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Figure 2-1
OYSTER CREEK CORE MAP
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3.0 TECHNICAL DESCRIPTION
3.1 Overview .

The three dimensional simulator code, NODE-B, is a coupled three
dimensional neutronic and thermal hydraulic model which is able to
predict reactivity, power and coolant-void distribution, and con-
*rol rod positions throughout the core litetime. The program uses

iterative solution techniques to solve for the interaction between

power, coolant flow and voids, fuel temperature and xerHn dis~-

tributions. The complete calculation consists of two levels of

iterations, source and coolant voias.

The source iteration in NODE-B treats reflection at the surface of
the core with an albedo and employs transport kernels (which track
neutrons for a distance of only one node) to represent the coup-
ling between nodes. The neutron source at each node is calculated
as a function of the infinite multiplicat.on factor, k®, and the
transport kernel. The latter is a simple function of the migra-
tion area, M’, and the mesh spacing. The migration area is
calculated at each node based on a fit to the moderator density.
The infinite multiplication factor is calculated at each node
including the effects of control rods, local moderator density,
fuel exposure, fuel temperature and xenon concentration. The core
effective multiplication factor is calculated on the basis of a
neutron balance summed over the entire core in each iteration,

The void calculation consists of the determination of the average

steam quality at each node based on inlet velocity, inlet enthalpy
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Figure 3-1.
NODE-B FLOW CHART
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the pumphead requirement within a specified toleran . ¢ 1
. Low distribution S tained [or A f the i s Lhi ]
-

vidual flow to each channel is summed an npared tl tota

‘equired flow. [f the flow is within a sps fied erance, the

problem is converged. [f it is not within the spe tied toler-

ance, the pumphead is adjusted to reduce the error between the

l 4

romputed total flow and the flow specified by the input, and the

entire iterative procedure is repeated.

A newly developed quality~to-void correlation with special
treatment of the subcooled region has been implemented in the
PSMS. This mechanistic model has been reduced t in approximate
tormulation that in steady-state cases has been shown to be

good agreement with the original model.

Flow Distribution and Pressure Dr« E

For a specified total core flow rate, the flow rate distribution
is determined by equalizing the pressure drop across each channel.
The equation used to calculate the fuel assembly pressure drop in
a BWR is

AP = V ¥ |[folo # REoLyg # 2r ¢« K |,

where

R = gravitational constant
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where:

= saturated 1l nuid entha v a ore averag
pressure, BTU/1lb; and
= core inlet coolant enthalpy, BTU/lb.

The following heat balance is made to determine the core inlet

coolant enthalpy.

where:

WEW
QPUMP
QLOSS

HF

HG

HFW
HRD
WRD

QCL

1

"WT [(WT - WST - WCU)HF + WCUMHG + WFW*HFW

+ HRD*WRD + QPUMP - QLOSS - QCL]

Core inlet coolant enthalpy, BTU/lb;

Total core flow, lbs/hr;

Steam flow leaving reactor vessel, lbs/hr;
Steam carryunder in recirculation flow entering,
downcomer, lbs/hr;

Feedwater flow, lbs/hr;

Energy from recirculation pumps, BTU/hr;

Heat loss from reactor vessel, BTU/hr:

Enthalpy of saturated liquid entering downcomer
(evaluate at dome pressure), BTU/1b;

Saturated steam enthalpy of carryunder, BTU/Lb;
Feedwater flow enthalpy, BTU/Lb;

Control rod drive flow enthalpy, BTU/lb;
Control rod drive flow, lbs/hr; and

Energy loss to the cleanup system, BTU/hr.

24
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Instrumentation Model

The in-core instrument readings are predicted by N

prediction of an instrument reading at a given location is bmsed

on the nodal power of the four fuel nodes adjacent to the instru
ment. The four nodal powers are multiplied by a conversion factor

and summed to get the relative instrument reading, IR, as follows:

where P, ;. is the nodal power and RF, ;. is the conversion
factor. The conversion factor is a function of vecids, exposure,
fuel type and control rod presence. The conversion factor is
obtained from CPM calculaticns. The values of RF are fitted to

the equation:

RF = Cl + C2%E + C3*E® + C7#E’ + (0S5 + CS*E) * (1 - (U/UBASE)

where the C constants are input for each fuel type and E and U are
the nodal exposure and relative moderator density, respectiv:ly.

A second set of C constants are used for controlled nodes.

The relative instrument reading is multiplied by input factors
XMONO and PTH to convert the reading to absolute readings in

watts/cm’.






4.0 VERIFICATION

’ ’

The verification work that has been performed was to establish con-
fidence in the methods described here. Confidence is established by
the ability of the methods to reproduce criticality and power distri-
bution data measured in operating plants over a period of time and
conditions. The verification work, therefore, encompasses comparisions
of NODE-B calculations to measured data over several operating cycles.
Since Oyster Creek is the primary focus for the applications of these
methods, the majority of the verification is with Oyster Creek data.
The addition of the Hatch 1, cycle 1 data was to also include gamma
scan measurements that were made at end of cycle 1 in this verifi-

cation. It also demonstrates the application of methods over a wider

range of conditions and fuel designs.

4.1 Comparison with Data Measured at Oyster Creek.
4.1.1 Cold Criticals

The NCDE-B cold model was evaluated against cold criticals
performed at Oyster Creek during startup tests at the be-
ginning of cycles 8, 9 and 10. The criticals were per-
formed at the beginning of each cycle with the head off the
vessel and moderator temperature around 90°F. The criti-
cals performed are local criticals with a series of posi-
tive and negative periods to notch calibrate a control rod
and measure shutdown margin. These criticals are rarticu-
larly good to demonstrate the capability of the uiodel to

calculate shutdown margin,



The criticals performed for each cycle are shown in

Table 4.1 to 4.3 along with the calculated k-effectives
corrected for tefberature. The critical k-effective is
corrected for period and temperature. The combined average
k-effective for the 3 cycles is 1.00193 with a standard
deviation of 0.00293. Part of the variation in the
k-effective from cycle to cycle is due to the different
number of control rods used in and location of, the
critical configurations. The critical k-effective with a
minus one sigma uncertainty is used to predict shutdown

margin.

Hot Reactivity Calculation

NODE-B core follow calculations were performed for Oyster
Creek cycles 8 and 9. Twelve statepoints were analyzed for
each cycle. Key information for each statepoint is pro-
vided in Tables 4.4 and 4.5. The core average k-effective
is calculated for each statepoint and the mean k-effective
for the cycle is provided in Tables 4.6 and 4.7. The mean
k-effective for both cycles 8 and 9 is 0.986245 with a
standard deviation of 0.00177. The consistency of the
k-effective is very good both within cycle 8 and 9 and from

cycle 8 to cycle 9.

Power Distribution Comparison
The accuracy of the NODE-B power distribution was determined

by comparing measured TIPs to TIPs predicted by NODE-B.

- -3 -



These comparisons wer2 performed tor the cycle 8 and 9
statepoints with the results shown in Tables 4.6 and 4.7
The TIP nodal uncertainty is given in percent RMS which is

calculated as follows

Residual for node ijk

Rijk = (M - C)/M
Overall Nodal RMS error
RMS = [ §J R¥(Z2, k)/€ * k]
4,k
where:

M = measured TIP for node ijk

C = calculated TIP for node i jk

M = average measurement
¢ = number of TIP strings

k = number of axial nodes.

The mean nodal RMS is 7.65% + 1.41% for cycles 8 and 9.

I

Figures 4.1 to 4.24 contain the comparison of the core
average axial TIP between NODE-B and measurements. The
nodal uncertainty of 7.65% is very good. Part of the un-
T

certainty is in the TIP measurements themselves. The TIP

asymmetry (unexplained differences between readings of
1

symmetrically located TIPs) was 2.97% and 2.90% for cycles

8 and 9 respectively.
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TIP Reading in Watts/cm?

Figure 4.1
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 01-26-79
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Figure 4.2
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 02-22-79
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TIP Reading in Watts/cm?

Figure 4.3
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 03-01-79
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TIP Reading in Watts/cm?
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Figure 4.4
COMPARISON OF CORE AVERAGE AXIAL TIR READING FOR THE
OC CYCLE 8 STATEPOINT 03-20-79

——— Measured

-~ Calculated

Axial Nodes

~I



TIP Reading in Watts/cm?

Figure 4.5

COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 04-19-79
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Figure 4.6
COMPARISON CF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 06-08-79
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TIP Reading In Watts/cm?

Figure 4.7
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 07-03-79
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Figure 4.8
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 07-26-79
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Figure 4.9
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 08-30-79

100 r e et .
———- Measured

90 —
-~ Calculated

.o S—

70 —

| |
" | i i " A 4

et ————————t———————te

0 2 4 6 8 10 12 14 16 18 20 22 pL

Axial Nodes

M R O B O oF 0 B e Ol W ey B an B U B TRk e e
TIP Reading in Watts/cm?




TIP Reading in Watts/cm?

Figure 4.10
COMPARISON OF CORE AVERAGE-AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 09-06-79
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TIP Reading in Watts/cm?
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Figure 4.11
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 10-25-79
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TIP Reading in Watts/cm?

Figure 4.12
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 8 STATEPOINT 12-05-79
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Figure 4.13
COMPARISON OF CORE AVERAGF AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT.07-30-80
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TIF Reading in Watts/cm?

Figure 4.14
COMPARISON OF CCT"= AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT 08-29-80
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Figure 4.15
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT 09-29-80
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Figure 4.16
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT 11-11-80
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Figure 4.17
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT 12-16-80

100 ¢
i
90 — ——— Measured
-« Calculated
80 —
70 —

TIP Reading in Watts/cm?

2 3 6 8 10 12 14 16 18 20 22 24

Axial Nodes



Figure 4.18
. COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
; OC CYCLE 9 STATEPOINT 02-27-81
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TIP Reading in Watts/cm?

Figure 4.19
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT 03-24-81
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TIP Reading in Watts/cm?

Figure 4.20
COMPARISON OF CORE AVERAGE AXIAL TIP READING,FOR THE
OC CYCLE 9 STATEPOINT 06-16-81 .
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TIP Reading in Watts/cm?

Figure 4.21
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT 07-09-81
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TIP Reading in Watts/cm?

Figure 4.22
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT 08-11-81
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TIP Reading in Watis/cm?

Figure 4.23
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE
OC CYCLE 9 STATEPOINT 11-25-81
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TIP Reading in Watts/cm?

Figure 4.24

COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR THE

OC CYCLE 9 STATEPOINT 12-09-81
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steam leak repaired during an outage in April 1976 indicates

problems with the data as opposed to modeling deficiencies.

Power Distribution Comparison

The accuracy of the NODE-B model during the cycle was
determined by comparing predicted and measured TIPs. The
results for the 17 statepoints are summarized in

Table 4.9. The overall nodal RMS is 9.14%. The cycle
performance is generally in the 8 to 9% range except for
the pericd following the bypass hole plugging where per-
formance was in the 9 to 12% RMS range. The nodal
asymmetry for Hatch cycle 1 is 4.02%2. A comparison of the
measured and predicted core average TIPs are shown in Fig-

ures 4.25 to 4.41.

Gamma Scan Comparisons

The end of cycle gamma scan measurements provide data to
directly evaluate core power distribution predictions. The
EOC 1, Hatch 1 gamma scan measurements  ''’ were made on

L06 fuel assemblies; 75 comprising a complete octant of the
core and 31 assemblies in octant symmetric locations. All
106 fuel assemblies were measured at a minimum of 12 axial

positions.

The results of the gamma scan are swmmarized in

Table 4.10. The core axial RMS is presented in
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Table 4.11. The comparison of predicted and measured core

s shown in Figure 4.4,2. Individual bundle

average axial
power distribution comparison are shown in Figures 4.43 t
4.47. Figure 4,48 shows the radial comparison (Bundle
integrated RM5) for all 106 fuel assemblies. The defi-
nition of the residuals and statistics are provided in

Appendix A.

The results were generally good. The overall nodal RMS of
7.95% is acceptable and falls below the 8.54% mean RMS of
the TIP comparison for the last five statepoints. hese
were the power distributions used to generate the predicted
end of cycle Ba-140 distribution used in the comparison.

[t demonstrates that the ability of the model to predict

the TIPs is indicative of the models ability to predict

power distribution.




TABLE 4.8

KEY INFORMATION F@R HATCH

Power
Date (Mwth)
03-28-75 | 1218
05-24-75 2189
08-26-75 2331
09-25-75 2098
10-24-75 2091
01-13-76 1947
01-25-76 1853
05-25-76 | 2104
07-22-76 2021
08-13-76 | 2269
09-16-76 2230
11-29-76 2037
12-29-76 2231
01-21-77 | 2131
01-25-77 2153
02-23-77 2208
03-07-77 2114
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Normalized TIP Reading

' Figure 4.25
. COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 03-28-75
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Figure 4.26
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 05-24-75
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Normalized TIP Reading

Figure 4.27
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 08-26-75
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Normalized TIP Reading

0.0

Figure 4.28
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE T STATEPOINT ON 03-25-75
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Normalized TIP Reading

1.8

0.0

Figure 4.29
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 10-24-75
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Figure 4.30
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 01-13-76
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Normalized TIP Reading

Figure 4.31
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 01-25-76
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Normalized TIP Reading

Figure 4.32
COMPARISON OF €ORE AVERAGE AXIAL TIP READING FOR
THE HATCH T CYCLE 1 STATEPOINT ON 05-25-76
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Normalized TIP Reading

Figure 4.33
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 07-22-76
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Normalized TIP Reading

Figure 4.34
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 08-13-76
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Normaiized TIP Reading

Figure 4.35
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 09-16-76
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Figure 4.36
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR ‘
THE HATCH 1 CYGCLE 1 STATEPOINT ON 11-29-76 1
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Normalized TIP Reading

Figure 4.37
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 12-29-76
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Normalized TIP Reading
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Figure 4.38
AVERAGE AXIAL TIP READING FOR -

THE HATCH 1 CYCLE 1 STATEPOINT ON 01-21.77
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Figure 4.39
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCLE 1 STATEPOINT ON 01-25-77
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Figure 4,40
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
*  THE HATCH 1 CYCLE 1 STATEPOINT ON 02-23-77
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Nermalized TIP Reading

Figure 4.41
COMPARISON OF CORE AVERAGE AXIAL TIP READING FOR
THE HATCH 1 CYCEE 1 STATEPOINT ON 03-07-77
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Relative Ba-140

Figure 4.42
106 BUNDLE AVERAGE AXIAL 8a-140 DISTRIBUTION
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Relative Ba-140

Figure 4.43
OCTANT NORMALIZED AXIAL Ba-140 DISTRIBUTION
FOR FUEL ASSEMBLY HX-169 (LOCATION 14,08)
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Figure 4.44
OCTANT NORMALIZED AXIAL Ba-140 DISTRIBUTIQN
-FOR FUEL ASSEMBLY HX-373 (LOCATION 15.08)
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Relative Ba-140

Figure 4.45
OCTANT NORMALIZED AXIAL Ba-140 DISTRIBUTION
FOR FUEL ASSEMBLY HX-393 (LOCATION 14,09)

—— Gamma Scan

CONTROL BLADE AT NOTCH 34

i . A " A i i s

4 6 8 10 12 14 16 18 20

Axial Nodes



Relative Ba-140

Figure 4.46
OCTANT NORMALIZED AXIAL Ba-140 DISTRIBUTION
FOR FUEL ASSEMBLY HX-141 (LOCATION.15,09)
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Figure 4.47
OCTANT NDRMALIZED AXIAL Ba-140 DISTRIBUTION
FOR FUEL ASSEMBLY HX-413 (LOCATION 41)
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Figure 4.48
RELATIVE BUNDLE INTEGRATED Ba-140
DISTRIBUTION
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5.0 SUMMARY AND CONCLUSIONS

This report describes the code used at CPUN for steady state analysis
\

of the Oyster Creek core. The tode is an improved version of NODE-B

which developed under the PSMS program sponsored by EPRI. It is a one

group neutronic model integrated with a thermal hydraulic model

(THERM-B).

The Oyster Creek core is modeled in nodes, one node radially and 24
axially for each fuel assembly. The neutron source, S, at each node is
calculated in terms of k® and Wmn. Wmn is the probability of a

neutron born in node m and is absorbed in node n and is a function of
the migration area, M®’. The nodal k® is a function of fuel,

exposure, coolant density. fuel temperature, control fraction and xenon
concentration. The core k-effective is based upon a neutron balance
summed over the.entire core. The core flow distribution is calculated
by equalizing the pressure drop across each channel. An EPRI developed

mechanistic model is used to determine void fraction.

The nodal model was verified against measurements from Oyster Creek
cycles 8 and 9 and Hatch 1 cycle 1. The verification data includes
gamma scan measurements, TIP data and cold criticals. A variety of
core conditions were covered and both 7x7 and 8x8 fuel designs were

covered.

The verification work from Oyster Creek data showed:
- a hot reactivity of 0.986245 with a standard deviation of 0.00177;

- a cold Keffective of 1.00193 with a standard deviation of 0.00293;

-
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The verification from Hatch 1 yvcle | data showed:

- a hot reactivity of .98498 with a standard deviation of

- a nodal uncertainty of 9.14% based on comparison to TIP me
ments;
- a nodal uncertainty of 7.95% based on comparison to gamma

measurements.

The results of GPUN's off-line verification agree with the on-
benchmarking sponsered EPRI ~'. It demonstrates the adequacy o

off-line code.
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Appendix A

¥

The following definitions are used for residuals and their statistics.

Residual

R = [M(Z,k) - P(4,k)]/M

where M(Z,k) measured value for bundle € at node k

P(Z,k) - predicted value for bundle ¢ at node k

M - average value of measured readings

L - number of bundles -
K - number of nodes

Overall Nodal RMS error

RMSy = [ ] R*(&,k) /o*k]'"?
2,k
Individual bundle
Es(l) = ] R(Z,k)/K
k

RMSg (1)

]
—

2 R*(2,k)/K]'
K
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RMS; = E“(€)/1

:,\(‘k) = L R(r’,t!()/’“

B - - - E ..
3

l SDa(k) = | (R(Z,k) - Ea(k))*/L-1]
RMSa = [ J E*(k)/K] :
l “‘
. Peak Node
RMSD?!- = : R:(‘;okoua-]’,:‘ ]
. «"
B \
\




