WP-1.7.
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Fig. 5.55. Dynamic factor, static toughness, quasi-static
displacement-controlled f actor, and crack velocity vs instantaneous
crack length [Eq. (5.6)): Test WP-1.7.

5.4.1.4 Generation-mode dynamic analysis (fixed-load boundary con-
dition). From the output of the crack-line strain gages and from an in-
spection of the f racture surface, estimates of the crack position as a
function of time were constructed and given in Table 5.2 for the front-
face and back-face strain gages. Figure 5.56 incorpo' rates the two mea-
sured crack arrests as determined f rom the front-surf ace strain measure-
ments in Table 5.2. For the dynamic analyses (front-face results), the
load point was fixed at the value of the initiation load, 26.2 MN, as a
prescribed concentrated load, and the time step was set at at = 10 ps.
Fre_. these calculations, the stress-intensity factor as a function of
time is given in Fig. 5.57. The generation-mode analysis results for the
two arrest events are summarized in Table 5.4.

The computed strain histories from selected points close to the com-
panion crack-line strain gage Nos. 1-20 (see Fig. 5.6 for strain-gage
locations) are depicted in Figs. 5.5&-5.60 for the generation-mode analy-
sis (fixed load) along with measured data f rom the gages. The sharply
defined strain peaks are associated with the f ast-running crack passing
under a gage point, with the peak being transformed into a more blunted
curve as the crack-tip propagation slows down. The comparisons of strain
histories in these figures indicate generally good agreement between
measured and computed times for the occurrence of the peak-strain salues.
The transition of the strain pulse f rom a sharp peak for strain gage Nos.
7 and 8 to a blunted curve f or gage Nos. 9 and 10 in Fig. 5.61 reflects
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Table 5.4. Summary of computed
results for test WP-1.7

aTime a K
'"

(ms) (m) (MPa*[E)

DInitiation 0.0 0.202 223.06

Arrest A 0.680 0.528 318.82
Reinitiation 7.442 0.538 591.51

Arrest B 7.722 0.635 555.00
Reinitiation 12.342 0.635 960.55

"Generation-mode, fixed-load
dynamic analysis.

hFrom ADINA static analysis.
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:{ crack-line gages showing the first crack run-arrest event between gage ,

; Nos. 8 and 9 and reinitiation as detected by gage Nos. 7 and 8: Test i
,

WP-1.7.
{

! !
4

4

i the arrest event (arrest A) between the front-side crack-line strain gage
i Nos. 8 and 9. Figure 5.61 also reflects reinitiation of the arrested |
* crack (arrest A), as detected by gage Nos. 7 and 8 at ~7.4 as. This same

occurrence also can be viewed for the second arrest and reinitiation
event (Fig. 5.60).

i Finally Fig. 5.62 presents a comparison of displacements that were ,

calculated using a generation-mode analysis at ~3.539 m below the crack !,
'plane on the centerline of the plate with the measured data obtained from

i the displacement gage installed on the plate. The gsge measured the j

i displacement of this point on the plate relative to the large columns of f

the testing machine. The output of the measured data was adjusted in the |,

: figure f rom ~3.1 to 6.1 im for comparison with the finite-element model. !

j Calculated and seasured resulto did not give good agreement, as indicated
j by the large oscillations (~3.7 tus) in the calculated displacements. ;
'

I
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5.4.2 ,Posttest analyses of test WP-CE-1

5.4.2.1 Posttest 3-D static analyses. The 3 s finite-element model
f or test WP-CE-1 incorporated a segment of the plate assembly 4.6930 m
long crasured f rom the crack plane to the top of the load-pin hole. The
crack-tip region of the model included the side grooving and the edge
notch, the dimensions of which were taken from Taole 5.1. From symmetry
conditions neglecting out-of plane eccentricity, one quarter of the par-
tial pull-plate assembly waa modeled using 3751 nodes and 720 20-noded
isoparametric elements.

.
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Thermal deformations to be superposed on the 3-D finite-element

model to account for the in plane bending ef fect were cotputed from a 2-b
analysis, which assumed that the heated and cooled edges of the plate

= 205.5'C and T = -93.5'C, respectively. The in-
werefixedatT,,kingproducedaloa2-line(throughthetopoftheload-mi
plane thecmal ben
pin hole) eccentricicy of 2.26 cm relative to the geometric center 'I the
place.

In the 3-D snalysis, thermal stress effects were neglected, and a
uniform line-load statically equivalent to the WP-CE-1 test initiation
load of 10.14 MN was applied at the location corresponding to the top of
the load-pin hole. This analysis produced a static stress-intensity
factor of Kg = 166.2 MPa* 6 at the center plane of the plate. Comparing
this computed Ky value with the static initiation value of Kge = 104.5
MPa*6, evaluated f rom the relationship presented in Eq. (5.1) using the
crack-tip temperature (,i -33.7'C, yields a ratio of K /Kge = 1.59. Ag

comparison of initiation stress-intensity factors obtained from this tert
and previous tests is presented in Table 5.5.

Table 5.5. Initiation stress-intensity factor comparisons

Calculated Property
Crack-tip

static correlationTest
designation K" K b" "#*

C
g ie

(MPa*6) (MPa*6)

bWP-1.2 -33 251.5 87.5 2.87
bWP-1.3 -51 173.5 70.l 2.48
6WP-1.4 -62 213.0 63.9 3,33
bWP-1.5 -30 179.8 91.6 3,9,
DWP-1.0 -19 233.8 111.2 2.10
DWP-1.7 -22.7 280.6 103.7 2.71

DWP-CE-1 -33.7 166.2 104.5 1.59

8WP-2.4A 45 123.0 93.9 1.31
d 0WP-2.4B 60.8 143.3 135.7 1.06

8WP-2.1 55 126.4 117.6 1.07
8WP-2.5 66 119.5 155.5 0.77
8WP-2.3 66 136.1 155.5 0.88

acomputed f rom 3-D static analysis using ORMGEN/ALINA/0RVIRT.

3 0.036(T-RTNDT)
Calculated from Kre = 51.276 + 51.897 e

crack-tip tetaperature of ini'.ial fl w and caterial RTNDT*

0.036(T-DWNDT) using# alculated from K = 39.53 + 93.47 eC
crack-tiptemperatureof# initial flaw and material DWNOT'

dAfter crack pop-in.

;

!
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i
5.4.2.2 Posttest 2-D static and dynami>_ analyses '

Static and stability analysis. Posttest 2-D analyses for test

WP-CE-1 were carried out in the same manner as for WP-1.7. Using a tem- |
'

perature profile as defined by specifying the crack-tip temperature of
TCT = ~33.7'C and midplate temperature Tgp = 56'C, implying that Tain " !

--9 3. 5'c and T = 205.5'C, the dependence of arrested crack length andm
crack stability on the applied initiation load Fin = 10.14 KN was inves- |

tigated with WPSTAT; the results are presented in Fig. 5.63. Figure 5.64
presents an evaluation of the K , function of Eq. (5.2) on the arrest !g

crack-length curve ag(F), on the incipient tearing-instability curve
a!2(F), and or, the reinitiation curve arein(F). The K function of [ge

Eq. (5.1) is also evaluated on the curve arein(F). Evaluation of the
K ,(ag) curve at the initiation load Fin yields an arrest toughness K , = [g g

229.1 HPa*/m at the computed arrest point afc = 0.467 m, where the crack- |
tip temperature would be T = 47.7'C. The complete static-fracture

,

mechanics and stability analyses are depicted in Fig. 5.65.
:
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Fig. 5.63. Statically calculated crack lengths: Test WP-CE-1. [
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;

1

Application-mode dynamic analyses (fixed-load boundary condition).
'

The 2-D plane-stress finita-element model of the wide plate configuration,

used in the analyses consisted of 863 nodes and 264 eight-noded isopara-
metric elements. For the dynamic analysis, the load point was fixed at :
the value of the measured fracture load,10.14 HN, as a prescribed con- i

,
centrated load. The time step was set at At = 5 ps. Figure 5.66 pre- t

sents the calculated crack-depth history from this analysis and indicates

a predicted arrest, afp =[0.55 m.
d ,

Figure 5.67 presents the dynamic
stress-intensity factor K YN, the static toughness K ,, and the crackg

velocity a as a function of instantaneous crack depth. The crack propa-
gates into a rising Kg field, followed by a predicted arrest at a point .

where the crack-tip temperature would have been T = 69.3*C. The arrest !

toughness at the arrest point temperature was determined to be K , =g
344.4 MPa*/m". The computed arrest length exceeds the measured streat #

| point afm = 0.370 (plate front face), where T = 22.3*C and K , = 135.9g

| H Pa + [m'. There also appears to be a predicted arrest, a fp = 0.50 m, where
,

t

t

|
'

|
. . . ..
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Fig. 5.65. Complete static and stability analyses for initiation
load of 10.14 MN Test WP-CE-1.;

i ,

1
the crack-tip temperature would have been T = 56.0*C and the arrest
toughness K , = 256.4 MPa* 6. This point is much closer to the measuredj g

i arrest length at the plate back f ace at ag, = 0.42 m, where the crack-tip
temperature T = 35.6*C and the corresponding arrest toughness K , =; g

j 176.2 MPa'd. The analysis was terminated at time t = 3 us.
7

! 5.4.2.3 Generation-mode dynamie analysis (fixed-load boundary con- *

dition1. Figure 5.68 depicts the apparent crack position vs time curve -

that was used as input for the posttest generation-mode elastodynamic,

'

analysis of test WP-CE-1. For these analyses, the load point was fixed
,

at the value of the initiation load, 10.14 MN, as a prescribed concen-
'

,

trated load, and the time step was set at At = 5 ps. From these calcula-
> tions, the stress-intensity factor as a function of time is given in

,

I Fig. 5.69. Table 5.6 presents the generation-mode analysis results for i

the two arrest events (one f ror.t face and one back face). Computed ;

[ strain histories from selected points close to the crack-line strain gage !

| Nos. 1-4, 5 and 13--15, and 16.-18 (see Fig. 5.6 for strain-gage locations) |

|
are depicted in Figs. 5.70-5.72, respectively, for the generation-mode
analysis (fixed load) along with reasured data from the gages.

i

! (

! t
,

I
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'Table 5.6. Summary of computed
results for test WP-CE-1

,

** *
Event; (ms) (a) (MPaed)

b -

Initiation 0.0 0.200 130
;

'

Arrest
Front face 0.308 0.370 159
Rack face 0.364 0.420 170 (

"Generation-mode, fixed-load dynamic i
analysis. !

bFrom ADINA static analysis.
'

|
:

! ,

'
!

l

i i

I'
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j

5.4.3 crack-arrest toughness determinations [
! for wide-plate tests

,

. r

) Table 5.7 presents a summary of the general conditions for tests :

] WP-1.7 and WP-CE-1. (Results for the previous tests in the WP-1 and WP-2 i.

test series were presented in the two previous semiannual progress i

,
reports.11,12) Posttest analyses have been done for each of these tests |

j by using both static- and dynamic-f racture analysis codes, as well as by
applying handbook techniques. Some of these valuesI3

,

are presented in ;

i Table 5.8. i
.

| :
P

,

h
'

!
'

i
| |

[
'

;
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Table 5.7. Summary of MSST wide-plate crack-arrest test conditions
for specimens WP-1.7 and WP-CE-1

J

j Crack Crack Initiation Arrest Arrest Arrest
4 Test location temperature load location toeperature T - RT

(ce) ('C) (MN) (ce) ('C) ('C)NDT
y''

WP-1.7A 20,2a -24 26.2 52.8 61 84
3

WP-1.75 52 8 61 26.2 63.5 88 111

a b
WP-CE-1 20.0 ~34 10.14 37.0 22 57

8

|
42.0 36 70

j aCrack front cut to truncated chevron configuration.

bPlate front-face arrest locattor..
#

| Plate back-f ace arrest location.

.

Table 5.8. Computed crack-arrest toughness values
| for HSST wide plate crack-arrest specimene
: WP-1.7 and WP-CE-1

[1 =

| Crack-arrest
(MFa*(ghness values

!tou

e)
e

I

Tada dTest Fedderson Dynamic FE'

static SEN
] No, alternate l

I''*41**
; secant Generation |
| Displacement Load

'" * * * *
d bj control contro1 ;

{ WP-1.7A 351 793 311 319
WP-1.78 385 1312 381 555 ;.j

;

169 241 135 159 !
*

WP-CE-1(F)I
i

i WP-CE-1(B) 180 293 148 170 i

a t

# rom Ref.13 (pp. 2.10-2.11) while assuming a = af and l| F
3 no further bending occurs caused by propagation of the crack. ,

bFrom Ref.13 (pp. 2.10-2.11) while assuming a = ag and *

] full bending according to SEN formula when the final crack -

depth is used. .

#Kg=0 u see , with a = far-field tensile

width. b iia = ag' = final cr'ack length, and w = f ull plate [stress
e :

drixed-load condition. L..

y

Flate front-face arrest location. !#
,

[ Plate back-f ace arrest location. f
;

)
i
'

!

[*

|
, i
A *

. . . . . . - - . . _ . , - . . - - _ . . . , . . . . . , ,- - - - - - , , , , _ . , _ , . . - .
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5.4.4 Comparison of wide-plate crack-arrest toughness data
with other large-scale test results

Fixed-load, generation-mode dynamic finite-element determinations of
crack-arrest toughness values for the wide plate specimens tested so f ar
are shown in Fig. 5.73. This figure shows that the wide-plate K , testg

data exhibit an increase in arrest-toughness values with increasing tem-
perature. The trend for K , values to extend consistently above theg

limit provided in ASKE Sect. XI is further substantiated in Fig. 5.74,
which presents data f rom several large-scale tests and from the wide-
plate test results.16-21

5.5 Wide-Plate Analyses at UM

C. W. Schwartz

A generation-mode analysis using the program SAMCR (Ref. 22) was
performed by UM for the wide-plate crack-arrest test WP-1.7. The UM
analysis used the same crack position vs time data and thermal eccentric-
ity as the ORNL analyses. Figures 5.75 and 5.76 compare UM and ORNL
results for stress intensity vs time and axial displacement vs time,
respectively. Both figures show the same general trends and magnitudes.
The K values differ slightly for the first event (5-8% higher for UM),
with the dif ferences increasing for the second event. This is caused
primarily by a slight phase shift between the two sets of computations.
The results from the ORNL and UM elastodynamic analyses are summarized in
Table 5.9.

Table 5.9. Comparison of UM and
ORNL stress-intensity factor

determination

Stress intensity
factor

Event (MPa*/m) ;

!

ORNL UM

Initiation 223 236 i

Arrest A 319 334
Reinitiation 592 456

i

Arrest B 555 465
Reinitiation 961 1155 f,

i
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'5.6 Stub-Panel Crack-Arrest Tests
i

A. Pini C. B. Oland !
!G. C. Robinson
(

l

i Recent studias23 have been conducted by the HSST Program to evaluate i

j the usefulness of a relatively small panel specimen (45.7 x 76.2 x |
' 2.54 cm) for crack-arrest experiments. The goal is for the panel to be |

\
I

!
!

'

| '

i .

i !

t
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designed for measurement of K values at temperatures approaching the
upper shelf of the material. g,_ditional conditions are that crack arrestAd
should take place in a rising K field and that the resultant load shouldy
not exceed 2.5 NN (the capacity of the available testing machine). It is

,

proposed that crack arrest in a rising Kg field be achieved by applying a,

temperature gradient across the specimen. Crack propagation must initi-,

i ate at Charpy lower-shelf temperatures and run into a region of high ten-
! levels. In Ref. 23, a panel specimen with a stub

perature with high K , d to meet those requirements.g
(Fig. 5.77) was propose The stub is cooled
to serve as a crack-starter region and is mechanically loaded to provide
K levels that are high enough for initiation. An eccentric load isg

23applied to the panel to produce a rising K field. Static analysesy,

were carried out for the specimen in Fig. 5.77 to determine the maximum
attainable stress-intensity factor. For a resultant tensile load on the
stub of F = 66.7 kN and panel load of F = 2447 kN, which were uniformly,

applied o,er 0 < Y, < 10.2 cm and 30.5 cE < Yp < 40.6 cm, respectivelyj v
2 (with Y acasured f rom lef t edge), the K field has a value of 60.4g

MPa*6 with the crack tip at Y = 20.3 cm, rising to a peak value of 2203

MPa* 6 at Y = 20.3 ca.
Having draonstrated the feasibility of using a stub-panel specimen|

j to meet the goals stated previously, work was reinitiated in late 1987 to

1 develop the required specimen geometry, instrumentation, heating-cooling,
and loading systems.

5.6 1 Specimen geometry system I

i
4

t

4 Final geometry of the specimen was based on meeting three general r

I requirements: (1) measurement of crack-arrest toughness values >200
MPa*63 (2) following initiation, crack propagation and arrest within a t

rising Kg field; and (3) not exceeding the 2.5-MN load capacity of the l
'

testing machine. Figure 5.78 presents the geometry of a specimen that
) ,

meets those requirements. The specimen dimensions are 45.1 x 99.1 x 3.39 ;

es. The specimen will be sidegrooved, with the depth of each groove ;

applied to the specimen through the load-pin holes bhown in,) Fig. 5.78.
being 12.5% of the specimen thickness. Loadings (F, and F will be !

!

| Load F is used to produce the rising Kg field and load F, to initiate
! the cr$ck run-arrest event (s). ,

I
1

>.

5.6.2 Instrumenta.:fon systems t

| |

j A series of steel specimens, Fig. 5.79, were tested to evaluate both
strain-gage parameters and potential data acquisition systems. The it

| specimens were loaded to failure in a hydraulic testing machine operated '

'

in a stroke-control mode. As the crack propagated, signals f rom strain
! gages positioned adjacent to the crack propagation plane, as shown in |

Fig. 5.79, were recorded using digital oscilloscopes, an m recorder, or ;,

| a combination of uigital oscilloscopes and an m recorder. -

j Three types of strain gages were evaluatedt stacked rosettes, "Tee" !

rosettes, and single element. The gages were placed at equal intervals |t

| adjacent to the plane of crack propagation. The spacing netween gages |

[ and the spacing normal to the plane of crack propagation varied from test i

!
|

|

| i

! !

|
. .. -_ -. . -- . . ---

i
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used for strain gage and data acquisition system evaluations.

to test. Results from this series of tests are presently being analyzed
to select the type of strain gage and gage positioning for the stub-panel
crack-arrest tests.

'

j

l Two types of dynamic data acquisition systems were investigated to
'evaluate their unique capabilities as well as their limitations: an 5"t

recorder and digital waveform recorders. Because the digital syst.e w are |
"memory" limited, the development of a triggering system was requirea. 1

Also, since a test required the use of more than one digital waveform
'

recorder, the triggering system that was developed was required to initi-
ate data collection in each waveform recorder such that the point repre- f-
senting zero time was uniform for all recorders. So far, 12 specimens !

have been tested to failure in this series of tests. Data from these
tests are now being reduced for analysis and evaluation so that a dynamic
data acquisition system can be selected and a procurement specification r

developed. j

5.6.3 IIcating-cooling system

IInitial design and f abrication of a heatiag-cooling system to apply
| the thermal gradient across the specimen has been completed. Specimen ;

| heating is now provided by two 500-W and one 300-W electrical resistance [

! elements mounted on an aluminum bar that is attached to the back edge of. |
|

|
1 !
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1

the specimen. Cooling is provided by a liquid nitrogen reservoir chill

! block that is positioned around the specimen in the region of the crack
i tip. Check out of the system is in progress to demonstrate that it can

provide the desired temperature gradients (T,,x < 180'C, Tmin > 4 0'C)
across the specimen. Figure 5 80 presents a test specimen with the

ORNL PHOTO 8277-88
,,,,_m.y--_, . . _ . , . . ,.

p m.,y |!
: : c.+> ,

,
. ~

. , . ;..
s: ;, . .. ,

,

.f
"_ . .

Ei

, .
Hi ,,,

j
j3<

|- .'4

f' >

| :G , t

' , $.<

,

i f5 3
,

. I9 * *

{ j ,) ~ ::
< .

_ . - , ,s,

,

3

k

"

i

! ;m - :. r
>> .

;

j - - . .

!
#

s, i . . ..

p' Q & 4,! .. .

$\. . |~ N,
.

'

.j

.. ;)
| g%

_

~ +
.

. .

t
-

.

|
.

\* r

! j

{'l [ ,

1: c ,.

| 'ii . ,

\ ; . .. L 2 . 2 . a . .,b
i

j Fig. 5.80. Stub-panel crack-arrest Specimen with heating-cooling
I system installed.

i
!

I

_ _ _ - _ _ . _ -_ _ _ - _ - __ - _ _ _ _ _ _ _ - - _ _ _ - _ _ _ _ _ - _ _ _ _-_ . - - _ _______ __ __ __ _ _ _



_ _ _ _ _ _ _ _ _ _ _ ______ _ _ _ _ _ _ _ _ _ _ _ _ _

,

197

heating-cooling system installed. Temperature across the specimen is
monitored by the ten thermocouples positioned adjacent to the anticipated
plane of crack propagation. Sof tware has been developed for providing a
"real-time" display of actual vs desired temperature distribution across
the specimen. The computer display will be used to assist in making
decisions on adjusting the heating and cooling inputs while the thermal
gradient is being established, as well as providing a rapid means for
determining when the desired thermal gradient has been established.

5.6.4 Loading system

Hechanical loading devices have been developed for providing eccen-
tric load F, to produce a rising Kg field and also for producing a load
(F,) of suf ficient magnitude for crack initiation. The load fixtures are
now being fabricated.
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6. IRRADIATION EFFECTS STUDIES

R. K. Hanstad

The Heavy-Section Steel ' technology (HSST) Irradiation Effects Task
(Task H.6) consists of a number of projects concerned with the effects of
neutron irradiation on the fracture toughness and mechanical properties
of reactor pressure vessel (RPV) materials. The task currently involves '

,

seven designated series of experiments, the first four completed. The
active series described here include (1) the Fif th and Sixth Series,

which will characterine the shifts and shapes of the irradiated Kic and
K , curves, respectively, and (2) the Seventh Series, concerned with theg
irradiation resistance of stainless steel cladding. ;

6.1 Fifth Irradiation Series

R. Y.. Hanstad F. M. Haggag
R. L. Swain T. N. Jones

Fracture-toughness investigations continued with testing of irradi- !
'ated 1TCS and 2TCS. All planned irradiated testing for the Fifth Series

has now been completed. All tests were conducted with a computer-inter-
active test system, using the single-specimen compliance technique. No
unloadings are performed before the PQ load defined in ASTM E399. Tests )that do not satisfy the American Society of Testing and Materials (ASTM)
criteria for a valid K are analyzed by computing the J-integral at the
onset of cleavage J . gem elastic plastic fracture-toughness value KJc isg
calculated f rom the relationship

,

| Kj, = EJ, , (1)

where E I Young's modulus in negapascals.,

Irradiated 1TCS and 2TCS were tested at Oak Ridge National Labora-
tory (ORNL), while irradiated 2TCS were tested by Materials Engineering,

~

Associates (MEA) at the University of Buffalo. For 72W, nine ITCS were
tested at 85'C, and five 1TCS were tested at 95'C. For 73W. ten ITCS

; were tested at 85'C, and four ITCS were tested at 105'C. Fatigue crack
lengths and ductile crack extensions have been measured, and the final
fracture-toughness analyses are under way. Additionally, photographs of
all f racture surf aces have been completed.

Of particular importance to the analysis procedures is the treatment
1 of specimens that exhibit small cleavage instabilities, pop-ins, before

the final cleavage instability that leads to specimen fracture. Some of
the irradiated 1TCS, 2TCS, and 4TCS experienced pop-ins of various

i amount s. The tentative method chosen for treating those events follows
that of the ASTM Committee responsible for development of the test method
for crack-tip-opening displacement (CTOD). That is, a line is drawn'

i parallel to the initial slope of the load-displacement record and that

,

passes through the crack initiation load point of the pop-in. A second
|
:

,
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line (secant line) that originates at the same point as the parallel line
is then constructed but has a 5% reduced slope from that line. If the
secant line intersects the load-displacement trace before the arrest
point of the pop-in, the pop-in is defined as significant. In those

cases, the J is calculated at the point of pop-in initiation and Kye ise
calculated using Eq. (1). Furthermore, a Ky value is also calculated
corresponding to the point of cleavage instability, leading to specimen

ye based on small but significant (as defined above)failure. Values of K
pop-ins will be noted when the data are tabulated and plotted graphically.

IBecause of the relatively large data scatter, wide variations in
specimen sizes, and the need to use elastic-plastic fracture mechanics,
the use of statistical analyses is an important part of this program.
The use of Weibull failure statistics is incorporated in the program as
are standard statistics of variance procedures. Additionally, the use of
empirical adjustment schemes and other statistical distributions are
being investigated, all aimed toward the development of a rational scheme

for constructing the irradiated Kge curves.

6.2 Sixth Irradiation Serient Crack Arrest

S. K. Iskander R. K. Nanstad
E. T. Manneschmidt R. L. Swain

'

6.2.1 Capsule disassembly

The first of two irradiation capsules containing compact crack-
arrest specimens has been disassembled. The specimens have been re-
trieved and prepared for storage, and the dosimeters have been retrieved
for analysis. The second capsule will be disassembled by the end of
June.

,

6.2.2 Remote hot cell fixture for crack-arrest testing
!

The temperature-conditioning features of the remote hot cell fixture
for crack-arrest teeting have been exercised. Several thermocouples were :
attached to the top and bottom of various sizes of specimens and their I

readings compared with that registered by the fixture's thermocouple. ,
'

The uniformity of all temperatures, at low and high temperatures well in
excess of those envisioned for tests in the hot cell was within Al'C.t

The design of the thermocouple itself is similar to that being used in
the temperature-conditioning chamber of three Charpy V-notch (CVN) test-
ing machines, including that in the hot cell.' i

All three specimen sizes for which the fixture was designed were
tested (see Sect. 3.1). Several enhancements need to be implemented to
make its use in the hot cell as simple as possible. The Teflon strips ,

used between the wedge and the split pins for unirradiated tests would be
difficult to apply in the hot cell eavironment. Two kinds of lubricants
were tested, but after a single loading / unloading cycle it was clear from
the large force needed to extract the wedge that the lubricant had been !

wiped off the smooth ground finish. A fine sandblast finish to provide

___
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reservoirs of lubricant improved mattern somewhat, but lubricant still
had to be applied f requently. This matter is still under study.

6.3 Seventh HSST Irradiation Series

F. M. Haggag R. K. Hanstad
T. N. Jones E. T. Manneschmidt

R. L. Swain

6.3.1 Phase 1

Stainless steel cladding applied by the single-wire oscillating
submerged-arc method was evaluated in the first phase of the Seventh
Irradiation Series. Most of the work of this phase was completed and
reported earlier.1 It included results of Charpy impact and tensile

110 ' neutrons /cm2 ()g g,y) agspecimens that were irradiated to 2 x
288'C. However, eight irradiated 0.5TCS, each frou types 308 and 309
stainless steel cladding, remain to be testad in the hot cell using the
single-specimen unloading compliance technique. Furthermore, six irra-
diated precracked Charpy V-notch (PCVN) specimens, each from types 308
and 309 stainless steel cladding, will be tested dynamics 11y. Unirradi-
ated 0.5TCS f rom both types 308 and 309 stainless steel cladding were
tested successfully. The results of these specimens will be reported
later when testing of the irradiated specimens is completed.

6.3.2 Phase 2

In the second phase, currently in progress, a commercially produced
three-wire series-arc cladding was evaluated under similar irradiation
and testing conditions as in the first ' phase. The three-wire series-arc
procedure, developed by Combustion Engineering, Inc., Chattanooga,
Tennessee, produced a highly controlled weld chemistry, microstructure,
and f racture properties in all three layers of the weld. The three
layers of cladding were required to allow the fabrication of tensile,
CVN, and 0.5TCS from the cladding. The tensile and CVN specimens were

2 (>l MeV),t (>l MeV)
110 ' neutrons /cm while the eightirradiated to 2 and 5 x

0.5TCS were irradiated only to 2 x 1019 neutrons /ca Testing.

of the unitradiated (control) and irradiated tensile and CVN specimens is
completed, and the results are presented below. Unirradiated (control)
0.5TCS were tested successfully using the single-specimen compliance
technique, but the results will be presented later following testing of
irradiated fracture-toughness specimens. Preparations have been made to
complete testing of all remaining irradiated specimens f rom the Seventh
Irradiation Series by the end of June 1988. Most of the Phase 2 results
are described in Ref. 2. ,

.

6.3.3 Results and discussion

Photomicrographs of the three-wire stainless steel cladding (Fig.
6.1) show a distributf.on of delta-ferrite in an austenite matrix quite

|
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Fig. 6.1. Microstructure of three-vire stainless steel cladding

weld overlaf typical of RFV cladding with delta-ferrite in austenitic
matrix, good-quality commercial cladding.

typical of microstructures seen in good practice, commercial-weld, over-
lay cladding in RPVs.

6.3.3.1 Irradiation history. The specimens were irradiated in two
capsules by Mt.A in the core of the 2-W pool reactor (UBR) at the Nuclear
Science and Technology Facility in Butf alo, New York. Each capsule con-
tained 20 CVN ar.A 6 miniature tensile specimens and was instrumented with
thermocouples and dosimeters. Each capsule was rotated 180' at least
once during its irradiation exposure for side-to-side fluence balancing.
Irradiation temperatures were maintained at 288 * 11'C. The average
fluence for the first capsule was 2.14 x 1018 neutrons /cm2 (>l MeV) * 8%,
following 631.5 h of irradiation. The second capsule reached an average
fluence of 5.56 = 1019 neutrons /cm2 (>l Mev) * 5% in 1607 n. These
fluences are for a calculated spectrum based on Fe. Si, and Co dosimeter
wires.
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6.3.3.2 Tensile properties. Tensile tests ware conducted in the

temperature range of -125 to 288'C. The effect of specimen orientation
on tensile properties was insignificant (Fig. 6.2). Hence, only tensile
specimens with their axes oriented in the longitudinal (rolling and

.
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welding) direction were irradiated at 288'c to the two fluence levels
mentioned earlier. The cladding exhibits an extremely rapid rise in
tensile strength below about O'C, as shown in Fig. 6.2. This figure also
shows that the ductility increases from high temperatures to about ~50'C,
then decreases at lower temperatures.

6.3.3.3 _ Impact testing properties. Charpy impact specimens were
aschined in the LT, LS, TL, and TS orientations. These four specimen
orientations were chosen to simulate the possibilities of crack extension
in the axial and circumferential orientations, both across and through
the cladding of a pressure vessel. All three-vire stainless steol clad-
ding specimens exhibited a behavior similar to the ductile-to-brittle
transition behavior of ferritic steels (alto similar to that of single-

lwire cladding ) durind impact testing, because of the dominance of delta-
ferrite failures at low temperatures. The test results also show rela-
tively small variations of Charpy impact toughness in four orientations
(Fig. 6.3). Thus, CVN irradiated specimens were auchiped only from the
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| cladding in the LS orientation because this orientation exhibited a
typical transition temperature as well as a slightly lower upper-shelf
energy.

The fracture appearance macroscopically did not change significantly
from the upper to lower shelf as shown in Fig. 6.4. These CVN specimens
(unirradiated, LS orientation), shown in Fig. 6.4, were further examined

i
in the scanning electron microscope. The specimen tested at 100'C ab-
sorbed 80 J and fractured in a fully ductile manner by microvoid coales-'

cence. The spherical particles that initiated the dimples were readily
visible on the fracture surface. In contrast, the specimen tested at
-100*C absorbed only 20 J and f ractured in a nuch more brittle mode. The
f racture surf ace of this specimen contained areas s! cleavage associated
with the fe-rite phase. Also present were smooth regions believed to be
ase~iatec ith the ferrite-austenite interfaces, indicating that Irac-
tu te by interphase separation. Some isolated patches of dimples
and initiating particles were also present. In conclusion, scan-

ning meron microscope examination (Fig. 6.5) demonstrated that the
fracture of stainless steel cladding is matrix controlled on the upper

snelf and ferrite controlled at lower temperatures, as observed previ-
ously with the single-wire cladding.1

6.3.3.4 Effect of irradiation on tensile properties. The yield
,

strength of three-wire stainless steel cladding was increased because of J
irradiation exposure. The effects were greater at room temperature and
below (Fig. 6.6); for example, at the fluence of 2 x 1019 neutrons /cm ,2

the yield strength increased by 9, 20, and 28% at test temperatures of
,

288'C, room temperature, and -125'C, respectively. At the higher fluence,
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Fig. 6.5. Scenning electron microscopic examination demonstrates
that f racture of stainless steel cladding is matrix controlled at upper
shelf and ferrite controlled at lower temperature 6.
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level of 5 x 1019 2neutrons /cm , the yield strength increased by 6, 16,
and 34% at the test temperatures of 288'C, room temperature, and -125'C,
respectively. Thus, most of the radiation damage occurred at the first
fluence level; increasing the fluence by a factor of 2.5 did result in a
relatively smaller radiation damage increase. The effects of irradiation
on the ultimate strength and ductility were insignificant or very small
(Fig. 6.7).

6.3.3.5 Effect of irradiation on Charpy impact properties. Irra-
diation of the three-wire series-arc stainless steel cladding specimens
at 288'c to fluence levels of 2 and 5 x 1019 neutrons /cm2 ()1 g,y)
resulted in decreases of the CVN upper-shelf energy by 15 and 20% and

| increases of the '41-J transition temperature by 13 and 28'C, respectively
(Fig. 6.8). Again, Fig. 6.9 shows that increasing irradiation from 2 to
5x 1019 neu t rons,/cm2 further degraded the three-wire stainless steel
cladding. Irradiation also degraded the CVN latural expansion signifi-
cantly (Fig. 6.10). The upper-shelf lateral expansion was reduced by 43
and 41% at the low and high fluences, respectively. Furthermore, the
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0.38-:m (0.015-in.) transition temperature shif ts were 41 and 46'C for
the low and high fluences, respectively. Table 6.1 also provides the CVN
test results f or the ur4 irradiated and irradiated specimens. These
results generally agree with those for the single-wire cladding produced
with good welding practice.1
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Table 6.1. Charpy impact test results for stainless
steel three-wire series-arc cladding

Transition temperature
Neutron Shelf energyC#IE*'A "I a fluence (J)

[ neutrons /cm2
(TOrientation

! (>1 HeV)] Upper Lower
41 J 68 J 0.38 na

LS 0 -41 6 -57 82 13

LS 2x 1019 -28 56 -16 70 9

LS 5x 10 ' -13 -11 68 121
4

i

LT 0 --2 8 11 88 14

TL 0 ~40 4 86 16
i

TS 0 -55 7 83 12

aWith respect to the base metal where L is the rolling as well
as the welding direction.

1
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7. CLADDING EVALUATIONS

7.1 Crack-Arrest Behavior in Clad Plates

S. K. Iskander G. C. Robinson
B. C. Oland S. E. Bolt
D. J. Alexander E. T. Manneschmidt
K. ' Vu Cook R. L. Swain

7.1.1 Introduction

The objective of the clad-plate experiments is to determine the
effect, if any, of stainless steel cladding upon the propagation of small
surf ace cracks subjected to stress states similar to -those produced by
thermal shock conditions. Six plates Aave been already tested, and a
detailed description of the experiments and results has been given pre-
viously.1 One clad and one unclad plate were tested recently and are
reported on in this section. The results of crack-arrest testing per-
formed on the clad plate base metal are given in Chap. 3.

2In previous reports, the test specimen was described and pretest
material characterization given.3 Posttest material characterizations'

presented in the preceding semiannual progress report" included Young's ~ '

modulus and stress-strain curves f or the base metal, heat-af fected zone
(HAZ), and claddin'g, as well as results of room-temperature tensile
testing that had been performed on the RAZ from one of the broken halves

; of the first plate tested. The RTNDT of the base metal, the variation of
hardness across the thickness of the plate, results of metallographic
examinations, fractography, and scanning electron microscopy (SEM) on the
fracture surf ace of the first plate have also been reported in the pre-
vious semiannual report. I "s

The general test procedure was described previously, but for the
sake of completeness, it will be repeated here to emphasize the similari-
ties and differences between the tests on the previous six specimens and
the present two. The test procedure will be followed by a description of
the instrumentation and static and dynamic data acquisition systems
(DASs) used. Then the tests and results will be presented, and some pre-
liminary conclusions inferred from all eight tests are given.

4

7.1.2 General description of the test

in all eight testa performed, the general test procedure was essen-
tially the same. The instrumented plate was mounted in a 1-MN Instron'

testing machine. For tests at other than room temperature, the plate was
1 cooled to the specified temperature. The variation in temperature at

various locations was kept within 3*C. All eight plates had an electron- '

beam (EB) weld in the base metal to serve as a flaw initiation site. The
plate was loaded in four point bending to induce a pure bending moment in |

the span including the EB weld region. For the previous six plates, the r

loads were chosen to induce a specified strain level on the surface of
the base metal. The EB weld was then hydrogen-charged, while the load

_ . _ . ._. __. . _ . _ _ _ _ _ _ _ _ _ _ , _ _ _ , . _ _ _ . _ _ _ _ _
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was maintained constant using stroke control, until a flaw initiates.
This portion of the experiment on an initially unflawed plate is thus
essentially an "arrest" experiment, the purpose of which is to study the
effect of cladding on a running flaw.

With the two plates recently tested, the EB weld was hydrogen-
charged until a flaw popped-in before installing in the testing machine.
For brevity, this flaw will be referred to as the "EB flaw," and its
shape is shown later. The plates were then mounted in the testing
machine, and the load increased at a uniform rate under stroke control
until this preexisting flaw either popped-in and arrested or the entire
plate ruptu red. Thus, the dif ference between the experiments on the two
plates reported here and the previous six is the presence of a flaw when
the plates were first mounted in the test machine.

In cases in which the flaw arrested, the plate is removed f rom the
testing machine and heat-tinted to define the arrested flaw shape. Some

nondestructive examination was performed to determine the extent of flaw
propagation. After partial reinstrumentation, the plate is put back into
the testing machine, and in some cases, cooled to a specified temperature.
The load is increased at a uniform rate until the plate either rupturee
or further pop-in occurs. In case of the latter event, the process is

|
repeated. The purpose of reloading the arrested flaw shapes is to obtain
data on the residual load-bearing capacity of flawed clad plates. This'

! portion of the experiment is designated an "initiation" one in contrast
with the "arrest" portion described above.

In all cases, the loading rate was chosen to be within the range
prescribed by ASTM E399, 0.55 to 2.75 HPa*mes"1

7.1.3 Instrumentation and DAS

Figure 7.1 shows the layout of the instrumentation used for the
tents on plates CP-16 and -22. Both plates were instrumen*ed with four
thermocouples, TE-1 through TE-4; one crack-opening-displacement (COD)
gage ZE-1; and 12 strain gages, XE-1 to XE-12. Plate CP-16 carried extra
instrumentation to capture the dynamic characteristics of crack propaga-
tion. The extra instrumentation consisted of strain gages XD-1 to XD-11
and two additional trigger strain gages. These were attached near the
crack tip and in the path of possible crack propagation to trigger the
DAS described below. Figure 7.2 shows a close-up of the flaw area and
the strain gages in its vicinity. Load and stroke signals f rom the
hydraulic testing machine were also recorded.

To provide additional test data, the load and C0D were recorded on
a strip-chart recorder. The load was plotted against the signal from
strain gage XE-1 (on the cladding) on an X-Y plotter. The loads reported
for initiation and arrest were taken from these plots.

Both static and, for plate CP-16 only, dynamic DAS were used. The
static DAS recorded data every 6 min during the loading of the specimen,

j while the dynamic one recorded data f rom just before crack initiation to
|

just after crack arrest. The static DAS recorded data f rom the four
thermocouples; the C0D gage; 12 strain gages, XE-1 to XE-12; the load

,
cell; and the stroke transducer.

|

|

|
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'

The dynamic DAS recorded signals from 11 strain gages, XD-1 to
XD-11; the trigger gages; and the load cell, using four LeCroy and three
Nicolet digital oscilloscopes that were simultaneously triggered when the
crack initiated. A separate trigger circuit was used to ensure that the
oscilloscopes triggered simultaneously. This circuit, which consisted of

two trigger strain gages, a strain gage conditioner, and a pulse gener-
ator, supplied a voltage spike of ~10 V when one of the trigger strain
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Fig. 7.2. Close-up of flaw area and strain gages in its vicinity.

t

gages was fractured by the propagating crack. Each oscilloscope was set

to trigger on a voltage change of 5 V. The LeCroy and Nicolet oscillo-
scopes were set to record datc. at a rate of 20 and 500 ns/ point, respec-
tively.

7.1.4 Tests on clad plate CP-16 and unclad plate CP-22

As mentioned above, clad plate CP-16 and unclad plate CP-22 were
tested. The flaws produced in both plates by the EB weld / hydrogen-
charging technique were approximately elliptic in shape, 16 cc deep. The

lengths of the flaws along the surface were 58 and 67 mm f or the clad and
unclad plate, respectively. The shape of the EB wald-induced flaw shape
is apparent on the fracture surface shown later in this section.

Plate CP-16 was tested at raom temperature (~21*C). Pop-in occurred

at a load of 703 kN, and the drop in load to the arrest point was <1%
(Fig. 7.3). It is believed that an earlier pop-in, also apparent in
Fig. 7.3, occurring at 632 kN is associated with flaws lying in different
planes on either side of the EB-weld ilA2 joining together. On the basis
of an ~1600-ut increase, observed in strain gage XD-3 and indicating a
sizeable c r a c k-j ump , the plate was unloaded.

.
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The flaw in the EB-weld HAZ was now more easily discernible, Fig.
7.4, but no evidence of propagation along the surf ace could be seen.
However, dimpling that extended f rom the crack ends to the cladding (Fig.
7.4) indicated the presence of a subsurface flaw. The flaw area was '

; examined with dye penetrant (Fig. 7.5), but no surface crack other than
that in the EB-weld HAZ could be detected. In Fig. 7.5, the two parallel
lines normal to the flaw were added to mark the start of the cladding.

After heat-tinting the plate, it was reinstalled in the test machine
and reloaded again at the same constant stroke rate and at room tempera- '

ture. A second pop-in event occurred at a load of 890 kN, with an arrest
occurring af tsr a 17% load drop (Fig. 7.6). From the dimple on the top
surface of the cladding, it was apparent that the second event flaw had
run beneath the entire width of the cladding to the edge of the plate. A
second heat-tint was perf ormed, and the plate was reloaded at ~25'c until'

it broke in two halves at 689 kN.
The fracture surface of plate CP-16 is shown in Fig. 7.7. The HAZ

has arrested the flaw in both first and second events. Figure 7.8 shows
a close-up of the EB flaw and its arrested shape at the end of the first ;

event, in which it tunneled slightly below the HAZ without penetrating
<
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Fig. 7.4. Flaw in EB-weld RAZ after the first event. No evidence

|
of propagation alond the surface can be seen. Note dimpling that

' extends from crack ends to cladding.

the HAZ. A very thin layer on the plate surf ace covered the portion of
the flaw that ran in the base metal, which explains why the dye penetrant
examination nentioned previously did not reveal any significant extension
beyond the preexisting flaw in the H AZ of the EB weld. During the second
event, the flaw propagated across the full width of the plate within the

central portion of the plate thickness (Fig. 7.7). However, substantial

| unbroken bands, ~10 and 16 nn thick, which remained across the top and

| botton surfaces of the plate, respectively, kept the plate frou failing
catastrophically. Both bands ran across the full width of the plate
except for the segment in base metal on its tensile side in between the
side strips of cladding. This confiraed the previous observation that

j the dimple on the clad surface of the plate indicates tunnelling of the
flaw beneath the cladding. Such indications of tunnelling have been'

observed several times be f o re in the previous tests.1
Unclad plate Ci'-2 2. a lso tested at room temperature, ruptured at a

load ot 689 kN, within 11 of the load trige,ering pop-in of clad plate
C l'- 16 , except in this c a .se no arrest occurred and the plate broke in two

halves. A general view of the fracture surface is shown in Fig. 7.9, and

close-up of the EB flaw is presented in Fig. 7.10. The differinga

i

'
_ , - - . - . - - - - . . . . _ - _ _ - - . . ~ - - _ _ _ . . . _ . - , _ _ _ . . . - - . _ . - . - .



.- - _ _ . - . - _ - . _ . _ - . . - _ _ _ _ - _ . _ _ _ .. - .-

218

AMC PHOTO YPW

.,,

m.. _ .

.

_
!

.

.

.-
,

.,
.

4
_

-g_.... 'e*a ~
,

.

~
q

j
. . . A (~J j~

.

s.- .

kO O #

,

' S

-
.

| .
.

.,,
-

e s

Fig. 7.5. Dye penetrant indication of flaw in plate CP-lo atter
tirst event. This is the same area as shown in Fig 7.4, but na surface

i crack other than that in Eli-weld liAZ could be detected. Two parallel
lines normal to tlaw were adied to mark the start of cladding.

i
l

|

|
'

"textures" or the fracture surface seem to indicate that the crack front
; first prop w tes below the surface, leaving an unbroken ligament. This

ligament then c l e a v e ., wnen the stresses be c o me suf i icient ly hi,;h , thus;

reestablishing a through-cracs configuration. The c r a c e. frunt propagates
I igain Im l .a w the suriace, and the process repeats.

| The prottles of the L !$ flaw as well as thit ut the tlas at the end
j at the f ir st event in plate CP-16 are shown in Fic. 7.11. The initial E rs

j t i a .' in plate CP-?2 is presented in Fig. 7.12. These protile, will be

|
'

of the tests.used in the finite eleuent int]vsis

i

1.1.5 Discussion ut results

! The l a a ,i s at various events are sh.iwn la Table 7.1. There is little
| .t i t : c r e :ee bet w en the re,ults fri- the tw, c. cent test, and the oirlier

1pa r i stin , the test re ,u l t s >4 the pte''. .ls six p l .i t e ,s i v. te,ts. Far ts

nave ee1 i: l u .i c 1 in Taalt !. . >t. thit t h- pap-in lo ii : a t- platei
.

t t I1 id ( C l;U 5 e :i Dt t hi' e' i o 1 !h- 1l'P-lh tw wiLh!n 3 ', J t ht' t ,t r it. t: ' , s

s

)
l

i

1
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Table 7.1. Sre ary of initiation and arrest
loads f cv plates CP-16 and -22

,

L adTest
( N)

<

Plate Condition temperature

('C) Pop-in Arrest

CP-16 Clad 21 703 694
21 890 738

-25 698 Rupture

CP-22 Unclad 21 689 Rupture

Table 7.2. Target surface strains and corresponding
loads for the six plates tested

.

L ad TargetTest
a ( aurface

| Plate Condition temperature
strainq (.C) b

| Pop-in Arrest (%)
,

CP 15 Clad RT 676 654 0.31
-25 759 709 .

-100 600 R I

CP-17 Clad RT 890 823 0.45
Several pop-ins -25 756/725 R

' occurred '

'

before rupture,

CP-19 Clad RT 987 689 0.65
-50 703 R

CP-21 Unclad RT 676 R 0.27 I
,

; I

CP-18 Clad -25 823 649 0.39
-25 698 R

CP-20 Clad - 25 868 R 0.41 i

I
! "RT = room temperature, ~25'C.

bR = plate ruptured in two pieces.

:

4
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on surface of base metal) for the "arrest" test on plate CP-15. The
arrested crack shapes also are very similar.

Some of the data recorded by the static DAS during one scan just
before crack initiation and the one just after are shown in Table 7.3.
The strains in the base metal, gages XE-5 to XE-8, are slightly above the
yield strain before crack initiation and drop to slightly below yield
afterwards. Note that the large strain increase in gage XE-9, which is
directly in the path and near the base / clad interf ace reflects the fact
that the crack has propagated and arrested in its vicinity. The strain
increase in gages XE-10, -11, and -12 are less than those in XE-9,
reflecting their greater distance f rom the tip of the arrest flaw. The
strains shown will be used with the finite-element calculations of the
initiation and arrest events to analyze the test.

Table 7.3. Data recorded by the static DAS during
one scan just before crack initiation

and the one just after

,

' Signal Just before initiation Just after arrest

Load 708 kN 703 kN
Stroke 9.2 mm 9.4 mm
C0D gage 0.58 mm 0.81 mm
XE-1 4055 microstrain 4240 microstrain

XE-2 3554 microstrain 3746 microstrain

XE-3 4020 microstrain 4202 microstrain

XE-4 3805 microstrain 3970 microstrain

XE-5 2940 microstrain 2715 microstrain

XE-6 3059 microstrain 2759 microstrain
XE-7 2947 microstrain 2769 microstrain

XE-8 3094 microstrain 2802 microstrain
XE-9 4268 microstrain 540t microstrain

XE-10 3710 microstrain 4391 microstrain

XE-11 3775 microstrain 4029 microstrain
XE-12 3634 microstrain 3809 microstrain

Figures 7.13 and 7.14 show data recorded by the dynamic DAS; the
former are the strain gages on the right of the flaw, while the latter
are on the left (see also Fig. 7.1). Time zero ref ers to the time the
trigger gage broke because of the large strain caused by the underlying
crack. Some of these figures were available immediately af ter the main
pop-in and were invaluable in aiding the interpretation of the load drop
as being a significant propagation event and not a pop-in of the EB weld.
As mentioned previously, the 1600-pc increase in gage XD-3 led to the
decision of discontinuing the test and h2at-tinting the finw surface.

It may be observed f rom the response of gage XD-1 that the strain
peaked while the crack passed in its vicinity and then dropped about

. _ . - _ .
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200 pc, indicating a relief of the surface strains. The behavior of gage
XD-2 is similar, but the strains were slightly higher than their level
before pop-in because the crack arrested in its vicinity. This elevation
of strains after arrest is more apparent in gages XD-3 to XD-6. The
strain gages on the other side of the flaw have all registered an in-
crease in strain during the event. The cause of the dip in strain at
time zero is not known but may be an electric transient precipitated by
the triggering system.

The velocity of two events as registered by peaks of gages XD-1 and
XD-2 was estimated to be about 3150 m/s. Such high crack propagation
velocities are improbable. It is more likely that these gages are regis-
tering the transverse wave precipitated by the first event. The trans-
verse wave velocity v in isotropic materials is given by (values in

t
parentheses are average values for steel):

v = /G/d ,

3where G is shear modulus (79,200 HPa) and d is density (7850 kg/m ).
Thus, for steel v is about 3180 m/s.

t
Preliminary conclusions from tests on the two plates are still the

same as those from the earlier six tests. The combined toughness of the
cladding and RAZ seemed to have contributed significantly to the load-
bearing capacity of the plates by arresting flaws at loads and tempera-
tures that have ruptured unciad plates. This was observed in the present
two tests as well as in plates CP-15 and -21 tested previously.1

Moreover, the residual load-bearing capacity of flawed plates, as
measured by the critical loads in initiation experiments with fairly
large flaws, was generally greater than that required to break the unciad
plate.

The tests indicate a propensity of propagating flaws to tunnel, even
without the aid of the tough surface layer composed of cladding /KAZ, as
has occurred in the base metal portion of the clad plates and in the
unciad plate. This potential for tunneling is related to the location of
the ntximum stress-intensity factor for short flaws, occurring somewhat
below the surface, when the flaw is in a stress gradient.

The ductility of cladding appears to have been a necessary ingredi-
ent in increasing the load-bearing capacity of clad plates. Ilowever, it

is not cicar at this time whether cladding alone, without benefit of the
tough l{ AZ that played a pronounced role in arresting propagating flaws,
would have also elevated the load-bearing capacity. In case of radiation-
embrittled reactor pressure vessels, the RAZ will most likely undergo
toughness degradation similar to that of base metal and would therefore
not play such a prominent role in arresting propagating flaws.

-- - - -- - r- w - ~ 7-
- - -
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7.2 Flaw Characterization Studies of Clad
LWR Vessel Material

K. V. Cook R. A. Cunningham, Jr.
R. W. McClung

7.2.1 Introduction

Hondestructive testing (NDT) tasks on segments of the Hope Creek
Unit 2 boiling-water reactor (BWR) and the Pilgrim Unit 2 pressurized-
water reactor (PWR) were completed. A revised topical report was pub-
lished in February 1988.5 The results indicate that the flaw density
predictions being used for probabilistic risk analysis may be nonconser-

6vative for the small flaws. A paper has been accepted for publication
in Nuclear Engineering and Design.

An oral presentation was made at the Fifteenth Water Reactor Safety
Information Meeting (October 27, 1987) entitled "Detection and Character-
ization of Flaws in Segments of Light-Water Reactor Pressure Vessels." A

7summary paper of the same title was published in the transactions of
this meeting. In addition, a full paper was submitted for the proceed-
ings of this meeting (to be published in the spring of 1988).

The experimental studies and technical work performed during this
period are summarized in the following subsections of this report.
Further details are available in the referenced material.

7.2.2 Nondestructive examination of sections from
Pilgrim Unit 2 pressure vessel

As reported previously,8 block P-1 had calibration reflectors
machined to provide for underclad calibration. Details about the cali-
bration and the ultrasonic inspection were also provided in the last
semiannual report. Block P-2 was the only one in which an indication of
note was located. This indication was reported as being at a depth near
the clad-to-vessel interf ace and at a position where the two 8 9-cm-wide
(3.5-in.) strip clad sections join.

Confirmation studies on the underclad indication detected in block
P-2. An approximate 15 x 15 x 23 cm (6 x 6 x 9 in.) section was flame
cut from block P-2 that contained the one underclad indication of note
detected in one of the three Pilgrim vessel segments. We confirmed the
presence of this indication by manual ultrasonic examination af ter the
cut section was delivered to the NDT laboratory. As was the case before
removal of the indication-bearing section, the amplitude maximum from the
discontinuity was about one-half that from the calibration reflector
[which was ~11 mm (0.440 in.) below the surface). Also, a stop-stare
positioning of the search unit was required to obtain this maximum ampli-
tude response. Further, a smoothing of the cladding (i.e., the raised
surf ace contour where the strip clad sections join) reduced the maximum
amplitude by about one-half again. Thus, if the surface contour had been
ground flat bef ore our inspection, we may not have detected this small
reflector with the dual-angle 70' longitudinal search unit employed.
This unit has an ef fective focal depth of about 9 mm (0.375 in.).

. _
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Subsequent sectioning at a cridlength position (i.e., length along
the clad strip joint as determined ultrasonically) of the underclad indi-
cation revealed the presence of a discontinuity (shown in Fig. 7.15). It

is located ~4.1 mm (0.16 in.) below the clad surface and is about 1.1-mm
(0.045-in.) maximum width. Also, note that the discontinuity was formed
where the two strip clad sections join. Although not very evident from

Fig. 7.15, an inclusionlike material is present at intervals along the
length. An analysis was performed on this material with a technique that

.
uses the SEM. Figure 7.16 shows the results of the SEM analysis with the
inclusionlike material having relatively high values of silicon and

calcium.
The overall length of this discontinuity in block P-2 was determined

by grinding. The estimated length, established by the grinding was
slightly less than 1.3 cm (0.5 in.). This was roughly three times longer
than estimated with the dual-angle 70* search unit.
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7.2.3 Results and conclusions

The destructive exa.oination completed on the one indication of note
detected in Pilgrim block P-2 confirmed the presence of a small discon-
tinuity located under the clad at a clad-to-clad joint. This partially
filled void contained relatively high values of silicon and calcium. It

~ was located ~4.1 mm (0.16 in.) below the clad surface and had dimensions
of 1.1-mm (0.045-in.) maximum width and length of about 1.3 cm (0.5 in.).

The detection of this discontinuity was dependent on the surface
condition of the cladding. The riisalignuent of the dual-angle, dual-

__ _ _ _ _ _ _ __
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element search unit (caused by the raised surf ace contour where two clad
strips join) increased the amplitude of the detected signal by 3 to 4 dB.
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8. INTERMEDIATE VESSEL TESTS AND ANALYSIS

No activity in the intermediate vessel tests and analysis task
during this period.

.

I

_ . . _ _ _ _ _ _ _ _ _ _ _
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9. WE M L-SHOCK TECHNOL0cy

No activity in the thermal-shock technology task during this period.

,

|

..
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10. PRESSUR1 ZED-THERMAL-SHOCK TECHNOLOGY

10.1 Preliminary Investigations of Future
Pressurized-Thermal-Shock Experiments

R. H. Bryan

During the current reporting period, a topical report on the second
pressurized-thermal-shock experiment (PTSE-2) was publishedl, and an in-
vestigation of the feasibility and utility of two additional experiments
was initiated. Experiments with a flaw in stainless steel cladding were
considered during the inception of the pressurized-thermal-shock experi-
mental task in 1981. Such an experiment, tentatively desi;gnated PTSE-3,
would demonstrate the influence of cladding on the evolution of the flaw
geometry during crack propagation. The other type of pres:surized-thermal-
shock experiment under consideration, PTSE-4, would demons tratc f racture
processes of special importance in low-upper-shelf seam welds.

The cladding problem has recently been the object of ;wo HSST pro-
gram studies: isothermal clad plate tests initiated in 1981 (Refs. 2-4)
and an experiuental determination of the properties of irradlated clad-
ding.5 These two stujies and the PTSE-3 investigation have a common ob-
jective: to identify potential beneficial or harmful ef fects of cladding
on the evolution of short, through-the-cladding flaws. The clad-plate
tests were simple experiments dasigned to determine whether cladding
could inhibit the lengthwise propagation of short cracks. These tests
showed that, in some instances, fast-running cracks were arrested without
the rupture of cladding or the cracks tunneled beneath the cladding.3 s"

The current PTSE-3 investigation deals with whether cladding ef fects
would be significant under relevant overcooling accident conditions, par-
ticularly conditions attainable in HSST pressurized-thermal-shock experi-
cents. Two computer prograus are being prepared to evaluate potential
cladding effects. The OCA/ USA program, used extensively la the planning
and interpretation of PTSE-1 and PTSE-2, is being modified to facilitate
the analysis of flaws with changing lengths. The SHA.PE program is being
developed to model the mechanistic changes in flav shape in a clad vessel
under combined pressure and thermal loads. The SHAPE program also models

n aluate the resultsclad plates under bending loads and will be ure' *-

of the clad-plate tests. PTSE-3 analyses wi) t e.P . b 1 account the

}5 properties of irradiated cladding. The resuvs : Leventh HSST'

y Irradiation Series,5 which are becoming availabt , v4 A. be an important
source of information on irradiated cladding.

h3 The other pressurized-thermal-shock experiment being evaluated,
,

'

PTSE-4, would require the fabrication of a new insert for the vessel used
in PTSE-2 (Ref. 1). The focus of PT5E-4 is to confiru the fracture
behavior of a weld deposit with properties representative of irradiated
high-copper welds that exhibit low tearing resistance (i.e., low upper
shelf). Three HSST irradiation series (2, 3, and 8) deal with this type
of atterial. In PTSE-2, the flaw was in a low-upper-sheld insert, but
the material was not representative because it was not a veld and its
tensile strength was very low. There is no evidence taat the fracture
behavior of a weld would have dif fered f rom the behavior of the insert in
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PTSE-2 if the tensile strengths had been the same. However, since the
f racture phenomena observed in PTSE-2 were complex, it would be prefer-'

able to use a weld deposit to represent welds in reactor pressure vessels.
Accordingly, preliminary work has been initiated to develop specifications
for the procurement of a low-upper-shelf weld insert for PTSE-4, as dis-
cussed in Soct. 10.2 of this chapter.

In PTSE-2, the final fracture event (cleavage followed by immediate
unstable tearing) caused the vessel wall to rupture. This rupture was hot
unexpected because the final tearing instability had been deliberately
planned. However, it is not known whether the instability was solely a
cUnsequence of low tec:ing resLatance or principally a consequence of low
strength. Furthermore, the stable tearing observed in PTSE-1 (Ref. 6) and
PTS 5-2 (Ruf. 1) is inconsistent with analysis based on J-resistance curve
data. An experiment with low-tearing-resistance material having normal
strength, as proposed for PTSE-4, is crucial for resolving these issues.

10.2 PTSE-4 Fabrication Feasibility

G. C. Robinson

An in.ormal inquiry was sent to several pror cqctive vendors to
establish the technical feasibility of obtaining a high-transition-
temperature, low-upper-shelf Charpy submerged-arc weldment test material
(1) for incorporation into the ITV-8 intermediate test vessel (recently
used as the test vessel in the PTSE-2 experiment) and (2) for use in
wide-plate specirens and associatea characterization weldments. A pre-

liminary draf t procurement specification was the basis for technical
evaluation by the various vendors. Table 10.1, taken from the specifica-
tion, gives the strength and toughness properties now considered neces-
sary to perform a viable PTSE-4 experiment.

One of the prospective vendors believed that the objectives could be
achieved by using the standard weld wire ordinarily used in A 533 grade B
class 1 weldments and by using Linde 80 flux (cr perhaps Linde 60) with

; increased oxygen potential to achieve the required low-upper-shelf prop-
erties. The high-transition-temperature requirements would be achieved
by increasing the silicon content to ~1%.

Two other vendors pref erred 2 1/4 Cr-1 Ho weld wire, American Weld-'

ing Society classification EB-3. Tentative flux choices included Linue
60 and Linde 80, and possibly L.nde 100. In addition, if possible, a1

"dirty" wire chemistry, consi. ting of high phosphorus, sulfur, and high,

silicon, would be chosen. However, the speculation was that improvements
in manu' curing practice would probably preclude such choices because of
material a c:73bility-

TP p. . nary p;.y rement specification depends on a two-phase
operatir," >s vend - the first phase, the vendor would explore a

so' - (e , 1;ae of flux, postweld heat treatment tempera-matrix e -

ment cooling rate) to establish parametersture, a)
.

r
4 d objectives. ith the first phase success-that w>.t -

fully c.ap - a. * jhase would consist of confirmatory tests and'

I the incor: ? .ceferred weld into the vessel, the six vide-

place speen.tns. :Maracterization weldments. The specification

i

!
'

|

|
i
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Table 10.1. Impact and tensile property requirements

Acceptable values
Desired

Property value Minimun Maximum

Yield strength," MPa (psi) 600 (87,000) 520 (75,000) 7bo (110,000)

Charpy-V upper-shelf 61 (45) 54 (40) 68 ( 50)
energy, J (ft.lb)

Temperature at which 100 (212)' 90 (194) 140 (284)
Charpy-V energy it at
the midpoint of the

transition # (TT). 'C ('F)
1.owest temperature at TT+30 (TT+54) TT+75 (TT+135)
which 100% shear itrat
occurs, 'C ('F)

,

aTo be measured at room temperature.
bThe upper shelf energy shall be determined by averaging the impact

energy of the specimens exhibiting 100% shear.
#Midpoint energy shall be determined by adding 6.8 J (% ttalb) to

the average of the values obtained with 100% shear and dividing the
result by 2.

also depends on the finished thickness dimension of the wide-plate speci-
mens being 15.24 cm (6 in.). The latter requiremeat may result in a
severely prolonged schedule because of the unavailability of heavy plate.
Only one of the potential vendors could identify a source of plate
(exclusive to that vendor) immediately available for the proposed work.
Estimates of 28 weeks or longer were presumed by vendors to represent a
typical delivery period of a contract for plate placed with Lukens Stect
Company, the only U.S. supplier. According to unconfirmed reports, plate
may also be available f rom Korean sources.

During the course of these inquiries, a source of old, relatively
dirty, 2 1/4 Cr-1 Mo veld wire was ic,:ated in suf ficient quantity to do ;

the proposed work. A purchase order has been prepared for the procure- [
ment of this material to permit an "in-house" feasibility evaluation of |
the parameters required to achieve the properties given in Table 10.1.

10.3 Stress-lutensity Factor Influence Coefficients ;
'f or Surf ace Flows in Pressure Vessels

J. Keeney-Walker D. A. Steinart
J. S. Parrott

In the f racture-mechanics analysis of reactor pressure vessels, ,

Istress-intensity-factor influence coefficients are used with superposi-
tion techniques to reduce the cost of calculating stress-intensity fac-
tors. Using the ORMGEN/ADINA/0RVIRT analysis system, influence coeffi-
cients vers generated for several axially oriented, semielliptical,

1
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outer-surf ace flaws in a cylinder for use in the OCA/ USA computer program
to analyze PTSE-3 and -4. The ratio of surface length (2b) to wall
thickness (w) of the flaws ranged from 0.4 to 6.776, and the ratio of
depth (a) to wall thickness ratio ranged f rom 0.1 to 0.9. The ratios are
summarized below.

2b/w 0.4 0.6 1.0 1.4 1.8 3.0 4.0 5.0 6.0 6.776
a/w 0.1 0.2 0.3 0.5 0.7 0.9

ORMGEN automatically generates a complete 3-D finite-element model
of the cracked structure with typically 5299 nodes and 1134 elements.
Figures 10.1 and 10.2 illustrate a typical mesh design for a semiellipti-
cal surface flaw, with a/w = 0.3 and b/w = 0.3. The influence coeffi-
cients generated for this flaw are shown in Fig. 10.3. The stress-
intensity factors obtained by superposition for a thermal transient load-
ing condition (see Fig. lu.4) were compared with values calculated by a
direct finite-element method and closely agreed, as shown in Fig. 10.5.
Figure 10.6 indicates that this similarity continues with the addition of
pressure loading.

The OCAUSA and OCAPLOT computer programs have been modified in
preparation for PTSE-3 and -4. The modifications allow the codes to
calculate and plot stress-intensity factors for multiple crack lengths
and crack depths (the previous versions only allowed for a fixed crack
length). The OCAUSA code creates a data set that is read by a computer
program designed to calculate crack shapes. Several key subroutines in

'the OCAUSA program were rewritten using Fortran 77 conventions. Other
modifications to the codes included restructuring the output tables, re-
formulating the 3-D K

BoththeOC108% calculations, and separating 2-D and 3-D calcu-lations. and OCAPLOT codes are compiled and executed on
the STC Vax 8600's at ORNL to allow for greater user interaction with the
codes during execution.

10.4 Hesh Convergence Study for PTSE-3 and -4 Pretest

J. S. Parrott J. Keeney-Walker
D. A. Steinart

i In the PT5E-3 and -4 pretest analysis, a mesh convergence study was
conducted. This study consisted of determining the effect that mesh'

refinement had on the K distribution along the crack front for a crackg

1/10 the cylinder thickness in depth and 1.4 times the cylincer thickness
in length. The mesh generator used for the analysis was ORMGEN.

The mesh parameters are as follows. NZ is the number of elements
along the circumference of the cylinder in addition to the two elements

'

that the program automatically assigns. GRADZ is the mesh expansion
factor in the circumferential direction (i.e., considering only the set
of elements along the circumference the user defines, an element has an

,

arc length that dif fers f rom the arc length of the neighboring element '

closest to the crack by a f actor of CRADZ). NCRS is the number of ele-
ments along the crack front.

,
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The finite-element model used as the base for this study had the
following mesh parameter values NZ = 6, GRADZ = 1.5, and NCRS = 8. A
complete view of the crack plane of this model is shown in Fig. 10'. 7 . In

Figs. 10.8 and 10.9, closeups of the crack are presented. A circumferen-
tial view of the model is shown in Fig. 10.10.

For the second model, all of the mesh parameter values were kept the
same as those used for the base model except the value of NZ, which was
increased from 6 to 8. This change is shown in Fig. 10.11, which is the
circumferential view of the second model.

For the third model, NA and GRADZ were the only riesh parameters wich
values that were changed f rom those used for the base nodel. The value
of NZ was increased f rom 6 to 8, and the value of GRADZ was decreased
from 1.5 to 1.1. These changes are shown in Fig.10 12, which is the
circumf erential view of the third model.

For the fourth model, the only mesh parameter with a value that was
changed from the one used in the base model was NCRS. The value of this
paramet.er was increased from 8 to 10. In Figs. 10.13 and 10.14, closeups
of the crack in the fourth model are presented to show this change.

After the develooment of the four bodels, the ADINA finite-element
program was executed to calculate stress throughout the model. Note that
the name crack-face loading was used for each execution. The ORVIRT

distributionfinite-element program was then used to determine the Ky
influence coefficients along tne crack front. Each model's K distribu-
tions, one for each load step, were superposed in Fig. 10.15.g For the
scale used in this plot, each mesh refinement gave results that were only
negligibly different from the results given by the base mesh. l
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11. FLAW DENSITY STUDIES FOR PRESSURE-
VESSEL-RESEARCH USERS' FACILITY

R. W. McClung R. A. Cunningham, Jr.
K. V. Cook

!!.1 Nondestructive Testing Plans

A preliminary plan for the nondestructive evaluation of the Pres-
sure-Vessel-Research User's Facility (PVRUF) vessel for flaw density was
draf ted near the beginning of this reporting period. The PVRUF vessel is
located near the south end of Building K-702 at the Oak Ridge K-25 Plant.

| It has an outside diameter (beltline) of 4.5 m (15 f t), weighs over
; 3.5 MN (400 tons), and is lying on its side (horisontal orientation on
! supporting stands). The preliminary plan addressed complications for the

nondestructive examination because of the satellite (field) inspection
requirement and the vessel orientation. To meet the satellite inspection
requirement, support services and f acilities have been added to the site.
Since the vessel will not be housed in an appropriate facility until
funding is arranged, we concluded that manual ultrasonic scanning proce-
dures must be used or special scanning systems must be purchased and used
while the PVRUF is in the temporary location. Once the vessel is inside j

and in a normal vertical position, it will be possible to apply commer-
cial or advanced automated in-service inspection (ISI) equipment. These |
inspection systema normally use a long vertical boom to center and locate ,

tooling f rom the inner diameter of the vessel. The cantilever action of i

this boom for operation in the horizontal orientation would require I
i

costly revision to a very expensive system. Also, immersion testing is [
normally done with these systems, whereas the horizontal position of the j
PVRUF would dictato contact or equirter hardware, another expensive modi- ;

i

fication. I
| Our preliminary plan was discussed by personnel from the Nuclear |

1 Regulatory Commission (NRC), the Oak Ridge National Laboratory (ORNL), |

and Pacific Northwest Laboratory (PNL) at a meeting in Caithersburg,
Maryland, in October 1987. A consensus draft plan was submitted for ;

consideration in March 1988. Background information for the Phase 1
studies, which has been taken f rom the introductory material of the
current draf t, follows.

j The acquisition of a full-scale commercial nuclear re- t

I actor pressure vessel by the Oak Ridge National Laboratory '

| provides a unique facility for many studies of value to nu- <

| clear reactors. Application and development of nondestruc-
tive examination (NDE) methods is one of the chnical disci-
plines of interest. t

The initial planned studies (Phase 1) are a continuation [

! of earlier studies to carefully determine the presence of
flaws in pressure vessel materials. The earlier work was

Icarried out on large sections of pressure vessels from can-
| celed BWK and PWR plants. The purpose of the earlier work

and Phase 1 of this plan is to provide experimental flaw
i
u

!

i
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characterizatica data f rom nuclear vessels for use in proba-
bilistic risk assessments. This is accomplished by quantita-
tively establishing the density, location, orientation, and
size of surf ace and volumetric flaws in segments of as many
vessels of the greatest volume possible. The near-term flaw
examinations on PVRUF are guided by recognition of the
greater priority for flaws in cladding and subcladding
regions but with recognition that volumetric flaws are also

important. Of course, verified evaluation of detected discon-
tinuities is necessary. Initial studies will be in the cylin-

drical portion of the vessel with manual techniques. It is

felt that use of this technique will provide a valid examina-
tion without delays and costs for acquisition of scanners.

11.2 Temporary Facilities for PVRUF NDE Activities

As previously reported.1 the PVRUF vessel was transported to Oak
Ridge near the end of September 1987 and unloaded by a subcontractor
using a modified J-skid support to position the vessel horizontally on
timbers. Figure 11.1 is a view looking approximately northward showing
the PVRUF vessel as positioned by the subcontractor in the foreground
and the K-700 building complex in the background.

j in order to implement the manual inspection activities described in
Sect. 11.1, several modifications were made to rer. der the interior of
the vessel accessible and habitable. These modifications include access
stairs, platf orm and double entry doors, movable interior scaf folding,
exterior and interior lighting, air conditioning, electrical heating,
water spray exterior cooling feature, and an array of 110- and 220-V
electrical general service receptacles. Also provided is a nearby

trailer to provide convenient office space.
Figure 11.2 shows some of the modifications that ha 'e been made to

the PVRUF vessel, including access stairway, exterior platf orm, and
double entry doors through the flange plywood cover originally installed
by Combustion Engineering (CE) for long-term storage. Also shown are
exterior lights, air conditioner housings, modified cover support
brackets, and the modified seal arrangement of the cover / flange edge to
prevent delamination of the plywood. Figure 11.3 is a view of the
interior of the PVRUF vessel showing entry platforms, nozzle covers, and
movable scaffolding. Figure 11.4 shows the position of the of fice
trailer in relation to the PVRUF vessel.

11.3 Complementary Procurement Activities

11.3.1 Ult rasonie calibration blocks for FVRU[

As described in Sect. 11.1, the first activity planned for PVRUF is
examining the vessel ultrasonically. In the c riginating utility / vendor
purchase order for the vessel, seven calibrati>n blocks for in-service
ultrasonic testing were included. llowever, thtir use in PVRUF testing

_ _ _ __ _ _ _
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activities has been delayed because CE has not yet received permission
from the owner of these calibration blocks to sell them to Martin
Marietta Energy Systeus, Inc. A request for such permission is being
processed. The seven calibration blocks include one each for 12.7-cm
(5-in.), 17.8-em (9-in.), and 27.9-cm (11-in.) wall thicknesses, and also
one each for she vessel flange, nozzle safe ends, and control-rod-drive
mechanism nozzles. /

11.3.2 Complementary weld seams

When the PVRUF vessel was procured from CE, ORN1. learned that CE was
flame-cut dismantling a companion vessel to the PVRUF vessel for selling
as scrap. Two weldments located in the companion vessel, shown in Fig.
11.5, have been procured from CE for future NDE studies to improve the
data base on firw density in light-water reactor vessels.
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aCONVERSION FACTORS

SI unit English unit Factor

mm in. 0.0393701

cm in. 0.393701
m ft 3.28084

m/s it/s 3.28084 ,

kN lb 224.809g

kPa psi 0.145038
KPa kai 0.145038

MPa*/m kai'/in. 0.910048
J ft+1b 0.737562
K 'F or 'R 1.8

kJ/m2 in.-lb/in.2 5.71015
W*m-2.g-1 Btu / haft 2..F 0.176110
kg lb 2.20462
kg/m3 lb/in.3 3.61273 x 10-5
ms/N in./lb 0.175127

f

T(*F) = 1.8 T('C) + 32
,

"Multiply SI quantity by given factor
to obtain English quantity.
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%e Heavy Section Steel Technology (HSST) Program is an engineering research activity
conducted by the Oak Ridge National Laboratory for the Ibclear Regulatory Comission.
The Program comprises studies related to al.1 areas of the technology of mterials
fabricated into thick section primary-coolant containment systems of light water-
cooled nuclear powr reactors. The investigation focuses on the behavior and
structural integrity of steel pressure vessels containing cracklike flaws. Current
wrk is organized into twlve tasks: (1) program management. (2) fracture methodology
and analysis. (3) mterial characterization and properties. (4) special technical
assistance. (5) crack arrest technology. (6) irradiation effects studies. (7)
cladding evaluatiot.s. (8) intermediate vessel tests and analysis. (9) thermal-shock
technology. (10) pressurized thermal-shock technology. (11) Pressure Vessel Research
Users' Facility, and (12) shipping cask material evaluations.

.. . . ...,. ........~.....x..,o.. . . .,.,.,g.3, .

Pressure vessels Cladding Crack arrat
Ferritic steels Flaws Crack growth Unlimited
L'eldments herm1 shock . u ce.... u . u.. .,.

Irradiation Fracture mechanics o . --

. ,. . .. .. .. .. c.i s . s o. . i = * n.,,.w m
a..

11- 1-- 2A'2 1
iD V _ -m ..m -

..+6.

._ _ __-_____- . -



- - _ _ - _ _ _ - - - _ _ _ _ - _ _ , , - _ , - - - - - _ _ _ _ _ _

o4-4 2 umeo ,

0g?; gA *n%ptcarions
,,c,h ;

w&inorou
DC 2055*5

!

!

!

:

!

.

|
t !

I

,

d

|
l

l
,

!

. . _ _ -_ _ - _ _ - . - . - , . - _ _ . - - . . . . . _ , . -.


