
, .. ,
,

NUREG|CR-5044
LA-11179-MS

r.,...x...,.,m_,c,,.,..,.,...... . . .

r
.

1
-

.

..t .r. .
'

f; u: :n .,

V .
-

?i. ..
'g m o

|c& -

;) Estimation Techniques,
.

,

a,

i: -1

7.T : ;j for Common Cause.
i.

x- - o
[. - . ,z,

--

?: () Failure Events
' '

,

v ,

'- ' ).g,

:. . na .
e, -

{' . iv
'

!.
(.. c

-kh: . .

-r .;$.-
?. ;

''r -q
'2.z..

) |p.' >

r :
" | <j ,'

.

j}i , e

> ~
-q[ ,

b d
i

a.. '
|

5

iJ
.

1

i |
h ~s
! q

t
a; ~1
|- 4

f' :
#

..--

.

1--
.

.

!: , 3 :}
- :s

* _ . -; }

I A,

: .s
.

..

( h .

-]3
k'

'

:

r. . n
p :

.

. ;
. d

1

A
1

[ Ll
!- 1

1
-

p. . . !
ai

|| .'

t ;
f 1

a
, ') -

i @@ ^ RM@@1
t'

}- || los Alantos National Latvrstory is cirrated t'y the Unitrrsity of Californiafor
v. - . - . , u .> . 1 the United States Departrnent of Energy sonder contract W-7405 ENG-36.

8806100174 880331
PDR NUREG
CR-5044 H PDR



. - - - -

.
. , ,

Edited by Wilma Bunker, Group A-4

An Affirmality Action / Equal Opportunity Employer

I

Notice

This report uus preptred as an account of uvrk s;vnsored by an agency

of the United States Gotvrnment. Neither the United States Goternment nor
any agency thereof or any of their employees, makes any uurranty,
expressed or implied, or assumes any legal liability or resiensibility for
any third party's use. or the results of such use, of any information,
appuratus, product or process disclosed in this report, or represents
that its use by such third purty uvuld not infringe pritutely owned rights.

-_ _ . _ . _ _ . . _ , , _ - , _ , . . . -- ~ . _ . _ , ~ - - -- - . - - - - _ ,,. .



NUREGICR-5044
LA-11179-MS

RG

Estiniation Techniques

for Connnon Cause
Failure Events

Elizabelli J. Kelly
Geralyn M. Hemphill

hianuscript submitted: Octolvr 1987
Date publishat: Afarch 1933

Prquredfor
Division of Risk Analysis and Operations
Office of Nuclear Regulatory Research
US Nuclear Regulatory Commission
Washington, DC 20555

NRC TIN No. A7225

LosA sm@eL::i|=s:' naaaa



_ . _ __

1

l

l

I

I

ESTIMATION TECHNIQUES FOR COMMON CAUSE
FAILURE EVENTS

by

Elizabeth J. Kelly and Geralyn M. IIemphill

ABSTRACT

Common cause failure probability estimation techniques, including -factor,
basic parameter, binomial failure rate, multiple _ Greek, and C-factor
estimators, are evaluated and compared using simulation data that captures
the real world problem of sparse data from different plants. The effects on
the estimators' performances from underlying factors such as common cause
shock rates, lethal shock rates, probability of failing given. a shock,
independent failure rates, and system operational time are discussed. Worst
case results are reported, and it is seen that for extremely small common
cause failure probabilities the binomial failure rate estimators are best.
However, these estimators can underestimate the true probabilities when the

failures deviate from the binomial failure rate model. The -facto- technique
is shown to be conservative, and in some cases to overestimate the true
probability by several orders of magnitude. When there are observed failures
for each failure event, the basic parameter technique is best and is easily

,

calculated. This estimator is investigated in detail and is used to develop an |

estimator for the probability of K or more units failing due to a common '

cause. Uncertainty limits for this probability are also developed.
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1.0 INTRODUCTION

The design principle of redundancy has been applied in nuclear power plants to

assure a high degree of reliability for safety critical systems. The essential assumption is I

that multiple units will fail independently, thus greatly reducing the likelihood of the loss

of a safety critical function. Ilowever, probability risk assessments (PRAs) and operating

experience have shown that the assumption that redundant systems fail only by a series of i

independent failures is not valid. Rather, multiple failures due to a common initiating

event such as a design flaw, an environmental condition, an operator error, or faulty

maintenance dominate system unavailability and plant risk. Such multiple failures are |

called common cause failures and are the subject of this paper. The problem investigated

is how to best quantify the common cause failure probabilities. Currently, several |
techniques are used by the nuclear power industry to estimate common cause failure

\

probabilities, and there is a great deal of controversy and confusion about which method |

to use. Since data is extremely sparse, it is very difficult to evaluate these estimation |
techniques using real data. In this study, we use a Monte Carlo simulation to generate |
common cause failure data and then use this data to evaluate the p-factor, multiple Greek,

basic parameter, binomial failure rate, and C-factor estimators. This simulation captures

the real world problem of sparse data from dissimilar plants and allows the failure data to

be generated by various failure models.

Appendix A contains the recommended procedures for common cause event

analyses. Also in this Appendix, the details of the recommended procedures are

developed and uncertainty intervals described.

2.0 TIIE MODEL

in the context of this discussion, a system is any collection of Af redundant units. A

unit can be thought of as a compon2nt, such as a valve or pump, or as a collection of
components, such as a train. A basic event, E , is a shock to the system such that k (k = |k

1, ..., Af) specific units fail as a result of this shock. We make the simplifying.

assumption that the rate of occurrence of such events, h,is the same for any group of k

units. For example, if a system contains three redundant pumps, the rate of simultaneous -

failures of pumps one and two is the same as the rate for pumps two and three. Let Nr i

represent the number of events in time T, the total system operational time, for a

population of systems. If the events occur independently of one another from system to

2
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system and A is constant over time from one system to the next, then the distribution oft

N is Poisson with parameter A T. (We restrict ourselves to time-related failures in theA k

discussion that follows; however, the analysis is identical for demand-related failures

with T replaced by total system demands and A viewed as the probability of k specifict

units failing on demand. In this case one assumes that there are No independent system

demands and consequently Af No unit demands. If these assumptions are violated as in

staggered sampling plans (Parry, G. W.,1986), the estimators derived in this paper are

not valid, and one must examine the parameter definitions to determine the appropriate j

estimators.) When a single unit fails, it results from either an underlying event (a |
'

potential common cause failure), or from causes restricted to that unit alone (an
independent failure). The independent failure rate is denoted A, and the number of

independent failures in time T is assumed to be Poisson with parameter AT. We are

interested in calculating the probabilities that in time t there are events, E , k = 1, ..., Af.k i

These are the probabilities needed for the fault tree analysis and are given by .

Pk = 1 - e k' , k = 1, ..., M

In the Introduction we noted that common cause events range from failures
resulting from design flaws and environmental factors to maintenance errors. The

grouping together of these diverse common cause events is necessary because of the

paucity of data. As common cause data bases improve, factor analysis studies should be

employed to determine more appropriate common cause groupings.

The basic parameter (BP) and multiple Greek (MLG) methods are based on this

Poisson model. These techniques require estimating A , k = 1, ..., Af. The binomialA

failure rate model (Atwood,1980) restricts this general model, assuming that the basic l

events or shocks occur with constant rate, , and that, given a shock, the units fail I

independently, each with probability p. These assumntions reduce the number of

parameters to estimate to A, , andp.The A are given by |t

A=A+ p (1-p)M 1i

and

p (1-p) M'k, k = 2,..., M . (2.0.1)
kAg=

I

Both maximum likelihood binomial failure rate (BFR) and Bayes (BFRBM - HER Hayes

Mode or Mean) solutions can be found for the parameters of this model. (In this study, j

3
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only the Bayes mode is evr.luated). Atwood (1980) found that this model underestimated

the probability of all Af units failing and introduced the notion oflethal shocks. A lethal

shock causes all Af units to fail simultaneously; that is, given a lethal shock, p = 1. The

rate of lethal shocks, co, is assumed to be constant, giving A3f = p df + o> . This

model has four parameters to estimate, and we denote these as the BFRLS (maximum

likelihood - BFR Lethal Shocks) and BFRBhtLS (BFR Haye.; Mode Lethal Shocks)

estimators. When potential common cause failures cannot be identitled, we must restrict

the cases to Af > 2. However, if the potential common cause failures can be identified,

this restriction is not necessary and the estimators are called BFRSF (maximum

likelihood -EER Single Eailures) and BFRBhf SF (BFR Hayes Mode Single Eailures). If

both potential common cause failures and lethal shocks can be identified, we denote the

estimators as BFRSFLS (maximum likelihood - BFR Single Eailures and Lethal

Shocks) and BFRBh1SFLS (BER Hayes Mode Single Eailures and Lethal Shocks).

3.0 ESTIh1 ATORS

This analysis compares several of the common cause estimation techniques that

have been suggested for use in PRA analyses. These techniques include basic parameter

(BP), multiple Greek (h1LG), various binomial failure rate estimators, the p-factor, and

the C-factor estimators. It is easy to show that, in the case of data from systems with the

same number of units (Af), the h1LG and BP techniques are equivalent. In Appendix B,

we show that, for Af = 3, the hiLG, BP, and BFR estimators are equal.

3.1 Basic Parameter |

The BP estimation technique uses the maximum likelihood estimators (h1LEs) for i

the Poisson model described in 2.0. In this case the number of events E , where kk
specific units fail simultaneously in time T,is Poisson with parameter A T. The h1LEsk
for A arek

kg= "k , k = 2,..., h1 . (3.1.1)
Tk

The nk are the observed number of events with k units failing simultaneously and Tis the

total system operational time. This technique allows zero estimates if there are no

observed failures. To avoid the problem of zero estimates, Bayes estimators can be used.

4
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|

One approach is to assume that the A 's have gamma prior distributions with parametersk

a and b. The resulting estimators are

^ ng + a

Ag = hi) T + b
,k=2,.~,M. (3.1.2)

For the noninfomiative prior, a = 1/2 and b = 0. In the simulation study, this estimator is

denoted BP Bayes NI. Other priors can be used. Welker and Lipow (' 974) suggest an

iterative technique for deriving priors beginning with a simple priorjoinn.; 0 and 2T and

deriving the posterior. The posterior is then used as a prior and the process continues.

We investigated one of these estimators that is equivalent to setting a = 0.175 and b = 0.

This estimator is denoted BP Bayes 0.175.

:

3.2 Multiple Greek

The BP estimators require knowledge of the total system operational time, T. The

h1LG estimators were derived to avoid the need to know T or, in the case of demand-

related data, the total number of system demands. Fleming (Picard, Lowe, & Garrick,

1985a) uses a four-unit system to illustrate the use of the MLG estimators. The
parameters ofinterest are

AT the failure to operate rate for each unit resulting from all independent and=

common cause events,

the conditional probability that two or more units will fail resulting from a=

common cause given that there is a failure,

the conditional probability that three or more units will fail resulting fromy =

a common cause given that two or more units fail resulting from a |
common cause, and

;

6 the conditional probability that all four units fail resulting from a common=

cause given that three or more units fail resulting from a common cause.

:
1

In terms of the A 's defined in section 2.0, the MLG parameters can be writtenk

5
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Ar= A + 3A + 3A + A ,i 2 3 4

|3A+3A+A2 3 4

p = A + 3A + 3A + A ,

i 2 3 4

3A + A I3 4

y= 3A + 3A + A
,

2 3 4

and

*6-
3A + A3 4

1

In these equations, Fleming uses rates to represent probabilities. This simplification is |
justified since the events are rare (A 's small). The Ak's can be written in temis of the |k

htLG parameters, |

A = (1 - p) A7,i

1 = 1/3 (1 - 7)1 p ,2 7

A = 1/3 (1 - 6) Ar p y ,3

and

A = A PY64 T

One can see where the name multiple Greek comes from; clearly large M necessitates a

change of notation. In general,

i
I

A=7hi- 1, [l - h1LG (j + 1 )] H h1LG (i) , (3.2.1)j
I"I

ij-1<

6



where MLG (/) is thejth MLG parameter [MLG ( 1 ) = A , MLG ( 2 ) = p, MLG ('a ) =T

y, and MLG ( 4 ) = 6 ] Using the generalized notation, the estimators for the MLG

parameters are

M

[j nj
hTO3 ( k ) = I" for k = 2, . . . , M

M

[j nj
j=k-1

and

M

[j nj
ATO3 ( 1 ) = J"' (3.2.2),

MT

l

where the nj are the number of common cause failures wherej units fail simultaneously.

Substituting the MLG estimators of Eq. (3.2.2)into the equation for the A 's, Eq.k

(3.2.1), it is easily seen that th MLG and BP estimators are identical. However, these

estimators can differ when the.e are multiple systems and the number of units varies
|

between systems.
|

In many applications MLG(1) or AT is known; therefore, total system operational j
time or total number of system demands need not be specified. In all the cases we

considered, MLG estimation with known A gave either no improvement or very slightT

improvement over the general MLG estimators; therefore, it is not discussed further.
|

The MLG estimators also permit zero estimates when there are no observed

failures. To avoid this problem, Fleming (Picard, Lowe & Garrick,1985a) suggests

Bayes estimation. The Bayes estimators are determined by assuming a multinomial prior

distribution. He illustra:es the technique for a system with three units. The prior
distribution is

A1 B1 D1
f (P,7) = h p (1-p) yC-1(1-7)

,

where h is a normalizing factor. The posterior distribution is also multinomial, and the

Bayes estimators are

7
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jM

A + [ j nj '

^ j=2

M

A + B + [j n;
j=1

and

C + 3 n3-

y= .

C + D + [ j n;
j=2

As is often the case with Bayes estimation, the problem of what prior to use arises.

Fleming suggests using the noninformative prior : A=B=C=D=1.

3.3 Binomial Failure Rate
The BFR model for modeling common cause failures in a system was introduced

by Vesely (1977) and further developed and applied by Atwood (1980,1982,
1983a,b,c). In this paper, we will not go into great detail about the BFR estimators since

the mathematics are complex and are described in detail in Atwood's 1980 paper

"Estimators for the Binomial Failure Rate Common Cause Model." For the purposes of

illustration and comparison, we present the MLEs for the basic case (potential common

cause and lethal shocks are not identified), and briefly describe the Bayes estimation

techniques.

3.3.1 Maximum Likelihood Estimators for the Binomial Failure Rate
Model

Atwood introduces the parameters As - the rate of single failures (which he calls l )i
- and 1+ - the rate of common cause occurrences. These rates are defined as

A,=MA+ r3 (3.3.1.1)

and

A.= (1 - r - ri) , (3.3.1.2)o

8
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where p is the rate of common cat.se shocl:s, A is the rate of independent failures

respectively, ro is the probability of t.o common cause failures given a shock,

r = (1-p)*' ,o

and ri is the probability of one and only one failure given a shock,

r1 = M p (1-p)^I'l .

If Af > 2, the MLEs for p, A, and p are found by reparameterizing the likelihood function

in terms of As, b, and p, solving for these quantities and using Eqs. (3.3.1.1) and

(3.3.1.2) to determine p and A. The restriction Af > 2 is not necessary if potential

common cause failures can be identified. The MLEs for As and 4 are

^

A,=}n (3.3.1.3)

and
^

L= Hf, (3.3.1.4)

where ni s the number of single failures and n+ is the number of common cause events,i

At

n+= [ nj.
| j=2

The MLE forp is the unique solution of

ht1. q -1

s = M n.p (3.3.1.5)g, ,
,

|

where q = (1-p) and s is the total number of unit failures due to common cause events,

At

s = [j n; .
j=2

Atwood (1980) shows that for s = 2n+,p = 0. This result seems contradictory since

common cause failures have occurred. The situation arises when the only common cause

9
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events observed are those with two units failing. This condition was quite common in

the simulation study and in these cases, rather than using p = 0, we say the estimators )
cannot be evaluated. If potential common cause events can be identified, the definitions of I

s, A+, and n+ are modified appropriately (Atwood,1980, p.39), and this problem does

not arise. When lethal shocks can be identified, the estimators are the same as those

described in Eqs. (3.3.1.3), (3.3.1.4), and (3.3.1.5), except that the number of lethal

shocks, nt,is subtracted from nu and'

S= $.T

Atwood also develops confidence intervals for these estimators (Atwood,1980, pp.10-

16).

3.3.2 Bayes Binomial Failure Rate Estimators

The Bayesian estimation is much more complicated than the MLE technique.

Atwood selects gamma distributions as a suitable class of priors for A, A+, an6 co: !

b. A'' e-b . A .+f(A)= l,

r(a.) ,

*
-b a bb, A' e

f(A,) = ,

F(a,)

and i

1

a,rl e-b w i

f(co) = g
o

.

F(a)

The prior for p is a beta distribution defined as

F( c + d ) a-t
ggp) , P(c) F(d) p .i

c
,

Using the modes of the posterior distributions to determine the Bayes estimators give

10

i

,-. , . - _ . . , - _ _ - - _ _ _ . _ _ . , . _ . - . . _ _ . , _ . - _ . _ _ _ _ , , _ , - - - . ,



" " t + a ,- 1n-

-T+b,
,

'

n + a, - 1^

As* ,y4h *

and

{ + _ n. + a. - 1T+b.
'

The estimator for p is the unique solution of

h1 -g !1
s + c -1 = p <

c + d - 2 + M n.1 - ght- M p qhi - 1
>
.

,

If the number of observed single failures is too small, it can lead to a negative estimate for
!

A. In these cases the value ofp that maximizes the likelihood function must be found by a
'

numerical procedure such as a simplex search.

The means of the posterior distributions give the following Bayes estimators:
l

^

As"~n,+a,TT( '
^

A+ = n + a+
~T + b. '

and

nt+a. m

*"~T+b *

The mean of the posterior distribution of p can only be found by numerical integration.

The formulas can be quite difGcult to evaluate. In this study, we do not report these

estimators; however, there is some indication that the Bayes mean estimators will be

slightly more conservative than either the MLEs or Bayes mode estimators (Atwood,

1980, pp. 50-54). The results of our simulation indicate that the differences between the

Bayes mode estimators using a noninformative prior and the MLEs are not important in

practical applications.

11
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3.4 p-Factor
The p-factor was introduced by Fleming (1975) and is widely used in common

cause estimation in PRA analyses (American Nuclear Society and the Institute of

Electronic and Electrical Engineers,1983). This estimator is valid for systems with two

units and adequate for systems with three units, but overestimates the P 's as the numberk

of units increases. The method is popular because it is conservative and allows subjective

estimates of the p-factor when data is not available. The -factor is defined as the ratio of

the rate of unit failures resulting from common cause events, Ac, to the total unit failure

rate,Ar;
1

I
p = A* I.

AT

i

Note that k is not the rate of common cause events. The parameter, AT , is the sum of

the common cause failure rate and the independent failure rate, Ar = Ac + h . The p- j

factor can be viewed as the percentage of total failures resulting from common cause |
events or the conditional probability that a failure is owing to a common cause event, ;
given that a failure has occurred. The estimate for the -factor is '

.

'

N*^

=g,

where N is the total number of failures andT
1

N

NC = 1 j Dj [s in the BFR equations -(3.3.1.5)].
j=2

The p-factor estimator does not distinguish between multiple failures, providing only one

estimate for the failure rates;

N^ ^

Ag = p A = , k = 2, . . . , M .T MT

If the total failure rate is known, then the common cause failure rate is

Ag = p 1 , k = 2, ..., M (3.4.1)7

12



_ _ _ _ - _ - - . . _ - . _ __ _ . _ . ..

|
,

and
,

N^

Ag = g A , k = 2, ..., M ,7

We evaluated the p-factor estimator with known AT n the simulation study; however,iti ;

gave only slightly improved results and is not discussed further. The appeal of the -

factor technique is un'derstood by noting that when no common cause data are available,

but the unit failure rate is known, only one parameter ( ) has to be estimated by "expert

opinion." Given the cost and effort involved in eliciting experts' estimates, it is much

more practical to ask for one estimate from each expert than several (Meyer et. al.,1982).

3.5 C-Factor
There is more confusion over this estimator than any of the other estimators. We

believe that we have uncovered the source of the confusion. This technique was

introduced in the Ringhals 2 Probabilistic Safety Study (Gyllenbaga et.al,1983). In this

study the C-factor is defined as "the ratio of the number of common cause events to the

number of independent failure events." The authors claim that "it is more correct since it |
t

predict (sic) directly the item of interest, the probability (or rate) of multiple failure
|

events." Using the Ringhals notation, these statements indicate that

C = AgT As
=-

AT AI i
and |

Ag = C Ag ,
I

where A is the rate of multiple failure occurrences (A+) and A is the rate ofindependent IE l

failures (A). This definition leads to the estimators

N 1--E u
'\1 N ^^N n

and Ag =Ag= j = h.
ED= k = 2,..., M , (3.5.1)=

,
;

_ _ . _ _ I p2
MT
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where Nsis the total number of common cause events (N = n+),Nf is the number ofE
Iindependent failures, and M is the total number of units in the system. However, the

authors define d as

C = Ns .,
N i

and this leads to

"
N n-^ ^

At = As = gg-h = Egph , k = 2, ..., M ,
j=2

which does not agree with the authors definition. The expression in Eq. (3.5.1) does
,

indeed lead to an estimate of the probability of multiple failure events; however, since

2 )I, (the -factor estimate), this estimator does not accomplish the2
2

authors' goal of reducing the large positive bias that the -factor method produces.

To add to the confusion, some practitioners have mistakenly defined the C-factor as

C = A' ,

A I

where Ac is the rate of failures resulting from common cause events (see Sec. 3.4).

Using this definition and solving for C in terms of , one finds

l

C=1
1-p

This definition of C leads to the same estimators for the common cause failure rates, A ,k

as the p-factor method. Thus, there is only one useful definition for the C-factor - Eq.
|

(3.5.1). This definition leads to estimators of the common cause failure probabilities that !

are greater than the p-factor estimators; therefore, we do not discuss the C-factor method I

further.

14
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4.0 ANALYSIS

Since actual plant data is extremely sparse, a simulation was developed to generate

common cause failure data that could then be used to determine the behavior of the

various estimators. Three different models for failure generation were used. The first

(Simulation I) generates data using the BFR model for Af = 3,5, and 9 for cases where ,

the data is very sparse (reflecting the real world situation) and for moderate and large

samples. The second (Simulation II) uses the general model to generate the samples and

mimics the situation where the failures deviate from the binomial model by having higher

incidences of two, three, and Af failures. The third (Simulation III) allows for variation
between plants, assuming that the data comes from three different plants and that the A 'sk

vary between plants.

4.1 SIMULATION I (BFR MODEL)

4.1.1 Data Generation
To generate data for the BFR model, three values of p were used -p = 0.1,0.5,

and 0.9. The rates of shocks to the system, p, were 10-3,2x10-4, and 10-4. Two lethal j
shock rates, m = 0 (no lethal shocks) and e = 10-5, were considered. The independent

failure rates were 10-3 and 10-4. The total operational times, T, were 10 ,10 , and 106 14 5

hours. For each Af and each combination of parameters, failure data was produced using

1000 iterations of the Monte Carlo simulation. Not all combinations of parameters
4produced sufficient samples for analysis. For example, for Af = 3,p = 0.1, T = 10 ,

= 10-4, and e = 0, there were no common cause failures in the 1000 iterations. If a

combination of parameters produced less than 200 samples, it was eliminated from the

analysis.

Tables 1 and 2 give example summaries of the data generated. Table 1 illustrates a

simulation with sparse data sets. The parameters used to generate this data were Af = 3, p

= 10-4, A = 10-4, T = 10 , and a = 10-5. Out of 1000 iterations,762 had no5.,0.1,

common cause failures. Of the remaining 238 cases, the number of potential common'

cause failures (k = 1) varied from 0 to 8, with 28 cases of no potential failures. The j

average number of potential common cause failures was 2.4. The number of common

cause failures where two units failed simultaneously (k = 2) varied between 0 ano 3. j

There were 9 cases of no failures, and the average number of failures was 1. There were I

only 12 data sets that had three units (k = 3) failing as a result of common causes other

than lethal shocks. In each case, there was only one such failure. The number of

15
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Table 1. COMMON CAUSE FAILURE GENERATION
A SPARCE DATA SET

Total nember ofiterations = 1000 i

Number of ca:es with no common cause failures = 762 l
Number if cases (out of 238) where s = 2n = 83 |

238 Cas-s with Common Cause (CC) Failures
),_

k Average # hidmum # of CC hia.umum # of CC # of times no CC
of failures fa:f ures of k units failures of k units failures of k unita

1 2.4 0 8 28

2 1.1 0 3 9

3 0.05 0 1 226

1

( 30.0 17 46 0

Ir.halshock
fauures 1.0 0 5 85

Example of sparse data set generated by hi = 3, p = 0.1, p = 10E-4 T = 10ES,
A = 10E-4, and co = 10E 5.

Table 2. COMMON CAUSE FAILURE GENERATli,N

A LARGE DATA SET

Total number of iterations = 1000
Number of cases with no common cause failures = 54
Number of cases (out of 946) where s = 2n + = 0

i

946 Cases with Common Cause (CC) Failures

k Average # hiinimum # of CC hiaximum # of CC # of times no CC
of failures failures of k units failures of k units failures of k unitt

1 24.4 11 41 0

2 3.0 0 8 3 |

3 0.1 0 2 847

!ai erdersT
f.ulures 300 244 362 0

Lethal shock
radures 10 1 22 0

t

Example oflarge data set generated by 51 = 3, p = 0.1,4 = 10E 4, T = 10E6,
A = 10E 4, and to = 10E 5.

16
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i~ independent failures ranged from 17 to 46, with an average of 30. The number oflethal

| ' shocks varied from 0 to 5, with 85 cases of no lethal shocks. For this data set, the BFR

and BFRBM estimators could not be calculated since there were 83 cases where s = 2n+

(leaving only 155 cases for estirnasn; these estimators). Because most of the cases with

three units failing were the result of lethat shocks, the BFRLS and BFRBMLS
estimators, which analyze lethal shocks separately, had only 12 cases where they could

be calculated.

Table 2 illustrates a simulation that generated data sets with a large number of
6common cause failures. The parameters are identical to those in Table 1, except T = 10 ,

Out of :he 1000 iterations,946 had common cause failures. The number of potential

common cause failures ranged from 11 to 41, and the number of common cause failures

with two units failing ranged from 0 to 8, with only 3 data sets having no two-unit
ifailures. Common cause failures of three units ranged from 0 to 2, with 847 cases of zero

failures. The number of lethal shock failures ranged from 1 to 22: therefore, when lethal
shocks were not identified, there were no cases where s = 2n+. However, when lethal

shocks were analyzed separately (BFRLS and BFRMLS), there were only 99 data sets
'

where s was not equal to 2n+.

For each case, each combination of parameters, and each estimation technique,

there are k = 1,..., Af probabilities (P() to estimate. These are the Af probabilides of the

event that k specific units fail. To evaluate the estimation methods, the biases and

variances of the parameter estimators were determined and compared. The biases were i

approximated by |

R

BIAS (Pg, e) = k [(P (i, c;- Pg) ,k ;

jul

whem 8 ( i , c ) is the ith replicate of the estimator for P using estimation technique e,A k

and R is the total number of replications. The variancea were approximated by the

difference of the mean square error and the square of the bias,

R

VAR ( Pg, c ) = h [( Pk(i, c )- Pg) - BIAS ( pk, g) ,
2

11

i

t
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4.1.2 Analysis of Variance
For each M, co, anci k, an analysis of variance (ANOVA) was perfonned to

determine what factors (e:.timation technique,p, T, p,1) were important in determining

' differences between the BlASs and VARs. Because interactions of these factors infhence

sample size, the interaction terms were also considered. Tables 3 and 4 are representative

of the resulting ANOV. . tables. Although there was some vadation in which interaction

terms were significant, all the ANOVAs showed that all factors except A (independent

I failure rate) were important in determining differences in BIAS and VAR. Because

f interaction terms and all factors other than A were significant, each case was examined to

determine where there were important differences between estimation techniques. To
j identify the important differences, the ratios of BIAS to probability of failure (BIASR)

and the square root of VAR to the average of the probability estimators (VARR - an

estimate of relative variance) were determined. BIASR and VARR are defined as

!

( k,E)BIASR ( Pk , c ) =
Pg

and

R(P ,e)VARR ( Pg , z ) = k
, rPg(c)

where
a

R

li = h [ Pg(i, c)k

it

The cases where the value of BIASR was greater than 4 or less than -0.6, or VARR was

greater than 2 were identified. The estimators were considered to remain within

reasonable bounds if they did not exceed these limits. The estimators that were in

reasonable bounds were within an order of magnitude of the true failure probability when

I they overestimated, or within a factor of 5 when they underestimated, in 95% or more of

the samples.

18
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Table 3. ANALYSIS OF VARIANCE FOR BIAS

M= 3, k = 2, and co = 10-5

Dependent Variable: BIAS
,

SOURCE DF SUM OF SQUARES hEAN SQUARE F VALUE PR>F R*
Model 86 313 3.M 27 0.0 .88
Error 329 44 0.13
Corrected Total 415 357

.
_ _ .

SOURCE DF TYPE I SS F-VALUE PR>F

A 1 0.005 0.04 0.8474

2 8.953 33.28 0.0001
p 2 116.185 431.90 0.0000
T 2 10.578 39.32 0.0001
p*T 4 29.306 54.46 0.0001
Estimator 8 25.996 24.16 0.0001
Esnmatar*p 16 50.548 23.49 0.0000
Esnmator*T 16 16.228 7.54 0.0001
Esumator*p*T 27 13.100 3.61 0.0001
T* p 4 2.719 5.05 0.0006
P' M 4 39.738 73.86 0.0000

Table 4. ANALYSIS OF VARIANCE FOR VAR

M= 3, k = 2, and co = 10-5

Dependent Variable: VAR
,

SOURCE DF SUM OF SQUARES NEAN SQUARE F-VALUE PR>F R'
Model 95 68 0.729 56 0.0 .94
Error 370 4 0.01 ~2

Corrected Tot:J 465 73

! SOURCE DF TYPE I SS F VALUE PR>F
| A 1 0.013 1.01 0.3149

4 2 5.712 2 4.94 0.0000
P 2 3.5M 140.70 0.0000
T 2 37304 1480.40 0.0000
p*T 4 5.795 114.36 0.0000
Esumator 9 4.219 37.01 0.0000
Esdmator*p '. 8 1.101 4.83 0.0001
Esumator*T 8 3.899 17.10 0.0001
Esnmator* p*'. 31 1.119 2.85 0.0001
T* p 4 3.569 70.44 0.0000
p' 4 4 0.900 17.76 0.0001

|
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4.1.3 RESULTS

After sifting through a large amount of data, we made the following observations.

For M = 3, all of the estimators (when they could be calculated ) gave reasonable results
5(as described above). There was one exception to this: the case p = 0.1, T = 10 , and co

= 0. In this case the bias ratios for the p-factor technique ranged from 18 to 79 (for,

| various T, k, and p), and for the BP Bayes and MLG Bayes with noninformative priors,
)
'

they ranged from 13 to 25. In these cases there were very few observations of three-unit

common cause failures. The BFR, BFRLS, BFRBht, and BFRBNILS estimators could
!

not be calculated because s = 2n+ in the majority of cases. The hiLG and BP techni:1ues

had the smallest BIASRs and performed better than the BFRBhtSF and BFRBh1SFLS

estimators, which performed better than the BFRSF and BFRSFLS estimators.

Ilowever, these differences were not important. The VARRs were all within the ,

iprescribed bound.

For M = 5 and 9 (regardless of technioue), the estimators with the largest BIASRs

and VARRs were those that tried to estimate events with very small probabilities. Thus,

forp = 0.1, BIASRs and VARRs increased as the number of units failing (k) increased,

and for p = 0.9, they increased as k decreased. BIASRs and VARRs remained within
i

reasonable bounds forp = 0.5, except for the p-factor technique, which had BIASRs that

ranged from 14 to 26 for all values of k. These relationships remained true across p,,

| although the smaller values of p gave larger BAISRs and VARRs. BIASRs and VARRs

were larger for the lethal shock cases (co = 10-5) than for no lethal shocks ((o = 0),

except for k = M.

Tables 5 and 6 report the worst case results for M = 5. Table 5 summarizes the

ranges of BIASRs across T and Table 6 summarizes the ranges of VARRs. In all other

cases, all estimators, except for the p-factor, remained within reasonable bounds. The p-

factor technique seriously overestimated the failure probabilities in many other cases. In
4 5Table 5, for T = 10 and 10 , most of the failures for k > 2 resulted from lethal shocks;

therefore, the BERLS and BFRBh1LS techniques could not be evaluated (too many
replications with s = 2n+). The BFR and BFRBh1 techniques had the same problem

when there were no lethal shocks. For p = 0.9 and k = 2, the -factor method yielded

extremely large BIASRs, ranging from 1100 to 1800. In this case, the noninformative

Bayes estimation for htLG and BP techniques produced large BIASRs ranging from 6 to

46 and 8 to 89. The BP Bayes 0.175 estimator had somewhat smaller BIASRs. All the

other estimators had BIASRs less than 3.

When failures were observed, BIASRs were consistently smallest for the h1LG and

20
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| Tabic 5. BIAS RATIOS (BIASR) - M = 5
|

| NU51BER OF UNITS IN CC FAILURE R1
'

AND P,
~

ESTI51ATION p = 0.9 p = 0.1

| TECliNIQUE e, 10 5 m. 10 5 m = o
| (2) 1.9E 6 (3) 1.9E 6 (4) 2.2E 7 (5) 2.4 E 8
| 0 Factor 1100 - 1800 160 - 100 1500 - 1700 3500 - 6500

BFR <3 6-9 147 - 207 7*
BFRSF <3 10 - 11 63 - 96 0.7 - 26
BFRLS <3 0.6 * 2.2 * 7*
BFRSFLS <3 <2 <5 0.7 - 20
BFRBN1 <3 57 143 - 171 4*
BFR BN1SF <3 10 - 11 62 - 86 0.5 - 15
BFRBN1LS <3 0.l* 1.1 * 2*

! B FR BN1S FLS <3 e1 <3 0.5 - 15
| Nii.G <2 <1 <1 -1.0 - 1.0
| N1LO B AYFS NI 6 - 46 <4 <5 69 - 420
| BP <2 <1 <1 -1.0 - 1.0
j BP BAYES NI 8 - 89 <6 10 - 110 500 - 5f00
1 BP B AYES O.175 3 - 18 <6 3 - 20 175 - 1750

4Note: the worst case ranges for the BIASRs. p = 0.1 and = 10
for k = 3. 4. and 5 and p = 0.9 for k = 2. The independent

4failure rate was 10
6* The only case with enough data for estimation is T = 10 .

!

Table 6. RELATIVE VARIANCE (VARR) - M=5
NU51BER OF UNITS IN CC FAILURE (k)

AND P
k

ESTI51ATION P = 0.9 p = 0.1

TECl!NIQUE w, io 5 m, 10 5 m , o

(2) 1.9 E 6 (3) 1.9E 6 (4) 2.2E 7 (5)2.4E 8
6 -Factor <2 <2 <2 <2

| BFR <6 <2 <6 14 *
| BFRSF <6 <2 <b 12 - 13

BFRLS <6 <2* 6* 14 *
BFRSFLS <6 <2 <6 12 - 13
BFRBN1 <8 <2 <8 14 '
BFR BN1SF <8 <2 <h 12 - 13
BFRBN1LS <S <2* 6* 14 *
B FR BNISFLS <6 <2 8-10 12 - 13
N1LG 9 - 13 <2 12 - 21 9 - 45
N1LG B AYES NI <2 <2 <5 <5
BP 9 - 13 <2 8 - 10 94s
HP BAYES N' <2 <2 <5 <5
BP B AYES ,5 <2 <2 <5 <5

|

4Note: the worst cre ranges for the VARRs. p = 0.1 and p = 10
| for k = 3. 4. cnd 5 and p = 0.9 for k = 2. The independent
I 4failure rate was 10 .

* The only case with enough data for estimation is T = 106, -
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BP estimators, flowever, failures were not observed in many of the samples from the

case to = 0. This condition led to zero estimates and BIASRs of -1. When Bayes

estimation was used to counter this problem, the Bayes estimators seriously
overestimated the failure probabilities.

In most cases, the estimators tended to be conservati": and overestimate the failure

probabilities. The exception to this rule was to = 10-5, k = 5, and was not reported in tiie

tables. In this case, the BFRSF and BFRBhtSF techniques underestimated the failure

probabilities by at least an order of magnitude. The other BFR techniques also had

negative biases, but they remained within a factor of 5 of the failure probability. (The
6BFRLS and BFRBh1LS could only be calculated for T = 10 ). The BFR Bayes

estimators also had negative biases forp = 0.9 and k = 3 and 4; however, they remained

within a factor of 5 of the true values.

For Af = 9, all of the estimation techniques, apart from the p-factor estimators, were

within reasonable bounds, save for those cases reported in Tables 7 and 8 The results

are similar to Af = 5, except for the much larger BIASRs. Again, most of the estimators

overestimated those events with very small probabilities -the events with little or no data.
8'Ihe -factor method displayed extreme biases with ratios as large as 10 . Once more,

when failures were observed, the best estimators were BFRSFLS, BFRBhtSFLS, h1LG,

and BP. Ilowever, in many cases the failure probabilities were su Imall that there wert

no observed failures, and the BP and htLG estimators were zero 'n such cases, the BFR

estimators were much better than the other techniques at estimating these small failure

probabilities.

4.2 SIh1ULATION II

The data generated in Simulation I followed the BFR model. The purpose of
Simulation 11 was to investigate the behavior of the estimators when the data deviated from

this model. A condition observed in practice is one where the failures appear to follow a

BFR model, but there are increased numbers of two, three, and Af failures. The failure data

of Simulation II was generated using the worst-case parameters of Simulation I,p = 0.1,

= 104 and A = 10-4 for Af = 5, and increasing the failure rates for k = 2,3, and 5. Table

9 summarizes the P 's used to generate the data. Although Af = 5 does not have as severeA

biases as seen for Af = 9, the trends are the same, and it was felt that the important

differences between the estimators and their relative performances could be adequately

studied with this value of AI.

22

- _ _ - _ _ _ _ .



i

1
1

Table 7. BIAS RATIOS (BIASR)- 51 = 9
h

NU51BER OF UNITS IN CC FAILURE (k) AND Pk

p = 0.9 p = 0.1 *

EST151ATION (2) (3) (4) (5) (6) (.7 ) (8) (9) w=0TECilNIQUE 1.9 E- 10 1.75 E.9 1.6 E 8 1.6 E 8 1.75E 9 1.9E 10 2.2 E. l l 2.4 E 12,

-

6 -Factor E7 " E6 " E5 " E4 " E5 " E7 " Es " ER "i

| BFR <0 - 206 <0 - 46 <0 - 12 79 - 84 740-91o E3-E4 E3-E4 5 - 5000
f BFRSF <0 - 201 <0 - 45 <0 - 12 44 - 61 160-3M0 E3-E4 E3-E4 1 - 64

| BFRLS >0 - 214 >0 - 48 <1 - 13 0.3 - 7 1 - 24 2 - 104 3 - 557 5 - 5000
BFRSELS >0 - 209 >0 - 4M cl - 13 0.2 - 2 <0 - 4 o-9 I - 23 1 - 64i

'

BFR B \1 <0 - nt <o - 19 <0 - 5 _67 - M4 72x-7x4 E3-E4 E3-E4 4- 2000
BFR B NIS F co - M3 <0 - 19 <0 - 5 43 - 56 ISM-354 E2-E3 E3-E4 i - 3M

i BFR BN11 S co - xx >0 - 20 1-5 0.1 - 3 i - 12 1 - 54 2 - 290 4 - 2000

! BFR B N1S FLS >0 - x5 >0 - 20 1-5 0.1 - 1 >o - 3 30 - 6 1 - 14 i - 3x
NILG

_
-1 -1 - 1 -1 - <0 < 1 -1 - i 1 -1 .

| N1LG BAYES NI E3-E5 55-4000 .i - 217 2 - 13 2 6 .- 130 E2-E3 ES E4-E5
i BP 1 1-1 1 - <0 < 1 1-1 1 1 1

| BP BAYES NI E3-E5 MO-8000 6 - 604 5 - 60 M1 - MIS E3-E4 E4-E5 E6-E7
' BP BAYES 0.175 E3-E4 29-2000 2 - 221 2 - 21 29 - 285 E2-E3 E4-E5 E6-E7

Note: the worst case ranges for the VARRs (p = 0.1 and = 10-4 for k = 5,6,7,8, and 9
and p = 0.9 for k = 2,3, and 4).

The notation <0 and >0 indicates very small numbers either slightly less than or slightly greater than zero.
5The only cases with enough data for estimation are T = 10 and T = 106*

' Order of magnitude

Table 8. RELATIVE VARIANCE (VARR) - 51 = 9

NU51BER OF UNITS IN CC FAILURE (k) AND Pk

p = 0.9 p = 0.1 *

ESTI.NI ATION (2) (3) (4) (5) (6) (7) (8) (9) e = 0TECilNIQUE I.9E 10 1.75 E 9 1.6 E 8 1.6 E 8 1.75 E.9 1.9 E- 10 2.2 E 11 2.4E 12

B -Factor < 1 < 1 < 1 <i <i <1 < i < 1
BFR 0.7 - 5 < 3 <2 <1 < 1 < 1 <2 1 7
BFRSF 0.7 - 5 <3 <2 < 1 e 2 <2 < 4 2-6
BERLS 0.7 - 6 <3 < 2 < 1 <2 <3 < 5 3-7
BFRSFLS o.7 - 6 <3 <2 < 1 <2 <3 e 4 26
BFRBN1 0.7 - 6 <4 <3 <1 < 1 <1 <2 3-M
BFRBNISF 0.7 - 6 <4 <3 < 1 < 2 <2 <4 26

| BFRBN1LS 0.7 - 6 <4 <3 < 1 < 2 <3 < 5 3x'

BFR B N1SFLS 0.7 - 6 e 4 <3 <1 < 2 <3 <4 2-6
N1LG ** " - 11 " - 11 39 **9 ** ** **

N1LG B AYES NI ** < 1 <1 < 1 < 1 ** ** **

HP ** "-in "-in 3_g ** 9 .. .. ..

BP BAYES NI < 1 < 1 <1 < 1 ** ** **
**

BP BAYES O 175 < I <1 <1 <1 |
" ** ** "

4
| Note: the worst case ranges for the VARRs (p = 0.1 and = 1(T for k = 5,6,7,8, and 9
| and p = 0.9 for k = 2,3, and 4).

The only cases with enough data for estimation are T = 1([ and T = 106*

" All estimators identical ( each replication has zero failures).
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Table 9. TIIE PROBABILITIES USED.TO GENERATE
-lTHE FAILURE DATA FOR SIMULATION II

k

1 2 3 4 5

PA 2.6E-3 2.4E-3 2.6E-5 2.2E-7 2.4E-4

Note: P includes the probability of independent failures. These probabilitiesJ

are for 24 hours of operation.

Table 10 reports the results for Simulation II. The BIASRs and VARRs are given

for the three values of T. When only one number is reported, the values did not vary
significantly across T. Once more, for T = 108, the BFR, BFRLS, BFRBM, and

BFRBMLS techniques could not be evaluated because there were too many cases where s

= 2n+.

The maximum likelihood BFR techniques had negative BIASRs (-0.6) for k = 2.

However, the VARRs are small, and the data showed that the estimators were generally

within a factor of 5 of the true value. Although all of the BFR techniques underestimated

the probability of P , there were no other serious biases or large VARRs.2

For k = 3, the p-factor estimator overestimated P by over two orders of magnitude3

for all T, and the BFR techniques overestimated this probability by more than an order of

magnitude. The MLG and BP estimators were essentially unbiased, and the MLG Bayes

and BP Bayes techniques had BIASRs less than 3. The VARRs were small except for the
MLG and BP techniques.

The most serious biases were for k = 4. In this case, the -factor estimator had a

BIASR of 47,000, while most of the BFR estimators had BIASRs of 1000 or greater and

did not improve with increased T. The MLG and BP estimators had many cases where

there were zero estimates (no observed failures), and the MLG and BP Bayes techniques

overestimated by one to two orders of magnitude.

For k = 5, the BFR and BFRBM techniques seriously underestimated P . The5

remaining estimators were always within reasonable bounds. These simulation results

indicated that when the data deviated from the BFR model, the MLG and BP estimators

24
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Table 10. SIMULATION 11

NUMilER OF UNITS IN CC FAILURE (k)
AND P

ESTIMATION (2) (3) (4) (5)
TECilNIQUE P = 2.6E-3 P =2.6E-5 I'k = 2.2E-7 3 *k = 2.4 E-4k k

til A S R VARR lil ASR VARR lil A S R VARR lil ASH VARR

-Factor <3 <1 400 <1 47000 <1 40 <1

BFR * -0.6 <1 11 <1 550 <1 -0.8 <1

BFRSF -0.6 <1 20 <1 1400 <1 -0.3 <1

BFRLS * -0.6 <1 11 <1 500 <1 <1 <1

BFRSFLS -0.6 <1 19 <1 1300 <1 <1 <1

BFRBM * -0.4 <1 39 <1 3800 <1 -0.8 <1

BFRBMSF -0.4 <1 18 <1 1100-1300 <2 -0.3 <1

BFRBMLS * -0.4 <1 39 <1 3700 <1 <2 <1

BFRBMSFLS -0.4 <1 18 <1 1200-1300 <1 <1 <1

MI.B >0 <1 >0 1-9 - 1 - >0 4 - 15 < 0.1 <4

| MLG BAYES NI < 0.5 <1 <2 <1 5 - 149 <1 < 0.5 <1
|

BP >0 <1 >0 1-9 -1->0 4 - 15 < 0.1 <4

| BP BAYES NI <1 <1 <3 <1 7 - 700 <1 <3 <1

' BP BAYES 0.175 < 0.5 <1 <1 <1 3 - 300 <1 <1 <1

Note: the notation <0 and >0 indicates very snull numbers either slightly less than zero or slightly greater than zero.

y * Cannot be evaluated for T = 1(f.
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were preferable. If there were no observed failures, the BP Bayes and htLG Bayes
lestimators should be used.

.

4.3 SIMULATION III
Simulation III dealt with the problem of data from different systems. (In practice q

this usually means different plants). In the first case, the failure data was generated for

three systems using the worst case parameters p = 0.1 and T = IM, increasing the failure

rate for k = 2, and letting lethal shock rates (co) and common cause shock rates (p) vary I

for each system. The simulation parameters are described in Table 11. The data from all

three systems were combined to estimate the VARRs and BIASRs for each estimator for

each of the three plants. In this simulation, a plant with no common cause failures would j

still be included in the analysis if there were common cause failures from at least one of |
the three plants. Including plants with no common cause failures gives lower, more

accurate estimates, but is not done in practice. Although data was combined from three

plants, there were many cases where s = 2n+ and the BFR, BERLS, BFRBM, and

BFRBMLS estimators could not be calculated.

Table 12 reports the worst-case results for this simulation. For this analysis Tis

fixed (l@), and the worst-case results are for the system with the smallest common cause

shock rate ( = 10-8). Again the serious biases were for the small P 's (k = 3 and 4).k

The p-factor method had the largest BIASRs ranging from 534 to 4800. The BFR

techniques had BIASRs ranging from one to two orders of magnitude. The MGL and BP

estimators had very small biases,and the MLG and BP Bayes techniques had BIASRs

ranging from 4 to 37. None of the techniques had large VARRs except for MLG and BP

for P.s where the VARR was 11. The data showed that the BFRSFLS, BFRBMSFLS,

MLG and BP estimators overestimated the true probabilities and always remained within

two orders of magnitude of the tm value. The MLG and BP estimators (both MLE and

Bayes) had a higher percentage of estimates within an order of magnitude of the true

probability than did the BFRSFLS and BFRBMSFLS estimators.

The second case also used a modified BFR model to generate the failure data for the

three plants; however, this time the three different systems had three different values forp '

! (0.1,0.5, and 0.9) and different lethal shock rates. The simulation parameters are

reported in Table 11. The combined data was then used to evaluate BIASRs and VARRs '

for each estimator and each system. System 1 (p = 0.1 - the system with the least data)

had estimators with large BIASRs as seen in Table 13. In this case, although the p-factor

technique was the worst, all techniques overestimated the true probabilities. Excluding

the -factor, all estimators for system 2 (p = 0.5) had BIASRs less than 3 and VARRs

26
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Table 11. FAILURE RATES USED TO GENERATE
FAILURE DATA FOR SI51ULATION III

Simulation III Simulation III
Case 1 Case 2

ISystem System
E

1 2 3 1 2 3

,

1 6.5E 6 1.3E 5 6.5E 5 6.5E 6 3.lE 6 9.0E 9

2 1.0E-6 1.0E 5 5.0E-5 1.0E-5 1.0E 5 1.0E-6

3 8.1E-8 1.6E.7 8 lE 7 8.1E 8 3.1E 6 7.3E 7

4 9.0E-9 1.8E 8 9.0E-8 9.0E-9 3.1E 6 6.6E 6

5 1.0E 9 2.0E-9 1.0E 8 1.0E-9 3.lE-6 5.9E 5

|1.0E-3 2.0E-4 1.0E-4 1.0E 3 2.0E-4 1.0E 4%

w iwt 1.0E 7 1.0E-6 1.0E-5 1.0E-7 1.0E-6 1.0E 5
,

1

Table 12. SI51ULATION III CASE 1

NUMBER OF UNITS IN CC FAILURE (k)
AND Pg

ESTIMATION 13) (4)
TECIINIQUE Pka 3.9E 6 Pk = 4.J E.7

BIASR VARR BIASR VARR j
p-Factor $34 <1 4g00 <1

BFR 30 <1 122 <1

BFRSF 24 <1 87 <1

BFRLS . . . .

BFRSFLS 22 <1 71 <1

BFRBM 33 <1 121 <1

BFRBMSF ?? <1 76 e1

BFRBMLS . . . .

BFRBMSFLS 20 <1 62 <1

MLG <2 3 <2 11

MLG BAYES NI 4 <1 28 <1

BP <2 3 <2 11

BP BAYES NI 10 <1 37 <1

* Rese estimators could not be calculated because s = 2n.
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Table 13. SINIULATION III CASE 2, SYSTE311 ( p =0.1 )

NUMBER OF UNTTS IN CC FAILURE (k)
AND Pg

ESTIMATION (3) (4) (5)
TECIINIQUE P 1.9 E.4 4 = 2 E.1 P = 2.4E.4k = k

BIASR VARR BIASR VARR BIASR VARR
,

p. Factor 900 <1 6000 <1 700 <1

BFR 52 <1 657 <1 140 <2

BFRSF 49 <1 610 <1 106 <2

BFRL3 51 <1 615 <1 158 <2

BFRsFLS 47 <1 565 <1 127 <2

BFRBM 44 <l 571 <1 126 <2

BFRBMSF 42 <1 540 <1 96 <2

BFRBMLS 43 <1 530 <1 129 <2

BFRBMsFLs 41 <1 499 <1 102 <2

MLD 15 <2 333 <2 239 <1

MLG BAYES N1 22 <1 393 <1 219 <1

BP 13 <2 383 <2 239 <t

BP BAYES NI 28 <t 500 <1 300 <1

less than 2. For system 3 (p = 0.9), all BFR techniques had negative BIASRs (-0.8) for

P . He only other serious misestimates for this system were for the -factor, which had5

large BIASRs for k = 2,3, and 4.

5.0 CONCLUSIONS

This analysis looked at factors such as common cause shock rate, probability of

failure given a shock (p), lethal shock rate, total operational time, independent failure rate,

and the interactions of these factors to determine the important influences drising estimator

bias and variability. He results indicated that all factors except independent failure rate

were important influences. The interaction terms were also significant. Biases were larger

in the case oflethal shock effc. except for estimators of the probability of all units failing.

Biases were also larger for small common cause shock rates and for extreme values of p (p

= 0.I and 0.9).
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The study showed that for three unit systems with data derived from the same or |
similar sources, the BP, h1LG, BFR, and -factor estimators all gave reasonable estimates I

for the probabilities of common cause events. For systems with more than three units, the |
p-factor method had extremely large positive biases when event probabilines were small.

Even when event probabilities were on the order of 10-8, biases could be an order of

magnitude or greater. However, the p-factor technique was always conservative.

If the underlying failure data could be reasonably described by the BFR model, then ;

'

the BFR estimators performed extremely well as long as potential common cause failures

and lethal shocks could be identified. The BFR techniques that required knowledge or'

potential common causes and lethal shocks (BFRSFLS and BFRBh1SFLS) were

particularly good at estimating small probabilities where there was no data. The h1LG and

BP techniques gave zero estimates in these cases. The BFR estimators that did not identify

potential common causes - BFR, BFRLS, BFRBht, and BFRBh1LS - could not be
,

evaluated in a large portion of cases. Those estimators that did not identify lethal shocks ;
(BFR$F and BFRBhtSF) could be negatively biased if there were lethal shocks, a

condition that occurs frequently. Although the Bayes mode estimator with a noninformative
I

prior generally outperformed the h1LE, the improvements did not appear to be worth the

considerable extra effort required to calculate the Bayes estimators. It is possible, however, |
that for data from plants with considerable variability in the failure ratu:, an empirical Bayes

estimator would significantly improve the results. Such an estimator would use the data j
from the plants to determine the parameters of the prior distribution (Atwood,1982). |

If the data does not follow a BFR model then, not too surprisingly, the BFR |

techniques have problems and can underestimate the true probabilities. There are techniques

for checking the appropriateness of the binomial model(Atwood, 1980,1982,1983a,b,c).

Unfortunately, these techniques require fairly large data sets and are not practical for many

real applications where data is sparse.

If data is available, even when it is scant, the A1LG and BP estimators have the

smallest biases. These estimators performed well when the BFR estimators were seriously

biased; however, they allowed zero estimates when there were no failures. When Bayes

techniques were used to avoid this problem, they tended to overestimate the failure
,

probabilties. Some further study of appropriate priors for Bayes estimation is needed,

ne BP estimator is particularly simple to use and extends nicely to the case where

the number of units varies from system to system (Appendix A). Often the probability of

interest is the probability that K or more components fail owing to a common cause The4

.

BP technique is easily extended to estimate this probability and is recommended in this

29
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case, since the problem of zero estimates does not occur. Appendix A describer this

estimator and a technique for evaluating its uncertainty limits.

De h1LG estimators are much more complicated and do not extend easily to cases

where data comes from systems with varying units. This technique is identical to BP

estimation when data comes from one system and is recommended when system

operational time or demand data are not available.

We were impressed with how well the BFRSFLS, DFRBhiSFl.S, hiLG and BP

techniques performed, even when the failure data were scarce. The results reported in this

paper were worst-case results. In all the other cases we considered, these estimators did not

overestinute the true probabilities by more than an order of magnitude nor underestimate by

more than a factor of 5. The most severe problems were for the case where data came from

different systems (plants) with considerable variability between the systems. The MLG and

BP estimators were the most robust to this condition. When the study plant had failure rates

similar to the plant contributing the least data, none of the estimators performed well. All

had biases of at least two orders of magnitude. These biases were conservative since the

plant contributing the least data had the smallest failure rates. Although we did not evaluate

Bayes estimators with priors detennined from the data, we believe that, in the case of

highly variable data sources, these estimators should be used. Appendix A introduces such

a technique for the BP method, and Atwood (1982) describes the technique for the BFR

estimators.

After completing this study, it is our conclusion that if the assumption of constant

failure rates are valid (no aging effects), then the binomial failure rate and basic parameter

estimation techniques are appropriate and adequate for estimating common cause fci!ure

probabilities. (There is a need to look more carefully at uncertainty estimation for these

existing estimators, and we propose to do this in a future study.) The overwhelming

problem for the nuclear power industry is the lack of reliable common cause data. We

believe that the focus of future efforts should be on gathering this data. Our first impulse is

to suggest identifying those systems that are most important to common cause analyses and

then devising an appropriate sampling scheme to go into the plants and gather the data.

Ilowever, we are not at all sure that, even if we could execute such a scheme, the plant data

would be obtainable. It is our impression that there is no organized effort within the plants

to collect the information necessary to make meaningful estimates of common cause failure !

probabilities. A concerted effort is needed to formalize data-gathering procedures and to |

institute them in at least a sample of plants so that gemiane common cause data may be

gathered in the future.
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APPENDIX A

RECOMMENDED PROCEDURES

| A.1 INTRODUCTION

The -Factor method requires the least information and gives conservative

estimators; therefore, it is recommended for preliminary screening in PRAs. However,

when accurate estimates are needed and there is sufficient data, the BP estimators are '

j preferred. This technique is very simple to use and extends readily to the case of multiple
i systems with varying numbers of units. This technique is also easily applied to estimate the

probability that K or more units fail resulting from a common cause and to determine

uncertainty bounds for this estimator. In the simulation study, the maximum likelihood BP

estimators were best in the sense of smallest bias and variability in all cases where there

were observed failures. In the cases where no failures were observed for a particular

common cause event, Bayes estimators were used. In our study these Bayes BP estimators

f were conservatively biased, and the large biases were for very small probabilities.

There may be cases where the data is not adequate for the BP estimators. In these

cases, if the modei is appropriate and the lethal shock and poten;ial common cause
,

information is available, the BFRSFLS technique is recommended. If potential common

causes cannot be identified and the data has sufficient failures (s # 2n+), then the BFRLS

estimators should be used. Bayes estimation is only recommended when the data come

from different plants and there is considerable variability between the plants. In this case

prior distributions should be derived from the data (Atwood,1982). The Bayes estimators,

we studied used noninformative priors and did not differ dramatically from the MLEs.

They did not appear to medt the increased work necessary to calculate them.

:

i
1

! !
,
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A.2 MODEL VERIFICATION

in the simulation study the BFR estimators were not reliable when the failure data ,

was generated by a model that deviated from the BFR model by increased numbers of two

and M failures. In practice the data is often so sparse that it is impossible to use statistical

tests to determine if the model is appropriate. In those cases where data is available,

Atwood (1980,1982,1983a,b,c) gives techniques for testing the appropriateness of the

BFR model. The BP estimators are based on the more general Poisson model; however,

they do require a constant failure rate and independence. To verify the Poisson model for

the BP estimators, one can use the classical chi-square test (Hahn and Shapiro,1967, ch.8)

or a graphical procedure suggested by Hoaglin (1979). The Bayes BP estimators assume

that the failure rates derive from a gamma distribution, and that given the failure rate, the

number of failures is Poisson. If the estimators for the gamma parameters (A.2.1.3.1 and

A.2.1.3.2) are negative, it is an indication that this model is not appropriate.

A.3 BASIC PARA 51ETER ESTI51ATION FOR 51ULTIPLE SYSTENIS

In Sec. A.3.1, we present the MLE and the Bayes BP estimators for the case
where there is data from different systems (plants) with varying units (M ) and no plant-i.

specific data. In Sec. A.3.2 an empirical Bayes estimator is introduced for the case where

there is some plant-specific data available.Tect'niques for estimating the confidence and
|

tolerance limits for these BP estimators are also presented.

In many PRA analyses, the probability needed is the probability that K or more

units fail in time t due to a common cause event. The BP estimator for this probability is

developed in Sec. A.4 as well as a technique for estimating its uncertainty limits.

A.3.1 NO PLANT. SPECIFIC DATA

! |

A.3.1.1 51AXI51U51 LIKELIllOOD ESTI51 ATOR
Often there is no plant-specific common cause data available. In this case, data from

several plants can be used to give a ge'1eric estimate for the plant of interest. If N represents 1

the number of systems (plants) from which the data is derived, and these systems and the !

l

system of interest have the same common cause rates (not too different anyway), then the
i

f
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data can be viewed as N independent observations from a population with constant I

common cause event rates, h. The MLEs are

i
'

N l

[nig
k = I"I k = 2, . . . , M , i = 1, . . . , N .t i,

N

;[ i Ti
i 'i=l

,.

i

Here, nji s the number of events with k units failing in system i,M is the number ofi i
units, and T is the total operational time. Note that the nik are distributed as Poissoni
variables,

nig-P ( M ' T lg ) .
'

i
k i

1

2The relationship between the Poisson and the 2 allows us to estimate the a% ad (1-a)%1

confidence bounds by

2

%,, (2 n )- g

y = 2 T(k) ,

2
X _,(2ng + 2)1-a

3
Ag (A.3.1.1.1)=

,

2T(k)

where

N N
l

nk = n ik . I(N) i I.I
i ii=1 i=l,

!
!

n
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|

(The definition for nk is different from that in the main text, where nk
represented either data from one system or data from multiple systems that
could be grouped together as one.)

The chi-square variate with 2nrdegrees of freedom at the acumulative probability is

%[(2nk), and Xh (2nk + 2)is the chi-square variate with 2nk + 2 degrees of freedom at

the (1 a) cumulative probability.

If nr = 0, the BP estimator for A is also zero. In this case many alternatives havek

been suggested. Borkowski et al. (1983) suggest the median of the chi-square with one

degree of freedom for ni, giving

^

A " 0.227k T(k)
'

Another estimator that has been suggested (Welker and Lipow,1974) is 0.3333/I'(k). If

one assumes the A are random variables with gamma distributions and uses ak

noninformative prior, then the estimator is 0.5/T(k). Other priors result in estimators with

smaller numerators; for example, one evaluated in the simulation study is 0.175/T(k)

(Welker and Lipow,1974). An estimator suggested by the Empirical Bayes estimators

(A.2.2.1) is

3 n.

Ak= ' . _ ,

T(k) + T(j)

where

n T(j)
-n. = j -f(j) =

J N, N
,

and j is the index of the closest event to k with observed failures. We call this estimator the

nearest neighbor estimate. In the simulation study, all of the Bayes estimators were

conservative. The nearest neighbor estimator was developed after the simulation study was

completed and was only evaluated on a small subset of cases; however,it also proved to be

,
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:

conservative.The nearest neighbor estimator and the 0.175 estimator had the smallest biases

among the nonzero BP estimators. ,

,

A.3.1.2 -UNCERTAINTY LIh11TS FOR TIIE h1AXIh1Uh1 LIKELIIIOOD
ESTIh1ATOR

The (1-a)% confidence limits (A.2.1.1.1) define intervals such that (1-a)% of the
intervals, based on samples of size N, will contain A These bounds can be used tok

determine the confidence interval for the probability that there is at Icast one failure in a

specified time, t (often two or 24 hours in PRA studies). Such confidence limits do not
.

give bounds on the failure rates that will be observed in the study plant. Some PRA

analyses want these bounds or, equivalently, bounds on the number of failures that will be

observed in time t. Since the number of failures is Poisson with parameter Ak, we could

use the (1-a) probability interval for nk f we knew AA. However, we only have an estimatei

for A and, therefore, can only estimate such intervals with a certain confidence. Hahn andk

Chandra (1981) give a technique for determining bounds that will contain at least 100P% of

the nk with (1 a)% confidence. These intervals are called tolerance intervals and are the

appropriate estimates for the uncertainty limits in this case. A technique for detennining
conservative, symmetric two-sided intervals is to obtain the (1-a)% confidence limits for I

the unknown distribution parameter, A , and then obtain a [100(1+P)/2] percent one-sidedk

upper probability bound (N ) from the Poisson using the previously calculated upperU

confidence limit and a [100(1+P)/2] percent one-sided lower probability (N ) bound usingL
the previously calculated lower confidence limit. The uncertainty limits for A are Nu/T(k)k

,

'

and N/T(k).The problem with these tolerance limits is that the Pois;on distribution ist

discrete, and exact 100P percent intervals cannot be determin:d. For extremely small A ,k

the limits are often Nu = 1 and N = 0. These limits may actt ally represent 99.999...%L

intervals for small t (such as 2 or 24 hours). In these cases tc'erance lin;its are not useful.

A.3.1.3 BAYES ESTIh1ATION
' An alternate approach is to assume that the Ak vary between plants, that this

variability can be described by a random variable, and that N , conditioned on A , has aA k

Poisson distribution. A reasonable assumption (and one that facilitates estimation)is to,

'
assume that the At have gamma distributions (priors) with parameters ak and A. It is
easy to show that the posterior distribution of A , given the nik , is gamma with parametersk
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Gk+ "ik and T+p.-

|

'Ihe Bayes estimator (the mean of the posterior) is

Uk+ nik
^ i= 1

A= !
k .

N,

.
k I k

181

"

To estimate ak and A, note that the unconditional distribution of nk is a negative binomial

with parameters ar and T(kJ/$k (Johnson and Kotz,1969). The mean and variance of nr

are

E(ng) = atT(k),

.2

! Pg

and
c

Var (ng) = agT(k) + agT(k)2
7
*

'

0 pf
,

k

!

Equating the sample mean and variance to the corresponding population values and solving -

for ak and Agives

ngT(k)^

( A.3.1.3.1)Ok= N S - ng2
*

,

|

and
,

. ,

r

2ng-

(A.3.1.3.2)
] Gr = N S - ng

,

2 ;
;

,

1

t !

t
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where

N (nig - ng)22
S _~.

-(N-1) *

i=1

Note that O and /h are negative if S2 < ii , and if this happens it indicates that thek k k
A A

underlying assumptions of the model may not be appropriate for this data. If ak and k are

close to ar and k, then one can use a (1 a)% probability interval from the gamma

distribution with parameters $ and jf to determine uncertainty limits for A . Aitchisonk k k

(1975) refers to this as the estimative interval. The estimative interval is approximate and

can be too small (Atwood,1984). Atwood develops more accurate techniques for
determining the appropriate tolerance limits; however, he finds in assessing common cause

failures from a real data set (diesel generator data based on 22 common cause events at 58

plants), that "the estimative interval seems to be goal enough and that uncertainty due to
lack of data is small compared to the inherent variability i.' A." The more accurate intervals

are quite complex and require considerable effort to calculate; however, if the interval is

important, it is probably better to spend the time, effort, and money to get an accurate one.

A.3.2 PLANT. SPECIFIC DATA AVAILABLE

If plant-specific data is available and adequate, then, given the current lack of

reliable common cause data, the safest approach is to use the plant-specific data to

determine the maximum likelihood BP estimators. Ilowever, in many cases the plant data

will be insufficient - no observed co mmon cause failures and total system time, or number

of demands so small that estimates a e unreasonably high. In these cases, one is forced to

combine the plant-specific data with other plant data. If the other plant data is reliable, then

this information willimprove the estimation procedure and reduce uncertainty When plant-

specific data is to be combined with other data, empirical Bayes estimation is
recommended. Under the assumptions of A.2.1.3, the empirical Bayes estimators are

n tt + E '
^

Art = ,M ,
, k = 2,..., M .

^

Okki
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The subscript / indicates plant specific data. The values of a and 84 and the uncertainty.r;

bounds are determined as in A.2.1.3.

A.4 PROBAB'LITY OF K OR MORE UNITS FAILING AS A RESULT OF
COM310N CAUSE EVENTS

4

PRA analyses are often concerned more with the probability (PK) of at least K out

of M units failing in a specified time period (t) due to common cause events than with the

probability of exactly K units failing. The BP estimation technique is particularly good in !

this situation as it can always be evaluated (given that system operational time or demands !
,

are known) and does not require the restrictive assumptions of the BFR model. Noting that

Akt is very small( 1) and making the appropriate approximations gives

M

PK=[('\) tagk
k=K

and

M

fR = 'k t k. I

k=K

If adequate plant specific data is available, then
|

M

P3 = [ ,

k=K

where T is the system operational time. Assuming that the nk are independent, the
i

confid< nce and tolerance limits are found as in A.3.1.1 and A.3.1.2 with nk replaced by
M

| {nk . If there is no adequate plant-specific data available, then data from other sources
k=K

must be used to give

4
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M M

PR=[$I)t = [ agn k - (A 41)
"k

k"K i T k"X
i

If we assume that (A.4.1) can be reasonably approximated by a normal distribution, then

uncertainty limits for PKn+1 (the probability that K or more units fail in the N + 1st

system) can be approximated by the same technique one uses to find the prediction interval

for the next observation of a normallv distributed random variable with N independent ,

.

observations. The underlying assumption is that system N + 1 is similar to the other N
J systems. Note that

M

bI +1 =N DN+1k

and

M M<

2 2 2 2
Var ( PRw.i . PR ) = 7 = [ +Na g= gk g ,

2
where o represents the variance of the na,i = 1, ..., N+1. (As def' ed previously, na isg m

the number of k failures in system I, nk is the total number of k failures, and ny+1,4 is the l

number of k failures in the new system.) Let
'

,

1

N
2[(n;g-nd.2

o "i=1k

N-1

and

! M
2i=[gog .

k=K

; Using the Satterthwaite (1946) approximation for complex estimates of variance and the

normal approxiinations, the (1-a)% uncertainty limits (probability limits) for dN +1 areN
:
1

j 39
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a

FR t tw (n) f ,
^

where tl-a/2 is the (1-o/2) percentile from the student's T distribution with n degrees of-

freedom and

/

.

I 1 1y
y .2

b /,,,o 8g k6

n = ( N - 1)
ik = K j

.

M
.4'

EOk
' .k=K

In practice ^o may be zero for some k. In these cases, an alternative to using zero in the2
k

4

equation for n is to add the coefficients of the zero variance estimates to the coefficient of

the smallest nonzero estimate and use this sum as the coefficient of the smallest variance

estimate. These intervals are approximate and need further study to determine their

coverage probabilities. )
,
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APPENDIX B
,

BFR, BP, AND MLG TECHNIQUES ARE EQUIVALENT, M = 3

i

!

!

For fixed Af (the data are from systems that have the same number of units), it is

easy to show that the MLG and BP estimators for the A 's are identical (refer to Sec. 3.2).k

For M = 3, if single failures occur (ni * 0) and the BFR estimators exist (s * 2 n+), then all

three techniques, BP, MLG, and BFR, are equivalent.

To prove this statement, we derive the BFR estimators and show that they are

identical to the BP estimators. We assume that common cause events are observed, n+ t 0.

If n3 = 0 and n2 * 0, then s = 2n+, and the BFR estimators cannot be evaluated. Therefore,

there are only two cases to consider: n2 = 0, n3 * 0 and n2 * 0, n3 * 0,
l

Case 1. n2 0,n3 * O=

From Eq. (2.0.1) we have

^ ^

A=A+ ^p(1-D)2i ,

k = it p (3,p),2
2

and
^

.3A=MP-3

If n2 = 0, then s = M n+ and p = 1. Substituting the BFR estimators (3.3.1) into the )
equations for thelg gives |

I

n |^ ^

A t = A = gh ,
'

A

A2=0,

and j

41
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1

A

1+^ ^

A3 = 4 A+=n3
a

y-
1-r_ o r_ i

These are precisely the BP estimators.

Case 2. n2 * 0, n3 * O

Using the definitions of p, A, and ri given in 3.3.1, we see that

^
,.

A= As-pf
^

t
,

h1

A

+p= ,

1 - r - rio

and

( l- p )2 , _} ,

| Substituting these values in the equation for 7i gives

^ ^. .

A = A -p ft+ p fi t As ni
^

i =-=U,hi hi 51

which is the BP estimator for Ai. Substituting for[t in the equations for1 and $,3 yields2

A

[2 = 1 - r - ri 5 ( 1 - @ ) = TIl - r - ri) $ ( 1 - 5 )
+ "3''

o o

and

A

A+ -3 n2 + n3 3
^

'3 " 1 - to - ri P "T(1 r -ri)P
-

o

For M = 3, there is a closed form solution for % :
1
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,

3 ( s - 2 n.) 3 n3-

P = 2 s - 3 n. " n 2 + 3% '

Substituting this value of $ into the equations for ra and ri gives

3n 2
to =

( n2 + 3 n3)3 ,

and
2

9 n3 nt=i
( n2 + 3 n3)3

,

| Using these expressions to evaluate k and $ , we find3
l
i

^
n2A = yy ,2

, and

k=y.3

These are also the BP estimators.

:

1

i

|

|

|

|

|

43

_ _ _ _ _ - - - - - - - _ - _ _ _ _ _ _ _ - -_- -_-___ - - _____ - - - -__ -____-____________- _________-__ - -__-__ _ _



_. _ _ ._ ._ __ _ ____. ._. _ _ _ _

r

!
,

f

REFERENCES
:

American Nuclear Society and the Institute of Electronic and Electrical Engir,eers (1983),

"PRA Procedures Guide; A Guide to the Performance of Probabilistic Risk ,

Assessments for Nuclear Power Plants," NUREG/CR-2300. Sponsored by the

U.S. Nuclear Regulatory Commission and the Electric Power Research Institute.

:
!Aitchison, J. (1975), "Goodnest of Prediction Fit," Biometrika, Vol. 62, pp. 547 554.

,

<

Atwood, C. L. (1980), "Estimato.s for the Binomial Failure Rate Common Cause Model,"

NUREG/CR-1401, prepared for the U.S. Nuclear Regulatory Commission by

EG&G Idaho, Inc.
|

t

Atwood, C. L. (1982), "Common Cause Fault Rates for Diesel Generators," NUREG/CR- t

j 2099, prepared for the U.S. Nuclear Regulatory Commission by EG&G Idaho, Inc.
1 !

) Atwood, C. L (1983a), "Common Cause Fault Rates for Pumps," NUREG/CR-2098, !
i- prepared for the U.S. Nuclear Regulatory Commission by EG&G Idaho, Inc.
i |

'
Atwood, C. L (1983b), "Common Cause Fault Rates for Valves," NUREG/CR 2770,j

! prepared for the U.S. Nuclear Regulatory Commission by EG&G Idaho,Inc.
:

:

|
Atwood, C. L (1983c),"Common Cause Fault Rates for Instrunentation and Control

Assemblies," NUREG/CR-2771, prepared for the U.S. Nuclear Regulatory

Commission by EG&G Idaho,Inc.

1

| Atwood, C. L (1984), "Approximate Tolerance Intervals, Based on Maximum Likelihood

Estimates," Journal of the American Statistical Association, V01. 79, No. 386, pp.

| 459-465.
i

i

Borkowski, R. J., Kahl, W. K., liebble, T. L, Fragola, J. R., and Johnson, J. W.

j (1983), "The In Plant Reliability Data Base for Nuclear Plant Components: Interim

Report - The Valve Component," NUREG/CR-3154, prepared for the U.S.,

| Nuclear Regulatory Commission by Oak Ridge National Laboratory.
;
1

45

,

!

_ _ _ - - _ _ _ _ _ _

____________________-__-_-__________,I



_ _ _ _ _ _ _
.

.. . _ . ._.

Fleming, K. N. (1975), "A Reliability hiodel for Common hiode Failure in Redundant

Safety Systems," GA.Al3284, Proceedings of the Sixth AnnualPittsburgh

Conference on Aiodeling andSimulation, General Atomic Company, San Diego,

Califomia.

Gyllenbaga, II., Jolhanson, G., and Lilja, T. (1983), "Treatment of Dependencies in

Ringhals 1 & 2 Safety Studies," prepared for the Workshop on Dependent Failure

Analysis, Vasteras, Sweden,

liahn, G. and Chandra, R. (1981), "Tolerance Intervals for Poisson and Binomial

Variables," Journal of Guality Technology, Vol.13, No. 2, pp.100-110.

Ilahn, G. and Shapiro, S. (1967), Statistical Afodels in Engineering, John Wiley & Sons,
New York, New York.

Iloaglin, D. (1979), "A Poissonness Plot," paper presented at the 1979 Annual Meeting of

the Ameri an Statistical Association, Washington, D.C.

t

Johnson, N. L., and Kotz, S. (1969), Discrete Distributions, John Wiley & Sons, New
York, New York,

hieyer, bl. A., Peaslee, A. T., and Booker, J. ht. (1982), "Group Consensus hiethod and

Results," LA-9584-h1S, prepared by Los Alamos National Laboratory for the US

Department of Energy, Assistant Secretary for Defense Programs.

Parry, G. W., "Letter to the Editor. Comments on 'hiodeling Uncertainty in Parameter

Estimation'in Vol. 26, No.3," Nuclear Safery, Vol 27-2, April June,1986, pp.
212-214.

Pickard,IAwe and Garrick,Inc. (1985a),"PRA Procedures for Dependent Eve ts

Analysis, Volume I and Volume 11," PLG-G453, prepared for Electric Power

Research Institute.

Pickard, Lowe and Garrick, Inc. (1985b),"Classification and Analysis of Reactor

Operating Experience Involving Dependent Events," EPRI NP-3967 prepared for

Electric Power Research Institute.

46

_ _ _ - _ - _ _ - _ _ _ - _ _



_ _ _ _ _ _ _ _ _ _ - _ _ ..

Satterthwaite, F. E. (1946),"An Approximate Distribution of Estimates of Variance

Components,"Biometrics, Vol. 2, pp. I10-114.

Vesely, W. E. (1977), "Estimating Common Cause Failure Probabilities in Reliability and

Risk Analyses: Marshall-Olkin Specializations," Nuclear System: Reliability

Engineering and Risk Assessment, Philadelphia: SIAM, pp 314-341.

Welker, E, and Lipow, M.(1974), "Estimating the Exponential Failure Rate from Data with

No Failure Events," TRW Systems Group, Redondo Beach, California,1974 R&M

Symposium Proceedings, pp. 420-427.

BIBLIOGRAPIlY

Waller, R. A.,"A Brief Survey and Comparison of Common Cause Failure Analysis,"

NUREG/CR-4314, prepared for the US Nuclear Regulatory Commission,

Washington, DC.

47

'
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ .



_ _ _ _ _ _ _ _ _ _ _ _

__.

DISTRIBUTION
Copies

Nuc1 car Regulatory Commission, RG, Bethesda, Maryland 198

Technical Information Center, Oak Ridge, Tennessee 2

Los Alamos National Laboratory, Los Alamos, New Mexico 50

250

>

>

48

_ _ _ _ _ _ _ _ _ _ _ _



u s ucuan aucutaron co...ss.os , ai u-r w vei a r "oc - . se.... ,,y;c; win
O',"S 3 BIBLIOGRAPHIC OATA SHEET NUREG/CR-5044

LA~ I I I 79'bl3
su issiavc ,< ,s ,- . u .s.

g, r . r u . s o sva r . 3 u.a .<.s.

[Estimat. 1 Techniones for Common Cause
Failure L- nts , g , , , ,,, ,, , c ug, , o

|[,, y
...aoest-

October 1987s .o r -o. ,s,

* ' " " * * ' ' " "Elizabeth J. Ke y

3 93}'"Geralyn bl. Itemphi 1 * ''~
I'

.....e.._.~...ss....so.... .o..,,.,_,.c. . ..mic,,.,. ,.. ....

J,7

Lor Alamos National L. oratory s * ,s ow. -.ia

Los Alamos, N5! 87545 A7225$'

/
..y.o,on.o~i,o seu sa..w m.sa.1,u s . .so o.,t,w .oooiss , ,, c ,

Division of Risk Analysis ans Operations }6 formal
Office of Nuclear Regulatory search /

f/
* " " " " " ' " " " * " * ' 'U.S. Nuclear Regulatory Commiss 'n

Washington, DC 20555 4Y

p2 sv .a vis.... so,is

/
o..s,..<,-.-. fa

Comn. tuse failure probabitity estimati i techniques, including B-factor,
basic rameter, binomial failure rate / Tau iple Greek, and C-factor estimators,
a- evaiuated and compared using simu ition ata that captures the real world
; .blem of sparse data from differe, plants.. The effects on the estimators'
performances frem underlying facto ' such as e mmoi, cause shock rates, lethal
shock rates, probability of fail' g given a sho g, independent failure rates,,

j and system operational time are- iscussed. Wors case results are reported,
' and it is seen that for extrer ly small common ca 'e failure probabilities the

binomial failure rate estima ors are best. Ilowere these estimators can
underertimate the true oro, ilities when the failu s deviate from the binomial
failure rate model. The -factor technique is shown be conservative, and in
some cases to overestim. e the true probability by ses al orders of magnitude.
When there are observe, failures for each failure event the basic parameter
technique is best and is casily calculated. This estima r is investigated in
detail and is used develoo an estimator for the probab ity of K or more
units failing due * a common cause. Uncertainty limits f this probability
are also develope

$

e; uvt s' a s ai 5s e e s i% ' .sCivaetous ,g,,,,,,p , , ,

\ s'.etvist

Unlimited

'6 st Cva a r (( .ss< s .t.t.Os
o....,.,

. a s . . s -.i s zi c . ..s gpg
...n,,

classified
m . ..a u

. . .,X
T'

- --- -- - - - - _-- --- - - - - - - _ -



_.

I

ArmanNe frOm

SN of Ocarents
u.s. ocarnment % omc.

Post Omoe Box 37082
WeeNngen.D.C.20013 7982

and

NeuoneJ TecrWeel;.14,. w, Servtco
Schg%dd. VA 22161

P

- ,. - -- -,, v- - , -.. v- . _ _ , _,r... _ . , , _ _ . , , . . , , _ _ , _ , . , , _ _ , _ , , _ . , , , , _ __ _ , . _ , _ , , _ , _ _,,



E
~

120555078877 1 1 A N 1 F' qIJ E NRC-0A0M-;JM
'IV OF PUq SVCS
POLICY S PUP NGT H4-P04 NU4EGW-537
WASHINGinn DC ?C555

,

hh hl! a !, e ex co 8 54b

..


