

GENERAL OFFICE P.O. BOX 499, COLUMBUS, NEBRASKA 68601-0499 TELEPHONE (402) 564-8561

NLS8800267 June 3, 1988

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

Gentlemen:

- Subject: Primary Containment Air Systems Cooper Nuclear Station NRC Docket No. 50-298, DPR-46
- Reference: Letter from J. M. Pilant to D. B. Vassallo dated July 17, 1985, "Response to Request for Additional Information - Hydrogen Recombiner Capability, Cooper Nuclear Station" (Generic Letter 84-09)

In the above reference, information was submitted on the use of pressurized atmospheric air systems within the containment during operation. One of the listed components (RR-741AV, Inboard Sample Line Isolation Valve) has been changed to a nitrogen motive supply and no longer utilizes atmospheric air. This modification was performed during the Fall 1986 refueling outage as discussed in the reference. The information presented in the reference has been updated to reflect this change and is attached for information.

The revised information also includes the twelve actuator lines to the torus-drywell vacuum breakers that utilize instrument air. These lines penetrate the torus shell and were inadvertently left off the original list. The lines will normally be isolated during operation except for performance of the monthly Technical Specification operability surveillances.

Powerful Pride in Nebraska

If you have any questions, please call.

Sincerely,

revors

Division Manager Nuclear Support

GAT/grs:jw Attachment

cc: NRC Regional Office Region IV Arlington, Texas

> NRC Resident Inspector Office Cooper Nuclear Station

PDR ADOCK 050002

100

Attachment Revised May 12, 1988

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

HYDROGEN RECOMBINER CAPABILITY

COOPER NUCLEAR STATION

REQUEST 1.

. . . .

Provide a list of all pressurized systems within the containment using atmospheric air. Include the volumes and flow rates of air that could be released into the containment in case of system failure. Describe the isolation provisions for these systems and provide a reference to relevant drawings. In general, justify the use of atmospheric air within the containment.

RESPONSE 1:

SYSTEM	COMPONENT SUPPLIED BY AIR	COMPONENT DESCRIPTION	FLOWRATES (SYSTEM FAILURE)	DRAWINGS	NOTES
Residual Heat Removal	RHR-512AV	Testable Check Loop A	1880 SCFH	Burns & Roe Dwg. 2040	B, C, D
Residual Heat ' moval	RHR-532AV	Testable Check Loop B	1880 SCFH	Burns & Roe Dwg. 2040	B, C, D
Core Spray	CS-684AV	Testable Check Loop A	1880 SCFH	Burns & Roe Dwg 2045	B, C, D
Core Spray	CS-678AV	Testable Check Loop B	1880 SCFH	Burns & Roe Dwg. 2045	B, C, D
Primary Containment	PC-NRV-20 thru 31	Torus-Drywell Vacuum Breaker (12 total)	1880 SCFH (each)	Burns & Roe Dwg. 2027	B, C, D

NOTES:

A. Deleted

- B. Instrument air to the valve inside primary containment is normally isolated, except for performance of monthly Technical Specification operability surveillances.
- C. Air supply is provided with manual valve isolation.
- D. The volumes apply only to tubing runs and are considered insignificant in relation to total drywell or torus volume.