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ABSTRACT

We have developed a prototype catalytic igniter for lean hydrogen air
mixtures that could have important applications in nuclear reactor safety. The
igniter has two useful characteristics related to these applications: it requires no
electrical power and it can ignite mixtures as lean as 5.5% hydrogen. The ig-
nition induction time ranges from 20 s to 400 s depending on the hydrogen
concentration, gas flow velocity, gas temperature and relative humidity of the
gas mixture. Induction times are shorter for mixtures with higher hydrogen
concentrations, higher flow velocities, higher gas temperatures and lower rela-
tive humidity. The igniter operates successfully under conditions that may be
present during a loss-of coolant accident (LOCA) at a light water nuclear reac-
tor. In the event of a LOCA,large quantities of hydrogen may be produced
very rapidly and the catalytic igniter could provide a means of igniting it before
dangerously high concentrations are attained; even in the event that electrical

i

wwer required for conventional igniters is not available. The igniter has not :

xen tested under all possible LOCA conditions. High gas velocities, water l
spray, steam and iodine-containing compounds may be present during a LOCA
and will defeat the prototype igniter. However, shielding and semi permeable
coatings on the igmter could overcome these difficulties. A U. S. Patent has
been granted for the catalytic igniters described herein (U. S. Patent No.
4,741,879).
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EXECUTIVE SUMMARY

A potentially hazardous hydrogen air mixture may be produced in the reacter
containment of some types of nuclear reactors during a loss-of coolant accident (LOCA).
This mixture is flammable if the hydrogen concentration exceeds 4.1 vol. % and may be
explosive if the concentration exceeds 13 vol. %. One way of reducing the risk of
explosion or fire damage is to intentionally bum this mixture at sufficiently low hydrogen
concentrations (5 - 7 vol. % hydrogen), so that little if any damage to the reactor
containment building will occur. Current implementations of this hydrogen mitigation
strategy make use of electrically heated glowplugs or coils. However,in the event of a
serious accident, the electrical power may be interrupted, disabling these igniters. Dus,
nonpowered igniters could provide a valuable safety backup to existing igniter systems.

We have developed a catalytic igniter which can operate under conditions which may
prevail during a LOCA and that does not require an extemal source of power of any kind.
The igniter is composed of a catalytic substrate and several platinum wires (0.0123 cm
diameter,4.4cm long) which project into the unreacted gas. The substrate is an alumina
honeycomb (4.4-cm diameter,3.0-cm high, with 0.2-cm diameter cc.ls) that is coated
with high surface area platinum particles to about 1.7 weight % platinum. The igniter
operates by catalyzing the exothermic surface reaction between hycrogen and oxygen. If
the hydrogen concentration is sufficiently high, heat is generated rapidly enough by the
honeycomb to raise the temperature of the wires above 800 C. Above this temperature,
the catalytic activity of the wires is sufficient that they warm further to the ignition
temperature of the mixture (around 5850 C).

De atmosphere in the containment structure during a LOCA might be characterized by
high gas temperatures, high flow velocities (up to 1000 cm/s), high relative humidity (up
to 100%), steam, water spray, the presence of volatile fission products (Cs,1, etc.) and2
CO and CO . These conditions may cause igniters to fail, and we have tested the2
catalytic igniter under some of these.

In our laboratory tests of the catalytic igniter, gas phase ignition occurs after an
induction time (ignition delay time) of 20 400 s, the length of which depends on the
hydrogen concentration, gas flow velocity, gas temperature, and the relative humidity.
Induction times were measured for hydrogen concentrations in the range of 5.5 11.0
vol. %, gas flow velocities between 1.7 and 19.5 cm/s, gas temperatures between 200
and 650 C, and relative humidities between 5 and 98% Induction times are shoner for
mixtures with higher hydrogen concentrations, higher flow velocities, higher gas
temperatures and lower relative humidity. De igniter successfully ignited static mixtures
ss lean as 6.5 vol % 112, humidified auxtures as lean as 10 vol. % 11 and humidified2

flowing mixtures as lean as 6.3 vol. % contained in a 5.6-m3 est vessel. Liquid watert

defeats the igniter. Ilowever, when a wet igniter is dried,it operates normally indicating
that liquid water blocks the catalytic sites but does not poison them. De igniter operates
repeatedly. Some of the igniters used in this study were cycled tens of times without any
sign of reduced performance. This is a desirable characteristic because hydrogen
produced during a LOCA may continue to be produced after the first ignition event and
repeated ignitions may be required.

We have not tested the catalytic igniter under all possible accident scenarios that may
prevail during a LOCA. Ilowever, our initial tests indicate that a nonpowered igniter for
reactor safety applications is feasible and constitute "proof of principle." Furthem) ore,
we believe that a practical safet
with modest additional effon. y device based on our prototype design may be developed

1



1. IlfrRODUCTION

During a loss-of-coolant accident (LOCA) in a light water nuclear reactor (LWR),
there is the potential for production of large quantities of hydrogen gas due to the reaction

lof water and steam with the fuel rod cladding . De hydrogen production rate and
quantity may be such that a flammable mixture could be produced within hours as the
hydrogen mixes with the air in the containment building. If this mixture is ignited at
sufficiently high hydrogen concentrations, the structural integrity of the containment
might be compromised. Serious safety and radiological hazards could result. Herefore,
in the event of a LOCA, methods to either make the mixture non flammable or reduce the
hydrogen concentration are needed. One method for reducing the hydrogen concentration
is to purposely ignite the mixture at hydrogen levels low enough to prevent serious
damage. Although a safe upper limit has not been established for the hydrogen
concentration, it is less than 13%, the concentration above which a transition from
normal buming to detonation could occur. The deliberate-ignition approach has already
been implemented at several LWR sites by usin;; electrically heated glowplugs located at
various positions within the containment bui ding. One disadvantage of glowplugs,
however,is that they require a continuous source of electrical power which may oc lost
during a serious accident. And, even with battery backup (which has not been fielded),
an accident may cut the power cables to the igniters. Thus, a device that ignites lean
hydrogen air mixtures in a safe range of hydrogen concentrations (5 7%) and does not
require an extemal source of power could have important applications as a nuclear reactor
safety device.

De conditions inside the containment building in the initial stages of a LOCA may
include a wide temperature range (0 - 2000 C), wide velocity range (0 - 1,000 cm/s)2.3,

the presence of steam, water spray, carbon monoxide, and iodine and
high humidity,ing compounds. De igniter must operate under these conditions and havecesium-contam
the capability of repeated operation in the event of repeated hydrogen buildup.

We report here the successful development of a prototype catalytic igniter which has
some of the operating characteristics desired of a non powered igniter. We present the
results of expenments aimed at optimizing the igniter performance, and typical
performance characteristics of the prototype device. Finally, we present a discussion of
expected igniter perfomiance in a LOCA environment, additional tests that should be
made and a discussion of those design parameters which should be considered in future
igniter designs. An appendix is included that gives the test results for the ignition of
large static mixtures.

2. EXPERIMENTAL APPARATUS AND PROCEDURE

Several catalytic igniters were constructed and then tested in the apparatus shown
schematically in Figure 1. De ignition delay time, that is, the time required for the
igniter to ignite the mixture, was taken as a measure of the igniter's performance.
Ignition was detected by a sudden drop in the temperature of the catalytic module as
indicated by an attached thermocouple or infrared detector, ne test apparatus consisted
of a water cooled burner to which was attached a quartz chimney. The premixed j

hydrogen air n$.ture was directed through the bumer surface into the chimney and onto
the igniter. The bumer was not operated as a bumer per se but as a stop for the flame
front which propagates away from the igniter toward the burner surface when ignition
occurs.

2-
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De hydrogen concentration was controlled by regulating the flow of air and hydrogen
t supplied to the burner. Tylan mass flow meters were used to monitor the mass flows of
! hydrogen and air. The meters were calibrated by setting the now control valve for a

specific flow rate while the flow was directed through a wet test meter which measured
the total volume of gas delivered. The time required for the delivery of a specific volume
was then measured. The volume delivered at standard conditions was calculated and
divided by the elapsed time to give the Dow rate at standard temperature and pressure,
ne meter was then adjusted to read this value. The estimated absolute accuracy of the
measured flow is i3%.

The lowest ignitable hydrogen concentration is apparatus dependent. Thus, it was
desirable to determine the lowest hydrogen concentrations that could be ignited in our
apparatus before testing the catalytic igniter. This was done using a spark igniter and a
gas now velocity of 5.7 cm/s. The leanest mixture which could be ignited in our test
apparatus was 5.1% for upward flam: pro,mption (burner in inverted con 0guration) and
9.3% for downward Game propagation (normal burner con 0guration). His compares
with 4.1% and 9.0%, respecuvely, for measurements made in a standard apparatus with

8static premixed gases /

The temperature of the igniter honeycomb was monitored quantitatively with a
chromel/alumel thermocouple and qualitatively with an infrared sensitive detector.
Because the infrared energy emitted by a hot body is pmportional to its temperature to the
fourth power, the infrared detector is most sensitive to high temperatures and produces a
large output change for a small change in temperature. Because of this, the infrared
detector provided a good indication of the time of ignition by a sudden drop in the
detector output. When gas phase ignition occurred, the temperature of the igniter
dropped because the flame front moved away from the igniter to the burner surface. The
rapid response time of the infrared detector aided the determination of when ignition
occurred.

In a typical test sequence, the igniter to be tested was placed in the chimney with the
valve to the vent open and the valve to the burner closed. Next, the flow rates of
hydrogen and air were adjusted to prodcce the desired hydrogen concentration. To
initiate the test, the valve to the burner was opened quickly, and at the same time the
valve to the vent was closed. After an induction time of 30 to 400 s, the catalytic igniter
ignited the hydrogen air mixture and the 0.mx front traveled from the point ofignition to
the burner surface where it was stabilized. As soon as ignition was detected by a sudden
drop in the temperature of the module, the positions of the valves were reversed to
extinguish the flame. For safety, the apparatus was located within the now field of a
hood which was vented to the outside so that any unburned hydrogen was diluted to an
unignitable concentration and removed from the laboratory.

A trace of the temperature of the igniter honeycomb as measured with the
thermocouple is shown in Figure 2 for typical experiment. De infrared detector signal
is also shown in Figure 2. The temperature drop after ignition is clearly evident. In
addition to the substrate temperature measurements, thermocouple temperature
measurements were also made in the region a few millimeters above the catalytic
substrate. For these measurements, ignition of the gas phase mixture was indicated by a
rise in temperature.

3-
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3. IGNITER DESIGN OIrTIMIZATION

A schematic diagram of the first successful catalytic igniter is shown in Figure 3. It
consists of a platinum coated honeycomb and platinum coil which are instrumented with
a platinum / platinum - 13% rhodium thermocouple. Six other designs were tested and are
shown in Figure 4. The figure caption indicates the conditions for which gas-phase
ignition was achieved. ne design which gave the best performance, that is,igmted the
leanest mixtures,is shown in Figure 5.

We observed that for all of the successful igniter designs, the honeycomb first
warmed, then the wires wanned and finally the wires glowed red hot and caused
ignition. Small areas on the upstream surface of the substrate also glowed, but they were
much less bright and more red than the wires. This observation provided qualitative
evidence that the wires reached higher temperatures than the honeycomb and that ignition
occurred near the wires and not near the honeycomb.

From our preliminary tests, we determined that both a substrate coated with high
surface area platinum and platinum wires are necessary for the device to ignite very lean
mixtures. That both are needed to cause ignition indicates that there exists some
interaction between them. His could be mechanical (e.g., disruption of the flow around
the igniter), chemical (e.g., one igniter part may supply a necessary chemical species to
the other), or thermal (e.g., one igniter part may provide a temperature boost to the
other).

The results of two separate experiments showed that the mode of interaction is
primarily thermal. The apparatus used for the first experiment is shown in Figure 6. A
coil of 0.0127 cm diameter Pt wire was used as an electrical resistance heater to raise
the temperature of the 0.0726 cm diameter Pt wire whose catalytic ignition properties
we, to be determined. The Pt heater assembly and one end of the Pt catalyst wire below
the acater coil were carefully scaled in Pyrex glass so the heater would not accidentally
cause catalytic ignition of the hydrogen air mixture. A chromel/alumel thermocouple was
chosen to monitor the wire temperature and was attached to the Pt catalytic wire above the
glass seal. Chromel/alunel rather than a platinum / platinum rhodium thermocouple was
used to avoid catalytic ignition from the thermocouple. To initiate the experiment, the
platinum wire was heated electrically to a temperature high enough so that the chemical
surface reaction would sustain itself without further electrical heating. At this point the
electri:al supply to the heater coil was disconnected. When the hydrogen concentration
was high enough, the temperature of the wire continued to rise until gas phase ignition
occurred. It was found that only a small temperature boost above room temperature was
needed to cause the surface reaction on the wtre to accelerate and ultimately ignite the gas-

phase mixture. When heated to 800 C, the wire positioned in a vertical direction ignited
mixtures as lean as 8.0% hydrogen, nis compares to 8.5% for a horizontal wire. Even
less boosting was required for a vertical,0.0127 cm diameter wire; heating to only 600 C
was sufficient.

In the second experiment, the temperature boost was provided by the catalytic
honeycomb as shown in Figure 7. One end of a 0.0726-cm diameter platinum wire was
fastened to an alumina rod, and the other end was bent so that it could touch the substrate
but not be faetened to it. If the distance between the wire and the platinum. coated
honeycomb wu more than 0.1 cm, then the platinum wire would not heat much above
room temperature, and ignition would not occur even though the substrate heated to the

.$.
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Figure 3. First successful catalytic igniter design. Composed of platinum coated
honeycomb, platinum wire coil and platinum - 13% rhodium wire. The temperature
of the platinum wire coil was measured by the thermocouple junction formed by
the platinum - 13% rhodium wire welded to the platinum wire coil,
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Figure 7. Device to test the effect of thermal boosting provided by the
platinum coated honeycomb. Ignition only occurs when there is thermal
contact between the honeycomb and the platinum wire.

Table 1

Results of Optimizing Wire Diameter and length.a

Wire Diameter Wire length Minimum liydrogen Con.
(cm) (cm) Needed for Ignition

(%)

0.0127 1 6.1

0.0127 2 5.5

0.0127 4 5.5

0.0254 2 5.5

0.0492 2 7.5

0.0726 2 8.5

along thin wires work best.

.
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|
usual temperature. If the wire touched the substrate then ignition occurred as usual,
indicating that the wire must be thermally boosted by the substrate.

1

ITo test the importance of wire position, the wires were hung below the substrate with
the bumer in the inverted configuration. In this position, the wires were downstream )
from the substrate and the igniter failed to ignite an 11% hydrogen mixture. Presumably, l
leaner mixtures could not have been ignited either.

From the foregoing experiments it is clear that (1) both the platinum coated substrate
and the platinum wire am necessary,(2) the primary effect of the substrate is to provide a
temperature boost to the platinum wire,(3) vertical positioning of the platinum wire is
more effective than horizontal, (4) straight wires are better than coils and (5) the wires
must project away from the substrate into the unreacted mixture (upstream or to the side).

At this point experiments were performed to optimize the wire diameter and length.
Wire lengths of 1,2, and 4 cm, and wire diameters of 0.0127,0.0254 and 0.0726 cm
were tested. De results, which are summarized in Table 1, showed that long, thin wires
worked best. His concluded our initial efforts to optimize the igniter design.

4. PERFORMANCE OF PROTOTYPE IGNITER

The optimized prototype igniter shown in Figure 5 was evaluated m terms of its
resynse to hydrogen concentration, gas now velocity, gas temperature, gas humidity
anc water spray. The ignition delay time was taken as a measure of the igniter's
performance. %e results are summarized below.

4.1 Ilvdrocen Concentration

For the inverted burner configuration (upward flame propagation) and a gas now
velocity of 2.8 cm/s, the leanest mixture which was tested,5.5%, was successfully
ignited. De leanest ignitable concentration for downward flame propagation was
11.6%. Ilydrogen concentrations lower than 11.6% were ignited (as lean as 9.0%), but
the Dame stabilized on the catalytic substrate or moved upward to the edge of the chimney
and extinguished. Only at concentrations of 11.6% or higher would de Dame front
propagate downward and stabilize on the burner surface. Because of this, we suspect
that the 11.6% limit is strongly dependent on the gas flow velocity, llowever, we did
not perform further tests to determine the interaction of gas velocity and concentration for
downward flame propagation.

Results of the hydrogen concentration tests indicate that the estalytic igniter can
successfully ignite very lean hydrogen air mixtures, nese are within the concentration
range of interest in nuclear reactor safet (4 - 10%). In fact, the leanest mixtures
ignitable with the catalytic igniter are ont slightly more rich than the leanest mixtures
ignitable with a spark in the case of upw name pmpagation.

4.2 Flow Velocity

ne effects of flow velocity for flows of 1.7, 2.8, 5.7, 8.6,14.5 and 19.3 cm/s
were examined for concentrations in the range of 5.5 to 11.5% with the gas mixture at
room temperature (220 C). The ignition induction time (i.e., the time between the first
exposure of the igniter to the hydrogen mixture and the time of the gas-phase ignition)
was taken as an indication of the effectiveness of the igniter. Shorter times indicated

10-
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better performance. The results shown in Figure 8 indicate that the effects of flow rate
are greatest at low hydrogen concentrations making the leaner hydrogen mixtures harder
to ignite at s!ow flow velocities. This implies that static gas mixtures might be the most
difficult to ignite so ignition tests with zero gas velocity were performed with
collaborators at Sandia National Laboratories, Albuquerque, and are reported it. *he
Ap xndix A nese tests showed that the catalytic igniter successfully igmted dry stau
hytrogen air mixtures as lean as 6.5% hydrogen and humidified mixtures as lean as
10%.

4.3 Ilumidity.

The effects of humidity were tested by adding water vapor to the hydrogen-air
mixture. This was accomphshed by bubbling the mixture through a heated water bath,
ne bath consisted of a 5-cm diameter,20-cm long, copper cylinder filled with copper
turnings and water. To prevent condensation of the water, the entire apparatus was
heated to a temperature 2 - 200 C higher than the water bath depending c,n the desired
relative humidity. This provided a humidified mixture at the temperature of the apparatus
but at a dew point (saturated vapor temperature) equal to the temperature of the water
bath. The relative humidity was com 3uted from psychrometric tables taking the
temperature of the apparatus as the dry bu b temperature and the temperature of the water
bath as the wet bulb temperature. The relative humidity calculated in this way is only
approximate because the gas flow velocities in the apparatus are much lower than those
ty 3ically used to make psychrometric humidity measurements. This means that the
re ative humidity computed for the apparatus may be slightly higher than the actual
humidity.

De results showing the effect of humidity are given in Figure 9 and Table 2. They
indicate that humidified mixtures are more difficult to ignite and that the increase in the
ignition delay is about a factor of three from the low humidity case to the 1007c relative
humidity case. Thus, the effect of high humidity is to dehy 'he ignition but not to prevent
it.'

4.4 Temocrature,

ne effect of gas temperature was investigated with the same apparatus used for the
,

humidity studies except that there was no water in the bubbler and the entire apparatus
was thermostated to a uniform temperature to within i 20 C. The results are shown in
Figure 10. For the temperature interval tested, the data can be approximated by a straight
line.

4.5 Water Sorav

Fine water droplets were misted onto the igniter until its mass increased by about
10% (5 g of water). De igniter failed to warm even when exposed to a 11% hydrogen-
air mixture. After the liquid water had evaporated, the igmter operated normally as
before.

.
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Table 2.

Effects of Flow Rate

Flow Velocity Hydrogen Concentration Ignition Delay
(cm/s) (%) (s)

17 8.0 170
9.0 144

11.0 60

2.8 5.6 194
6.0 115
7.0 78
8.0 74
9.0 60

11.0 46

5.6 5.5 199
6.0 33
7.0 41
8.0 36

11.0 35

8.6 5.2 124
5.5 82
6.0 47
7.0 53
8.0 43
9.0 46

11.0 41

14.6 5.5 41

6.0 37
7,0 31

8.0 23
9.0 19

10.9 14

19.5 5.2 36
5.6 29
6.0 24
7.0 20
8.0 14

9.0 12

11.0 11
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5. PRINCIPLE OF OPERATION

In order to fully optimize the igniter and to predict its behavior under a variety of
condit, ions that may exist during a LOCA, it is important to understand its principle of
operation.

IIcating of both the platinum-coated substrate and the platinum wire depends on the
catalytic reaction of hydrogen with oxygen on the platinum surface. The catalytic
reaction occurs in the same way on the surface of the platinum. coated honeycomb and the
surface of the wire. On a per unit area basis, the reaction rate for the wire and substrate
is about the same.7.8 The primary difference is that the effective surface area of the
platinum on the substrate is enormous relative to the area of the wire Because ofits high
effective surface area, the substrate warms spontaneously in much leaner mixtures than
does the wire.

The ignition sequence may be outlined as follows. Many of the processes proceed
concurrently so the ordering is somewhat arbitrary and the exact details of the surface
reaction mechamsm are not fully known.7

1. Diffusion of hydrogen and oxygen to the platinum surface.

2. Adsorption of hydrogen and oxygen on the surface. (Since the igniter is
stored in air, the hydrogen is actually adsorbed on a surface preadsorbed
with oxygen).

3. Dissociation of hydrogen on the surface.7

4. Reaction of 11 with O or O2 on surface to produce Oil and heat. 7 8

5. Reaction of 11 or Oli with Oli on surface to produce 11 0 and heat.7 82

6. Dcorption of }{20 from surface 7 and the associated loss of heat from the
sun' ace.

7. Diffusion of hot 110 from surface.2

8. Acceleration of surface reaction rate due to surface heating.7.8

9. Ileat transfer from the catalytic substrate to the platinum wire and initiation
of processes 4 - 7 on the wire surface.

10. Catalytic ignition of surface reaction on substrate (defined as the condition
when the surface reaction rate is limited only by the diffusion rate of
reactants to the surface). For lean static mixtures, catalytic ignition may
occur at relatively low temperatures (100 - 3000 C).9

11. lleating of the gases surrounding the igniter by conduction, convection,
and radiation,

12. Initiation of catalytic ignition on wire surface.

;
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13. Ileat transfer from wires to substrate.

14. Ignition of gas-phase mixture near wire.

15. Propagation of the flame front away from the igniter.

16. Cooling of the igniter surface due to reduced supply of reactants to the
surface.

Several steps in the process are wonhy of further comment.

Step 1 for the wires, diffusion of reactants to the surface, is affected by the wire
diameter. This can be understood in terms of a boundary layer surrounding the catalytic
surface, defined as the region near the surface where the reactants are depleted relative to
their concentrations in the bulk. Since the diffusion rate is proportional to the
concentration gradient, and the gradient is larger near the surface of an object with a
smaller radius than one with a larger radius, the diffusion rate near the surface of a small
diameter wire is more rapid than for a large diameter wire. We believe that this is why
the smaller diameter wires are capable of igniting leaner mixtures than larger diame:er
ones. It is imponant to realize that this argument implies that the thickness of the
boundary layer is comparable to or thicker than the diameter of the wire (0.02 cm for
these expenments). At low velocities or static conditions, mass transpon is primarily by

,

diffusion. At moderate velocities, convective transport occurs, but associated with it is'

convective heat loss. His loss reduces the wire temperature and thus the reaction rate,
nat we observe shoner ignition delay times with increased gas velocity indicates that the
increased transport associated with higher velocities more than compensates for the
effects of convective heat loss for the flow velocity used in our tests (below 20 cm/s).

That mass diffusion is important to the operation of the wires is indicated by model
calculations performed by Schefer10 that ignored mass diffusion. The effect of mass
diffusion is eliminated if one assumes that the concentrations at the surface are the same
as they are in the bulk gas phase (i.e., no boundary layer exists). Den, according to the
model calculations, large diameter wires should heat to a higher temperature than small
diameter wires. This is contrary to our findings; and we, therefore, conclude that
diffusion effects are imponant under our test conditions. It should be noted that
Schefer's results may predict the correct de >cndence on wire diameter for very high gas
velocities,in which case, diffusion is less mportant than convective transport. In this
regard, our studies show that higher flow velocity gas streams are easier to ignite than
lower velocity streams, nis suggests that for the range of velocities studied, heating of
the wire surface is strongly influenced by the transport of reactants and products to and
from the surface.

In Step 7 water vapor desorbs from the platinum surface. Studies of the adsorption of
water on platinum under ultra high vacuum conditions show that the binding energy of
water to platinum is quite low (12 kJ/mol).7 Further, there is no appreciable absorption
at tem >cratures above 220 K.ll * Itis means that water vapor does not act as a poison
towarc the platinum and that once the water has formed on the surface,it should desorb
easily if the igniter is at room temperature or above. This is consistent with our
observations that the igniter can be cycled repeatedly. Ilowever, an igniter wet with
liquid water will function normally only after it has been dried. His suggests that a film
of liquid water blocks virtually all of the catalytic sites and/or inhibits the diffusion of
reactants to the catalytic sites.

-17-
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The effects of humidity on ignition induction time can be understood in terms of the
ability of the gas-phase to take u water vapor produced from the surface reaction. If

' diffusion of water away from the latinum surface is the limiting step in determining the
,

; overall reaction rate, then the igni on induction time should be dependent on the ability of
! the gas-phase to take up water, i.e., relative humidity. We have observed a close to-

linear dependence (Figure 9). Water vapor should also affect the rate of diffusion of
reactants to the surface, but this effect should be much smaller than the ability of the s;as-
phase to carry away the reaction products (water vapor). His is because the diffusion
rate of oxygen and hydrogen through air compared with their diffusion rate through air
saturated with water vapor should be nearly the same. Thus, the effects of water are to
reduce the available reactants by dilution and to retard the loss of water vapor from the
platinum surface. P,oth effects lengthen the ignition induction time.<

) 6. EXPECTED PERFORMANCE OF CATALYTIC IGNITER IN A LOCA
i
1 6.1 Temnerature

) The initial temperature of the igniter strongly influences the ignition delay time.
'

' Imwer temperatures give longer delays. We have not established the lowest temperature
at which the igniter is operable. It has operated with initial temperatures as low as 180 C,

,

although it is conceivable that temperatures as low as 00 C might be encountered in an
| ice condensing type containment. The catalytic reaction of hydrogen with oxygen

7,

?roceeds at 200 K (-730 C) and is not limited by water desorption at this temperature .
llowever, the rate of reaction may not be high enough to provide the necessary thermal
boost for the igniter to operate normally. Thus, additional tests are needed if operation

; below room temperature is important.

:i At the other temperature extreme, our tests show that the igniter operates repeatedly ;

up to the ignition temperature of hydrogen-air mixtures (5850 C). Operation to the ;

melting point of platinum (17720 C) is likely but cf little consequence because ordinary

| metal surfaces will cause ignition around 5850 C. ,

1

| An important related question is whether er not the igniter will survive the ignition |

; event it causes. In our laboratory tests, the catalytic substrate and wires were heated for I

several minutes to incandescence during studies with the richer (11% hydrogen):

I mixtures. We estimated the highest temperature achieved to be near 8000 C. The igniter
! performance was not degraded by these high temperatures and the igniters operated

in a LOCA environment, the fiame front will propagate away from the igniter! repeatably, ion occurs, thereby reducing the exposure time of the igniter to extremeonce igmt ;|
temperatures, his is because the hydrogen is depleted rapidly behind the flame front. '

The coatings used on the "wet proofed" catalytic substrates limit their maximum
operating temperature to 2500 C. nus, a "wet poofed" igniter using currently available
substrates might have a limited life. For example,if the hydrogen concentration is 5% or
lower,and the substrate has a high platinum loading, then the substrate may heat above
2500 C; but the mixture is too lean to be ignited by the platinum wires so the substrate
"cooks" untilit is destroyed. his problem can be overcome by optimizing the platinum
loading of the substrate,but repeatable opemtion is still an unknown.

18-
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6.2 Flow Velocity

ne flow velocity in the containment may be in the range of 0 10 m/s.2,3 Our tests
show that the igniter operates successfully in the range 0 20 cm/s with higher velocity
mixtures being easier to ignite. At some unknown velocity, further increases will not
appreciably increase the supply of re:.etants to the surface but will increase the
convective heat losses. At this point, higher gas velocities will produce longer ignition
delay times, not shorter, and could defeat the igniter. We have not determined this
critical velocity. Ilowever,if high velocities are anticipated, shields could provide areas
of sufficiently low gas velocity to permit normal igniter operation.

6.3 Hydrogen Concentration

For any igniter to be an effenive safety device, the time required for it to cause
ignition must be shon relative to the time that the hydrogen concentration builds to levels
unsafe for intentional ignition. De longest ignition delay times for the catalytic igniter are
roughly 400 s. This is short relative to the time expected for the hydrogen concentration
to reach levels unsafe for ignition in the containment during a LOCA. In tb case of
Three Mile island - Unit 2, the hydrogen concentration reached ignitable levels in a about
6 hours after turbine trip.12

6.4 . Water Spru. Steam. and Fog

Our tests showed that liquid water on the surface of a room temperature igniter will
prevent it frorn heating. This is a serious problem if water spray is used in the
containment or iflarge amounts of steam are generated during the LOCA. One solution
is to use a "wet proof" catalytic substrate. These substrates have been developed by
Atomic Energy of Canada Limited (AECL) at Chalk River.13 AECL has fabricated
substrates whose catalytic activities meet or exceed that of the substrate incorporated in
our prototype igniter. One potential problem, however, is that they may be damaged at
temperatures above 2500 C.

6.5 Contaminated Atmosphere

if the igniter catalyst is poisoned, then the igniter will not function. During a LOCA,
the atmosphere in the reactor containment may contain significant concentrations of gas-
phase fission prrxiucts such as iodine or cesium. Other gases, such as, carbon monoxide-

may also be prescat. The ability of these species to poison the platinum catalyst and
defeat the igniter is ;enerally not known. Tens will have to be performed to obtain a
definitive answer, i owever,it is known that carbon monoxide is not a poison and is
oxidized catalytically to carbcn dioxide in the pn:sence of oxygen on a platinum surface.
Methyl iodide may be present during a LOCA, and it is known that methyl iodide reduces
the cataly''.c activity of platinum if the concentration exceeds 0.1 ppm and will reversibly
deactivate the catalyst at concentrations of 20 ppm. Catalytic activity is regained by
heating the catalyst to 150o C with hydrogen concentrations above 6% and without
methyl iodide presentid,

ne wet proof coating c,n the AECL catalysts might be impermeable to methyl iodide
and other molecules coniaining large nuclei on :he basis of size exclusion or
xlaritability. His could allow the igniter to operate normally in the presence of high;

evels of atmospheric contamination. 'fhis possibility of course must be tested.

19
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7. FURTIIER IMPROVEMENTS IN IGNITER DESIGN

nere are several design parameters associated with the catalytic igniter that we have
not optimized but which should be considered in future designs. These are discussed
below.

7.1.W_Jm

De number of wires and their distribution on the surface of the substrate should be
optimized. We have studied only designs with four wires placed around the edge of the
substrate. Also, plating the wires with platinum black, a high surface area platinum
coating, shculd be considered. This type of coating should increase the reaction rate on
the surface of the wires without appreciably affecting its heat transport characteristics.

7.2 Platinum-Coated Substrate

We used only platinum coated, ceramic honeycomb substrates with 1.61.7 weight
% platinum. CatMytic substrates with higher platinum loading are available and should i

l

be tested. Since the transport of reactants to the substrate is affected by diffusion, the cell
size of the honeycomb should be optimized along with the diameter and thickness of the
honeycomb itself. The upstream face of the honeycomb (face closest to the bumer)in
our experiments warmed first and reached higher temperatures, nis suggests that the
optimum geometry for the honeycomb might have a larger, more open, or graded cell
size and that the substrate could be thinner than the one we used. In addition, the
honeycomb we used was deactivated by liquid water. Researchers at Atomic Energy of
Canada at Chalk River 13 have developed a "wet proofed" platinum / Teflon coated
catalytic substrate. Our preliminary tests using this substrate incicate that it will provide
the thermal boost needed to heat the wires but that it is not quite as effective as the
hc,acycomb for very lean mixtures (below 10% hydrogen). liowever, in some
applications, the added benefit of the wet proofing may outweigh the lower catalytic
activity of the substrate.

8. FURTilER TESTS

We have presented test results for a prototype non powered igniter for nuclear reactor
safety applications. It posses two essential features of a usable igniter; it requires no
power and it ignites very lean hydrogen air mixttires. Ilowever, before the usefulness of
the device as a replacement or supplement for existing electrically heated igniters can be
established, further tests are required. These tests should include the environmental
factors indicated in the Introduction. Specifically, further tests should examine the
effects of steam, high flow velocities (up to 10 m/s), fog, water spray, and catalytic
poisons. The results of these tests will clearly dictate the nature of further improvements.
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Appendix A

Tests of the Catalytic Igniter in the
Fully Instrumented Test System (FITS)

L. S. Nelson, Kenneth P. Guay and L. R. Thorne

The laboratory test of the nonpowered catalytic igniter showed that the ignition delay
time increases markedly for gas velocities below 10 cm/s. Unfortunately. the laboratory

'

test apparatus was not capable of making tests below I cm/s to detemiine whether the
catalytic igniter would ignite static hydrogen air mixtures, liowever, because the
velocity of the hydrogen air mixture in the containment might be zero, or very low, under
some circumstances that might occur during a loss of coolant accident (LOCA), it is
important to test the igniter under similar flow conditions. Funhermore. it is important to
make these tests in a moderately large volume to more nearly duplicate the conditions
inside a nuclear reactor containment.

The Fully Instrumented Test System (FITS) at Sandia Albuquerque provides an
3op 3ortunity to make the desired tests. The FITS system consists of a large (5.6 m )

cy;indrical pressure vessel that is instrumented with a series of thermocouples and
pressure gages placed at various positions along the vertical centerline of the vessel.
Additional thermocouples are located in other positions as well. A computer-controlled
data acquisition system logs the elapsed time and the temperature and pressure data.

A typical test proceeds by first purging the vessel with air, then adding enough
hydrogen to bring the final mixture to the desired hydrogen concentration. This mixture
is then stirred with a pneumatic fan for 10 min to ensure uniform concentration
throughout the vessel. The mixture is then allowed to stand for 10 min to let any wind
currents abate. At this point the igniter can be tested. The catalytic igniter is advanced by
a pneumatically-driven piston from an argon filled side arm on the vessel, through a ball
valve, to near the center of the vessel. The argon in the side arm prevents the igniter
from contacting the hydrogen air mixture and warming prior to the desired start of the
test. After a certain length of time (ignition delay time), ignition occurs and the
temperature and pressure rises caused by the burning hydrogen are recorded by the
computer-controlled data acquisition system. In some of the catalytic igniter tests,if the
igniter did not operate within 10 min, the fans were tumed on once again to produce low
velocity flow across the igniter which helped the igniter to function. Tests were also |
made using glowplug and spark igniters in order to make comparisons with the catalytic
igmPr results. The same test procedure is followed for these igniters except that ignition
was cos,'mtled by the operator by electrically energizing the igniter, and the igniters were
located insile the tank from the beginning of the experiment rather than being moved into
the tank using the side arm. |

)
Ignition of dry and humidified mixtures was tested. Ilumidified mixtures were

produced using a d:oplet mister located near the top of the vessel that generated micron-
size drops. The mister was operated during the time the pneumatic fan was on and
provided thorough humidification of close to 100% relative humidity.

The catalytic igniter was tested under four different conditions, with a wet or dry
hydrogen air mixture and with either 10% hydrogen or 6.5% hydrogen. The results of
these tests are given in Table A1. Although there is considerable variability in the
ignition delay times, the catalytic igniter successfully ignited wet 10% mixtures and dry
6.5% mixtures. The single wet 6.5% mixture tested required the fan to be turned on to
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provide flow across the igniter. De pressure and temperature rises inside the vessel after,

j ignition by the catalytic igniter were similar to those caused by glowplug and spark
ignition. See, for example, Figure A1. The fraction of total hydrogen burned was alsoi

similar as indicated in Table A1.

The implications of these tests for reactor safety are that the nonpowered catalytic
igniter is capable of igniting lean, static hydrogen air mixtures with hydrogen
concentrations as low as 6.5% and humidified static mixtures with hydrogen
concentrations as low as 10%. Ilumidified mixtures with hydrogen concentrations
below 10% may need to be flowing before the catalytic igniter is effective.
Nevertheless,igmtion by the catalytic igniter is just as effective at reducing the hydrogen
concentration as ignition by a spark or glowplug, but tne catalytic igniter has the
advantage that no electrical power is required for it to operate.

Table Al.

Results for the FITS tests. Data for glowplug and spark ignition are included for
comparison with the catslytic igniter results. Two catalytic igniters of the same design
were tested, Cl A and Cl D.

Test Device Wilydrogen %llydrogen liumidity Fans On Ignition Delay
Pre Test Post Test (s) (s)

1. Cl A (10%)3 DRY 300 305---

2. Cl B 9.70% 0.02 % DRY NO 76
3. Cl A 9.62 % 0.02 % WET NO 172;

4. ClBb 6.14 % 2.35 % DRY 600 900,

'

5. Cl B 6.16 % 4.14 % DRY NO 405
6. Cl B 6.16% 3.04 % DRY NO 10
7. Cl B (6%) DRY NO 10

8. Cl B 6.27 % 2.11% WET 600 665

9. Glowplug 9.51 % 0.02 % DRY NO 15
10. Glowplug 9.59% 0.02 % DRY NO 15

11. Spark 6.13 % 4.65 % DRY NO 1

12. Spark 6.21% 4.51 % DRY NO 1
-

,

a Values in parentheses are estimated initial concentrations based on the volume of
hydrogen supplied to the test tank.
b Catalytic igniter rotated 90% from nomul orientation.

I |
f

-23-

- _ _



- . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.

50

.

g 40 -
u)

.

E

30 -

n.
e .

5

20 -
Catatytic Igriter

.

Glowplug ~

10
f 1'o 2'o 30 #0,

Time (s)

Figure A1 Pressure rise after Ignition of 10% hydrogen rnixtures in air. The pressure
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Wa have developed a prototype catalytic igniter for lean hydrogen-air
mixtures that could have important applications in nuclear reactor
safety. The igniter has two useful characteristics related to these
cpplications: it requires no electrical power and it can ignite,

mixtures as lean as 5.5% hydrogen. The ignition induction time ranges
from 20 s to 400 s depending on the hydrogen concentration, gas flow
volocity, gas temperature and relative humidity of the gas mixture.
Induction times are shorter for mixtures with higher hydrogen concentra-
tions, higher flow velocities, higher gas temperatures and lower relative
humidity. The igniter operates successfully under conditions that may
ba present during a loss-of-coolant accident (LOCA) at a light water
nuclear reactor. In the event of a LOCA, large quantities of hydrogen
m y be produced very rapidly and the catalytic igniter could provide a
mecns of igniting it before dangerously high concentrations are attained:
ovon in the event that electrical power required for conventional
igniters is not ava!1able. The igniter has not been tested under all
possible LOCA conditier:z. High gas velocities, water sprey, steam and
iodine-containing compounds may be present during a LOCA and will defeat
the prctotype igniter. However, shielding and semipermeable coatings on
the igniter could overcome these difficulties.
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