

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

October 3, 1988

Docket Nos. 50-321 50-366

MEMORANDUM FOR:

David B. Matthews, Director

Project Directorate II-3

Division of Reactor Projects I/II

FROM:

Lawrence P. Crocker, Project Manager

Project Directorate II-3

Division of Reactor Projects I/II

SUBJECT:

MEETING SUMMARY

On September 21, 1988, a meeting was held at the NRC Region II office with representatives of Georgia Power Company to discuss the status of the licensee's actions in response to NRC Bulletin 85-03 for the Hatch Nuclear Plant. Enclosure 1 provides a listing of the attendees. The meeting had been arranged at the request of the licensee to obtain clarification regarding the Bulletin requirements.

The original Bulletin 85-03 was issued on November 15, 1985, and was intended to ensure that licensee developed and implemented a program to ensure that switch settings on certain safety-related, motor-operated valves are selected, set and maintained correctly to accommodate the maximum differential pressures expected on these valves during both normal and abnormal events. Supplement 1 to Bulletin 85-03 was issued on April 27, 1988 to clarify which valves on BWRs were to be included in the program and to clarify the meaning of a phrase in the original bulletin.

The licensee responded to the initial bulletin by letters dated October 2, 1986, March 12, 1987 and April 8, 1987. On April 4, 1988, the staff requested additional information regarding certain aspects of the licensee's program. The licensee responded to the RAI by letter dated May 4, 1988. Included in the May 4 response was a request to meet with the staff to explain the licensee's program. The September 21 meeting was held in response to that request. In the meantime, the licensee also had responded to Supplement 1 to Bulletin 85-03 by letter dated May 27, 1988.

The licensee briefed the staff on the program developed to respond to Bulletin 85-03, including the methodology used to identify valves and determine the maximum differential pressures, the establishment of correct switch settings, testing results to date, and the program and schedule for long-term compliance. A copy of the briefing charts is provided at Enclosure 2.

The staff informed the licensee that the bulletin is being superseded by a generic letter, to be issued within a few months, which will address the problems the staff has observed and provide guidance on the actions needed for a long-term approach to resolving potential motor-operated valve problems.

DFO!

The licensee has almost completed the testing on Unit 2 valves to meet the original scope of Bulletin 85-03. However, completion of the Unit 2 valve testing to meet the scope of Supplement 1 to the bulletin will have to await the next Unit 2 maintenance/refueling outage in the Spring of 1989. Testing of all Unit 1 valves is scheduled to be completed during the maintenance/refueling outage which began on September 28, 1988. The licensee agreed to submit the test data as it becomes available rather than to hold it for a complete, final report.

Lawrence P. Crocker, Project Minager Project Directorate II-3

Division of Reactor Projects 1/11

Enclosures:

Attendance List
 Briefing slides

cc: w/enclosures See next page The licensee has almost completed the testing on Unit 2 valves to meet the original scope of Bulletin 85-03. However, completion of the Unit 2 valve testing to meet the scope of Supplement 1 to the bulletin will have to await the next Unit 2 maintenance/refueling outage in the Spring of 1989. Testing of all Unit 1 valves is scheduled to be completed during the maintenance/refueling outage which began on September 28, 1988. The licensee agreed to submit the test data as it becomes available rather than to hold it for a complete, final report.

Lawrence P. Crocker, Project Manager Project Directorate II-3 Division of Reactor Projects I/II

Enclosures:

1. Attendance List

2. Briefing slides

cc: w/enclosures See next page

DISTRIBUTION FOR MEETING SUMMARY DATED: September 21, 1988

Docket File NRC PDR Local PDR PDII-3 Reading M. Rood

M. Rood L. Crocker OGC E. Jordan

B. Grimes RKiessel ACRS (10) Frank Jape Stephen Tingen

PDII-3 LCrocker: 1s 10/3/88 14-H-25

14-H-25 15-B-18

MNBB-3302 9-A-2

11-A-1 H-1016 RII

RII

POII-3 DMatthews 10/₃/88 Mr. W. G. Hairston, III Georgia Power Company

cc: G. F. Trowbridge, Esq. Shaw, Pittman, Potts and Trowbridge 2300 N Street, N. W. Washington, D.C. 20037

Mr. L. T. Gucwa Engineering Department Georgia Power Company P. O. Box 4545 Atlanta, Georgia 30302

Nuclear Safety and Compliance Manager Edwin I. Hatch Nuclear Plant Georgia Power Company P. O. Box 442 Baxley, Georgia 31513

Mr. Louis B. Long Southern Company Services, Inc. P. O. Box 2625 Birmingham, Alabama 35202

Resident Inspector U.S. Nuclear Regulatory Commission Route 1, Box 725 Baxley, Georgia 31513

Regional Administrator, Region II U.S. Nuclear Regulatory Commission 101 Marietta Street, Suite 2900 Atlanta, Georiga 30323

Mr. Charles H. Badger Office of Planning and Budget Room 610 270 Washington Street, S.W. Atlanta, Georgia 30334

Mr. J. Leonard Ledbetter, Commissioner Department of Natural Resources 270 Washington Street, N.W. Atlanta, Georgia 30334

Chairman Appling County Commissioners County Courthouse Baxley, Georgia 31513 Edwin I. Hatch Nuclear Plant, Units Nos. 1 and 2

Mr. R. P. McDonald Executive Vice President -Nuclear Operations Georgia Power Company P.O. Box 4545 Atlanta, Georgia 30302 MEETING MOTOR-OPERATED VALVES BULLETIN 85-03 21 SEPTEMBER 1988

NAME

Larry Crocker
Frank Jape
Richard J. Kiessel
Stephen Tingen
Dan Warsing
Dave Midlik
Chris Sorensen
Gene Talton
Brad Harkins
Jim Heidt
Ken McElroy

POSITION

Project Manager, Hatch
TPS/DRS
Sr. Mech. Eng.
TPS/DRS/NRC
Tech. Mgr.
Lead Engineer 85-03 Hatch
I&C ENG.
GPC-Corp. Engr.
SCSI-AE
Lic. Mgr. - Hatch
Lic. Engineer - Hatch

REPRESENTING

NRC, NRR NRC, RII NRR/OGCB MRC, RII Limitorque GPCO SCSI GPC SGSI GPC GPC GPC

E. I. HATCH NUCLEAR PLANT

IEB 85-03 MOV TESTING

SEPTEMBER 21, 1988

PURPOSE OF MEETING

OBTAIN NRC CONCURRENCE ON GPC'S BULLETIN 85 - 03 PROGRAM

PROGRAM OVERVIEW

BWR OWNERS GROUP METHODOLOGY FOR DP CALCULATIONS
INDUSTRY STANDARD (LIMITORQUE) SIZING EQUATIONS
LIMITORQUE DIAGNOSTIC EQUIPMENT FOR SIGNATURE ANALYSIS
LIMITED DP TESTING

PROGRAM STATUS

UNIT 2 TESTING COMPLETE FOR ORIGINAL BULLETIN SCOPE
UNIT 1 TESTING STARTED (OUTAGE BEGINS 9-28-88)

AGENDA

NRC/GPC MEETING ON PLANT HATCH BULLETIN 85-03 PROGRAM SEPTEMBER 21, 1988 - ATLANTA

NRC REGION II OFFICES

9:00 - 12:00

- ADGENDA
- O PROGRAM DESCRIPTION
 - METHODOLOGY TO IDENTIFY VALVES AND DETERMINE MAXIMUM DIFFERENTIAL PRESSURE (DP)
 - ESTABLISHMENT OF CORRECT SWITCH SETTINGS
 - O SWITCH FUNCTIONAL REVIEW
 - O THRUST CALCULATIONS
 - O OPERATOR CAPABILITY
 - TESTING RESULTS
 - O OVERVIEW
 - AS-FOUND CONDITION
 - O STATIC AND DP SIGNATURE ANALYSIS
 - LONG-TERM COMPLIANCE
 - o PROCEDURES
 - PROACTIVE EFFORTS
 - SCHEDULE
- O NRC FUTURE PLANS
- O SUMMARY/OPEN ITEMS

SUBJECT SYSTEMS

The Bulletin addresses high-pressure coolant injection systems and emergency feedwater systems which are to be tested in accordance with 10 CFR 50.55a(g)

The applicable systems at Plant Hatch include:

HIGH PRESSURE COOLANT INJECTION REACTOR CORE ISOLATION COOLING

SUBJECT VALVES

Valves which are considered to be included under the scope of the Bulletin are those which are required to be tested in accordance with Section XI of the ASME Boiler and Pressure Vessel Code.

SWITCH SETTINGS ADDRESSED

- OPEN TORQUE SWITCH
- OPEN TORQUE SWITCH BYPASS
- CLOSE TORQUE SWITCH
- CLOSE TORQUE SWITCH BYPASS
- OPEN LIMIT SWITCH
- CLOSE LIMIT SWITCH
- THERMAL OVERLOADS

OPEN TORQUE SWITCH

Jumpered from circuit.

Opening Capability is limited to the motors ability to develop the maximum required torque when coupled with the operator gearing.

OPEN TORQUE SWITCH BYPASS

Setting not required.

Permanent jumper installed around open torque switch.

CLOSED TORQUE SWITCH

Used to stop travel in the closed direction.

Set to assure that the valve will close against the maximum DP and that damage does not occur to:

Operator thrust components
Operator torque components
Valve thrust components
Valve torque components

CLOSED TORQUE SWITCH BYPASS

Set to bypass the closed torque switch during the initial 1/8" of travel to assure that valve clears backseat.

OPEN LIMIT SWITCH

Set to limit travel in the open direction to prevent backseating due to inertia.

CLOSED LIMIT SWITCH

Setting not required.

All control in the close direction is by the close torque switch.

THERMAL OVERLOADS

Setting not required.

Overloads bypassed per NRC Regulatory Guide 1.106

OPERATION CRITERIA

The valves were reviewed to establish:

Valve functions
Required safety actions
Events that impose maximum DP
Location of maximum DP

PLANNED EVENTS

- Refueling outages
- Achieving Criticality
- Heatup
- Power Operation
- Achieving Shutdown
- Cooldown

CONDITIONS CONSIDERED IN DP CALCULATIONS

- Maximum Reactor Vessel Pressure
- Maximum Equipment Output
- Hydrostatic Head
- Atmospheric Pressure
- Water Hammer
- Velocity Head
- LOCA Related Pressure

MINIMUM THRUST REQUIREMENT

Forces which must be overcome to operate valve:

Stuffing Box Load

Stem Load

Differential Pressure Load

STUFFING BOX LOAD

Dependent upon stem diameter.

Assigned the following loads:

```
Up to 1" 1000 #
Up to 1-1/2" 1500 #
Up to 2-1/2" 2500 #
Up to 4" 4000 #
Above 4" 5000 #
```

STEM LOAD

The force required to drive the valve stem into the valve.

Neglect if line pressure < 500 PSIG

For line pressure > 500 PSIG:

Stem Area X (Line Pressure - Max DP)

Calculated for both maximum open and close DP, with the higher being selected.

DIFFERENTIAL PRESSURE LOAD

The force required to overcome the component of resistance caused by differential pressure.

Valve seat area X DP X Valve Factor

MAXIMUM TARGET TORQUE/THRUST

Selected on the lower of:

Operator Available Torque
Operator Maximum Allowable Thrust
Operator Maximum Allowable Torque
Valve Maximum Allowable Thrust
Valve Maximum Allowable Torque

REQUIRED MOTOR TORQUE

(Max Calculated Stem Torque / Ratio * Pullout Efficency * Application Factor) * 100

REQUIRED MOTOR RUN TORQUE

Maximum Unit Run Torque/ (Unit Ratio * Unit Efficency / 100)

DERATED MOTOR VOLTAGES

The required motor torque at the derated voltages is calculated and compared to the rated motor voltages.

90% Voltage for AC Motors 84% Voltage for DC Motors

1988 UNIT 2 OUTAGE MOV TESTING BY ACTUATOR SIZE

8 SMB-000

6 SWB-00

4 SMB-0

3 SMB-1

1 SB-0

1 SB-3

11 HPCI MOVS

12 RCIC MOVS

14 LLRT

11 EQ

TEST CREW

IN - HOUSE MECHANICS, ELECTRICIANS, INSTRUMENTATION AND CONTROL TECHNICIANS

- SETUP OF TEST EQUIPMENT

LIMITORQUE CERTIFIED TECHNICIANS

- ASSISTED IN SIGNATURE ANALYSIS
- ASSISTED IN EQUIPMENT SETUP

MOTOR ACTUATOR CHARACTERIZER (MAC)

- OEM SUPPLIED LIMITORQUE CORPORATION
- 10 CHANNEL CAPABILITY ALL DATA COLLECTED

 EACH STROKE
- USER FRIENDLY SOFTWARE AND DISPLAY DISPLAY IN REQUIRED ENGINEERING UNITS - NO FIELD CALCS
- MODEM DATA LINK WITH LIMITORQUE

MOTOR ACTUATOR CHARACTERIZER (MAC)

- · LIMIT SWITCHES
- TORQUE SWITCHES
- MOTOR CURRENT
- WORM SHAFT DISPLACEMENT
 (SPRING PACK COMPRESSION)
- STEM THRUST
 OPEN MEASURED
 CLOSE CALCULATED
- ACTUATOR OUTPUT TORQUE
 CLOSE MEASURED
 OPEN CALCULATED

MOV TESTING

STATIC TEST - PERFORMED ON ALL MOVS AT ZERO DIFFERENTIAL PRESSURE

PRESSURE TEST - SELECTED MOVS TESTED AT SYSTEM PRESSURE

(Rx PRESSURE APPROXIMATELY 1000 PSI)

STATUS OF TESTING - UNIT 2

- COMPLETE FOR ORIGINAL BULLETIN SCOPE
- SUPPLEMENTAL BULLETIN VALVES WILL BE COMPLETED NEXT OUTAGE

STATUS OF TESTING - UNIT 1

- TESTING STARTING
- WILL BE COMPLETED FOR ORIGINAL BULLETIN AND SUPPLEMENT DURING UPCOMING OUTAGE (STARTING 9-28-88)

AS - FOUND MOV CONDITIONS

23 MOVS TESTED (UNIT 2)

17 MOVS - AS FOUND THRUST ACCEPTABLE

6 MOVS - AS - FOUND THRUST BELOW THAT CALCULATED

DEGRADATIONS FOUND WITH DIAGNOSTIC EQUIPMENT

- 3 MOVS GREASE IN SPRING PACK
- 2 MOVS SPRING PACK REPLACED
- 3 MOVS TORQUE SWITCH REPLACED
- 1 MOV TORQUE SWITCH PRELOAD
- 5 MOVS MISCELLANEOUS WIRING OR GEARING PROBLEM
- 1 MOV COMPLETE OPERATOR REBUILD

STATIC TEST VS PRESS TEST RESULTS MOV 2E41-FOO1, CLOSE TRACE

STATIC TEST VS PRESS TEST RESULTS MOV 2E41-FOO1, OPEN TRACE

AS-LEFT THRUST MARGINS % AROVE MINIMUM REQUIRED

0 - 100 PSID

+18-527%

11 MOVS

101 - 426 PSID

+75-505%

2 MOVS

> 1000 PSID

+20-405%

10 MOVS

PROCEDURES

- 53IT-TET-001-0S

 LIMITORQUE VALVE OPERATOR DIAGNOSTIC

 TESTING (MAC) AND SETUP
- 52PM-MNT-005-0S LIMITORQUE VALVE OPERATOR INSPECTION
 - · PM
 - · EQ
- 52GM-MEL-022-0S

 LIMITORQUE VALVE OPERATOR ELECTRICAL

 MAINTENANCE
 - " GENERAL ELECTRICAL MAINTENANCE, CHECKOUT AND SWITCHES
- MECHANICAL MAINTENANCE PROCEDURES FOR VARIOUS
 OPERATOR SIZES AND TYPES

PROACTIVE EFFORTS

- . USE OF MAC TO TROUELESHOOT "PROBLEM" MOVS
- · CONSOLIDATION OF LIMITORQUE OPERATOR INFORMATION
 - OPERATOR SIZES, TYPES, SERVICE
 - SPARE PARTS
- PERIODIC REVIEW OF MAINTENANCE WORK ORDERS
 GENERATED OR COMPLETED
- INCREASED ATTENTION TO NON-BQ, NON SAFETY
 RELATED MOVs