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ESTIMATION TECHNIQUES FOR COMMON CAUSE
FAILURE EVENTS

by

Elizabeth J. Kelly and Geralyn M. Hemphill

ABSTRACT

Common cause failure probability estimation techniques, including B-factor,
basic parameter, binomial failure rate, multiple Greek, and C-factor
estimators, are evaluated and compared using simulation data that captures
the real world problem of sparse data from different plants. The effects on
the estimators’ performances from underlying factors such as common cause
shock rates, lethal shock rates, probability of failing given a shock,
independent failure rates, and system operational time are discussed. Worst
case results are reported, and it is seen that for extremely small common
cause failure probabilities the binomial failure rate estimators are best.
However, these estimators can underestimate the true probabilities when the

failures deviate from the binomial failure rate model. The B-factor technique
1s shown to be conservative, and in some cases to overestimate the true
probability by several orders of magnitude. When there are observed failures
for each failure event, the basic parameter technique is best and is easily
calculated. This estimator is investigated in detail and is used to develop an
estimator for the probability of K or more units failing due to a common
cause. Uncertainty limits for this probability are also developed.




LO INTRODUCTION

The design principle of redundancy has been applied in nuclear power plants to
assure a high degr2e of reliability for safety critical systems. The essential assumption is
that multiple units will fail independently, thus greatly reducing the likelihood of the loss
of a safety critical function. However, probability risk assessments (PRAs) and operating
experience have shown that the assumption that redundant systems fail only by a series of
independent failures is not valid. Rather, multiple failures due to a common initiating
event such as a design flaw, an environmental condition, an operator error, or faulty
maintenance dominate system unavailability and plant risk. Such multiple failures are
called common cause failures and are the subject of this paper. The problem investigated
1s how to best quantify the common cause failure probabilities. Currently, several
techniques are used by the nuclear power industry to estimate common cause failure
probabilities, and there is a great deal of controversy and confusion about which method
to use. Since data is extremely sparse, it is very difficult to evaluate these estimation
techniques using real Aata. In this study, we use a Monte Carlo simulation to generate
common cause failure data and then use this data to evaluate the -factor, multiple Greek,
basic parameter, binomial failure rate, and C-factor estimators. This simulation captures
the real world problem of sparse data from dissimilar plants and allows the failure data to
be generated by various failure models.

Appendix A contains the recommended procedures for common cause event
analyses. Also in this Appendix, the details of the recommended procedures are
developed and uncertainty intervals described.

2.0 THE MODEL

In the context of this discussion, a system is any collection of M redundant units. A

unit can be thought of as a compon nt, such as a valve or pump, or as a collection or

components, such as a train. A basic event, Eg, is a shock to the system such that k (k =
I, ..., M) specific units fail as a result of this shock. We make the simplifying
assumption that the rate of occurrence of such events, Ay, is the same for any group of k
units. For example, if a system contains three redundant pumps, the rate of simultaneous
failures of pumps one and two is the same as the rate for pumps two and three. Let Ny
represent the number of events in time 7, the total system operational time, for a
population of systems. If the events occur independently of one another from system to
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system and A is constant over time from one system to the next, then the distribution of
Ny is Poisson with parameter A, 7. (We restrict ourselves to time-related failures in the
discussion that follows; however, the analysis is identical for demand-related failures
with T replaced by total system demands and A; viewed as the probability of k specific
units failing on demand. In this case one assumes that there are Ny independent system
demands and consequently M*Np unit demands. If these assumptions are violated as in
staggered sampling plans (Parry, G. W., 1986), the estimators derived in this paper are
not valid, and one must examine the parameter definitions to determine the appropriate
estimators.) When a single unit fails, it results from either an underlying event (a
potential common cause failure), or from causes restricted to that unit alone (an
independent failure). The independent failure rate is denoted A, and the number of
independent failures in time 7 is assumed to be Poisson with parameter AT. We are
interested in calculating the probabilities that in time ¢ there are events, E, k=1, .., M.

These are the probabilities needed for the fault tree analysis and are given by
Pp=1l-eM, k=1,.,M.

In the Introduction we noted that commor cause events range from failures
resulting from design flaws and environmental {actors to maintenance errors. The
grouping together of these diverse common cause events is necessary because of the
paucity of data. As common cause data bases improve, factor analysis studies should be
employed to determine more appropriate common cause groupings.

The basic parameter (BP) and multiple Greek (MLG) methods are based on this
Poisson model. These techniques require estimating A4;, k = 1, ..., M. The binomial
failure rate model (Atwood, 1980) restricts this general model, assuming that the basic
events or shocks occur with constant rate, u, and that, given a shock, the units fail
independently, each with probability p. These assumntions reduce the number of
parameters to estimate to A, i, and p. The 4; are given by

A = ).+up(l~p)'\“
and

M-
k‘ k

Ay=puptd-p =2,...M. (2.0.1)

Both maximum likelihood binomial failure rate (BFR) and Bayes (BFRBM - BFR Bayes
Mode or Mean) solutions can be found for the parameters of this model. (In this study,
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only the Bayes mode is evaluated). Atwood (1980) found that this model underestimated
the probability of all M units failing and introduced the notion of lethal shocks. A lethal
shock causes all M units to fail simultaneously; that is, given a lethal shock, p = 1. The
rate of lethal shocks, , is assumed to be constant, giving Ay = upM+ @. This
model has four parameters to estimate, and we denote these as the BFRLS (maximum
likelthood —~ BER_ Lethal Shocks) and BFRBMLS (BER Bayes Mode Lethal Shocks)
estimators. When potential common cause failures cannot be identitied, we must restrict
the cases to M > 2. However, if the potential common cause failures can be identified,
this restriction is not necessary and the estimators are called BFRSF (maximum
likelihood — BER Single Failures) and BFRBMSF (BER Bayes Mode Single Eailures). If
both potential common cause failures and lethal shocks can be identified. we denote the
estimators as BFRSFLS (maximum likelihood ~ BER Single Eailures and Lethal
Shocks) and BFRBMSFLS (BER Bayes Mode Single Failures and Lethal Shocks).

3.0 ESTIMATORS

This analysis compares several of the common cause estimation techniques that
have been suggested for use in PRA analyses. These techniques include basic parameter
(BP), multiple Greek (MLG), various binomial failure rate estimators, the B-factor, and
the C-factor estimators. It is easy to show that, in the case of data from systems with the
same number of units (M), the MLG and BP techniques are equivalent. In Appendix B,
we show that, for M = 3, the MLLG, BP, and BFR estimators are equal.

3.1 Basic Parameter

The BP estimation technique uses the maximum likelihood estimators (MLEs) for
the Poisson model described in 2.0. In this case the number of events Eg, where &

specific units fail simultaneously in time T, is Poisson with parameter 447 . The MLEs
for Ay are

i.k=,r v o Kkm2 M. (3.1.1)
M)

The ny are the observed number of events with k units failing simultaneously and T is the
total system operational time. This technique allows zero estimates if there are no
observed failures. To avoid the problem of zero estimates, Bayes estimators can be used.
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One approach is to assume that the Ak's have gamma prior distributions with parameters

a and b. The resulting estimators are

V| LI N Y (3.1.2)
MjTesp
For the noninformative prior, @ = 1/2 and b = 0. In the simulation stud: ', this estimator is
denoted BP Bayes NI. Other priors can be used. Welker and Lipow ( 974) suggest an
iterative technique for deriving priors beginning with a simple prior joinu 0 and 27 and
deriving the posterior. The posterior is then used as a prior and the proc:ess continues.
We investigated one of these estimators that is equivalent to settinga =0.175 and b = 0.
This estimator is denoted BP Bayes 0.175.

3.2 Multiple Greek

The BP estimators require knowledge of the total system operational time, 7. The
MLG estimators were derived to avoid the need to know T or, in the case of demand-
related data, the total number of system demands. Fleming (Picard, Lowe, & Garrick,
1985a) uses a four-unit system to illustrate the use of the MLG estimators. The
parameters of interest are

At = the failure to operate rate for each unit resulting from all independent and
common cause events,

B = the conditional probability that two or more units will fail resulting from a
common cause given that there is a failure,

Y = theconditional probability that three or more units will fail resulting from

a common cause given that two or more units fail resulting from a
common cause, and

d = the conditional probebility that all four units fail resulting from a common

cause given that three or more units fail resulting from a common cause.

In terms of the Ax's defined in section 2.0, the MLG parameters can be written



XT=1,+312+313+14 5

3=‘—*3)Y'2+'?)‘3*+ 14 18
A+ 30,4303+ Ay
g 31;})»4 of)
IN,+3h3+ A,
and
futis.
3N+ Ay

In these equations, Fleming uses rates to represent probabilities. This simplificati-n is
justified since the events are rare (Ak's small). The Ax's can be written in terms of the
MLG parameters,

Ay=0-3)Ar,

A=13(1=-y Ay,

A=13(1-8)ArBY,
and

ha=ApPys .

One can see where the name multiple Greek comes from; clearly large M necessitates a
change of notation. In general,

J
11=(M 1 n-MLG G+ ) [ MG, (3.2.1)
l) 1=1



where MLG ()) is the jth MLG parameter [MLG (1 )=Ar MLG(2)=B,MLG(>) =
Y. and MLG (4 ) = 8 ). Using the generalized notation, the estimators for the MLG
parameters are

Mz
:;.

-
i
=

m(k):-g-- fork=2,.... M
2 in
j=k-1
and
M
Zj“)
MLG(1)=20 | (3.2.2)

MT

where the n; are the number of common cause failures where j units fail simultaneously.

Substituting the MLG estimators of Eq. (3.2.2) into the equation for the 2 s, Eq.
(3.2.1), it is easily seen that t+= MLG and BP estimators are identical. However, these
estimators car differ when the. e are multiple systems and the number of units varies
between systems.

In many applications MLG(1) or At is known; therefore, total system operational
time or total number of system demands need not be specified. In all the cases we
considered, MLG estimation with known At gave either no improvement or very slight
improvement over the general MLG estimators; therefore, it is not discussed further.

The MLG estimators also permit zero estimates when there are no observed
failures. To avoid this problem, Fleming (Picard, Lowe & Garrick, 1985a) suggests
Bayes estimation. The Bayes estimators are determined by assuming a multinomial prior
distribution. He illustrates the technique for a system with three units. The prior
distribution is

A-l B-1 . D-1
fBy=hp (1-B) YC]H—Y) ,

where h is a normalizing factor. The posterior distribution is also multinomial, and the
Bayes estimators are



M
A+ZjnJ

~ j=2
B=——"0
A+B+2jn,
j=1
and
A L C+3n3
= M
C+D+2jnJ
j=2

As is often the case with Bayes estimation, the problem of what prior to use arises.
Fleming suggests using the noninformative prior: A=B=C=D=1,

3.3 Binomial Failure Rate

The BFR model for modeling common cause failures in a system was introduced
by Vesely (1977) and further developed and applied by Atwood (1980, 1982,
1983a,b,c). In this paper, we will not go into great detail about the BFR estimators since
the mathematics are complex and are described in detail in Atwood's 1980 paper
"Estimators for the Binomial Failure Rate Common Cause Model." For the purposes of
illustration and comparison, we present the MLE:s for the basic case (potential common
cause and lethal shocks are not identified), and briefly describe the Bayes estimation
techmques.

3.3.1 Maximum Likelihood Estimators for the Binomial Failure Rate
Model

Atwood introduces the parameters A - the rate of single failures (which he calls A1)
—and A4 - the rate of common cause occurrences. These rates are defined as

A,=MA+ur, (3.3.1.1)
and
A, = u(]'r()'r]) ) (3.3.1.2)






events observed are those with two units failing. This condition was quite common in
the simulation study and in these cases, rather than using p = 0, we say the estimators
cannot be evaluated. If potential common cause events can be identified, the definitions of
s, A4, and ny are modified appropriately (Atwood, 1980, p.39), and this problem does
not arise. When lethal shocks can be identified, the estimators are the same as those
described in Egs. (3.3.1.3), (3.3.1.4), and (3.3.1.5), except that the number of lethal
shocks, ng, is subtracted from ny and

-~ ﬂL
m—.r.

Atwood also develops confidence intervals for these estimators (Atwood, 1980, pp.10-
16).

3.3.2 Bayes Binomial Failure Rate Estimators
The Bayesian estimation is much more complicated than the MLE technique.
Atwood selects gamma distributions as a suitable class of priors for A, A, and :

a,~l

b‘)\* e_bOx’b

f(h )=
I'(a,)
2 i .I_l - X
b A‘ e i
fn)=——" .
["(ay)
and
hmwaof‘1 e -b g w

flw) =
I'(ay)

The prior for p is a beta distribution defined as

_I'(e+d)

C—l(]_ )d‘l )
I'(c) I'(d) d <

f(p)

Using the modes of the posterior distributions to determine the Bayes estimators give
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and

n,+a

, g, 308 1
T+b,

A=
The estimator for p is the unique solution of

s+c-l=pl{c+d-2+4Mn, — 4

If the number of observed single failures is too small, it can lead to a negative estimate for
2. In these cases the value of p that maximizes the likelihood function must be found by a
numerical procedure such as a simplex search,

The means of the posterior distributions give the following Bayes estimators:

S ng+a,
A'S_ T"'-bs .
Y n,+a,
;&‘- T+b*v
and
P Nl
T+bg

The mean of the posterior distribution of p can only be found by numerical integration.
The formulas can be quite difficult to evaluate. In this study, we do not report these
estimators; however, there is some indication that the Bayes mean estimators will be
slightly more conservative than either the MLEs or Bayes mode estimators (Atwood,
1980, pp. 50-54). The results of our simulation indicate that the differences between the
Bayes mode estimators using a noninformative prior and the MLEs are not important in
practical applications.
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3.4 B-Factor

The B-factor was introduced by Fleming (1975) and is widely used in common
cause estimation in PRA analyses (American Nuclear Society and the Institute of
Electronic and Electrical Engineers, 1983). This estimator is valid for systems with two
units and adequate for systems with three units, but overcstimates the Pg's as the number
of units increases. The method is popular because it is conservative and allows subjective
estimates of the B-factor when data is not available. The f-factor is defined as the ratio of
the rate of unit failures resulting from common cause events, A, to the total unit failure
rate, A7

Note that A- is not the rate of common cause events. The parameter, Ay, is the sum of
the common cause failure rate and the independent failure rate, Ay = A + 4. The -
factor can be viewed as the percentage of total failures resulting from common cause

events or the conditional probability that a failure is owing to a common cause event,
given that a failure has occurred. The estimate for the -factor is

where N7 is the total number of failures and

N
Ne=2 jn;  [sinthe BFR equations - (3.3.1.5)).
j=2

The B-factor estimator does not distinguish between multiple failures, providing only one

astimate for the failure rates;

A~ ~ N’
= = C.k=2....,M.
Ax=P Ay T

If the total failure rate is known, then the common cause failure rate is

A=BAr, k=2,.., M (3.4.1)
12



ikzgixp k=2,., M.

We evaluated the B-factor estimator with known At in the simulation study; however, it
gave only slightly improved results and is not discussed further. The appeal of the -
factor technique is understood by noting that when no common cause data are available,
but the unit failure rate is known, only one parameter (3) has to be estimated by "expert
opinion.” Given the cost and effort involved in eliciting experts' estimates, it is much
more practical to ask for one estimate from each expert than several (Meyer et. al., 1982).

3.5 C-Factor

There is more confusion over this estimator than any of the other estimators. We
believe that we have uncovered the source of the confusion. This technique was
introduced in the Ringhals 2 Probabilistic Safety Study (Gyllenbaga et.al, 1983). In this
study the C-factor is defined as "the ratio of the number of common cause events to the
number of independent failure events.” The authors claim that "it is more correct since it
predict(sic) directly the item of interest, the probability (or rate) of multiple failure
events.” Using the Ringhals notation, these statements indicate that

C= A’ETz >"E
T
and
}'E =C)\,| ’

where Ag is the rate of multiple failure occurrences (A4) and Aj is the rate of independent
failures (A). This definition leads to the estimators

Ng .
~_ T _MN 4 & N n
C=\T == % and Ay=hg=op = 24 k=2,..M, (50
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where Ng is the total number of common cause events (Ng = ny), Ny is the number of
independent failures, and M is the total number of units in the system. However, the
authors define & as

e=Ne
N
and this leads to

which does not agree with the authors definition. The expression in Eq. (2.5.1) does
indeed lead to an estimate of the probability of multiple failure events; however, since

M n; M jn-
szTl 2 E J=’ﬂ+ (the B-factor estimate), this estimator does not accomplish the

authors' goal of reducing the large positive bias that the B-factor method produces.
To add to the confusion, some practitioners have mistakenly defined the C-factor as

Cu e

Ay

where A¢ is the rate of failures resulting from common cause eveats (see Sec. 3.4).
Using this definition and solving for C in terms of B, one finds

o B

-8

This definition of C leads to the same estimators for the common cause failure rates, Ay,
as the B-factor method. Thus, there is only one useful definition for the C-factor — Eq.
(3.5.1). This definition l2ads to estimators of the common cause failure probabilities that
are greater than the B-factor estimators; therefore, we do not discuss the C-factor method

further,
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4.0 ANALYSIS

Since actual plant data is extremely sparse, a simulation was developed to generate
common cause failure data that could then be used to determine the behavior of the
various estimators. Three different models for failure generation were used. The first
(Simulation [ ) generates data using the BFR model for M = 3, §, and 9 for cases where
the data is very sparse (reflecting the real world situation) and for moderate and large
samples. The second (Simulation 1I) uses the general model to generate the samples and
mimics the situation where the failures deviate from the binomial model by having higher
incidences of two, three, and M failures. The third (Simulation III) allows for variation
between plants, assuming that the data comes from three different plants and that the Ay's

vary between plants,
4.1 SIMULATION T (BFR MODEL)

4.1.1 Data Generation

To generate data for the BFR model, three values of p were used — p = 0.1, 0.5,
and 0.9. The rates of shocks to the system, jt, were 10-3, 2x10-4, and 10-4. Two lethal
shock rates, ® = 0 (no lethal shocks) and ® = 10-5, were considered. The independent
failure rates were 10-3 and 10-4. The total operational times, T, were 104, 103, and 106
hours. For each M and each combination of parameters, failure data was produced using
1000 iterations of the Monte Carlo simulation. Not all combinations of parameters
produced sufficient samples for analysis. For example, for M =23,p =0.1,7 = 104, it
= 104, and ® = 0, there were no common cause failures in the 1000 iterations. If a
combination of parameters produced less than 200 samples, it was eliminated from the
analysis.

Tables | and 2 give example summaries of the data generated. Table 1 illustrates a
simulation with sparse data sets, The parameters used to generate this data were M =3, p
=01, =104 % =104 7T = 105, and ® = 10-5, Out of 1000 iterations, 762 had no
common cause failures. Of the remaining 238 cases, the number of potential common
cause failures (k = 1) varied from 0 to 8, with 28 cases of no potential failures. The
average number of potential common cause failures was 2.4. The number of common
cause failures where iwo units failed simultaneously (k = 2) varied between 0 ana 3.
There were 9 cases of no failures, and the average number of failures was 1. There were
only 12 data sets that had three units (k = 3) failing as a result of common causes other
than lethal shocks. In each case, there was only one such failure. The number of
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Table 1. COMMON CAUSE FAILURE GENERATION
A SPARCE DATA SET

Total nu mber of iterations = 1000

Number of ca:es with no common cause failures = 762
Number >f ca es (out of 238) wheres = 2n_ = 83

238 as s with Common Cause (CC) Failures
& Average # 'M'timumhofCC Maximum # of CC |# of times no CC
of failures ] fa ures of k units failures of k units |failures of k unitq
1 2.4 0 8 28
2 1.1 0 3 9
3 0.05 0 1 226
failures 30.0 17 46 0
i T 0 s 85

Example of sparse data set generated by M = 3, p=0.1, 4 = |0E-4, T = 10ES,
A =10E-4,and @ = 10E-S.

Table 2. COMMON CAUSE FAILURE GENERAT! N
A LARGE DATA SET

Total number of iterations = 1000
Number of cases with no common cause failures = 54

Number of cases (out of 946) where s =2n, =0

946 Cases with Common Cause (CC) Failures

k Average # | Minimum # oif CC | Maximum # of CC |# of times no CC
of fallures | failures of k units failures of k units failures of k units
1 244 11 41 0
2 30 0 8 3
3 0.1 0 2 847
[ndependent P
faulures 300 244 304 0
Lethal shock ol
failures 10 1 22 0

Example of large data set generated by M =3, p=0.1,4 = 10E-4, T = |0ES,
A =10E-4,and @ = 10E-S.



independent failures ranged from 17 to 46, with an average of 30. The number of lethal
shocks varied irom 0 to 5, with 85 cases of no lethal shocks. For this data set, the BFR
and BFRBM estimators could not *« . alculated since there were 83 cases where s = 2/,
(leaving only 155 cases for estiraa“n. these estimators). Because most of the cases with
three units failing were the result of lethai shocks, the BFRLS and BFRBMLS
estimators, which analyze lethal shocks separately, had only 12 cases where they could
be calculated.

Table 2 illustrates a simulation that generated data sets with a large number of
common cause failures. Th2 parameters are identical to those in Table 1, except T = 106,
Out of .he 1000 iterations, 946 had common cause failures. The number of potential
common cause failures ranged from 11 to 41, and the number of common cause failures
with two units failing ranged from 0 to 8, with only 3 data sets having no two-unit
failures. Common cause failures of three units ranged from 0 to 2, with 847 cases of zero
failures. The number of lethal shock failures ranged from 1 to 22: therefore, when lethal
shocks were not identified, there were no cases where s = 2a2,. Hov.ever, when lethal

shocks were analyzed separately (BFRLS and BFRMLS), there were only 99 data sets
where s was not equal to 2n,.

For each case, each combination of parameters, and each estimation technique,
there are k = 1 ,..., M probabilities (P;) to estimate. These are the M probabili.es of the
event that k specific units fail. To evaluate the estimation methods, the biases and
variances of the parameter estimators were determined and compared. The biases were
approximated by

R
BIAS (Py.e) =g 3 (Pi(i e)-Py) |
i=1

where ﬁk( i,€) is the iM replicate of the estimator for P} using estimation technique €,

and R is the total number of replications. The variances were approximated by the
difference of the mean square error and the square of the bias,

R
VAR (Py,e) =g 3 (Pi(i,)-Py) - BIAS? (Py,e) .

1=1
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4.1.2 Analysis of Variance
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Fable 10. SIMULATION 11

NUMBER OF UNITS IN CC FAILURE (k)
v\\l)l'k

ESTIMATION ( (3) (4)

FECHNIQUE B~ 26l P _26E-5 B

BIASR BIASR | VARR BIASKR

.
1

“)f.u(nl < < ] UX) < | 17000

BFR * 0.6 < <1 550

BFRSE . 2 < 1 1400

EE—

BFRLS *

BERSFLS

BFRBM *

BFRBMSF < | ’ 11001300

- T

BFRBMLS * ~ 3 ’ 3700

BFRBMSFLS < | | < | 12001300

MLG ) < ] <)

MLG BAYES NI

)

“l‘ “‘\\i.\ '\l . < < 3 < ] 7 JIX)

BP BAYES 0.175 “ « - <1 300

Note: the notation <0 and >0 indicates very small numbers either shightly less than zero or shightly greater than zero
¢ ) . Y

* Cannot be evaluated tor ] o







Table 11. FAILURE RATES USED TO GENERATE
FAILURE DATA FOR SIMULATION III

Simulation [II Simalation 111
Case | Case 2
System System
k 1 2 3 1 2 3
l 6.5E-6 1.3E-§ 6.5E-$ 6.5E6 31E6 90ES9
2 1.0E-6 1.0E-§ S.0E-§ 1.0E-S 10E-5 1.0E-6
3 $.1E-8 1.6E-7 8.1E-7 8.1E-8 31E6 73E7
4 9.0E-9 1.8E-8 9.0E-8 90E-9 3.1E-6 66E-6
B 1.0E-9 2.0E-9 1.0E-8 1.0E-9 31E6 59E-5
Indopendent 1.0E-3 2.0E-4 1.0E-4 1.0E-3 20E4 10E4
Laihal shock 1.0E-?7 1.0E-6 1.0E-5 1.0E-7 10E6 10E-§
Table 12. SIMULATION III - CASE 1
NUMBER OF UNITS IN CC FAILURE (k)
AND P,
ESTIMATION (3) (4)
TECHNIQUE Py = 39E.6 Py = 43ET
BFRSF 24 <1 87 <)
BRLS . - N .
BFRSFLS 22 <1 71 <1
SOABM 3 <l 121 <l
BFRBMSF ) <1 14 o
BFRB\'{LS .- . - -
PMLG <2 3 <2 1]
B8P <2 3 <2 1
BP BAYES NI 10 <\ 37 <

* These esumators could not be calculated because s = 2n,



Table 13. SIMULATION III - CASE 2, SYSTEM 1 ( p =0.1 )

1 ]
NUMBER OF CNFR!.‘;“I)NP.CC FAILURE (k)

ESTIMATION 3)
TECHNIQUE

B -Factor

BFR <2
BFRSF <2
BFRL3 <2
BFRSFLS <2
BFRBM 5 <2
BFRBMSF 42 <1 540 <1 I 96 <2
BFRBMLS 43 <l 530 <1 129 <2
BFRBMSFLS 41 <1 499 o 1 102 <2
MLG 15 <2 383 <2 239 < |
MLG BAYES N1 22 <1 393 <1 219 41
BP 13 <2 383 <2 239 <l
BP BAYES N1 I 28 <1 $00 <1 300 <l

less than 2. For system 3 (p = 0.9), all BFR techniques had negative BIASRs (-0.8) for
Ps. The only other serious misestimates for this system were for the B-factor, which had

large BIASRs for k = 2,3, and 4.

5.0 CONCLUSIONS

This analysis looked at factors such as common cause shock rate, probability of
failure given a shock (p), lethal shock rate, total operational time, independent failure rate,
and the interactions of these factors to determine the important influences driving estimator
bias and variability. The results indicated that all factors except independent failure rate
were important influences. The interaction terms were also significant. Biases were larger
in the case of lethal shock effe. . except for estimators of the probability of all units failing.

Biases were also larger for small common cause shock rates and for extreme valuesof p (p
= (.1 and 0.9).



The study showed that for three-unit systems with data derived from the same or
similar sources, the BP, MLG, BFR, and [3-factor estimators all gave reasonable estimates
for the probabilities of common cause events. For systems with more than three units, the
[-factor method had extremely large positive biases when event probabilities were small.
Even when event probabilities were on the order of 104, biases could be an order of
magnitude or greater. However, the B-factor technique was always conservative.

If the underlying failure data could be reasonably described by the BFR model, then
the BFR estimators performed extremely well as long as potential common cause failures
and lethal shocks could be identified. The BFR techniques that required knowledge ot
potential common causes and lethal shocks (BFRSFLS and BFRBMSFLS) were
particularly good at estimating small probabilities where there was no data. The MLG and
BP techniques gave zero estimates in these cases. The BFR estimators that did not identify
potential common causes - BFR, BFRLS, BFRBM, and BFRBMLS - could not be
evaluated in a large portion of cases. Those estimators that did not identify lethal shocks
(BFRSF and BFRBMSF) could be negatively biased if there were lethal shocks, a
condition that occurs trequently. Although the Bayes mode estimator with a noninformative
prior generally outperformed the MLE, the improvements did not appear 1o be worth the
considerable extra effort required to calculate the Bayes estimators. It is possible, however,
that for data from plants with considerable variability in the failure rav.<, an empirical Bayes
estimator would significantly improve the results. Suck an estimator would use the data
from the plants to determine the parameters of the prior distribution (Atwood, 1982).

If the data does not follow a BFR model then, not too surprisingly, the BFR
techniques have problems and can underestimate the true probabilities. There are techniques
for checking the appropriateness of the binomial model (Atwood, 1980, 1982, 1983a,b.c).
Unfortunately, these techniques require fairly large data sets and are not practical for many
real applications where data is sparse.

If data is available, even when it is scant, the MLG and BP estimators have the
smallest biases. These estimators performed well when the BFR estimators were seriously
biased; however, they allowed zero estimates when there were no failures. When Bayes
techniques were used to avoid this problem, they tended to overestimate the failure
probabilties. Some further study of appropriate priors for Bayes estimation is needed.

The BP estimator is particularly simple to use and extends nicely to the case where
the number of units varies 1irom system to system (Appendix A). Often the probability of
interest is the probability that K or more components fail owing t~ a common cause. The
BP technique is easily extended to estimate this probability and is recommended in this



case, since the problem of zero estimates does not occur. Appendix A describer this
estimator and a technique for evaluating its uncertainty limits.

The MLG estimators are much more complicated and do not extend easily to cases
where data comes from systems with varying units. This technique is identical to BP
estimation when data comes from one system and is recommended when system
operational time or demand data are not available.

We were impressed with how well the BFRSFLS, BFRBMSFIL.S, MLG and BP
techniques performed, even when the failure data were scarce. The results reported in this
paper were worst-case results. In all the other cases we considered, these estimators did not
overestimate the true probabilities by more than an order of magnitude nor underestimate by
more than a factor of 5. The most severe problems were for the case where data came from
different systems (plants) with considerable variability between the systems. The MLG and
BP estimators were the most robust to this condition. When the study plant had failure rates
similar to the plant contributing the least data, none of the estimators performed well. All
had biases of at least two orders of magnitude. These biases were conservative since the
plant contributing the least data had the smailest failure rates. Although we did not evaluaie
Bayes estimators with priors determined from the data, we believe that, in the case of
highly variable data sources, these estimators should be used. Appendix A introduces such
a technique for the BP method, and Atwood (1982) describes the technique for the BFR
estimators.

After completing this study, it is our conclusion that if the assumption of constant
failure rates are valid (no aging effects), then the binomial failure rate and basic parameter
estimation techniques are appropriate and adequate for estimating common cause frilure
probabilities. (There is a need to look more carefully at uncertainty estimation for these
existing estimators, and we propose to do this in & future study.) The overwhelming
problem for the nuclear power industry is the lack of reliable common cause data. We
believe that the focus of future efforts should be on gathering this data. Our first impulse is
to suggest identifying those systems that are most imporiant to common cause analyses and
then devising an appropriate sampling scheme to go into the plants and gather the data,
However, we are not at all sure that, even if we could execute such a scheme, the plant data
would be obtainable. It is our impression that there is no organized effort within the plants
to collect the information necessary to make meaningful estimates of common cause failure
probabilities. A concerted effort is needed to formalize data-gathering procedures and to
institute them in at least a sample of plants so that germane common cause data may be
gathered in the future.
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APPENDIX A

RECOMMENDED PROCEDURES

A.1 INTRODUCTION

The B-Factor method requires the least information and gives conservative
estimators; therefore, it is recommended for preliminary screening in PRAs. However,
when accurate estimates are needed and there is sufficient data, the BP estimators are
preferred. This technique is very simple to use and extends readily to the case of multiple
systems with varying numbers of units. This technique is also easily applied to estimate the
probability that K or more units fail resulting from a common cause and to determine
uncertainty bounds for this estimator. In the simulation study, the maximum likelihood BP
estimators were best in the sense of smallest bias and variability in all cases where there
were observed failures. In the cases where no failures were observed for a particular
common cause event, Bayes estimators were used. In our study these Bayes BP estimators
were conservatively biased, and the large biases were for very small probabilities.

There may be cases where the data is not adequate for the BP estimators. In these
cases, if the mode: is appropriate and the lethal shock and poten.ial common cause
information is available, the BFRSFLS technique is recommended. If potential common
causes cannot be identified and the data has sufficient failures (s # 2n,), then the BFRLS
estimators should be used. Bayes estimation is only recommended when the data come
from different plants and there is considerable variability between the plants. In this rase
prior distributions should be derived from the data (Atwood, 1982). The Bayes estimators
we studied used noninformative priors and did not differ dramatically from the MLEs.
They did not appear to merit the increased work necessary to calculate them.

3



A.2 MODEL VERIFICATION

In the simulation study the BFR estimators were not reliable when the failure data
was generated by a model that deviated from the BFR model by increased numbers of two
and M failures. In practice the data is often so sparse that it is impossible to use statistical
tests to determine if the model is appropriate. In those cases where data is available,
Atwood (1980, 1982, 1983a,b,c) gives techniques for testing the appropriateness of the
BFR model. The BP estimators are based on the more general Poisson model; however,
they do require a constant failure rate and independence. To verify the Poisson model for
the BP estimators, one can use the classical chi-square test (Hahn and Shapiro, 1967, ch.8)
or a graphical procedure suggested by Hoaglin (1979). The Bayes BP estimators assume
that the failure rates derive from a gamma distribution, and that given the failure rate, the
number of failures is Poisson. If the estimators for the gamma parameters (A.2.1.3.1 and
A.2.1.3.2) are negative, it is an indication that this model is not appropniate.

A3 BASIC PARAMETER ESTIMATION FOR MULTIPLE SYSTEMS

In Sec. A.3.1, we present the MLE and the Bayes BP estimators for the case
where there is data from different systems (plants) with varying units (M;) and no plant-
specific data. In Sec. A.3.2 an empirical Bayes estimator is introduc«d for the case where
there is some plant-specific data available. Technigues for estimating the confidence and
tolerance limits for these BP estimators are also presented.

In many PRA analyses, the probability needed is the probability that K or more
units fail in time ¢ due to a common cause event. The BP estimator for this probability is
developed in Sec. A4 as well as a technique for estimating its uncertainty limits.

A3 1 NO PLANT-SPECIFIC DATA

AL LT MAXIMUM LIKELTHOOD ESTIMATOR

Often there is no plant-specific common cause data available. In this case, data from
several plants can be used to give a generic estimate for the plant of intcrest. If N represents
the number of systems (plants) from which the data is derived, and these systems and the
system of interest have the same common cause rates (not too different anyway), then the



data can be viewed as N independent observations from a population with constant
common cause event rates, 4. The MLEs are

N
Z" ik
o i=1

UL SORNSE L S T 1 s | 38

S

Here, ny is the number of events with k units failing in system i, M; is the number of
units, and 7; is the total operational time. Note that the nj; are distributed as Poisson

variables,

n,k~P((T‘)T,Ak).

The relationship between the Poisson and the ¥2 allows us to estimate the a% ad (1-a)%

confidence bounds by
2 »
kfl . x"! vt nk)
k Al
2 Tik)

2
l-a X, (2ng+2)
Ay =12 . (A3.1.1.1)
2 T(k)

where
N
M
k

N
JED Y R (CEDY
=1

=1
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(The definition for ng is different from that in the main text, where ny
represented either data from one system or data from multiple systems that

could be grouped together as one,)
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conservative. The nearest neighbor estimator and the 0.175 estimator had the smallest biases
among the nonzero BP estimators.

A3 L2 UNCERTAINTY LIMITS FOR THE MAXIMUM LIKELIHOOD
ESTIMATOR

The (1-a)% confidence limits (A.2.1.1.1) define intervals such that (1-a)% of the
intervals, based on samples of size N, will contain A;. These bounds can be used to
determine the confidence interval for the probability that there is at lcast one failure in a
specified time, ¢ (often two or 24 hours in PRA studies). Such confidence limits do not
give bounds on the failure rates that will be observed in the study plant. Some PRA
analyses want these bounds or, equivalently, bounds on the number of failures that will be
observed in time . Since the number of failures is Poisson with parameter A;, we could
use the (1-a) probability interval for ny if we knew A;. However, we only have an estimate
for Ak and, therefore, can only estimate <ach intervals with a certain confidence. Hahn and
Chandra (1981) give a technique for determining bounds that will contain at least 100P% of
the ng with (1-a@)% confidence. These intervals are called tolerance intervals and are the
appropriate estimates for the uicertainty limits in this case. A technique for determining
conservative, symmetric two-sided intervals is to obtain the (1-a)% confidence limits for
the unknown distribution parameter, A;, and then obtain a [100(1+P)/2] percent one-sided
upper probability bound (Ny) from the Poisson using the previously calculated upper
confidence limit and a (100(1+P)/2] percent one-sided lower probability (Nz) bouna using
the previously calculated lower confidence limit. The uncertainty limits for A4 are Ny/T(k)
and Ny /T(k) The problem with these tolerance limits is that the Poison distribution is
discrete, and exact 100P percent intervals cannot be determinad. For extremely small A,
the limits are often Ny = | and Nz = 0. These limits may actraily represent 99.999, . %
intervals for small ¢ (such as 2 or 24 hours). In these cases telerance lintits are not useful.

A3 L3 BAYES ESTIMATION

An alternate approach is to assume that the A; vary between plants, that this
variability can be described by a random variable, and that N , conditioned on A, has a
Poisson distribution. A reasonable assumption (and one that facilitates estimation) is to
assume that the A4 have gamma distributions (priors) with parameters ay and ;. It is
easy to show that the posterior distribution of 4, given the ny , is gamma with parameters
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ak+2nik and i(“:')'l‘i +B,
5 i=

The Bayes estimator (the mean of the posterior) is

Qk+inik

=1

ﬁ‘h\?')Ti *By

=l

To estimate a and S, note that the unconditional distribution of n is a negative binomial
with parameters og and T(k)/B¢ (Johnson and Kotz, 1969). The mean and variance of nj
are

T(k

x
and

2
_a, Tk) . a, Tk)

Var(nk) 5
Bk B;

Equating the sample mean and variance to the corresponding population values and solving
for a; and By gives

k= ﬂﬂ:(k) (A.3.1.3.1)
NS?-n,
and
_‘ 2
@ = n; ; (A.3.1.3.2)
NS§%-n,
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.2 PLANT-SPECIFIC DATA AVAILABLI




The subscript / indicates plant-specific data. The values of a x and ﬁ & and the uncertainty
bounds are determined as in A.2.1.3.

A4 PROBALCLITY OF K OR MORE UNITS FAILING AS A RESULT OF
COMMON CAUSE EVENTS

PRA analyses are often concerned more with the probability (PK) of at least K out
of M units failing in a specified time period (1) due to common cause events than with the
probability of exactly K units failing. The BP estimation technique is particularly good in
this situation as it can always be evaluated (given that system operational time or demands
are known) and does not require the restrictive assumptions of the BFR model. Noting that
Ait is very small (<<1) and making the appropriate approximations gives

M y
PK ~ Z(i’) thy
k=K

and

M ~
PR = Z‘t’)'h :
k=K

If adequate plant-specific data is available, then

where T is the system operational time. Assuming that the ng are independent, the

confidc nce and tolerance limits are found as in A.3.1.1 and A.3.1.2 with n; replaced by
M
E"k . If there is no adequate plant-specific data available, then data from other sources

k=K
must be used to give
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M
PR=Y (Mh_ "t = ﬁaknk . (Ad.1)

If we assume that (A.4.1) can be reasonably approximated by a normal distribution, then
uncertainty limits for PKy4; (the probability that X or more units fail in the N + 15
system) can be approximated by the same technique one uses to find the prediction interval
for the next observation of a norma!!v distributed random variable with N independent
observations. The underlying assumption is that system N + 1 is similar to the other N
systems. Note that

M
ﬁRN | = L n
) E(TNH e

and

2

(,r‘-- +N ai

M
2 2
Oy = 2 &y Ok »
N+l

M
Var (PRy.i- PR) =y’ = 3
k=K k=K

where of represents the variance of the ny, i =1, ..., N+1. (As defined previously, ny is

the number of & failures in system i, ny is the total number of k failures, and ny41 4 is the
number of k failures in the new system.) Let

N
2
2 Z!nirnd
Oy =i=1
N-1
and
M
.2 <3
T = Z g, 0y -
k=K

Using the Satterthwaite (1946) approximation for complex estimates of variance and the
normal approximations, the (1-a)% uncertainty limits (probability limits) for F‘kN+, are
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PRt nimy,

where t).q2 is the (1-a/2) percentile from the student's T distribution with n degrees of
freedom and

2 gkok

n=(N - 1)
A
ZGE‘-’&

eer i : : :
In practice oi may be zero for some k. In these cases, an alternative to using zero in the

equation for n is to add the coefficients of the zero variance estimates to the coefficient of
the smallest nonzero estimate and use this sum as the coefficient of the smallest variance
estimate. These intervals are approximate and need further study to determine their
coverage probabilities,
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APPENDIX B

BFR, BP, AND MLG TECHNIQUES ARE EQUIVALENT, M = 3

For fixed M (the data are from systems that have the same number of units), it is
easy to show that the MLG and BP estimators for thc Ax's are identical (refer to Sec. 3.2).
For M = 3, if single failures occur (n) # 0) and the BFR estimators exist (5 # 2 ny), then all
three techniques, BP, MLG, and BFR, are equivalent.

To prove this statement, we derive the BFR estimators and show that they are
identical to the BP estimators. We assume that common cause events are observed, ny # 0.
If n3=0and ny # 0, then s = 2n,, and the BFR estimators cannot be evaluated. Therefore,
there are only two cases to consider: n2=0,n3#0andny# 0, n3 20,

Case 1. n = O,n3 #0
From Eq. (2.0.1) we have

M=A+pnpU-pl,

i

Aa= pnp(1-h),
and

>
)

"
=)
-

If n2=0,thens =M n, and p = 1. Substituting the BFR estimators (3.3.1) into the
equations for the ﬁ‘ gives







A_3(s-2n.). 3ny
P= 2530, “ny+dny

Substituting this value of /) into the equations for r; and ry gives

3

n
P X
(ﬂ2+3n3)
and

_ 9]13"% ‘

i L e T
(ny+3ny)

Using these expressions to evaluate ﬁq and i;, we find
& n
lz - 33" ’

and

B r
133 13- .

These are also the BP estimators.
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