Platinum Catalytic Igniters for Lean Hydrogen-Air Mixtures

Prepared by L.R. Thorne, J.V. Volponi, W.J. McLean

Sandia National Laboratories

Prepared for
U.S. Nuclear Regulatory

Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereot, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of re sponsibility for any third party's use, or the results of such use, of any information, apparatus. product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

> NOTICE
> Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources

1. The NRC Public Document Room, 1717 H Street, N.W Washington, DC 20555
2. The Superintendent of Documents, U.S. Government Printing Office, Post Office Box 37082, Washington, DC 20013-7082
3. The National Technical Information Service, Springfield. VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications it is not intended to be exhaustive.
Referenced documents available for inspection and copving for a fee from the NRC Public Docuent Room insude NRC correspe idence and internal NRC memoranda, NRC Oflice of inspection and Enforcement bullerins, circulars, in ormation notices, inspection and investigation notices: Licensee Event Reports, vendor reports and correspondence. Commission papers, and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also availabte are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.
Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
Documerts available from public and special technical hibraries include all open literature items, such as bo iks, journal and periodical articies, and transactions. Federal Register notices, federal and state legisla ion, and congressional reports can usually be obtained from these libraries.
Documents wuch as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the o 'ganization sponsoring the publication cited.
Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Division of Information Support Services. Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.
Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 8roadway, New York, NY 10018

Platinum Catalytic Igniters for Lean Hydrogen-Air Mixtures

Manuscript Completed: January 1988
Date Published: September 1988

Prepared by
L.R. Thorne, J.V. Volponi, W.J. McLean

Sandia National Laboratories
Livermore, CA 94550

Prepared for
Division of Engineering
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission

Washington, DC 20555
NRC FIN A1336

Abstract

We have developed a prototype catalytic igniter for lean hydrogen-air mixtures that could have important applications in nuclear reactor safety. The igniter has two useful characteristics related to these applications: it requires no electrical power and it can ignite mixtures as lean as 5.5% hydrogen. The ig. nition induction time ranges from 20 s to 400 s depending on the hydrogen concentration, gas flow velocity, gas temperature and relative humidity of the gas mixture. Induction times are shorter for mixtures with higher hydrogen concentrations, higher flow velocities, higher gas temperatures and lower relative humidity. The igniter operates successfully under conditions that may be present during a loss-of-coolant accident (LOCA) at a light water nuclear reactor. In the event of a LOCA, large quantities of hydrogen may be produced very rapidly and the catalytic igniter could provide a means of igniting it before dangerously high concentrations are attained; even in the event that electrical power required for conventional igniters is not available. The igniter has not been tested under all possible LOCA conditions. High gas velocities, water spray, steam and iodine-containing compounds may be present during a LOCA and will defeat the prototype igniter. However, shielding and semi-permeable coatings on the igniter could overcome these difficulties. A U. S. Patent has been granted for the catalytic igniters described herein (U. S. Patent No. $4,741,879)$.

CONTENTS

Page
Executive Summary 1

1. Introduction 2
2. Experimental Apparatus and Procedure. 2
3 Igniter Design Optimization 5
3. Performance of Prototype Igniter 10
4.1 Hydrogen Concentration 10
4.2 Flow Velocity 10
4.3 Humidity 11
4.4 Temperature 11
4.5 Water Spray 11
4. Principle of Operation 16
5. Expected Cperi a of Catalytic Igniter in a LOCA 18
6.1 Temperature 18
6.2 Flow Velocity 19
6.3 Hydrogen Concentration. 19
6.4 Water Spray, Steam, and Fog 19
6.5 Contaminated Atmosphere 19
6. Further Improvements in Igniter Design 20
7.1 Wire 20
7.2 Platinum-Coated Substrate 20
7. Further Tests 20
8. References 21
Appendix A - Tests of the Catalytic Igniter in the Fully Instrumented Test System 22

LIST OF FIGURES

Eigure Page
1 Apparatus used to test catalytic igniter performance 4
2 Temperature rise of catalytic igniter in a typical test 4
3 First successful catalytic igniter design 6
$4 \quad$ Various prototype catalytic igniter designs 7
5 Optimized catalytic igniter design 8
6 Device to test thermal boosting of wires 8
7 Device to test thermal boosting by substrate 9
8 Effect of gas flow rate on igniter performance 12
9 Effect of humidity on igniter performance 13
10 Effect temperature on igniter performance 14
A1 Pressure rise after ignition by glowplug and catalytic igniter 24

EXECUTIVE SUMMARY

A potentially hazardous hydrogen-air mixture may be produced in the reacter containment of some types of nuclear reactors during a loss-of-coolant accident (LOCA). This mixture is flammable if the hydrogen concentration exceeds 4.1 vol. \% and may be explosive if the concentration exceeds $13 \mathrm{vol} . \%$. One way of reducing the risk of explosion or fire damage is to intentionally burn this mixture at sufficiently low hydrogen concentrations ($5.7 \mathrm{vol} . \%$ hydrogen), so that little if any damage to the reactor containment building will occur. Current implementations of this hydrogen mitigation surategy make use of electrically heated glowplugs or coils. However, in the event of a serious accident, the electrical power may be interrupted, disabling these igniters. Thus, nonpowered igniters could provide a valuable safety backup to existing igniter systems.

We have developed a catalytic igniter which can operate under conditions which may prevail during a LOCA and that does not require an external source of power of any kind. The igniter is composed of a catalytic substrate and several platinum wires $(0.0123-\mathrm{cm}$ diameter, $4.0-\mathrm{cm}$ long) which project into the unreacted gas. The substrate is an alumina honeycomb ($4.4-\mathrm{cm}$ diameter, $3.0-\mathrm{cm}$ high, with $0.2-\mathrm{cm}$ diameter ce .1 s) that is coated with high surface area platinum particles to about 1.7 weight $\%$ platinum. The igniter operates by catalyzing the exothermic surface reaction between hydrogen and oxygen. If the hydrogen concentration is sufficiently high, heat is generated rapidly enough by the honeycomb to raise the temperature of the wires above $80^{\circ} \mathrm{C}$. Above this temperature, the catalytic activity of the wires is sufficient that they warm further \cdot. to the ignition temperature of the mixture (around $585^{\circ} \mathrm{C}$).

The atmosphere in the containment structure during a LOCA might be characterized by high gas temperatures, high flow velocities (up to $1000 \mathrm{~cm} / \mathrm{s}$), high relative humidity (up to 100%), steam, water spray, the presence of volatile fission products ($\mathrm{Cs}, \mathrm{I}_{2}$, etc.) and CO and CO_{2}. These conditions may cause igniters to fail, and we have tested the catalytic igniter under some of these.

In our laboratory tests of the catalytic igniter, gas-phase ignition occurs after an induction time (ignition delay time) of $20-400 \mathrm{~s}$, the length of which depends on the hydrogen concentration, gas flow velocity, gas temperature, and the relative humidity. Induction times were measured for hydrogen concentrations in the range of 5.5-11.0 vol. \%, gas flow velocities between 1.7 and $19.5 \mathrm{~cm} / \mathrm{s}$, gas temperatures between 20° and $65^{\circ} \mathrm{C}$, and relative humidities between 5 and 98%. Induction times are shorter for mixtures with higher hydrogen concentrations, higher flow velocities, higher gas temperatures and lower relative humidity. The igniter successfully ignited static mixtures as lean as 6.5 vol. \% H_{2}, humidified mixtures as lean as 10 vol. $\% \mathrm{H}_{2}$ and humidified flowing mixtures as lean as $6.3 \mathrm{vol} . \%$ contained in a $5.6-\mathrm{m}^{3}$ test vessel. Liquid water defeats the igniter. However, when a wet igniter is dried, it operates normally indicating that liquid water blocks the catalytic sites but does not poison them. The igniter operates repeatedly. Some of the igniters used in this study were cycled tens of times without any sign of reduced performance. This is a desirable characteristic because hydrogen produced during a LOCA may continue to be produced after the first ignition event and repeated ignitions may be required.

We have not tested the catalytic igniter under all possible accident scenarios that may prevail during a LOCA. However, our initial tests indicate that a nonpowered igniter for reactor safety applications is feasible and constitute "proof of principle." Furthermore, we believe that a practical safety device based on our prototype design may be developed with modest additional effort.

1. INTRODUCTION

During a loss-of-coolant accident (LOCA) in a light-water nuclear reactor (LWR), there is the potential for production of large quantities of hydrogen gas due to the reaction of water and steam with the fuel rod cladding ${ }^{1}$. The hydrogen production rate and quantity may be such that a flammable mixture could be produced within hours as the hydrogen mixes with the air in the containment building. If this mixture is ignited at sufficiently high hydrogen concentrations, the structural integrity of the containment might be compromised. Serious safety and radiological hazards could result. Therefore, in the event of a LOCA, methods to either make the mixture non-flammable or reduce the hydrogen concentration are needed. One method for reducing the hydrogen concentration is to purposely ignite the mixture at hydrogen levels low enough to prevent serious damage. Although a safe upper limit has not been established for the hydrogen concentration, it is less than 13%, the concentration above which a transition from normal burning to detonation could occur. The deliberate-ignition approach has already been implemented at several LWR sites by using electrically heated glowplugs located at various positions within the containment building. One disadvantage of glowplugs, however, is that they require a continuous source of electrical power which may oe lost during a serious accident. And, even with battery backup (which has not been fielded), an accident may cut the power cables to the igniters. Thus, a device that ignites lean hydrogen-air mixtures in a safe range of hydrogen concentrations (5.7%) and does not require an external source of power could have important applications as a nuclear reactor safety device.

The conditions inside the containment building in the initial stages of a LOCA may include a wide temperature range $\left(0-200^{\circ} \mathrm{C}\right)$, wide velocity range $(0-1,000 \mathrm{~cm} / \mathrm{s})^{2,3}$, high humidity, the presence of steam, water spray, carbon monoxide, and iodine- and cesium-containing compounds. The igniter must operate under these conditions and have the capability of repeated operation in the event of repeated hydrogen buildup.

We report here the successful development of a prototype catalytic igniter which has some of the operating characteristics desired of a non-powered igniter. We present the results of experiments aimed at optimizing the igniter performance, and typical performance characteristics of the prototype device. Finally, we present a discussion of expected igniter performance in a LOCA environment, additional tests that should be made and a discussion of those design parameters which should be considered in future igniter designs. An appendix is included that gives the test results for the ignition of large static mixtures.

2. EXPERIMENTAL APPARATUS AND PROCEDURE

Several catalytic igniters were constructed and then tested in the apparatus shown schematically in Figure 1. The ignition delay time, that is, the time required for the igniter to ignite the mixture, was taken as a measure of the igniter's performance. Ignition was detected by a sudden drop in the temperature of the catalytic module as indicated by an attached thermocouple or infrared detector. The test apparatus consisted of a water-cooled burner to which was attached a quartz chimney. The premixed hydrogen-air nl:ture was directed through the bumer surface into the chimney and onto the igniter. The burner was not operated as a bumer per se but as a stop for the flame front which propagates away from the igniter toward the burner surface when ignition accurs.

The hydrogen concentration was controlled by regulating the flow of air and hydrogen supplied to the burner. Tylan mass flow meters were used to monitor the mass flows of hydrogen and air. The meters were calibrated by setting the flow control valve for a specific flow rate while the flow was directed through a wet test meter which measured the total volume of gas delivered. The time required for the delivery of a specific volume was then measured. The volume delivered at standard conditions was calculated and divided by the elapsed time to give the flow rate at standard temperature and pressure. The meter was then adjusted to read this value. The estimated absolute accuracy of the measured flow is $\pm 3 \%$.

The lowest ignitable hydrogen concentration is apparatus dependent. Thus, it was desirable to determine the lowest hydrogen concentrations that could be ignited in our apparatus before testing the catalytic igniter. This was done using a spark igniter and a gas flow velocity of $5.7 \mathrm{~cm} / \mathrm{s}$. The leanest mixture which could be ignited in our test apparatus was 5.1% for upward flam: promagation (burner in inverted configuration) and 9.3% for downward flame propagation (normal burner configuration). This compares with 4.1% and 9.0%, respectively, for measurements made in a standard apparatus with static premixed gases. ${ }^{4}$

The temperature of the igniter honeycomb was monitored quantitatively with a chromel/alumel thermocouple and qualitatively with an infrared sensitive detector. Because the infrared energy emitted by a hot body is proportional to its temperature to the fourth power, the infrared detector is most sensitive to high temperatures and produces a large output change for a small change in temperature. Because of this, the infrared detector provided a good indication of the time of ignition by a sudden drop in the detector output. When gas-phase ignition occurred, the temperature of the igniter dropped because the flame front moved away from the igniter to the burner surface. The rapid response time of the infrared detector aided the determination of when ignition occurred.

In a typical test sequence, the igniter to be tested was placed in the chimney with the valve to the vent open and the valve to the burner closed. Next, the flow rates of hydrogen and air were adjusted to produce the desired hydrogen concentration. To initiate the test, the valve to the burner was opened quickly, and at the same time the valve to the vent was closed. After an induction time of 30 to 400 s , the catalytic igniter ignited the h; drogen-air mixture and the flame front traveled from the point of ignition to the burner surface where it was stabilized. As soon as ignition was detected by a sudden drop in the temperature of the module, the positions of the valves were reversed to extinguish the flame. For safety, the apparatus was located within the flow field of a hood which was vented to the outside so that any unburned hydrogen was diluted to an unignitable concentration and removed from the laboratory.

A trace of the temperature of the igniter honeycomb as measured with the thermocouple is shown in Figure 2 for - typical experiment. The infrared detector signal is also shown in Figure 2. The temperature drop after ignition is clearly evident. In addition to the substrate temperature rieasurements, thermocouple temperature measurements were also made in the negion a few millimeters above the catalytic substrate. For these measurements, ignition of the gas-phase mixture was indicated by a rise in temperature.

Figure 1. Apparatus to test catalytic igniter performance (inverted configuration).

Time (s)
Figure 2. Results of a typical igniter test. Upper trace is the temperature of the platinum-coated substrate as measured by a chromelalumel thermocouple. Lower trace is the signal from the intrared (IR) detector which detects the intrared radiation emitted from the catalytic substrate. The response time of the IR detector is more rapid than that of the thermocouple

3. IGNITER DESIGN OPTIMIZATION

A schematic diagram of the first successful catalytic igniter is shown in Figure 3. It consists of a platinum coated honeycomb and platinum coil which are instrumented with a platinum/platinum - 13\% rhodium thermocouple. Six other designs were tested and are shown in Figure 4. The figure caption indicates the conditions for which gas-phase ignition was achieved. The design which gave the best performance, that is, ignited the leanest mixtures, is shown in Figure 5.

We observed that for all of the successful igniter designs, the honeycomb first warmed, then the wires warmed and finally the wires glowed red hot and caused ignition. Small areas on the upstream surface of the substrate also glowed, but they were much less brigh: and more red than the wires. This observation provided qualitative evidence that the wires reached higher temperatures than the honeycomb and that ignition occurred near the wires and not near the honeycomb.

From our preliminary tests, we determined that both a substrate coated with high surface area platinum and platinum wires are necessary for the device to ignite very lean mixtures. That both are needed to cause ignition indicates that there exists some interaction between them. This could be mechanical (e.g., disruption of the flow around the igniter), chemical (e.g., one igniter part may supply a necessary chemical species to the other), or thermal (e.g., one igniter part may provide a temperature boost to the other).

The results of two separate experiments showed that the mode of interaction is primarily thermal. The apparatus used for the first experiment is shown in Figure 6. A coil of 0.0127 - cm diameter Pt wire was used as an electrical resistance heater to raise the temperature of the $0.0726-\mathrm{cm}$ diameter Pt wire whose catalytic ignition properties we-e to be determined. The Pt heater assembly and one end of the Pt catalyst wire below the , seater coil were carefully sealed in Pyrex glass so the heater would not accidentally cause catalytic ignition of the hydrogen-air mixture. A chromel/alumel thermocouple was chosen to monitor the wire temperature and was attached to the Pt catalytic wire above the glass seal. Chromel/aluniel rather than a platinum/platinum-rhodium thermocouple was used to avoid catalytic ignition from the thermocouple. To initiate the experiment, the platinum wire was heated electrically to a temperature high enough so that the chemical surface reaction would sustain itself without further electrical heating. At this point the electrizal supply to the heater coil was disconnected. When the hydrogen concentration was high enough, the temperature of the wire continued to rise until gas-phase ignition occurred. It was found that only a small temperature boost above room temperature was needed to cause the surface reaction on the wire io accelerate and ultimately ignite the gasphase mixture. When heated to $80^{\circ} \mathrm{C}$, the wire positioned in a vertical direction ignited mixfures as lean as 8.0% hydrogen. This compares to 8.5% for a horizontal wire. Even less boosting was required for a vertical, $0.0127-\mathrm{cm}$ diameter wire; heating to only $60^{\circ} \mathrm{C}$ was sufficient.

In the second experiment, the temperature boost was provided by the catalytic honeycomb as shown in Figure 7. One end of a $0.0726-\mathrm{cm}$ diameter platinum wire was fastened to an alumina rod, and the other end was bent so that it could touch the substrate but not be fariened to it. If the distance between the wire and the platinum-coated honeycomb was more than 0.1 cm , then the platinum wire would not heat much above room temperature, and ignition would not occur even though the substrate heated to the

Figure 3. First successful catalytic igniter design. Composed of platinum-coated honeycomb, platinum wire coil and platinum - 13% rhodium wire. The temperature of the platinum wire coil was measured by the thermocoupie junction formed by the platinum - 13% rhodium wire welded to the platinum wire coil.

Figure 4. Catalytic igniter designs. Some designs worked, others did not. The hydrogen concentration at which the muxture was ignited is indicated near each figure.

Platinum Wires ($0.0127-\mathrm{cm}$ dia.)

Platinum-Coated Ceramic Honeycomb (1.7 wt.-\%)

Alumina Support Rod

Figure 5. Schematic diagram of optimized catalytic igniter.

Figure 6. Device to electrically heat platinum wire to :est the effects of thermal boosting. Ignition occurs at 8.0% hydrogen with a thermal boost to $82^{\circ} \mathrm{C}$ when the wire is oriented vertically. Ignition occurs at 8.5% hydrogen with a thermal boost to $80^{\circ} \mathrm{C}$ for the wire oriented horizontally. No ignition occurs without heating.

Figure 7. Device to test the effect of thermal boosting provided by the platinum-coated honeycomb. Ignition only occurs when there is thermal contact between the honeycomb and the platinum wire.

Table 1
Results of Optimizing Wire Diameter and Lengith ${ }^{\text {a }}$

Wire Diameter (cm)	Wire Length (cm)	Minimum Hydrogen Con. Needed for Ignition $(\%)$
0.0127	1	6.1
0.0127	2	5.5
0.0127	4	5.5
0.0254	2	5.5
0.0492	2	7.5
0.0726	2	8.5

${ }^{\text {a }}$ Long thin wires work bes.
usual temperature. If the wire touched the substrate then ignition occurred as usual, indicating that the wire must be thermally boosted by the substrate.

To test the importance of wire position, the wires were hung below the substrate with the burner in the inverted configuration. In this position, the wires were downstream from the substrate and the igniter failed to ignite an 11% hydrogen mixture. Presumably, leaner mixtures could not have been ignited either.

From the foregoing experiments it is clear that (1) both the platinum-coated substrate and the platinum wire are necessary, (2) the primary effect of the substrate is to provide a temperature boost to the platinum wire, (3) vertical positioning of the platinum wire is more effective than horizontal, (4) straight wires are better than coils and (5) the wires must project away from the substrate into the unreacted mixture (upstream or to the side).

At this point experiments were performed to optimize the wire diameter and length. Wire lengths of 1,2 , and 4 cm , and wire diameters of $0.0127,0.0254$ and 0.0726 cm were tested. The results, which are summarized in Table 1, showed that long, thin wires worked best. This concluded our initial efforts to optimize the igniter design.

4. ?ERFORMANCE OF PROTOTYPE IGNITER

The optimized prototype igniter shown in Figure 5 was evaluated in terms of its response to hydrogen concentration, gas flow velocity, gas temperature, gas humidity and water spray. The ignition delay time was taken as a measure of the igniter's performance. The results are summarized below.

4.1 Hydrogen Concentration

For the inverted burner configuration (upward flame propagation) and a gas flow velocity of $2.8 \mathrm{~cm} / \mathrm{s}$, the leanest mixture which was tested, 5.5%, was successfully ignited. The leanest ignitable concentration for downward flame propagation was 11.6%. Hydrogen concentrations lower than 11.6% were ignited (as lean as 9.0%), but the flame stabilized on the catalytic substrate or moved upward to the edge of the chimney and extinguished. Only at concentrations of 11.6% or higher would che flame front propagate downward and stabilize on the burner surface. Because of this, we suspect that the 11.6% limit is strongly dependent on the gas flow velocity. However, we did not perform further tests to determine the interaction of gas velocity and concentration for downward flame propagation.

Results of the hydrogen concentration tesis indicate that the catalytic igniter can successfully ignite very lean hydrogen-air mixtures. These are within the concentration range of interest in nuclear reactor safety ($4,10 \%$). In fact, the leanest mixtures ignitable with the catalytic igniter are only slightly more rich than the leanest mixtures ignitable with a spark in the case of upward flame propagation.

4.2 Elow Velocity

The effects of flow velocity for flows of $1.7,2.8,5.7,8.6,14.5$ and $19.5 \mathrm{~cm} / \mathrm{s}$ were examined for concentrations in the range of 5.5 to 11.5% with the gas mixture at room temperature $\left(22^{\circ} \mathrm{C}\right)$. The ignition induction time (i.e., the time between the first exposure of the igniter to the hydrogen mixture and the time of the gas-phase ignition) was taken as an indication of the effectiveness of the igniter. Shorter times indicated
better performance. The results shown in Figure 8 indicate that the effects of flow rate are greatest at low hydrogen concentrations making the leaner hydrogen mixtures harder to ignite at slow flow velocities. This implies that static gas mixtures might be the most difficult to ignite so ignition tests with zero gas velocity were performed with collaborators at Sandia National Laboratories, Albuquerque, and are reported in. the Appendix A. These tests showed that the catalytic igniter successfully ignited dry stai: hydrogen-air mixtures as lean as 6.5% hydrogen and humidified mixtures as lean as 10%.

4.3 Humidity

The effects of humidity were tested by adding water vapor to the hydrogen-air mixture. This was accomplished by bubbling the mixture through a heated water bath. The bath consisted of a $5-\mathrm{cm}$ diameter, $20-\mathrm{cm}$ long, copper cylinder filled with copper turnings and water. To prevent condensation of the water, the entire apparatus was heated to a temperature $2.20^{\circ} \mathrm{C}$ higher than the water bath depending on the desired relative humidity. This provided a humidified mixture at the temperature of the apparatus but at a dew point (saturated vapor temperature) equal to the temperature of the water bath. The relative humidity was computed from psychrometric tables taking the temperature of the apparatus as the dry bulb temperature and the temperature of the water bath as the wet bulb temperature. The relative humidity calculated in this way is only approximate because the gas flow velocities in the apparatus are much lower than those typically used to make psychrometric humidity measurements. This means that the relative humidity computed for the apparatus may be slightly higher than the actual humidity.

The results showing the effect of humidity are given in Figure 9 and Table 2. They indicate that humidified mixtures are more difficult to ignite and that the increase in the ignition delay is about a factor of three from the low humidity case to the 100% relative humidity case. Thus, the effect of high humidity is to delay the ignition but not to prevent it.

4.4 Temperature

The effect of gas temperature was investigated with the same apparatus used for the humidity studies except that there was no water in the bubbler and the entire apparatus was thermostated to a uniform temperature to within $\pm 2^{\circ} \mathrm{C}$. The results are shown in Figure 10. For the temperature interval tested, the data can be approximated by a straight line.

4.5 Water Spray

Fine water droplets were misted onto the igniter until its mass increased by about 10% (5 g of water). The igniter failed to warm even when exposed to a 11% hydrogenair mixture. After the liquid water had evaporated, the igniter operated normally as before.

Figure 8. Effect of gas flow rate on igniter performance. Mixtures with low hydrogen concentrations and low velocities are most difficult to ignite. Gas temperature was $23^{\circ} \mathrm{C}$ and the relative humidity was less than 5%.

Figure 9. Effect of humidity on igniter performance. Humidified mixtures are more difficult io ignite than dry mixtures. The gas flow velocity was $2.8 \mathrm{~cm} / \mathrm{sec}$ and the hydrogen concentration was 8%. The temperature of the gas was varied to achieve the desired relative humidity (see text).

Figure 10. Ethect of gas temperature on igniter performance. Warmer gas mixtures are easier to ignite. The flow vebocity was $2.8 \mathrm{~cm} / \mathrm{sec}$, the hydrogen concentration was 8% and the relative humidity was less than 5%.

Table 2.

Effects of Flow Rate

Flow Velocity (cm / s)	Hydrogen Concentration (\%)	Ignition Delay (s)
1.7	8.0	170
	9.0	144
	11.0	60
2.8	5.6	194
	6.0	115
	7.0	78
	8.0	74
	9.0	60
	11.0	46
5.6	5.5	199
	6.0	38
	7.0	41
	8.0	36
	11.0	35
8.6	5.2	124
	5.5	82
	6.0	47
	7.0	53
	8.0	43
	9.0	46
	11.0	41
14.6	5.5	41
	6.0	37
	7.0	31
	8.0	23
	9.0	19
	10.9	14
19.5	5.2	36
	5.6	29
	6.0	24
	7.0	20
	8.0	14
	9.0	12
	11.0	11

5. PRINCIPLE OF OPERATION

In order to fully optimize the igniter and to predict its behavior under a variety of conditions that may exist during a LOCA, it is important to understand its principle of operation.

Heating of both the platinum-coated substrate and the platinum wire depends on the catalytic reaction of hydrogen with oxygen on the platinum surface. The catalytic reaction occurs in the same way on the surface of the platinum-coated honeycomb and the surface of the wire. On a per-unit-area basis, the reaction rate for the wire and substrate is about the same. ${ }^{7.8}$ The primary difference is that the effective surface area of the platinum on the substrate is enormous relative to the area of the wire. Because of its high effective surface area, the substrate warms spontaneously in much leaner mixtures than does the wire.

The ignition sequence may be outlined as follows. Many of the processes proceed concurrently so the ordering is somewhat arbitrary and the exact details of the surface reaction mechanism are not fully known.?

1. Diffusion of hydrogen and oxygen to the platinum surface.
2. Adsorption of hydrogen and oxygen on the surface. (Since the igniter is stored in air, the hydrogen is actually adsorbed on a surface preadsorbed with oxygen).
3. Dissociation of hydrogen on the surface.?
4. Reaction of H with O or O_{2} on surface to produce OH and heat. 7,8
5. Reaction of H or OH with OH on surface to produce $\mathrm{H}_{2} \mathrm{O}$ and heat. ${ }^{7,8}$
6. D_{4}-orption of $\mathrm{H}_{2} \mathrm{O}$ from surface ${ }^{7}$ and the associated loss of heat from the surace.
7. Diffusion of hot $\mathrm{H}_{2} \mathrm{O}$ from surface.
8. Acceleration of surface reaction rate due to surface heating. 7,8
9. Heat transfer from the catalytic substrate to the platinum wire and initiation of processes 4-7 on the wire surface.
10. Catalytic ignition of surface reaction on substrate (defined as the condition when the surface reaction rate is limited only by the diffusion rate of reactants to the surface). For lean static mixtures, catalytic ignition may occur at relatively low temperatures $(100-3000 \mathrm{C}){ }^{9}$
11. Heating of the gases surrounding the igniter by conduction, convection, and radiation.
12. Initiation of catalytic ignition on wire surface.
13. Heat transfer from wires to substrate.
14. Ignition of gas-phase mixture near wire.
15. Propagation of the flame front away from the igniter.
16. Cooling of the igniter surface due to reduced supply of reactants to the surface.

Several steps in the process are worthy of further comment.
Step 1 for the wires, diffusion of reactants to the surface, is affected by the wire diameter. This can be understood in terms of a boundary layer surrounding the catalytic surface, defined as the region near the surface where the reactants are depleted relative to their concentrations in the bulk. Since the diffusion rate is proportional to the concentration gradient, and the gradient is larger near the surface of an object with a smaller radius than one with a larger radius, the diffusion rate near the surface of a small diameter wire is more rapid than for a large diameter wire. We believe that this is why the smaller diameter wires are capable of igniting leaner mixtures than larger diameter ones. It is important to realize that this argument implies that the thickness of the boundary layer is comparable to or thicker than the diameter of the wire (0.02 cm for these experiments). At low velocities or static conditions, mass transport is primarily by diffusion. At moderate velocities, convective transport occurs, but associated with it is convective heat loss. This loss reduces the wire temperature and thus the reaction rate. That we observe shorter ignition delay times with increased gas velocity indicates that the increased transport associated with higher velocities more than compensates for the effects of convective heat loss for the flow velocity used in our tests (below $20 \mathrm{~cm} / \mathrm{s}$).

That mass diffusion is important to the operation of the wires is indicated by model calculations performed by Schefer ${ }^{10}$ that ignored mass diffusion. The effect of mass diffusion is eliminated if one assumes that the concentrations at the surface are the same as they are in the bulk gas phase (i.e., no boundary layer exists). Then, according to the model calculations, large diameter wires should heat to a higher temperature than small diameter wires. This is contrary to our findings; and we, therefore, conclude that diffusion effects are important under our test conditions. It should be noted that Schefer's results may predict the correct dependence on wire diameter for very high gas velocities, in which case, diffusion is less important than convective transport. In this regard, our studies show that higher flow velocity gas streams are easier to ignite than lower velocity streams. This suggests that for the range of velocities studied, heating of the wire surface is strongly influenced by the transport of reactants and products to and from the surface.

In Step 7 water vapor desorbs from the platinum surface. Studies of the adsorption of water on platinum under ultra-high vacuum conditions show that the binding energy of water to platinum is quite low ($12 \mathrm{~kJ} / \mathrm{mol}$). ${ }^{7}$ Further, there is no appreciable absorption at temperatures above $220 \mathrm{~K} .{ }^{11}$ This means that water vapor does not act as a poison toward the platinum and that once the water has formed on the surface, it should desorb easily if the igniter is at room temperature or above. This is consistent with our observations that the igniter can be cycled repeatedly. However, an igniter wet with liquid water will function normally only after it has been dried. This suggests that a film of liquid water blocks virtually all of the catalytic sites and/or inhibits the diffusion of reactants to the catalytic sites.

The effects of humidity on ignition induction time can be understood in terms of the ability of the gas-phase to take up water vapor produced from the surface reaction. If diffusion of water away from the platinum surface is the limiting step in determining the overall reaction rate, then the ignition induction time should be dependent on the ability of the gas-phase to take up water, i.e., relative humidity. We have observed a close tolinear dependence (Figure 9). Water vapor should also affect the rate of diffusion of reactants to the surface, but this effect should be much smaller than the ability of the gasphase to carry away the reaction products (water vapor). This is because the diffusion rate of oxygen and hydrogen through air compared with their diffusion rate through air saturated with water vapor should be nearly the same. Thus, the effects of water are to reduce the available reactants by dilution and to retard the loss of water vapor from the platinum surface. Foth effects lengthen the ignition induction time.

6. EXPECTED PERFORMANCE OF CATALYTIC IGNITER IN A LOCA

6.1 Temperature

The initial temperature of the igniter strongly influences the ignition delay time. Lower temperatures give longer delays. We have not established the lowest temperature at which the igniter is operable. It has operated with initial temperatures as low as $18^{\circ} \mathrm{C}$, although it is conceivable that temperatures as low as $0^{\circ} \mathrm{C}$ might be encountered in an: ice-condensing type containment. The catalytic reaction of hydrogen with oxygen proceeds at $200 \mathrm{~K}\left(-73^{\circ} \mathrm{C}\right)$ and is not limited by water desorption at this temperatire 7 , However, the rate of reaction may not be high enough to provide the necessary thermal boost for the igniter to operate normally. Thus, additional tests are needed if nperation below room temperature is important.

At the other temperature extreme, our tests show that the igniter operates repeatedly up to the ignition temperature of hydrogen-air mixtures $\left(585^{\circ} \mathrm{C}\right)$. Operation to the melting point of platinum $\left(1772^{\circ} \mathrm{C}\right)$ is likely but c ? little consequence because ordinary metal surfaces will cause ignition around $585^{\circ} \mathrm{C}$.

An important related question is whether or not the igniter will survive the ignition event it causes. In our laboratory tests, the catalytic substrate and wires were heated for several minutes to incandescence during studies with the richer (11% hydrogen) mixtures. We estimated the highest temperature achieved to be near $800^{\circ} \mathrm{C}$. The igniter performance was not degraded by these high temperatures and the igniters operated repeatably. In a LOCA environment, the fiame front will propagate away from the igniter once ignition occurs, thereby reducing the exposure time of the igniter to extreme temperatures. This is because the hydrogen is depleted rapidly behind the flame front. The coatings used on the "wet proofed" catalytic substrates limit their maximum operating temperature to $250^{\circ} \mathrm{C}$. Thus, a "wet proofed" igniter using currently available substrates might have a limited life. For exaniple, if the hydrogen concentration is 5% or lower, and the substrate has a high platinum loading, then the substrate may heat above $250^{\circ} \mathrm{C}$; but the mixture is too lean to be ignited by the platinum wires so the substrate "cooks" until it is destroyed. This problem can be overcome by optimizing the platinum loading of the substrate, but repeatable operation is still an unknown.

6.2. Elow Velocity

The flow velocity in the containment may be in the range of $0.10 \mathrm{~m} / \mathrm{s}$. ${ }^{2,3}$ Our tests show that the igniter operates successfully in the range $0.20 \mathrm{~cm} / \mathrm{s}$ with higher velocity mixtures being easier to ignite. At some unknown velocity, further increases will not appreciably increase the supply of reatants to the surface but will increase the convective heat losses. At this point, higher gas velocities will produce longer ignition delay times, not shorter, and could defeat the igniter. We have not determined this critical velocity. However, if high velocities are anticipated, shields could provide areas of sufficiently low gas velocity to permit normal igniter operation.

6.3 Hydrogen Concentration

For any igniter to be an effe-dive safety device, the time required for it to cause ignition must be short relative to the time that the hydrogen concentration builds to levels unsafe for intentional ignition. The longest ignition delay times for the catalytic igniter are roughly 400 s . This is short relative to the time expected for the hydrogen concentration to reach levels ansafe for ignition in the containment during a LOCA . in the case of Three Mile island - Unit 2 , the hydrogen concentration reached ignitable levels in a about 6 hours after turbine trip. ${ }^{12}$

6.4 Water Spriy, Steam, and Fog

Out tests showed that liquid water on the surface of a room temperature igniter will prevent it from heating. This is a serious problem if water spray is used in the containment or if large amounts of steam are generated during the LOCA. One solution is to use a "wet proof" catalytic substrate. These substrates have been developed by Atomic Energy of Canada Limited (AECL) a! Chaik River. ${ }^{13}$ AECL has fabricated substrates whose catalytic activities meet or exceed that of the substrate incorporated in our prototype igniter. One potential probiem, however, is that they may be damaged at temperatures above $250^{\circ} \mathrm{C}$.

6.5 Contaminated Atmosphere

If the igniter catalyst is poisoned, then the igniter will not function. During a LOCA, the atmosphere in the reactor containment may contain significant concentrations of gasphase fission products such as iodine or cesium. Other gascs, such as, carbon monoxide may also be prese.at. The ability of these species to puicon the platinum catalyst and defeat the igniter is generally not known. Tesis will have to be performed to obtain a definitive answer. However, it is known that carbon monoxide is not a poison and is oxidized catalytically to cartocn dioxide in the presence of oxygen on a platinum surface. Methyl iodide may be present during a LOCA and it is known that methyl iodide reduces the cataly'c astivity of platinum if the concentration exceeds 0.1 ppm and will reversibly deactivate the catalyst at concentrations of 20 ppm . Catalytic activity is regained by heating the catalyst to $150^{\circ} \mathrm{C}$ with hydrogen concentrations above 6% and without methyl iodide present ${ }^{14}$,

The wet proof coating on the AECL catalysts might be impermeable to methyl iodide and other molecules containing large nuclei on the basis of size exclusion or polarizasility. This could allow the igniter to operate normally in the presence of high levels of atmospheric contamination. This possioilicy of course must be tested.

7. FURTHER IMPROVEMENTS IN IGNITER DESIGN

There are several design parameters associated with the catalytic igniter that we have not optimized but which should be considered in future designs. These are discussed below.

7.1 Wire

The number of wires and their distribution on the surface of the substrate should be optimized. We have studied only designs with four wires placed around the edge of the substrate. Also, plating the wires with platinum black, a high surface area platinum coating, shculd be considered. This type of coating should increase the reaction rate on the surface of the wires without appreciably affecting its heat transport characteristics.

7.2 Platinum-Coated Substrate

We used only platinum-coated, ceramic honeycomb substrates with $1.6-1.7$ weight \% platinum. Catalytic substrates with higher platinum loading are available and should be tested. Since the transport of reactants to the substrate is affected by diffusion, the cell size of the honeycomb should be optimized along with the diameter and thickness of the honeycomb itself. The upstream face of the honeycomb (face closest to the burner) in our experiments warmed first and reached higher temperatures. This suggests that the optimum geometry for the honeycomb might have a larger, more open, or graded cell size and that the substrate could be thinner than the one we used. In addition, the honeycomb we used was deactivated by liquid water. Researchers at Atomic Energy of Canada at Chalk River ${ }^{13}$ have developed a "wet proofed" platinum/Teflon-coated catalytic substrate. Our preliminary tests using this substrate indicate that it will provide the thermal boost needed to heat the wires but that it is not quite as effective as the heneycomb for very lean mixtures (below 10% hydrogen). However, in some applications, the added benefit of the wet proofing may outweigh the lower catalytic activity of the substrate.

8. FURTHER TESTS

We have presented test results for a prototype non-powered igniter for nuclear reactor safety applications. It posses two essential features of a usable igniter; it requires no power and it ignites very lean hydrogen-air mixtures. However, before the usefulness of the device as a replacement or supplement for existing electrically heated igniters can be established, further tests are required. These tests should inciude the environmental factors indicated in the Introduction. Specifically, further tests should examine the effects of steam, high flow velocities (up to $10 \mathrm{~m} / \mathrm{s}$), fog, water spray, and catalytic poisons. The results of these tests will clearly dictate the nature of further improvements.

9. REFERENCES

1. M. P. Sherman et al., SAND 83-1495, Sandia National Laboratories, Albuquerque, NM NUREG/CR-1561, 1980.
2. L. S. Nelson, W. B. Benedick, P. G. Prassinos, K. P. Guay, and S. C. St. Clair, The Behavior of Resistance-Heated Hydrogen Igniters During Operation of Water Sprays in Containment, Sandia National Laboratories, Albuquerque, NM, NUREG/CR-4193, SAND85-0360, in preparation.
3. K. D. Marx, Air Currents Driven by Sprays in Reactor Containment Buildings, Sandia Natioral Laboratories, Livermore, CA, NUREG/CR-4102, SAND848258, 1986.
4. E. F. Coward and G. W. Jones, "Limits of Flammability of Gases and Vapors," Bulletin 503, Bureau of Mines, U. S. Dept. of Interior, 1952.
5. G. K. Boreskov, M. G. Slinko and V. S. Chesalova, Zh. Fiz. Khim, 30, 2787, 1956.
6. F. V. Hansor and M. Boudart, L. Catal., 53, 56-57, 1978.
7. P. R. Norton in "The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis." D. A. King and D. P. Woodruff, eds. Vol. 4 (Elsevier, Amsterdam, 1982.
8. G. E. Gdowski and R. J. Madix, Surf. Scj. 119, 184-206, 1982.
9. P. Cho and C. K. Law, Presented at the Western States Section of the Combustion Institute, Stanford, CA, Oct., 1984.
10. R. W. Schefer, Sandia National Laboratories, Livermore, CA, Private Communication.
11. G. B. Fisher and J. L. Gland, Surf. Sci., 94, 446-445, 1980.
12. Electric Power Research Institute (EPRI). "Analysis of Three Mile Island . Unit 2 Accident," NSAC-80-1, NSAC-1 Revised. (March, 1980). Palo Alto, CA.: Nuclear Safety Analysis Center. Electric Power Research Institute.
13. A. 1. Miller, Atomic Energy of Canada Limited, Research Company, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada, Private Communication.
14. S. J. Anderson and S. L. Pessagno, Catalytic Combustion of Hydrogen in the presence of Methyl Iedide. Acurex, Mountain View, California, FR-81-87/EE, Augu 1981.

Appendix A

Tests of the Catalytic Igniter in the Fully Instrumented Test System (FITS)

L. S. Nelson, Kenneth P. Guay and L. R. Thorne

The laboratory test of the nonpowered catalytic igniter showed that the ignition delay time increases markedly for gas velocities below $10 \mathrm{~cm} / \mathrm{s}$. Unfortunately, the laboratory test apparatus was not capable of making tests below $1 \mathrm{~cm} / \mathrm{s}$ to determine whether the catalytic igniter would ignite static hydrogen-air mixtures. However, because the velocity of the hydrogen-air mixture in the containment might be zero, or very low, under some circumstances that might occur during a loss of coolant accident (LOCA), it is important to test the igniter under similar flow conditions. Furthermore. it is important to make these tests in a moderately large volume to more nearly duplicate the conditions inside a nuclear reactor containment.

The Fully Instrumented Test System (FITS) at Sandia Albuquerque provides an opportunity to make the desired tests. The FITS system consists of a large $\left(5.6 \mathrm{~m}^{3}\right)$ cylindrical pressure vessel that is instrumented with a series of thermocouples and pressure gages placed at various positions along the vertical centerline of the vessel. Additional thermocouples are located in other positions as well. A computer-controlled data acquisition system logs the elapsed time and the temperature and pressure data.

A typical test proceeds by first purging the vessel with air, then adding enough hydrogen to bring the final mixture to the desired hydrogen concentration. This mixture is then stirred with a pneumatic fan for 10 min to ensure uniform concentration throughout the vessel. The mixture is then allowed to stand for 10 min to let any wind currents abate. At this point the igniter can be tested. The catalytic igniter is advanced by a pneumatically-driven piston from an argon-filled side arm on the vessel, through a ball valve, to near the center of the vessel. The argon in the side arm prevents the igniter from contacting the hydrogen-air mixture and warming prior to the desired start of the test. After a certain length of time (ignition delay time), ignition occurs and the temperature and pressure rises caused by the burning hydrogen are recorded by the computer-controlled data acquisition system. In some of the catalytic igniter tests, if the igniter did not operate within 10 min , the fans were turned on once again to produce low velocity flow across the igniter which helped the igniter to function. Tests were also made using glowplug and spark igniters in order to make comparisons with the catalytic igni*er results. The same test procedure is followed for these igniters except that ignition was coisrniled by the operator by electrically energizing the igniter, and the igniters were located insile the tank from the beginning of the experiment rather than being moved into the tank using the side arm.

Ignition of dry and humidified mixtures was tested. Humidified mixtures were produced using a doplet mister located near the top of the vessel that generated micronsize drops. The mister was operated during the time the pneumatic fan was on and provided thorough humidification of close to 100% relative humidity.

The catalytic igniter was tested under four different conditions, with a wet or dry hydrogen-air mixture and with either 10% hydrogen or 6.5% hydrogen. The results of these tests are given in Table A1. Although there is considerable variability in the ignition delay times, the catalytic igniter successfully ignited wet 10% mixtures and dry 6.5% mixtures. The single wet 6.5% mixture tested required the fan to be turned on to
provide flow across the igniter. The pressure and temperature rises inside the vessel after ignition by the catalytic igniter were similar to those caused by glowplug and spark ignition. See, for example, Figure A1. The fraction of total hydrogen burned was also similar as indicated in Table A1.

The implications of these tests for reactor safety are that the nonpowered catalytic igniter is capable of igniting lean, static hydrogen air mixtures with hydrogen concentrations as low as 6.5% and humidified static mixtures with tydrogen concentrations as low as 10%. Humidified mixtures with hydrogen concentrations below 10% may need to be flowing before the catalytic igniter is effective. Nevertheless, ignition by the catalytic igniter is just as effective at reducing the hydrogen concentration as ignition by a spark or glowplug, but the catalytic igniter has the advantage that no electrical power is required for it to operate.

Table A1

Results for the FITS iests. Data for glowplug and spark ignition are included for comparison with the catalytic igniter results. Two catalytic igniters of the same design were tested, Cl A and Cl E .

Test	Device	\%Hydrogen Pre-Test	\%Hydrogen Post-Test	Humidity	Fans On (s)	Ignition Delay (s)
1.	Cl A	(10\%) ${ }^{\text {a }}$	DRY	300	305
2.	CIB	9.70\%	0.02\%	DRY	NO	76
3.	Cl A	9.62\%	0.02%	WET	NO	172
4.	$\mathrm{Cl} \mathrm{B}^{\text {b }}$	6.14%	2.35\%	DRY	600	900
5.	CIB	6.16\%	4.14\%	DRY	NO	405
6.	Cl B	6.16%	3.04%	DRY	NO	10
7.	CIB	(6\%)		DRY	NO	10
8.	C1B	6.27%	2.11\%	WET	600	665
9.	Glowplug	9.51\%	0.02\%	DRY	NO	15
10.	Glowplug	9.59\%	0.02\%	DRY	NO	15
11.	Spark	6.13%	4.65\%	DRY	NO	1
12.	Spark	6.21%	4.51%	DRY	NO	1

[^0]

Figure At. Pressure rise after ignition of 10% hydrogen mixtures in air. The pressure rise after ignition is virtually identical for ignition caused by either the glowplug er the catalytic igniter.

DISTRIBUTION:

U. S. Government Printing Office Receiving Branch (Attn: NRC Stock) 8610 Cherry Lane
Laurel, MD 20707
(250 copies for R3)
U.S. Nuclear Regulatory Commission

Division of Accident Evaluation
Office of Nuclear Regulatory Research
Washington, DC 20555
Attn:
B. Burson J. Mitchell
W. S. Farmer
C. W. Nilsen
M. Fleishman
J. Telford
C. N. Kelber
T. Lee
R. Meyer
U. S. Nuclear Regulatory Commission (11)

Office of Nuclear Reactor Regulation
Washington, DC 20555
Attn: V. Benaroya K. I. Parczewski
W. R. Butler Z. Rosztoczy
G. W. Knighton T. M. Su
J. T. Larkins C. G. Tinkler
A. NotaFrancesco
R. Palla D. D. Yu
U.S. Department of Energy
R. W. Barber

Office of Nuclear Safety Coordination
Washington, DC 20545
U. S. Department of Energy (2)

Albuquerque Operations Office
P.O. Box 5400

Albuquerque, NM 87185
Attn: J. R. Roeder, Director
Transportation Safeguards
J. A. Morley, Director

Energy Research Technology
For: R. N. Holton
C. B. Quinn

Acurex Corporation
485 Clyde Aver.ie
Mountain View, CA 94042
American Electric Power Service Corp.
Room 1158-D
2 Broadway
New York, NY 10004
Attr: K. Vehstedt

Applied Sciences Association, Inc.
P.O. Box 2687

Palos Verdes Pen., CA 90274
Attn: D. Swanson
Argonne National Laboratory (5)
9700 South Cass Avenue
(11) Argonne, IL. 60439

Att: R. Anderson
D. Armstrong
L. Baker, Jr.

Dae Cho
B. Spencer

Prof. S. G. Bankoff
Northwestern University
Chemical Engineering Deparment
Evanston, IL 60201
Battelle Columbus Laboratory (2)
505 King Avenue
Columbus, OH 43201
Atth: P. Cybulshis
R. Denning

Battelle Pacific Northwest Laboratory (2)
P.O. Box 999

Richland, WA 99352
Attn: M. Freshley
G. R. Bloom

Bechtel Power Corporation (2)
15740 Shady Grove Road
Gaithersburg, MD 20877
Atn:
D. Ashton
D. Patton

Dr. Brincka, Director
Test Operations
D 9500/B 33008
P.O. Box 13222

Sacramento, CA 95813
Brookhaven National Laboratory (4)
Upton, NY 11973
A..ת: R. A. Bari
T. Ginsberg
G. Greene
T. Pratt

Professor Karl T. Chuang
University of Alberta
Edmonton, Alberta
TGG2E1 CANADA
Cleveland Electric Illuminating Co.
Perry Nuclear Plant
10 Center Road
North Puty, OH 44081
Attr: R. Stratman
Combustion Engineering Incorporated
1000 Prospect Hill Road
Windsor, CT 06095
Attn: J. D. Boyajian
Lyn Connor
Document Search NRC
P.O. Box 7

Cabin John, MD 20818
Dr. Michael Cook
Morton Thiokol
Ventron Group
150 Andover Street
Danvers, MA 01923
Donald C. Cook Nuclear Station
Indiana \& Michigan Electric Company
P.O. Box 458

Bridgman, MI 49106
Attn: D. Nelson
Prof. M. L. Corradini
University of Wisconsin
Nuclear Engineering Department
1500 Johnson Drive
Madison, WI 53706
Duke Power Company (2)
P.O. Box 33189

Charlotte, NC 28242
Attn: F. G. Hudson
A. L. Sudduth
A. Pete Dzmura

NE 43
U.S. DOE

Washington, DC 20545

EG\&G Idaho (3)
Willow Creek Building, W-3
P.O. Box 1625

Idaho Falls, ID 83415
Attn: D. Croucher
R. Hobbins

Server Sadik
Electric Power Research Institute (5)
3412 Hillview Avenue
Palo Alto, CA 94303
Atm: J. Haugh
W. Loewenstein
B. R. Sehgal
G. Thomas
R. Vogel

Factory Mutual Research Corporation
P.O. Box 688

Not wood, MA 02062
Attn: R. Zalosh
Fauske \& Associates (2)
16W070 West 83rd Street
Burr Ridge, IL. 60521
Attr: R. Henry
M. Plys

GPU Nuclear
100 Interpace Parkway
Parsipanny, NJ 07054
Attn: J. E. Flaherty
General Electric Corporation
175 Curtner Avenue
Mail Code N 1 C157
San Jose, CA 95125
Atr: K. W. Holtislaw
General Electric Corporation
Advanced Reactor Systems Dept.
P.O. Box 3508

Sannyvale, CA 94088
$\begin{array}{ll}\text { Attn: } & \begin{array}{l}\text { M. I. Temme, Manager } \\ \\ \\ \text { Probabilistic Risk Assessment }\end{array}\end{array}$
General Physics Corporation
1000 Century Plaza
Columbia, MD 21044
Attn: G. Kupiec

General Public Utilities
Three Mile Island Nuclear Station
P.O. Box 480

Middleton, PA 17057
Attn: N. Brown
Dr. Dennis Hacking
Enercon Services
520 West Bmadway
P.O. Box 2050

Broken Arrow, OK 74013
Jim O. Henrie
Westinghouse Hanford Division
P.O. Box 1970

Richland, Washurgton 99352
Indiana and Michigan Electric Company
P.O. Box 458

Bridgman, M1 49106
Atth: J. Dickson
Institute of Nuclear Power Operation
1100 Circle 75 Parkway, Suite 1500
Atlanta, GA 30339
Atts: Henry Piper
S. Visner
E. Zebroski

International Technology Corporation
Attn: Mario H. Fontana
575 Oak Ridge Turnpike
Oak Ridge, TN 37830
L. Kevin Klonoski

6595 Shuttle Test Group
Vandenberg Air Force Base
Vandenberg AFB, CA 93437
Knolls Atomic Power Lab (2)
Attn: Albert J. Kausch
R. L. Mathews

General Electric Company
Box 1072
Schnectady, NY :2301
Professor C. K. Law
Department of Mechanical Engineering
University of Californid
Davis, CA 95616

Robert Lipp
Westinghouse Hanford
828 West Octave
Pasco, WA 99301
Los Alamos National Laboratory (8)
P.O. Box 1663

Los Alamos. NM 87545
Attn: W. R. Bohl
F. J. Edeskuty
R. Gido
J. Carson Mark
G. Schott
H. Sullivan
J. Travis
K. D. Williamson, Jr.

Massachusetts Institute of Technology
Nuclear Engineering Dept.
Cambridge, MA 02139
Atti: N. C. Rasmussen
University of Michigan
Department of Aerospace Engineering
Ann Arbor, MI 47109
Attn: Prof. M. Sichel
University of Michigan
Nuclear Engineering Department
Ann Arbor, MI 48104
Miller \& White P.C.
Attr: John White, Patent Attorney Anthony J. Zelano, Patent Attorney
503 Crystal Mall, Building I
1911 Jefferson Davis Highway
Arlington, VA 22202
Mississippi Power \& Light
P.O. Box 1640

Jackson, MS 39205
Ates: S. H. Hobbs
NUS Corporation
4 Research Place
Rockville, MD 20850
Atth: R. Sherry
Oak Ridge National Laboratory (2)
NRC Programs
P.O. Box X, Bldg, 4500 S

Oak Ridge, TN 37831
Attr: A. P. Malinauskas
T. Kress

Pennsylvania Power and Light
Susquehanna SES
P.O. Box 467

Berwick, PA 18603
Attn: R. DeVore
Power Authority State of NY (2)
10 Columbus Circle
Nitw York, NY 10019
Attn: R. E. Deem
S. S. Iyer

Dr. J. E. Shepherd
Rensselaer Polytechnic Institute
Troy, NY 12180-3590
Andrew F. Rutkiewic
E. F. DuPont

Marshall Laboratory
P.O. Box 3886

Philadelphia, PA 19146
Sharon Sargent (15)
Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185
Bill Seddon
Atomic Energy of Canada
Research Company
Chalk River Nuclear Laboratories
KOJ 150 CANADA
Dpak Shah, Sr. Dev. Eng.
Honeywell, Inc.
MN63-B170
Corporation Systems Dev. Division
1000 Boone Avenue North
Golden Valley, MN 55427
Stone \& Webster Engineering Corp.
245 Summer Street/9
Boston, MA 02143
Artn: G. Brown
E. A. Warman

Stratton \& Associates, Inc.
2 Acoma Lane
Los Alamos, NM 87544
Attn: W. Stratton

Dr. Roger Strehlow
505 South Pine Street
Champaign, IL. 61820
Steve Sweargin
Omaha Public Power District
Jones Street Station
O.H.P.D.

1623 Harney Street
Omaha, NE 68102
Technology for Energy Corporation (2) 10770 Dutchtown Road
Knoxville, TN 37922
Artn: J. Carter
E. L. Fuller

Texas A \& M University
Nuclear Engineering Dept.
College Station, TX 77843
Prof. T. G. Theofanous
Chemical and Nuclear Engineering Dept.
University of California
Santa Barbara. CA 93106
Thompson Associates (2)
639 Massachusetts Avenue
Third Floor
Cambridge, MA 02139
Artn: Timothy Woolf
TVA
400 Commerce
W9C157-CD
Knoxville, TN 37902
Atts: Wang Lau
UCLA
Nuclear Energy Laboratory (2)
405 Hilgart Avenue
Los Angeles, CA 90024
Attr: Prof. I. Catton
Prof. D. Okrent
Virginia Electric \& Power Company (3)
Northanna Power Station
P.O. Box 402

Mineral, VA 23117
Atth: A. Hogg
E. L. Vilson
A. K. White

Virginia Electric \& Power Company
P.O. Box 26666

James River Plaza
Richmond, VA 23261
Attn: R. Garner
Danielle Weaver
Nucleonics Week
1120 Vermont Avenue NW
Suite 1200
Washington, DC 20005
Bill West
Bettis Atomic Power Laboratory
P.O. Biox 79

West Mifflin, PA 15122
Westinghouse Corporation (3)
P.O. Box 355

Pittsburgh, PA 15230
Atm: N. Liparulo
J. Olhoeft
V. Srinivas

Westinghouse Electric Corporation (2)
Bertis Atomic Power Laboratory
Attn: Donald R. Connors Charles Quinn
P.O. Box 79

West Mifflin, PA 15122
Westinghouse Electric Corporation
Monroeville Nuclear Center
Monroeville, PA 15146
Attn: P. Lain
Westinghouse Hanford Company (3)
P.O. Box 1970

Richland, WA 99352
Atti:
G. R. Bloom
L. Mulstein
R. D. Peak

Lt. Sherman Westvig
Building 8500
Vandenberg Air Force B.e
Vandenberg AFB, CA 93437
Keith Williams
Tayco Engineering, Inc.
P.O. Box 19

Long Beach, CA 90802

Zion Nuclear Fower Station
Commonwealth Edison Company
Shiloh Blvd, and Lake Michigan
Zion, IL. 60099
Att: C. Shultz
Belgonucleaire S.A.
Rue de Champ de Mars 25
B-1050 Brussels
BELGIUM
Attn: H. Bairiot
Professor Lue Gillon
University of Louvain la Neuve
Batiment Cyclotron
B1348 Louvain la Neuve
BELGIUM
Director of Research, Science \& Education
CEC
Rue de la Lol 200
1049 Brussels
BELGIUM
Attn: B. Tolley
Atomic Energy Ltd. (4)
Whiteshell Nuclear Research Establishment
Pinawa, Manitoba
CANADA
Atu: D. Liu
C. Chan
K. Tennankore
D. Wren

Atomic Energy Canada Lid.
Chalk River, Ontario K0J 1 J0
CANADA
Atm: P. Fehrenbach
Defence Research Establishment Suffield
Ralston, Alberta TOJ 2N0
CANADA
Atti: Dr. Ingar O. Moen
McGill University (3)
315 Querbes
Outrement, Quebec H2V 3W1
CANADA
Attn: Prof. John H. S. Lee

Institute of Nuclear Energy Research
P.O. Box 3

Lungtan
Taiwan 325
REPUBLIC OF CHINA
Atth: Sen-l-Chang
CEA
B.P. No. 85X-Centre de
F. 38041 Grenoble Cedex

FRANCE
Attn: M. Georges Berthoud
Battelle Institut E. V. (4)
Am Roemerhof 35
6000 Frankfurt am Main 90
FEDERAL REPUBLIC OF GERMANY
Attn: Dr. Werner Baukal
Wemer Geiger
Dr. Guenter Langer
Dr. Manfred Schildknecht
Gesellschaft für Reektorsicherheit (GRS)
Postfach 101650
Glockengass 2
5000 Koeln 1
FEDERAL REPUBLIC OF GERMANY
Gesellschaft für Reaktorsicherheit (2)
8046 Garching
Forschungsgelande
FEDERAL REPUBLIC OF GERMANY
Atu: Dr. E. F. Hicken
Dr. H. L. Jahn
Universităt Heidelberg
Heidelberg
FEDERAL REPUBLIC OF GERMANY
Atu: Juergen Warnatz
Institute für Kernenergetik und Energiesysteme
University of Stuttgart
Stuttgart
FEDERAL REPUBLIC OF GERMANY
Atu:
M. Buerger
G. Froehlich
H. Unger

Kernforschuigszentrum Karlsruhe (4)
Postfach 3640
7500 Karlsruhe
FEDERAL REPUBLIC OF GERMANY
Attn: Dr. S. Hagen
Dr. Heusener
Dr. Kessler
Dr. M. Reimann
Kraftwerk Union (2)
Hammerbacherstrasse 12 \& 14
Postfach 3220
D-8520 Erlangen 2
FEDERAL REPUBLIC OF GERMANY
Attn: Dr. M. Peehs
Dr. K. Hassman
Kraftwerk Union A. G. (2)
D.ST224

6050 Offenbach
FEDERAL REPUBLIC OF GERMANY
Attm: Dr. R. Heck
Dr. W. Siegler
Lehrgebiet für Mechanik der RWTH Aachen
Templergraben 55
D5100 Aachen
FEDERAL REPUBLIC OF GERMANY
Arm: Prof. Dr. Ing. N. Peters
Technische Universităt München
8046 Garching
FEDERAL REPUBLIC OF GERMANY
Att: Dr. H. Karwat
Propulsion and Combustion
Dept. of Aeronautical Engineering
Technicon, Haifa 32000
ISRAEL.
Attn: Alon Gany, D.Sc.
CNEN NUCLIT
Rome
TTALY
Attr: A. Morici
ENEA Nuclear Energ. Alt. Disp. (2)
Via V. Brancati
00144 Roma
ITALY
Atn: P. L. Ficara
G. Petrangeli

ISPRA	Netherlands Energy Research Foundation
Commission of the European Communities	P.O. Box 1
C.P. No. 1, I-21020 Ispra (Varese)	1755 ZG Petten NH
ITAL, Y	NETHERLANDS
Atth: Dr. Heinz Kottowski	Attn: K. J. Brinkmann
Universita Degli Studi Di Pisa	Royal Institute of Technology
Dipartmento Di Costruzioni	Dept. of Nuclear Reactor Engineering
Meccaniche E. Nucleari	Stockholm S-10044
Facolta Di Ingegneria	SWEDEN
Via Diotisalvi 2	Attr: Prof. Kurt M. Becker
56100 Pisa	
ITALY	Statens Karnkraftinspektion
Attn: M. Carcassi	P.O. Box 27106
	S-10252 Stockholm
Japan Atomic Energy Research Institute	SWEDEN
Attn: Dr. K. Soda, Manager	Attr: L. Hammar
Chemical Engineering Safety Laboratory	
Dept. of Nuclear Fuel Safety	Studsvik Energiteknik AB
Tokai-mura, Naku-gun Ibaraki-ken	S.611 82 Nykoping
319.11	SWEDEN
JAPAN	Atm: K. Johansson
Japan Atomic Energy Research Institute	Swedish State Power Board
Atm: Dr. T. Fujishito, Manager	S-162 Fach 87 Vallingby
Dept. of Fuel Safety Research	SWEDEN
Tokai-mura, Naka-gun, Ibaraki-ken	Attn: Wiktor Frid
319-11	
JAPAN	Swedish State Power Board
	181-Och Vaermeteknik
Japan Atomic Energy Research Institute	SWEDEN
Attn: Mr. Kazuo Sato, Director	Attm: Eric Ahlstroem
Dept. of Reactor Safety Research	
Tokai-mura, Naka-gun Ibaraki-ken	D. Ulrich
319.11	Sulzer Bros. Lid.
JAPAN	TMV-0460
	CH-8401 Winterthur
Power Reactor Nuclear Fuel	SWITZERLAND
Development Corp. (PNC)	
FBR Project	AERE Harwell
9-13, 1-Chome, Akasaka	Didcor
Minato-Ku, Tokyo	Oxfordshire OY11 ORA
JAPAN	UNTTED KINGDOM
Attn: Dr. Watanabe	Atm: J. R. Mathews, TPD
Korea Advanced Energy Research Institute	Berkeiey Nuclear Laboratory (3)
P.O. Box 7	Berkeley GL i 39PB
Daeduk Danji, Chungnam	Gloucestershire
	UNITED KINGDOM
Atu: H. R. Jun	Attr: J E. Antill
	S. J. Board
	N. Buttery

ISPRA
Commission of the European Communities
C.P. No. 1, I-21020 Ispra (Varese)

ITALY
Attn: Dr. Heinz Kottowski
Universita Degli Studi Di Pisa
Dipartmento Di Costruzioni
Meccaniche E. Nucleari
Facolta Di Ingegneria
Via Diotisalvi 2
56100 Pisa
ITALY
Attn: M. Carcassi
Japan Atomic Energy Research Institute
Atu: Dr. K. Soda, Manager
Chemical Engineering Safety Laboratory
Dept. of Nuclear Fuel Safety
Tokai-mura, Naku-gun Ibaraki-ken
319.11

JAPAN
Japan Atomic Energy Research Institute
Atm: Dr. T. Fujishito, Manager
Dept. of Fuel Safety Research
Tokai-mura, Naka-gun, Ibaraki-ken
319-11
JAPAN
Japan Atomic Energy Research Institute
Attn: Mr. Kazuo Sato, Director
Dept. of Reactor Safety Research
319-11 Ma, Naka-gun Horaki-ken
JAPAN
Power Reactor Nuclear Fuel
Development Corp. (PNC)
FBR Project
9-13, 1-Chome, Akasaka
Minato-Ku, Tokyo
JAPAN
Attn: Dr. Watanabe
Korea Advanced Energy Research Institute
P.O. Box 7

Daeduk Danji, Chungnam
KOREA
Atun: H. R. Jun

Netherlands Energy Research Foundation
P.O. Box 1

1755 ZG Petten NH
NETHERLANDS
Attn: K. J. Brinkmann
Royal Institute of Technology
Dept. of Nuclear Reactor Engineering
Stockholm S-10044
SWEDEN
Attn: Prof. Kurt M. Becker
Statens Kamkraftinspektion
P.O. Box 27106

S-10252 Stockholm
SWEDEN
Attn: L. Hammar
Studsvik Energiteknik AB
S. 61182 Nykoping

SWEDEN
Attn: K. Johansson
Swedish State Power Board
S-162 Fach 87 Vallingby
SWEDEN
Attr: Wiktor Frid
Swedish State Power Board
181-Och Vaermeteknik
SWEDEN
Attn: Eric Ahlstroem
D. Ulrich

Sulzer Bros. Lid.
TMV-0460
CH-8401 Winterthur
SWTTZERLAND
AERE Harwell
Didcor
Oxfordshire OY11 ORA
UNITED KINGDOM
Attn: J. R. Matthews, TPD
Berkeiey Nuclear Laboratory (3)
Berkeley GL. 139PB
Gloucestershire
Attn: J E. Antill
S. J. Board
N. Buttery

British Nuclear Fuels, Ltd.
Building 396
Springfield Works
Salwick, Preston
Lancs
UNTTED KINGDOM
Atth: W. G. Cunliffe
Imperial College of Science and Tuchnology
Dept. of Mechanical Engineering
Exhibition Road
London SW7 2 BX
UNITED KINGDOM
Attn: Dr. A. D. Gosman
National Nuclear Corp. Lid.
Cambridge Road
Whetestone, Leicester, LE8 3LH
UNTTED KINGDOM
Atm: K. May
Simon Engineering Laboratory (2)
University of Manchester
M139PL
UNITED KINGDOM
Attn: Prof. W. B. Hall
S. Garnet!

Anthony R. Taig
GDCD/CEGB
Barnwood, Gloucester
Gloucestershire
UNTTED KINGDOM
UKAEA Safety \& Reliability Directorate (4)
Wigshaw Lane, Culcheth
Warrington WA 3 4NE
Cheshire
UNITED KINGDOM
Atm: J. G. Collier
J. H. Gittus
S. F. Hall
M. R. Hayns

UKAEA, Culham Laboratory (4)
Abingdon
Oxfordshire OX14 3DB
UNITED KINGDOM
Atm: F. Briscoe
lan Cook
D. Fetcher
B. D. Turland

UKAEA AEE Winfrith (4)

Dorchester

Dorset DT2 8DH
UNITED KINGDOM
Attn: M. Bird
T. Butland

R Potter
A. Wickett

University of Aston in Birmingham (2)
Department of Chemistry
Gosta Green, Birmingham B47ET
UNITED KINGDOM
Attn: A. T. Chamberlain
F. M. Page

Sandia Distribution:

1131 W. B. Benedick
1510 J. W. Nunziato
1512 J. C. Cunmings
1530 L. W. Davison
3141 S. A. Landenberger (5)
3151 W. L. Garner
4050 K . Olsen
6400 D. J. McCloskey
6412 A. L. Camp
6420 J. V. Walker
6422 D. A. Powers
6425 W. J. Camp
6427 C. C. Wong
6427 D. F. Beck
6427 D. W. Stamps
6427 L. S. Nelson
6427 M. Berman (5)
6427 M. P. Sherman
6427 S. E. Slezak
6427 S. R. Tieszen
6440 D. A. Dahlgren
8300 P. L. Mattern
8310 R. W. Rohde
8313 D. L. Lindner
8350 J. S. Binkley
8353 D. W. Chandier
8353 G. A. Fisk
8353 J. V. Volponi
8357 L. R. Thome (10)
8357 R. 'W. Carling
8360 W. J. McLean
8363 K. D. Marx
8524 P. W. Dean

CEFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $\$ 300$

[^0]: a Values in parentheses are estimated initial concentrations based on the volume of hydrogen supplied to the test tank.
 ${ }^{\text {b }}$ Catalytic igniter rotated 90% from normal orientation.

