PHILADELPHIA ELECTRIC COMPANY

2301 MARKET STREET

P.O. BOX 8699

PHILADELPHIA, PA. 19101

(215) 841-4500

JOHN S. KEMPER SENIOR VICE-PRESIDENT - NUCLEAR June 3, 1988

Docket No. 50-353

Richard J. Clark, Project Manager Project Directorate 1-2 Division of Reactor Projects 1/11 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Mail Station P1-137 Washington, D.C. 20555

Limerick Generating Station, Unit 2 Subject: Proposed Technical Specifications Letter from R. J. Clark (USNRC) to Reference: 1. E. G. Bauer, Jr. (PECo) dated March 11, Letter from S. A. Varga (USNRC) to 2.

E. G. Bauer, Jr. (PECo) dated December 19, 1987

Limerick Generating Station, Unit 2 Enclosure: Proposed Technical Specifications

Dear Mr. Clark:

Enclosed are five copies of the Limerick Generating Station, Unit 2 Proposed Technical Specifications. This draft was developed by marking-up the issued Limerick Generating Station, Unit 1 Technical Specifications to identify Unit 2 specific equipment tag numbers, descriptions, and design differences. Changes that were proposed but which we determined to be "improvements" or "administrative changes" were not included in the draft and may be submitted later as amendment requests.

Because the Limerick 2 Technical Specification development began in November 1987 and was based on marking-up the issued Unit 1 Technical Specifications, we have chosen not to utilize the computer file copy of the Unit 1 Technical Specifications which was enclosed with the Reference 1 letter.

At this time, we do not consider the proposed Unit 2 Technical Specifications to be final. In order to finalize some of the setpoints and variables, as-built details and calculations are required but are not yet available. We have included the Unit 1 values in the draft as working numbers. As they are finalized during our verification process we will revise the proposed Technical Specifications accordingly. In HOOL Add: Richard J. CLARK I

8806090002 880603 PDR ABOCK 05000353 DCD p

Further, we plan to revise the Unit 2 Technical Specifications to reflect changes made to Unit 1 as those changes approved by the NRC.

The proposed Technical Specifications were not revised to reflect PECo's reorganization because the process is still ongoing. The Reference 2 letter that acknowledged PECo's submittal of LGS organizational changes indicated that the LGS-1 Technical Specifications would remain unchanged until a thorough review is completed by the NRC. Therefore, we have left the proposed Unit 2 Technical Specifications unchanged and will update the description of the organization concurrent with Unit 1.

If we can answer any questions or provide further assistance during your review of the Unit 2 proposed Technical Specifications, please contact us.

Very truly yours, J. S. Kemper

tj/sw/06018801

Addressee Copy to: U. S. Nuclear Regulatory Commission Mall Stop 14E-21 Washington, DC 20555 R. A. Gramm, LGS Unit 2 Senior Resident Inspector W. T. Russell, Region I Administrator

G. M. Leitch bcc: w/o: J. S. Kemper R. J. Stipcevich L. B. Pyrih G. A. Hunger, Jr. A. J. Marie H. D. Honan R. J. Lees C. A. McNeill, Jr. W. T. Ullrich DAC (NG-8) W. M. Alden DAC (NG-8) NES Chron

FIRST DRAFT SUBMITTAL TO NRC TUNE 3, 1988 LIMERICK UNIT 2 TECHNICAL SPECIFICATIONS

NUREG-

Technical Specifications

Limerick Generating Station, Unit No. 12 Docket No. 50-382 353

Appendix "A" to License No. NPF- 20

issued by the U.S. Nuclear Regulatory Commission

Office of Nuclear Reactor Regulation

August 14, 1987

DET	INITIONS	
SEC	TION	
1.0	DEFINITIONS	PAGE
1.1	ACTION	C. Harrison and C. Harrison
1.2	AVERAGE PLANAR EXPOSURE	1-1
*1.3	AVERAGE PLANAR LINEAR HEAT GENERATION RATE	1-1
1.4	CHANNEL CALIBRATION	1-1
1.5	CHANNEL CHECK	1-1
1.6	CHANNEL FUNCTIONAL TEST	1-1
1.7	CORE ALTERATION	1-2
1.8	CRITICAL POWER RATIO	1-2
1.9	DOSE EQUIVALENT I-131	1-2
1.10	E-AVERAGE DISINTEGRATION ENERGY	1-2
1.11	EMERGENCY CORE COOLING SYSTEM (ECCS) RESPONSE TIME	1-2
1.12	END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM RESPONSE TIME	1-2
1.13	FRACTION OF LIMITING POWER DENSITY	1-3
1.14	FRACTION OF RATED THERMAL POWER	1-3
1.15	FREQUENCY NOTATION.	1-3
1.16	IDENTIFIED LEAKAGE	1-3
1.17	ISOLATION SYSTEM RESPONSE TIME	1-3
1.18	LIMITING CONTROL ROD PATTERN	1-3
1.19	LINEAR HEAT GENERATION RATE	1-3
1.20	LOGIC SYSTEM FUNCTIONAL TEST	1-4
1.21	MAXIMUM FRACTION OF LIMITING POWER DENSITY	1-4

f

LIMERICK - UNIT 1

187 E 186

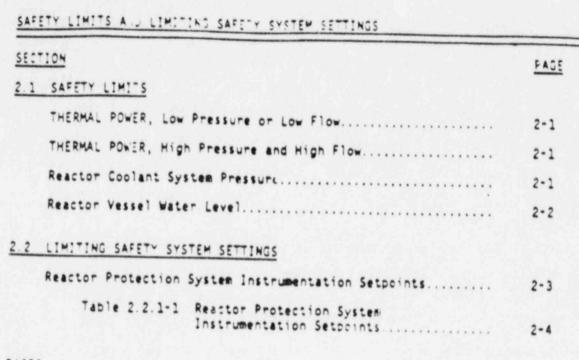
e'

'n		-	•	N	*	*	-	11		
Ъć,	2	Ξ.	÷	n.	÷		2	18	2	

. . .

	520	<u>10N</u>	
	DEFI	NITIONS (Continued)	PAGE
	1.22	MEMBER(S) OF THE PUBLIC	1-4
	1.23	MINIMUM CRITICAL POWER RATIO	1-4
1	1.24	OFFSITE DOSE CALCULATION MANUAL	1-4
	1.25	OPERABLE - OPERABILITY	1-4
	1.25	OPERATIONAL CONDITION - CONDITION	1-4
	1.27	PHYSICS TESTS	1-4
	1.28	PRESSURE BOUNDARY LEAKAGE	1-5
	1.29	PRIMARY CONTAINMENT INTEGRITY	1-5
	1.30	PROCESS CONTROL PROGRAM	1-5
	1.31	PURGE - PURGING	1-5
	1.32	RATED THERMAL POWER	3-6
	1.33	REACTOR ENCLOSURE SECONDARY CONTAINMENT INTEGRITY	1-6
	1.34	REACTOR PROTECTION SYSTEM RESPONSE TIME.	1-6
	1.35	REFUELING FLOOR SECONDARY CONTAINMENT INTEGRITY	1-6
	1.36	REPORTABLE EVENT	1-7
	1.37	ROD DENSITY	1-7
	1.38	SHUTDOWN MARGIN	1-7
1	1.39	SITE BOUNDARY	1-7
1	1.40	SOLIDIFICATION	1-7
-	1.41	SOURCE CHECK	1-7
	1.42	STAGGERED TEST BASIS	1-8
	1.43	THERMAL POWER	1-8
	1.44	UNIDENTIFIED LEAKAGE	1-8

LIMERICK - UNIT 1


11

100 - 6 100

.

INDEX

DEFINITIONS					
ECTION					
DEFINITIONS (Continued)	PAGE				
1.45 UNRESTRICTED AREA	1-8				
1.46 VENTILATION EXHAUST TREATMENT SYSTEM	1-8				
1.47 VENTING	1-8				
Table 1.1, Surveillance Frequency Notation	1-9				
Table 1.2, Operational Conditions	1-10				

BASES

2.1 SAFETY LIMITS

THERMAL POWER, Low Pressure or Low Flow	2-1
THERMAL POWER, High Pressure and High Flow	2-2
Left Intentionally Blank	2-3
Left Intentionally Blank	2-4
Reactor Coolant System Pressure	2-5
Reactor Vessel Water Level B	2-5

2.2 LIMITING SAFETY SYSTEM SETTINGS

Reactor Protection System Instrumentation Setpoints	R	2.	- 6
---	---	----	-----

LIMERICK - UNIT 1

Amendment No. 7 AUE 1 4 1987

LIMITING	CONDITIONS FOR OPERA	INDEX TION AND SURVEILLANCE REQUIREMENTS	
SECTION			PASE
3/4.0	PPLICABILITY		3/4 0-3
3/4.1 8	REACTIVITY CONTROL SYS	TEMS	
3/4.1.1.	SHUTDOWN MARGIN		3/4 1-3
3/4.1.2	REACTIVITY ANOMALIE	\$	3/4 1-3
3/4.1.3	CONTROL RODS		
	Control Rod Operabi	1fty	3/4 1-3
	Control Rod Maximum	Scram Insertion Times	3/4 1-1
	" Control Rod Average	Scram Insertion Times	3/4 1-
	Four Control Rod Gr	sup Scram Insertion Times	3/4 1-1
	Control Rod Scram Ad	cumulators	3/4 1-9
	Control Rod Drive Co	supling	3/4 1-3
	Control Rod Position	Indication	3/4 1-3
	Control Rod Drive He	busing Support	3/4 1-1
3/4.1.4	CONTROL ROD PROGRAM	CONTROLS	
	Rod Worth Minimizer.		3/4 1-1
	Rod Sequence Control	System	3/4 1-1
	Rod Block Monitor		3/4 1-1
/4.1.5	STANDEY LIQUID CONTR	DL SYSTEM	3/4 1-1
	Figure 3.1.5-1	Sodium Pentaborate Solution Temperature/Concentration Requirements	3/4 1-2
	Figure 3.1.5-2	Sodium Pontaborate Selution	3/4 1-2
14.2 PO	WER DISTRIBUTION LINI	<u>75</u>	
/4.2.1	AVERAGE PLANAR LINEA	A HEAT GENERATION RATE	3/4 2-3
	Figure 3.2.1-1	Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) Versus Average Planar Exposure Initial Core Fuel Types POCIE278-	3/4 2-2
IMERICK	- UNIT 1	BP8CRB278	
		AUE	8 1985

INDEX

X

SECTION		(C	PAGE
OWER D	ISTRIBUTION LIMITS		
	Figure 3.2.	1-2 Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) Versus Average Planar Exposure Initial Core Fuel Types PSCI8248	3/4 2-3
	Figure 3.2.	BP318B248	
	Figure 3.2.	1-4 Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) Versus Average Planar Exposure Initial	3/4 2-4
	Figure 3.2.	Generation Rate (MAPLHGR) Versus Average Planar Exposure Initial	3/4 2-5
	Figure 3.2.	Core Fuel Types PSCIB071 -6 Maximum Average Planar Linear Heat Generation Rate (MAPLMGR) Versus Average Planar Exposure For Fuel	3/4 2-6-
		Type BC320A (GE8X8E8) Laft Intentionally Blank	3/4 2-64
4 2.2	APRM SETPOINTS		3/4 2-7
4 2.3	MINIMUM CRITICAL	POWER RATIO	3/4 2-8
	Table 3.2.3-1	Deleted	1
	Figure 3.2.3-1a	Minimum Critical Power Ratio (MCPR) Versus (PEXER/BPEXER Fuel). L at Maximum Core Elow & 100%	3/4 2-20
	Figure 3.2.3-1b	Winimum Critical Power Ratio (MCPR) Versus (GEAXBED Foel)	
	Figure 3.2.3-2	Ky Factor	3/4 2-11
4.2.4	LINEAR HEAT GENER	ATION RATE	3/4 2-12
4.3 II	NSTRUMENTATION		
and the second se	Contraction of the second s	N SYSTEM INSTRUMENTATION	3/4 3-1
	Table 3.3.1-	1 Reactor Protection System Instrumentation	3/4 3-2
	Table 3.3.1-	2 Reactor Protection System Response Times	3/4 3-6
	Table 4.3.1.	1-1 Reactor Protection System Instrumentation Surveillance Requirements	3/4 3-7

LIMERICK UNIT - 1

Amendment No. 7

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION		PACE
3/4.3.2	ISOLATION ACTUATION INSTRUMENTATION.	3/4 3-9
	Table 3.3.2-1 Isolation Actuation Instrumentation	3/4 3-11
•	Table 3.3.2-2 Isclation Actuation Instrumentation Setpoints	3/4 3-18
	Table 3.3.2-3 Isolation System Instrumen- tation Response Time	3/4 3-23
	Table 4.3.2.1-1 Isolation Actuation Instrumen- tation Surveillance	
	Requirements	3/4 3-27
3/4.3.3	EMERGENCY CORE CODLING SYSTEM ACTUATION	and a second
	INSTRUMENTATION	3/4 3-32
	Table 3.3.3-1 Emergency Core Cooling System Actuation Instrumentation	3/4 3-33
	Table 3.3.3-2 Emergency Core Cooling System Actuation Instrumentation	
	Setpoints	3/4 3-37
	Table 3.3.3-3 Emergency Core Cooling System Response Times	3/4 3-39
	. Table 4.3.3.1-1 Emergency Core Cooling System Actuation Instrumentation Surveillance Requirements	3/4 2-40
3/4.3.4	RECIRCULATION PUMP TRIP ACTUATION INSTRUMENTATION	
	ATWS Recirculation Pump Trip System Instrumentation	3/4 3-42
	Table 3.3.4.1-1 ATWS Recirculation Pump Trip System Instrumentation	3/4 3-43
	Table 3.3.4.1-2 ATWS Recirculation Pump Trip System Instrumentation Setpoints	2/4 2 44
	Table 4.3.4.1-1 ATWS Recirculation Pump Trip Instrumentation Surveillance Requirements	3/4 3-44
		3/4 3-40
	End-of-Cycle Recirculation Pump Trip System Instrumentation	3/4 3-46
LIMERICK	- UNIT 1 vii	11 8 1945

.

INITING CONSTITIONS FOR OPERATION AND AND	
LINITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENT	
INSTRUMENTATION (Continued)	PAGE
Table 3.3.4.2-1 End-of-Cycle Recirculation Pum Trip System Instrumentation	p 3/4 3-48
Table 3.3.4.2-2 End-of-Cycle Recirculation Pum; Trip Setpoints	p 3/4 3-49
Table 3.3.4.2-3 End-Of-Cycle Recirculation Pump Trip System Response Time	3/4 3- 50
Table 4.3.4.2.1-1 End-Of-Cycle Recirculation Pump Trip System Surveillance Requirements	3/4 3-51
3/4.3.5 REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION	3/4 3-52
Table 3.3.5-1 Reactor Core Isolation Cooling System Actuation Instrumenta- tion	3/4 3-53
Table 3.3.5-2 Reactor Core Isolation Cooling System Actuation Instrumentation Setpoints	3/4 3-55
Table 4.3.5.1-1 Reactor Core Isolation Cooling System Actuation Instrumentation Surveillance Requirements	3/4 3-56
8/4.3.6 CONTROL ROD BLOCK INSTRUMENTATION	3/4 3-57
Table 3.3.6-1 Control Rod Block Instrumenta- tion	3/4 3-58
Table 3.3.6-2 Control Rod Block Instrumenta- tion Setpoints	3/4 5-60
Table 4.3.6-1 Control Rod Block Instrumenta- tion Surveillance Requirements	3/4 3-61
1/4.3.7 MONITORING INSTRUMENTATION	
Radiation Monitoring Instrumentation	3/4 3-63
Table 3.3.7.1-1 Radiation Monitoring Instrumentation	3/4 3-64

LIMERICK - UNIT 1

103 8145

SECTION		PAGE
INSTRUMENTATION (Continued)		Inde
Table 4.3.7.1-1	Radiation Monitoring Instrumentation Surveillance Requirements	3/4 3-66
Seismic Monitoring I	nstrumentation	3/4 3-68
	Seismic Monitoring Instrumentation	3/4 3-69
Table 4.3.7.2-1	Seismic Monitoring Instrumentation Surveillance Requirements	3/4 3-71
Meteorological Monito	oring Instrumentation	3/4 3-73
	Meteorological Monitoring Instrumentation	3/4 3-74
Table 4.3.7.3-1	Meteorological Monitoring Instrumentation Surveillance Requirements	3/4 3-75
Pemote Shutdown Syste	m Instrumentation and Controls	3/4 3-76
Table 3.3.7.4-1	Remote Shutdown System Instrumentation and Controls	3/4 3-77
isble 4.3.7.4-1	Remote Shutdown System Instrumentation Surveillance Requirements	3/4 3-83
Accident Monitoring I	nstrumentation	3/4 3-84
Table 3.3.7.5-1	Accident Monitoring Instrumen- tation	3/4 3-85
Table 4.3.7.5-1	Accident Monitoring Instrumenta- tion Surveillance Requirements	3/4 3-87
Source Range Monitors.		3/4 3-88
Traversing In-Core Pro	obe System	3/4 3-89
Chlorine Detection Sys	stem	3/4 3-90
Toxic Gas Detection Sy	ystem	3/4 3-91
	nentationix	3/4 3-92

LIMERI

SECTION		PAGE
INSTRUM	MENTATION (Continued)	
	Table 3.3.7.9-1 Fire Detection Instrumentatio	n 3/4 3-93
	Loose-Part Detection System	3/4 3-97
	Radioactive Liquid Effluent Monitoring Instrumen- tation	3/4 3-98
	Table 3.3.7.11-1 Radioactive Liquid Effluent Monitoring Instrumentation.	
	Table 4.3.7.11-1 Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements	3/4 3-10
	Radioactive Gaseous Effluent Monitoring Instrumen- tation	3/4 3-10
	Table 3.3.7.12-1 Radioactive Gaseous Effluent Monitoring Instrumentation	3/4 3-10
	Table 4.3.7.12-1 Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements	3/4 3-10
/4.3.8	TURBINE OVERSPEED PROTECTION SYSTEM	3/4 3-11
/4.3.9	FEEDWATER/MAIN TURBINE TRIP SYSTEM ACTUATION INSTRUMENTATION.	3/4 3-11:
	Table 3.3.9-1 Feedwater/Main Turbine Trip System Actuation Instrumentation	
	Table 3.3.9-2 Feedwater/Main Turbine Trip System Actuation Instrumen- tation Setpoints	3/4 3-114
	Table 4.3.9.1-1 Feedwater/Main Turbine Trip System Actuation Instrumenta- tion Surveillance Require-	
/4.4 R	MEACTOR COOLANT STITEM	3/4 3-115
/4.4.1	RECIRCULATION SYSTEM	

×

INDEX

LIMERICK - UNIT 1

MUE 8 1995

SECTION			PAG	E
REACTOR	COOLANT SYSTEM (Continued)			-
	Figure 3.4.1.1-1 Ther Flow	mal Power versus Core	3/4	4-3
	Jet Pumps		3/4	4-4
	Recirculation Pumps		3/4	4-5
	Idle Recirculation Loop Sta	rtup	3/4	4-6
3/4.4.2	SAFETY RELIEF VALVES		3/4	4-7
3/4 4.3	REACTOR COOLANT SYSTEM LEAK	AGE		
	Leakage Detection Systems		3/4	4-8
	Operational Leakage		3/4	4-9
	Table 3.4.3.2-1 Reactor Isolat	or Coolant System Pressure tion Valves	3/4	4-13
/4.4.4	CHEMISTRY		3/4	4-12
	Table 3.4.4-1 Reactor Limits.	Coolant System Chemistry	3/4	4-14
/4.4.5	SPECIFIC ACTIVITY		3/4	4-15
	Table 4.4.5-1 Primary Sample a	Coolant Specific Activity and Analysis Program	3/4	4-17
/4.4.6	PRESSURE/TEMPERATURE LIMITS			
	Reactor Coolant System		3/4	4-18
	Metal	um Reactor Pressure Vessel Temperature Vs. Reactor 1 Pressure	3/4 4	4-20
	Table 4.4.6.1.3-1 Reac ance	tor Vessel Material Surveil- Program - Withdrawal dule	3/4 4	
			3/4 4	-22
4.4.7	MAIN STEAM LINE ISOLATION VA		3/4 4	
	STRUCTURAL INTEGRITY		3/4 4	

3/4.4.9 RESIDUAL HEAT REMOVAL Hot Shutdown. 3/4 4- Cold Shutdown. 3/4 4- 2/4.5.1 ECCS - OPERATING. 3/4 5- 3/4.5.2 ECCS - OPERATING. 3/4 5- 3/4.5.3 SUPRESSION CHAMBER. 3/4 5- 3/4.5.3 SUPRESSION CHAMBER. 3/4 5- 3/4.6.1 PRIMARY CONTAINMENT 3/4 6- Primary Containment Integrity. 5/4 6- Primary Containment Leakage. 3/4 6- Primary Containment System. 3/4 6- MSIV Leakage Control System. 3/4 6- Drywell and Suppression Chamber Internal Pressure. 3/4 6- Drywell and Suppression Chamber Purge System. 3/4 6- Drywell and Suppression Chamber Purge System. 3/4 6- Suppression Pool and Drywell Spray. 3/4 6- Suppression Pool and Drywell Spray. 3/4 6- Suppression Pool Cooling. 3/4 6- <	SECTION	승규는 가슴을 잘 잘 못 한 것이 같아. 아이들 것이 같아. 아이들 것이 가 있다.	PAGE
Cold Shutdown. 3/4 4- 3/4.5 EMERGENCY CORE COOLING SYSTEMS 3/4 5- 3/4.5.1 ECCS - OPERATING. 3/4 5- 3/4.5.2 ECCS - SHUTDOWN. 3/4 5- 3/4.5.3 SUPPRESSION CHAMBER. 3/4 5- 3/4.6.1 PRIMARY CONTAINMENT 3/4 6- Primary Containment Integrity. 3/4 6- Primary Containment Leakage. 3/4 6- Primary Containment Air Lock. 3/4 6- Primary Containment Structural Integrity. 3/4 6- Primary Containment Structural Integrity. 3/4 6- Drywell and Suppression Chamber Internal Pressure. 3/4 6- Drywell and Suppression Chamber Purge System. 3/4 6- V4.6.2 DEPRESSURIZATION SYSTEMS 3/4 6-1 Suppression Chamber. 3/4 6-1 Suppression Pool and Drywell Spray. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 Auguression Pool Cooling. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 Table 3.6.3-1 Primary Containment Isolation 3/4 6-1	3/4.4.9	RESIDUAL HEAT REMOVAL	10.00
3/4.5 EMERGENCY CORE COOLING SYSTEMS 3/4.5.1 ECCS - OPERATING. 3/4 5- 3/4.5.2 ECCS - SHUTDOWN. 3/4 5- 3/4.5.3 SUPPRESSION CHAMBER. 3/4 5- 3/4.6.1 PRIMARY CONTAINMENT 3/4 6- Primary Containment Integrity. 3/4 6- Primary Containment Leakage. 3/4 6- Primary Containment Air Lock. 3/4 6- MSIV Leakage Control System. 3/4 6- Primary Containment Structural Integrity. 3/4 6- Drywell and Suppression Chamber Internal Pressure. 3/4 6- Drywell Average Air Temperature. 3/4 6- V/4.6.2 DEPRESSURIZATION SYSTEMS 3/4 6- Suppression Chamber. 3/4 6- Suppression Pool and Drywell Spray. 3/4 6- V/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES. 3/4 6- Table 3.6.3-1 Primary Containment Isolation 3/4 6-		Hot Shutdown	3/4 4-25
3/4.5.1 ECCS - OPERATING. 3/4 5- 3/4.5.2 ECCS - SHUTDOWN. 3/4 5- 3/4.5.3 SUPPRESSION CHAMBER. 3/4 5- 3/4.6.1 PRIMARY CONTAINMENT 3/4 6- Primary Containment Integrity. 3/4 6- Primary Containment Leakage. 3/4 6- MSIV Leakage Control System. 3/4 6- Primary Containment Structural Integrity. 3/4 6- Primary Containment Structural Integrity. 3/4 6- Drywell and Suppression Chamber Internal Pressure. 3/4 6- Drywell Average Air Temperature. 3/4 6- Drywell and Suppression Chamber Purge System. 3/4 6- V/4.6.2 DEPRESSURIZATION SYSTEMS 3/4 6- Suppression Pool and Drywell Spray. 3/4 6- Suppression Pool Cooling. 3/4 6- V/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES. 3/4 6-		Cold Shutdown	3/4 4-26
3/4.5.2 ECCS - SHUTDOWN. 3/4 5-1 3/4.5.3 SUPPRESSION CHAMBER. 3/4 5-1 3/4.6.1 PRIMARY CONTAINMENT 3/4 6-1 Primary Containment Integrity. 3/4 6-1 Primary Containment Leakage. 3/4 6-1 Primary Containment Air Lock. 3/4 6-1 MSIV Leakage Control System. 3/4 6-2 Primary Containment Structural Integrity. 3/4 6-2 Drywell and Suppression Chamber Internal Pressure. 3/4 6-1 Drywell Average Air Temperature. 3/4 6-1 V/4.6.2 DEPRESSURIZATION SYSTEMS Suppression Chamber. 3/4 6-1 Suppression Pool and Drywell Spray. 3/4 6-1 V/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES. 3/4 6-1 Table 3.6.3-1 Primary Containment Isolation	3/4.5 E	MERGENCY CORE COOLING SYSTEMS	
3/4.5.3 SUPPRESSION CHAMBER. 3/4 5- 3/4.5.3 SUPPRESSION CHAMBER. 3/4 5- 3/4.6.1 PRIMARY CONTAINMENT 3/4 6- Primary Containment Integrity. 3/4 6- Primary Containment Leakage. 3/4 6- Primary Containment Air Lock. 3/4 6- MSIV Leakage Control System. 3/4 6- Primary Containment Structural Integrity. 3/4 6- Primary Containment Structural Integrity. 3/4 6- Drywell and Suppression Chamber Internal Pressure. 3/4 6- Drywell and Suppression Chamber Purge System. 3/4 6- SUPPRESSURIZATION SYSTEMS 3/4 6-1 Suppression Chamber. 3/4 6-1 Suppression Pool and Drywell Spray. 3/4 6-1 V4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES. 3/4 6-1 Table 3.6.3-1 Primary Containment Isolation 3/4 6-1	3/4.5.1	ECCS - OPERATING	3/4 5-1
3/4.6_CONTAINMENT SYSTEMS 3/4.6.1 PRIMARY CONTAINMENT Primary Containment Integrity	3/4.5.2	ECCS - SHUTDOWN	3/4 5-6
3/4.6.1 PRIMARY CONTAINMENT Primary Containment Integrity. 3/4 6-1 Primary Containment Leakage. 3/4 6-1 Primary Containment Air Lock. 3/4 6-1 MSIV Leakage Control System. 3/4 6-2 MSIV Leakage Control System. 3/4 6-2 Primary Containment Structural Integrity. 3/4 6-2 Drywell and Suppression Chamber Internal Pressure. 3/4 6-1 Drywell Average Air Temperature. 3/4 6-1 Drywell and Suppression Chamber Purge System. 3/4 6-1 Suppression Chamber. 3/4 6-1 Suppression Pool and Drywell Spray. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 V4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES. 3/4 6-1 Table 3.6.3-1 Primary Containment Isolation	3/4.5.3	SUPPRESSION CHAMBER	3/4 5-8
Primary Containment Integrity. 3/4 6-1 Primary Containment Leakage. 3/4 6-1 Primary Containment Air Lock. 3/4 6-1 MSIV Leakage Control System. 3/4 6-1 Primary Containment Structural Integrity. 3/4 6-2 Drywell and Suppression Chamber Internal Pressure. 3/4 6-1 Drywell Average Air Temperature. 3/4 6-1 Drywell and Suppression Chamber Purge System. 3/4 6-1 S/4.6.2 DEPRESSURIZATION SYSTEMS Suppression Pool and Drywell Spray. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 Table 3.6.3-1 Primary Containment Isolation	3/4.6 00	ONTAINMENT SYSTEMS	
Primary Containment Leakage. 3/4 6-3 Primary Containment Air Lock. 3/4 6-3 MSIV Leakage Control System. 3/4 6-3 Primary Containment Structural Integrity. 3/4 6-3 Prywell and Suppression Chamber Internal Pressure. 3/4 6-3 Drywell Average Air Temperature. 3/4 6-1 Drywell and Suppression Chamber Purge System. 3/4 6-1 Drywell and Suppression Chamber Purge System. 3/4 6-1 SUPPressURIZATION SYSTEMS 3/4 6-1 Suppression Pool and Drywell Spray. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 Table 3.6.3-1 Primary Containment Isolation 3/4 6-1	3/4.6.1	PRIMARY CONTAINMENT	
Primary Containment Air Lock		Primary Containment Integrity	3/4 6-1
MSIV Leakage Control System. 3/4 6-7 Primary Containment Structural Integrity. 3/4 6-8 Drywell and Suppression Chamber Internal Pressure. 3/4 6-9 Drywell Average Air Temperature. 3/4 6-1 Drywell and Suppression Chamber Purge System. 3/4 6-1 0rywell and Suppression Chamber Purge System. 3/4 6-1 9/4.6.2 DEPRESSURIZATION SYSTEMS Suppression Chamber. 3/4 6-1 Suppression Pool and Drywell Spray. 3/4 6-1 Suppression Pool Cooling. 3/4 6-1 7/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES. 3/4 6-1 Table 3.6.3-1 Primary Containment Isolation		Primary Containment Leakage	3/4 6-2
Primary Containment Structural Integrity		Primary Containment Air Lock	3/4 6-5
Drywell and Suppression Chamber Internal Pressure		MSIV Leakage Control System	3/4 6-7
Drywell Average Air Temperature		Primary Containment Structural Integrity	3/4 5-8
Drywell and Suppression Chamber Purge System		Drywell and Suppression Chamber Internal Pressure	3/4 6-9
8/4.6.2 DEPRESSURIZATION SYSTEMS Suppression Chamber		Drywell Average Air Temperature	3/4 6-10
Suppression Chamber		Drywell and Suppression Chamber Purge System	3/4 6-11
Suppression Pool and Drywell Spray	/4.6.2	DEPRESSURIZATION SYSTEMS	
Suppression Pool Cooling		Suppression Chamber	3/4 6-12
<pre>/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES</pre>		Suppression Pool and Drywell Spray	3/4 6-15
Table 3.6.3-1 Primary Containment Isolation		Suppression Pool Cooling	3/4 6-16
Table 3.6.3-1 Primary Containment Isolation Valves	/4.6.3	PRIMARY CONTAINMENT ISOLATION VALVES	3/4 6-17
		Table 3.6.3-1 Primary Containment Isolation Valves	3/4 6-19

xii

LIMERICK - UNIT 1

AU6 8 1995

SECTION		P	AGE
CONTAINM	ENT SYSTEMS (Continued)	-	
3/4.6.4	VACUUM RELIEF		
	Suppression Chamber - Drywell Vacuum Breakers	3/4	6-44
3/4.6.5	SECONDARY CONTAINMENT		
	Reactor Enclosure Secondary Containment Integrity	3/4	6-48
	Refueling Area Secondary Containment Integrity	3/4	6-47
	Reactor Enclosure Secondary Containment Automatic		
	Isolation Valves	3/4	6-48
	Table 3.6.5.2.1-1 Reactor Enclosure Secondary Containment Ventilation System Automatic Isolation Valves	3/4	6-49
	Refueling Area Secondary Containment Automatic		0 40
	Isolation Valves	3/4	6-50
	Table 3.6.5.2.2-1 Refueling Area Secondary Contain- ment Ventilation System Automatic Isolation Valves	3/4	6-51
	Standby Gas Treatment System	3/4	6-52
	Reactor Enclosure Recirculation System	3/4	6-55
3/4.5.6	PRIMARY CONTAINMENT ATMOSPHERE CONTROL		
	Primary Containment Hydrogen Recombiner Systems	3/4	6-57
	Drywell Hydrogen Mixing System	3/4	6-58
	Drywell and Suppression Chamber Oxygen Concentration	.3/4	6-59
3/4.7 PL	ANT SYSTEMS		
3/4.7.1	SERVICE WATER SYSTEMS		
	Residual Heat Removal Service Water System	3/4	7-1
	Emergency Service Water System	3/4	:-3
	Ultimate Heat Sink	3/4	7-5

INDEX

SECTION		PAGE
PLANT S	SYSTEMS (Continued)	TAGE
3/4.7.2	CONTROL ROOM EMERGENCY FRESH AIR SUPPLY SYSTEM	3/4 7-6
3/4.7.3		3/4 7-9
3/4.7.4		3/4 7-11
	Figure 4.7.4-1 Sample Plan 2) For Snubber Functional Test	3/4 7-16
3/4.7.5		
3/4.7.6		5/4 / 1/
	Fire Suppression Water System	3/4 7-19
	Spray and/or Sprinkler Systems	3/4 7-22
	CO ₂ Systems	3/4 7-24
	Halon Systems	3/4 7-25
	Fire Hose Stations	3/4 7-26
	Table 3.7.6.5-1 Fire Hose Stations	3/4 7-27
	Yard Fire Hydrants and Hydrant Hose Houses	3/4 7-29
	Table 3.7.6.6-1 Yard Fire Hydrants and Associated Hydrant Hose Houses	3/4 7-30
/4.7.7	FIRE RATED ASSEMBLIES	3/4 7-31
/4.8 E	LECTRICAL POWER SYSTEMS	
/4.8.1	A.C. SOURCES	
	A.C. Sources - Operating	3/4 8-1
	Table 4.8.1.1.2-1 Diesel Generator Test Schedule	
	A.C. Sources - Shutdown	
/4.8.2	D.C. SOURCES	3/4 8-3
	D.C. Sources - Operating	3/4 8-10
MEDICK		
	- UNIT 1 xiv	0 1112

SECTION		PAGE
ELECTRI	CAL POWER SYSTEMS (Continued)	
	Table 4.8.2.1-1 Battery Surveillance Requirements	3/4 8-13
	D.C. Sources - Shutdown	3/4 8-14
3/4.8.3	ONSITE POWER DISTRIBUTION SYSTEMS	
	Distribution - Operating	3/4 8-15
	Distribution - Shutdown	3/4 8-18
3/4.8.4	ELECTRICAL EQUIPMENT PROTECTIVE DEVICES .	
	Primary Containment Penetration Conductor Overcurrent Protective Devices	3/5 8-21
	Table 3.8.4.1-1 Primary Containment Penetration Conductor Overcurrent Protective Devices	3/4 8-23
	Motor-Operated Valves Thermal Overload Protection	3/4 8-27
	Reactor Protection System Electric Power Monitoring	3/4 8-28
/4.9 RE	FUELING OPERATIONS	
/4.9.1	REACTOR MODE SWITCH.	3/4 9-1
/4.9.2	INSTRUMENTATION	3/4 9-3
/4.9.3	CONTROL ROD POSITION	3/4 9-5
/4.9.4	DECAY TIME	3/4 9-6
/4.9.5	COMMUNICATIONS	3/4 9-7
	REFUELING PLATFORM	
	CRANE TRAVEL - SPENT FUEL STORAGE POOL	
	WATER LEVEL - REACTOR VESSEL	
	WATER LEVEL - SPENT FUEL STORAGE POOL	

LIMERICK - UNIT 1

1.00

AUE 8 1965

XV

	<u>INDEX</u>	
LIMITING	CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS	(in
SECTION		
3/4.9.10	CONTROL ROD REMOVAL	PAGE
	Single Control Rod Removal	3/4 9-13
	Multiple Control Rod Removal	3/4 9-13
3/4 9.11		3/4 3-13
	High Water Level	3/4 9-17
	Low Water Level	
		3/4 3-10
3/4.10	SPECIAL TEST EXCEPTIONS	
3/4.10.1	PRIMARY CONTAINMENT INTEGRITY	3/4 10-1
3/4.10.2	ROD SEQUENCE CONTROL SYSTEM	3/4 10-2
3/4.10.3	SHUTDOWN MARGIN DEMONSTRATIONS.	3/4 10-3
3/4.10.4	RECIRCULATION LOOPS.	3/4 10-4
3/4.10.5	OXYGEN CONCENTRATION	3/4 10-5
3/4.10.6 /4.10.7 8/4.11 F	TRAINING STARTUPS. Special Instrumentation - Initial Core Lodoing	3/4 10-6 3/4 10-7
4.11.1	LIQUID EFFLUENTS	
	Concentration	3/4 11-1
	Table 4.11.1.1.1-1 Radioactive Liquid Waste Sampling and Analysis	
	Program	3/4 11-2
	Dose	3/4 11-5
	Liquid Radwaste Treatment System	3/4 11-6
	Liquid Holdup Tanks	3/4 11-7
/4.11.2	GASEOUS EFFLUENTS	
	Dose Rate	3/4 11-8

LIMERICK - UNIT 1

xvi

M6 8 1985

X

LIMITING CONCITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION			PAGE
RADIOACTIVE EFFL	UENTS (Continued)		
т	able 4.11.2.1.2-1	Sampling and Analysis	
		Program	3/4 11-9
Dose -	Noble Gases	•••••••••	3/4 11-3
Dose - Radio	Iodine-131, Iodi onuclides in Part	ne-133, Tritium, and iculate Form	3/4 11-3
Ventila	ation Exhaust Tre	atment System	3/4 11-3
Explosi	ive Gas Mixture		3/4 11-3
Main Co	ondenser	•••••	3/4 11-
Venting	or Purging		3/4 11-
/4.11.3 SOLID R	ADWASTE TREATMEN	T	3/4 11-
/4.11.4 TOTAL D	DOSE		3/4 11-
14.12 RADIOLOGI	CAL ENVIRONMENTAL	MONITORING	
/4.12.1 MONITOR	ING PROGRAM		3/4 12-3
Та		diological Environmental hitoring Program	3/4 12-3
Ta	act	porting Levels For Radio- tivity Concentrations In vironmental Samples	3/4 12-9
Ta		tection Capabilities For vironmental Sample Analysis	3/4 12-3
/4.12.2 LAND US	E CENSUS		3/4 12-
14.12.3 INTERLA	BORATORY COMPARIS	SON PROGRAM	3/4 12-3

xvii

SECTION		PAGE
3/4.0	PPLICABILITY	8 3/4 0-1
3/4.1 R	EACTIVITY CONTROL SYSTEMS	
3/4.1.1	SHUTDOWN MARGIN	B 3/4 1-1
3/4.1.2	REACTIVITY ANOMALIES.	8 3/4 1-1
3/4.1.3	CONTROL RODS	8 3/4 1-2
3/4.1.4	CONTROL ROD PROGRAM CONTROLS	8 3/4 1-3
3/4.1.5	STANDBY LIQUID CONTROL SYSTEM	8 3/4 2-4
3/4.2 P	OWER DISTRIBUTION LIMITS	
3/4.2.1	AVERAGE PLANAR LINEAR HEAT GENERATION RATE	8 3/4 2-1
EFT INT	ENTIONALLY BLANK	8 3/4 2-3
3/4.2.2	APRM SETPOINTS	B 3/4 2-2
3/4.2.3	MINIMUM CRITICAL POWER RATIO.	8 3/4 2-4
3/4.2.4	LINEAR HEAT GENERATION RATE	8 3/4 2-5
1/4.3 I	STRUMENTATION	
4.3.1	REACTOR PROTECTION SYSTEM INSTRUMENTATION	8 3/4 3-1
/4.3.2	ISOLATION ACTUATION INSTRUMENTATION	8 3/4 3-2
/4.3.3	EMERGENCY CORE COOLING SYSTEM ACTUATION	8 3/4 3-2
/4.3.4	RECIRCULATION PUNP TRIP ACTUATION INSTRUMENTATION	8 3/4 3-3
/4.3.5	REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION	8 3/4 3-4
/4.3.6	CONTROL ROD BLOCK INSTRUMENTATION	8 3/4 3-4
/4.3.7	MONITORING INSTRUMENTATION	
	Rediation Monitoring Instrumentation	8 3/4 3-4

LIMERICK - UNIT 1

xviii

BASES				
SECTION			PAGE	_
INSTRUM	ENTATION (Continued)			
	Seismic Monitoring Instrumentation		B 3/	4 3-
	Meteorological Monitoring Instrumentation	8	8 3/	4 3-
	Remote Shutdown System Instrumentation and Controls	E	3 3/4	4 3-
	Accident Monitoring Instrumentation	E	3 3/4	4 3-
	Source Range Monitors	E	3 3/4	4 3-
	Traversing In-Core Probe System	B	3/4	1 3-
	Chlorine and Toxic Gas Detection Systems	В	3/4	3-
	Fire Detection Instrumentation	B	3/4	3-
	Loose-Part Detection System	В	3/4	3-
	Radioactive Liquid Effluent Monitoring Instrumentation		3/4	3-6
	Radioactive Gaseous Effluent Monitoring Instrumentation	в	3/4	3-1
3/4.3.8	TURBINE OVERSPEED PROTECTION SYSTEM	в	3/4	3-7
3/4.3.9	FEEDWATER/MAIN TURBINE TRIP SYSTEM ACTUATION		3/4	
	Bases Figure B 3/4.3-1 Reactor Vessel Water Level	в	3/4	3-8
3/4.4 R	EACTOR COULANT SYSTEM			
/4.4.1	RECIRCULATION SYSTEM	В	3/4	4-1
/4.4.2	SAFETY/RELIEF VALVES		3/4	4-2
/4.4.3	REACTOR COOLANT SYSTEM LEAKAGE			4,7
	Leakage Detection Systems	В	3/4	4-3
	Operational Leakage	в	3/4	4-3
/4.4.4	CHEMISTRY	18	3/4	

0

LIMERICK - UNIT 1

xix

NOE E NHS

BASES			
SECTION			PAGE
REACTOR CCO	ANT SYSTEM (Continued)		
3/4.4.5 5	ECIFIC ACTIVITY		B 3/4 4-4
	Bases Table B 3/4.4.6-1		
	Bases Figure B 3/4.4.6-1	Fast Neutron Fluence (E>1 MeV) At 1/4 T As A Function of Service Life	B 3/4 4-8
3/4.4.7 MA	IN STEAM LINE ISOLATION VAL		
			B 3/4 4-6
	SIDUAL HEAT REMOVAL		B 3/4 4-6
	ENCY CORE COOLING SYSTEMS	•••••••••••••••••••••••••••••	B 3/4 4-6
		NG and SHUTDOWN	B 3/4 5-1
	SUPPRESSION CHAMBER		B 3/4 5-2
	INMENT SYSTEMS		
3/4.6.1	PRIMARY CONTAINMENT		
	Primary Containment Integ	rity	B 3/4 6-1
		ge	
	Primary Containment Air L	ocks	8 3/4 6-1
	MSIV Leakage Control Syst	em	B 3/4 6-1
	Primary Containment Struc	tural Integrity	B 3/4 6-2
	Drywell and Suppression C Pressure	hamber Internal	B 3/4 6-2
	Drywell Average Air Tempa	rature	B 3/4 6-2
		hamber Purge System	8 3/4 6-2
3/4.6.2	DEPRESSURIZATION SYSTEMS.		B 3/4 6-3

LIMERICK - UNIT 1

XX

and E be

BASES				
SECTION			PAGE	
CONTAINMENT :	SYSTEMS (Continued)			
3/4.6.3	PRIMARY CONTAINMENT ISOLATION VALVES.		B 3/	4 6-1
3/4.6.4	VACUUM RELIEF			4 6-4
3/4.6.5	SECONDARY CONTAINMENT			
3/4.6.6	PRIMARY CONTAINMENT ATMOSPHERE CONTROL			4 6-5
3/4.7 PLANT				
3/4.7.1	SERVICE WATER SYSTEMS		8 3/4	4 7-1
3/4.7.2	CONTROL ROOM EMERGENCY FRESH AIR SUPPLY SYSTEM			4 7-1
3/4.7.3	REACTOR CORE ISOLATION COOLING SYSTEM			4 7-1
3/4.7.4	SNUBBERS	E	3/4	7-2
3/4.7.5	SEALED SOURCE CONTAMINATION			7-3
3/4.7.6	FIRE SUPPRESSION SYSTEMS			7-4
3/4.7.7	FIRE RATED ASSEMBLIES	В	3/4	7-4
4.8 ELECTR	ICAL POWER SYSTEMS			
	3/4.8.2, and A.C. SOURCES, D.C. SOURCES, and ONSITE POWER DISTRIBUTION SYSTEMS	в	3/4	8-1
3/4.8.4	ELECTRICAL EQUIPMENT PROTECTIVE DEVICES		3/4	8-3
/4.9 REFUELI	NG OPERATIONS			
3/4.9.1	REACTOR MODE SWITCH	В	3/4	9-1
3/4.9.2	INSTRUMENTATION	в	3/4	9-1
3/4.9.3	CONTROL ROD POSITION		3/4	
3/4.9.4	DECAY TIME		3/4	
3/4.9.5	COMMUNICATIONS		3/4	
			1000	

xxi

AUF 8 1985

N I X	

-

BASES		
SECTION		PAGE
REFUELING OPE	RATIONS (Continued)	
3/4.9.6	REFUELING PLATFORM	B 3/4 9-
3/4.9.7	CRANE TRAVEL - SPENT FUEL STORAGE POOL	B 3/4 9-
3/4.9.8	and 3/4.9.9 WATER LEVEL - REACTOR VESSEL and WATER LEVEL - SPENT FUEL STORAGE POOL	B 3/4 9-
3/4.9.10	CONTROL ROD REMOVAL	B 3/4 9-
3/4.9.11		B 3/4 9-
/4.10 SPECI	AL TEST EXCEPTIONS	
3/4.10.1	PRIMARY CONTAINMENT INTEGRITY	B 3/4 10
3/4.10.2	ROD SEQUENCE CONTROL SYSTEM	8 3/4 10-
3/4.10.3	SHUTDOWN MARGIN DEMONSTRATIONS	B 3/4 10-
3/4.10.4	RECIRCULATION LOOPS	B 3/4 10
3/4.10.5		B 3/4 10-
3/4.10.6 3/4.10.7 4.11 RADIOAC	TRAINING STARTUPS. SPECIAL INSTRUMENTATION - INITIAL CORE LOADING	B 3/4 10- B 3/4 10
3/4.11.1	LIQUID EFFLUENTS	
	Concentration	B 3/4 11-
	Dose	B 3/4 11-
	Liquid Radwaste Treatment System	B 3/4 11-
	Liquid Holdup Tanks	B 3/4 11-
3/4.11.2	GASEOUS EFFLUENTS	
	Dose Rate	B 3/4 11-
	Dose - Noble Gases	
	Dose - Iodine-131, Iodine-133, Tritium, and Radionuclides in Particulate Form	B 3/4 11-
	Ventilation Exhaust Treatment System	

xxii

405 8 1985

1

X

INDE>

DHOLD				
SECTION		P	AGE	
RADIOACTIVE E	FFLUENTS (Continued)			
	Explosive Gas Mixture	в	3/4	11-4
	Main Condenser	В	3/4	11-5
•	Venting or Purging	В	3/4	11-5
3/4.11.3	SOLID RADWASTE TREATMENT	в	3/4	11-5
3/4.11.4	TOTAL DOSE	В	3/4	11-5
3/4.12 RADIO	OGICAL ENVIRONMENTAL MONITORING			
3/4.12.1	MONITORING PROGRAM.	в	3/4	12-1
3/4.12.2	LAND USE CENSUS	е	3/4	12-1
3/4.12.3	INTERLABORATORY COMPARISON PROGRAM	B	3/4	12-2

LIMERICK - UNIT 1

xxiii

INDEY

DESIGN FEATURES

SEC	TION	PAGE
5.1	SITE	
	Exclusion Area	5-1
	Figure 5.1.1-1 Exclusion Area	5-2
	Low Population Zone	5-1
	Figure 5.1.2-1 Low Population Zone	5-3
	Maps Defining UNRESTRICTED AREAS and SITE BOUNDARY for Radioactive Gaseous and Liquid Effluents	5-1
	Figure 5.1.3-1a Map Defining UNRESTRICTED AREAS for Radioactive Gaseous and Liquid Effluents	5-4
	Figure 5.1.3-1b Map Defining UNRESTRICTED AREAS for Radioactive Gaseous and Lipuid	
	Effluents Meteorological Tower Location	5-5
		5-1
: 2	Figure 5.1.4-1 Meteorological Tower Location	5-6
	Configuration	5-1
	Design Temperature and Pressure	5-1
	Secondary Containment	5-7
. 3	REACTOR CORE	
	Fuel Assemblies	5-7
	Control Rod Assemblies	5-7
. 4	REACTOR COULANT SYSTEM	
	Design Pressure and Temperature	5+7
	Volume	5-8
. 5	FUEL STORAGE	
	Criticality	5-8
IMER	ICK - UNIT 1 XXIV Side	\$ 105

SECTION	4	PAG
FUEL STORAGE (Continued	d)	
Drainage		5-8
		5-8
	DR TRANSIENT LIMIT	2.0

1.15 8 1865

ADMINISTRATIVE CONTROLS

. 1

4

....

SECTION		PAGE
6.1 RESP	ONSIBILITY.	6-1
	NIZATION.	
6.2.1	Offsite	
•	Figure 6.2.1-1 Off ite Organization	6-3
6.2.2	Unit Staff	
	Figure 6.2.2-1 Organization for Conduct of Plant Operations	
	Table 6.2.2-1 Minimum Shift Crew Composition	6-5
6.2.3	INDEPENDENT SAFETY ENGINEERING GROUP	
	Function	6-6
	Composition	6-6
	Responsibilities	6-6
	Records	6-6
6.2.4	SHIFT TECHNICAL ADVISOR	6-6
6.3 UNIT	STAFF QUALIFICATIONS	6-6
	<u>VING</u>	6-7
	EW AND AUDIT	
6.5.1	Plant Operations Review Committee (PORC)	
	Function	6-7
	Composition	6-7
	Alternates	6-7
	Meeting Frequency	6-7
	Quorum	6-7
	Responsibilities	6-8
	Records	6-9

LIMERICK - UNIT 1

xxvi

-0

	100
- 63	1.22
	1.5
	-

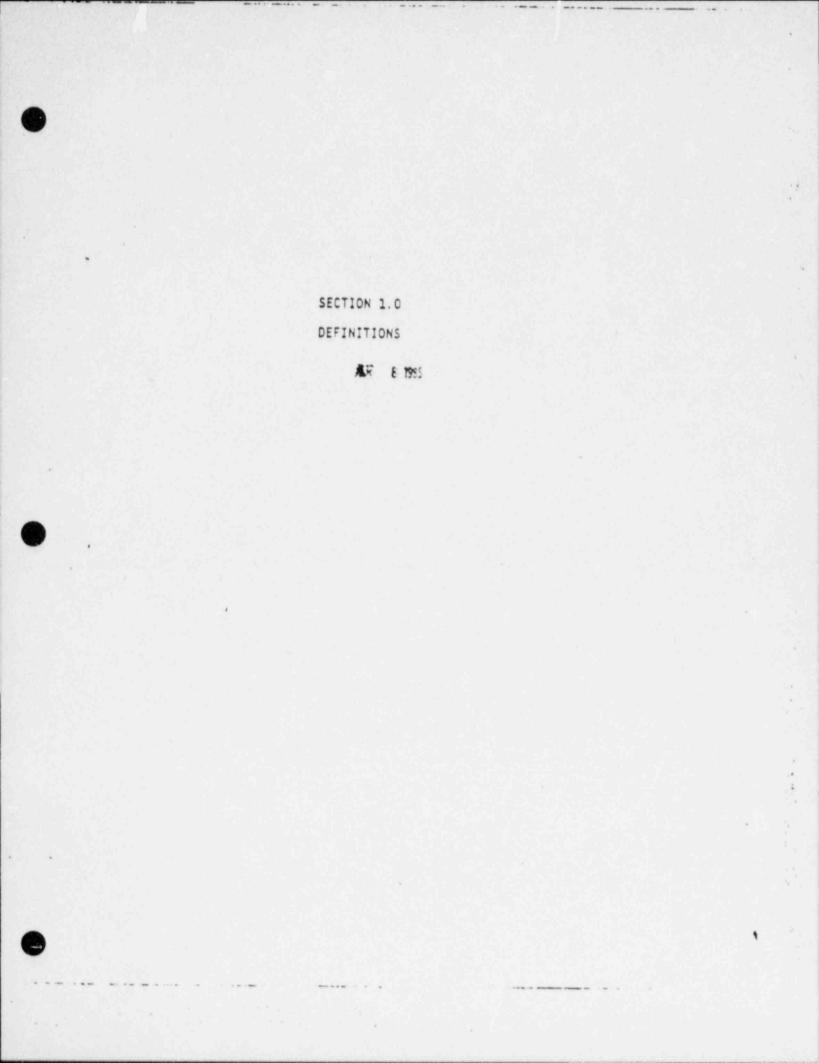
ADMINISTRATIVE CONTROLS

SECTION		PAGE
6.5.2	NUCLEAR REVIEW BOARD (NRB)	THUE
	Function	6-9
	Composition	6-9
	A)ternates	
	Consultants.	6-10
		6-10
	Meeting Frequency	6-10
	Quorum	6-10
	Review	6-10
	Audits	6-11
	Records	6-12
.6 REP	ORTABLE EVENT ACTION	6-12
.7 SAF	ETY LIMIT VIOLATION.	6-12
.e PRO	CEDURES AND PROGRAMS	6-13
.9 REP	ORTING 'EQUIREMENTS	
.9.1	ROUTINE REPORTS	6-15
	Startup Report	6-15
	Annual Reports	6-15
	Monthly Operating Reports	6-16
	Annual Radiological Environmental Operating Report	6-16
	Semiannual Radioactive Effluent Release Report	6-17
.9.2	SPECIAL REPORTS	6-18
.10 RE	CORD RETENTION	
.11 RA	DIATION PROTECTION PROGRAM	6-20
.12 HI	CH RADIATION AREA	6-20

INDEX

LIMERICK - UNIT 1

xxvii


- 2	- 16-2		-	
- 44	л	4	-	а.
-	-	-	-	-

ADMINISTRATIVE CONTROLS

SECT	104	PAGE
6.13	PROCESS CONTROL PROGRAM (PCP)	6-21
	OFFSITE DOSE CALCULATION MANUAL (ODCM)	6-22
	MAJOR CHANGES TO RADIOACTIVE WASTE TREATMENT SYSTEMS	6-22

. . . .

AUT6 8 1985

INTENTIONALLY LEFT BLANK

M

٠

1.1

1.0 DEFINITIONS

The following terms are defined so that uniform interpretation of these specifications may be achieved. The defined terms appear in capitalized type and shall be applicable throughout these Technical Specifications.

ACTION

 ACTION shall be that part of a Specification which prescribes remedial measures required under designated conditions.

AVERAGE PLANAR EXPOSURE

1.2 The AVERAGE PLANAR EXPOSURE shall be applicable to a specific planar height and is equal to the sum of the exposure of all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle.

AVERAGE PLANAR LINEAR HEAT GENERATION RATE

1.3 The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATES for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle.

CHANNEL CALIBRATION

1.4 A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds with the necessary range and accuracy to known values of the parameter which the channel monitors. The CHANNEL CALIBRATION shall encompass the entire channel including the sensor and alarm and/or trip functions, and shall include the CHANNEL FUNCTIONAL TEST. The CHANNEL CALIBRATION may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is calibrated.

CHANNEL CHECK

1.5 A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter.

CHANNEL FUNCTIONAL TEST

- 1.6 A CHANNEL FUNCTIONAL TEST shall be:
 - a. Analog channels the injection of a simulated signal into the channel as close to the sensor as practicable to verify OPERABILITY including alarm and/or trip functions and channel failure trips.
 - b. Bistable channels the injection of a simulated signal into the sensor to verify OPERABILITY including alarm and/or trip functions.

The CHANNEL FUNCTIONAL TEST may be performed by any series of sequential, overlapping or total channel steps such that the entire channel is tested.

LIMERICK - UNIT 1

1-1

22 8 1985

DEFINITIONS

CORE ALTERATION

1.7 CORE ALTERATION shall be the addition, removal, relocation or movement of fuel, sources, or reactivity controls within the reactor pressure vessel with the vessel head removed and fuel in the vessel. Normal movement of the SRMs, IRMs, TIPs, or special movable detectors is not considered a CORE ALTERATION. Suspension of CORE ALTERATIONS shall not preclude completion of the movement of a component to a safe conservative position.

CRITICAL POWER RATIO

1.8 The CRITICAL POWER RATIO (CPR) shall be the ratio of that power in the assembly which is calculated by application of the (GEXL) correlation to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

DOSE EQUIVALENT I-131

1.9 DOSE EQUIVALENT I-131 shall be that concentration of I-131, microcuries per gram, which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in Table III of TID-14844, "Calculation of Distance Factors for Power and Test Reactor Sites."

E-AVERAGE DISINTEGRATION ENERGY

1.10 E shall be the average, weighted in proportion to the concentration of each radionuclide in the reactor coolant at the time of sampling, of the sum of the average beta and gamma energies per disintegration, in MeV, for isotopes, with half lives greater than 15 minutes, making up at least 95% of the total noniodine activity in the coolant.

EMERGENCY CORE COOLING SYSTEM (ECCS) RESPONSE TIME

1.11 The EMERGENCY CORE COOLING SYSTEM (ECCS) RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its ECCS actuation setpoint at the channel sensor until the ECCS equipment is capable of performing its safety function, i.e., the valves travel to their required positions, pump discharge pressures reach their required values, etc. Times shall include diesel generator starting and sequence loading delays where applicable. The response time may be measured by any series of sequential, overlapping or total steps such that the entire response time is measured.

END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM RESPONSE TIME

- 1.12 The END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM RESPONSE TIME shall be that time interval to complete suppression of the electric arc between the fully open contacts of the recirculation pump circuit breaker from initial movement of the associated:
 - a. Turbine stop valves, and
 - b. Turbine control valves.

LIMERICK - UNIT 1

1-2

\$14 E 15.5

i,

This total system response time consists of two components, the instrumentation response time and the breaker arc suppression time. These times may be measured by any series of sequential, overlapping or total steps such that the entire response time is measured.

FRACTION OF LIMITING POWER DENSITY

1.13 The FRACTION OF LIMITING POWER DENSITY (FLPD) shall be the LHGR existing at a given location divided by the specified LHGR limit for that bundle type.

FRACTION OF RATED THERMAL POWER

1.14 The FRACTION OF RATED THERMAL POWER (FRTP) shall be the measured THERMAL POWER divided by the RATED THERMAL POWER.

FREQUENCY NOTATION

1.15 The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1.1.

IDENTIFIED LEAKAGE

1.16 IDENTIFIED LEAKAGE shall be:

- a. Leakage into collection systems, such as pump seal or valve packing leaks, that is captured and conducted to a sump or collecting tank, or
- b. Leakage into the containment atmosphere from sources that are both specifically located and known either not to interfere with the operation of the leakage detection systems or not to be PRESSURE BOUNDARY LEAKAGE.

ISOLATION SYSTEM RESPONSE TIME

1.17 The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation actuation setpoint at the channel sensor until the isolation valves travel to their required positions. Times shall include diesel generator starting and sequence loading delays where applicable. The response time may be measured by any series of sequential, overlapping or total steps such that the entire response time is measured.

LIMITING CONTROL ROD PATTERN

1.18 A LIMITING CONTROL ROD PATTERN shall be a pattern which results in the core being on a thermal hydraulic limit, i.e., operating on a limiting value for APLHGR, LHGR, or MCPR.

LINEAR HEAT GENERATION RATE

1.19 LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length.

LIMERICK - UNIT 1

1-3

LOGIC SYSTEM FUNCTIONAL TEST

2.20 A LOGIC SYSTEM FUNCTIONAL TEST shall be a test of all logic components, i.e., all relays and contacts, all trip units, solid state logic elements, etc. of a logic circuit, from sensor through and including the actuated device, to verify OPERABILITY. The LOGIC SYSTEM FUNCTIONAL TEST may be performed by any series of sequential, overlapping or total system steps such that the entire logic system is tested.

MAXIMUM FRACTION OF LIMITING POWER DENSITY

1.21 The MAXIMUM FRACTION OF LIMITING POWER DENSITY (MFLPD) shall be the highest value of the FLPD which exists in the core.

MEMBER(S) OF THE PUBLIC

1.22 MEMBER(S) OF THE PUBLIC shall include all persons who are not occupationally associated with the plant. This category does not include employees of the utility, its contractors, or vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational, or other purposes not associated with the plant.

MINIMUM CRITICAL POWER RATIO

 The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest CPR which exists in the core (for each class of fuel).

OFFSITE DOSE CALCULATION MANUAL

1.24 The OFFSITE DOSE CALCULATION MANUAL (ODCM) shall contain the current methodology and parameters used in the calculation of offsite doses due to radioactive gaseous and liquid effluents in the calculation of gaseous and liquid effluent monitoring alarm/trip setpoints and in the conduct of the environmental radiological monitoring program.

OPERABLE - OPERABILITY

1.25 A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s) and when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its function(s) are also capable of performing their related support function(s).

OPERATIONAL CONDITION - CONDITION

1.26 An OPERATIONAL CONDITION, i.e., CONDITION, shall be any one inclusive combination of mode switch position and average reactor coolant temperature as specified in Table 1.2.

PHYSICS TESTS

1.27 PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation and (1) described in Chapter 14 of the FSAR, (2) authorized under the provisions of 10 CFR 50.59, or (3) otherwise approved by the Commission.

LIMERICK - UNIT 1

ALC & 153

PRESSURE BOUNDARY LEAKAGE

1.25 PRESSURE BOUNDARY LEAKAGE shall be leakage through a nonisolable fault in a reactor coolant system component budy, pipe wall or vessel wall.

PRIMARY CONTAINMENT INTEGRITY

1.29 PRIMARY CONTAINMENT INTEGRITY shall exist when:

- a. All primary containment penetrations required to be closed during accident conditions are either:
 - Capable of being closed by an OPERABLE primary containment automatic isolation system, or
 - Closed by at least one manual valve, blind flange, or deactivated automatic valve secured in its closed position, except as provided in Table 3.6.3-1 of Specification 3.6.3.
- b. All primary containment equipment hatches are closed and sealed.
- c. The primary containment air lock is in compliance with the requirements of Specification 3.6.1.3.
- d. The primary containment leakage rates are within the limits of Specification 3.6.1.2.
- e. The suppression chamber is in compliance with the requirements of Specification 3.6.2.1.
- The sealing mechanism associated with each primary containment penetration; e.g., welds, bellows, or O-rings, is OPERABLE.

PROCESS CONTROL PROGRAM

1.30 The PROCESS CONTROL PROGRAM (PCP) shall contain the provisions to assure that the SOLIDIFICATION or dewatering and packaging of radioactive wastes results in a waste package with properties that meet the minimum and stability requirements of 10 CFR Part 61 and other requirements for transportation to the disposal site and receipt at the disposal site. With SOLIDIFICATION, the PCP shall identify the process parameters influencing SOLIDIFICATION such as pH, oil content, H₂O content, solids content ratio of solidification agent to waste and/or necessary additives for each type of anticipated waste, and the acceptable boundary conditions for the process parameters shall be identified for each waste type, based on laboratory scale and full scale testing or experience. With dewatering, the PCP shall include an identification of conditions that must be satisfied, based on full scale testing, to assure that dewatering of bead resins, powdered resins, and finter sludges will result in volumes of free water, at the time of disposal, within the limits of 10 CFR Part 61 and of the low-level radioactive waste disposal site.

PURGE - PURGING

1.31 PURGE or PURGING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

LIMERICK - UNIT 1

RATES THERMAL POWER

1.32 RATED THERMAL POWER shall be a total reactor core heat transfer rate to the reactor coolant of 3293 Mwt.

REACTOR ENCLOSURE SECONDARY CONTAINMENT INTEGRITY

- 1.33 REACTOR ENCLOSURE SECONDARY CONTAINMENT INTEGRITY shall exist when:
 - a. All reactor enclosure secondary containment penetrations required to be closed during accident conditions are either:
 - Capable of being closed by an OPERABLE secondary containment automatic isolation system, or
 - Closed by at least one manual valve, blind flange, or deactivated automatic valve secured in its closed position, except as provided in Table 3.6.5.2.1-1 of Specification 3.6.5.2.1.
 - D. All reactor enclosure secondary containment hatches and blowout panels are closed and sealed.
 - c. The standby gas treatment system is in compliance with the requirements of Specification 3.6.5.3.
 - d. The reactor enclosure recirculation system is in compliance with the requirements of Specification 3.6.5.4.
 - e. At least one door in each access to the reactor enclosure secondary containment is closed.
 - The sealing mechanism associated with each reactor enclosure secondary containment penetration, e.g., welds, bellows, or O-rings, is OPERABLE.
 - g. The pressure within the reactor enclosure secondary containment is less than or equal to the value required by Specification 4.6.5.1.la.

REACTOR PROTECTION SYSTEM RESPONSE TIME

1.34 REACTOR PROTECTION SYSTEM RESPONSE TIME shall be the time interval from when the monitored parameter exceeds its trip setpoint at the channel sensor until de-energization of the scram pilot valve solenoids. The response time may be measured by any series of sequential, overlapping total steps such that the entire response time is measured.

REFUELING FLOOR SECONDARY CONTAINMENT INTEGRITY

1.35 REFUELING FLOOR SECONDARY CONTAINMENT INTEGRITY shall exist when:

- a. All refueling floor secondary containment penetrations required to be closed during accident conditions are either:
 - Capable of being closed by an OPERABLE secondary containment automatic isolation system, or
 - Closed by at least one manual valve, blind flange, or deactivated automatic valve secured in its closed position, except as provided in Table 3.6.5.2.2-1 of Specification 3.6.5.2.2.

LIMERICK - UNIT 1

1-6

5.15 8 1085

REFUELING FLOOR SECONDARY CONTAINMENT INTEGRITY (Continued)

- b. All refueling floor secondary containment natches and blowout panels are closed and sealed.
- c. The standby gas treatment system is in compliance with the requirements of Specification 3.6.5.3.
- d. At least one door in each access to the refueling floor secondary containment is closed.
- e. The sealing mechanism associated with each refueling floor secondary containment penetration, e.g., welds, bellows, or O-rings, is OPERABLE.
- f. The pressure within the refueling floor secondary containment is less than or equal to the value required by Specification 4.6.5.1.2a.

REPORTABLE EVENT

1.36 A REPORTABLE EVENT shall be any of those conditions specified in Section 50.73 to 10 CFR Part 50.

ROD DENSITY

1.37 ROD DENSITY shall be the number of control rod notches inserted as a fraction of the total number of control rod notches. All rocs fully inserted is equivalent to 100% ROD DENSITY.

SHUTDOWN MARGIN

1.38 SHUTDOWN MARGIN shall be the amount of reactivity by which the reactor is subcritical or would be subcritical assuming all control rods are fully inserted except for the single control rod of highest reactivity worth which is assumed to be fully withdrawn and the reactor is in the shutdown condition; cold, i.e. 68°F; and xenon free.

SITE BOUNDARY

1.39 The SITE BOUNDARY shall be that line as defined in Figure 5.1.3-1.a.

SOLIDIFICATION

1.40 SOLIDIFICATION shall be the immobilization of wet radioactive wastes such as evaporator bottoms, spent resins, sludges, and reverse osmosis concentrates as a result of a process of thoroughly mixing the waste type with a solidification agent(s) to form a free standing monolith with chemical and physical characteristics specified in the PROCESS CONTROL PROGRAM (PCP).

SOURCE CHECK

1.41 A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a radioactive source.

LIMERICK - UNIT 1

1-7

515 8125

1.53

120.0

P

2.00

.

.

4

STAGGERED TEST BASIS

1.42 & STAGGERED TEST BASIS shall consist of:

- a. A test schedule for n systems, subsystems, trains, or other designated components obtained by dividing the specified test interval into n equal subintervals.
- b. The testing of one system, subsystem, train, or other designated component at the beginning of each subinterval.

THERMAL POWER

1.43 THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

UNIDENTIFIED LEAKAGE

1.44 UNIDENTIFIED LEAKAGE shall be all leakage which is not IDENTIFIED LEAKAGE.

UNRESTRICTED AREA

1.45 An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY access to which is not controlled by the licensee for purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the SITE BOUNDARY used for residential guarters or for industrial, commercial, institutional, and/or recreational purposes.

VENTILATION EXHAUST TREATMENT SYSTEM

1.46 A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal adsorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment (such a system is not considered to have any effect on noble gas effluents). Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

VENTING

1.47 VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

÷

1.

2.51 8 15.2

LIMERICK - UNIT 1

- T A	D		*	**
TA	D	-		
-		*		
_		-		

SURVEILLANCE FREQUENCY NOTATION

NOTATION	FREQUENCY
5	At least once per 12 hours.
D	At least once per 24 hours.
	At least once per 7 days.
м	At least once per 31 days.
Q	At least once per 92 days.
SA	At least once per 184 days.
A	At least once per 366 days.
R	At least once per 18 months (550 days).
\$/U	Prior to each reactor startup.
P	Prior to each radioactive release.
N. A.	Not applicable.

LIMERICK - UNIT 1

125 8 1955

.

TABLE 1.2

OPERATIONAL CONDITIONS

MODE SWITCH AVERAGE REACTOR CONDITION POSITION COOLANT TEMPERATURE 1. POWER OPERATION Run Any temperature STARTUP 2. Startup/Hot Standby Any temperature 3. HOT SHUTDOWN Shutdown# *** > 200°F 4. COLD SHUTDOWN Shutdown# ## *** < 200°F 5. REFUELING* Shutdown or Refuel** # < 140°F

#The reactor mode switch may be placed in the Run or Startup/Hot Standby position to test the switch interlock functions provided that the control rods are verified to remain fully inserted by a second licensed operator or other technically qualified member of the unit technical staff.

- ##The reactor mode switch may be placed in the Refuel position while a single control rod drive is being removed from the reactor pressure vessel per Specification 3.9.10.1.
- *Fuel in the reactor vessel with the vessel head closure bolts less than fully tensioned or with the head removed.
- **See Special Test Exceptions 3.10.1 and 3.10.3.
- ***The reactor mode switch may be placed in the Refuel position while a single control rod is being recoupled provided that the one-rod-out interlock is OPERABLE.

LIMERICK - UNIT 1

2.2 8 1925

SECTION 2.0

SAFETY LIMITS

AND

LIMITING SAFETY SYSTEM SETTINGS

AUS 8 1985

٠

INTENTIONALLY LEFT BLANK

3875101020

1.06

X

2.0 SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS

2.1 SAFETY LIMITS

THERMAL POWER, LOW Pressure or Low Flow

2.1.1 THERMAL POWER shall not exceed 25% of RATED THERMAL POWER with the reactor vessel steam dome pressure less than 785 psig or core flow less than 10% of rated flow.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

With THERMAL POWER exceeding 25% of RATED THERMAL POWER and the reactor vessel steam dome pressure less than 785 psig or core flow less than 10% of rated flow, be in at least HOT SHUTDOWN within 2 hours and comply with the requirements of Specification 6.7.1.

THERMAL POWER, High Pressure and High Flow

2.1.2 The MINIMUM CRITICAL POWER RATIO (MCPR) shall not be less than 1.07 with | the reactor vessel steam dome pressure greater than 785 psig and core flow greater than 10% of rated flow.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

1.06

With MCPR less than 1.07 and the reactor vessel steam dome pressure greater 1×1000 than 785 psig and core flow greater than 10% of rated flow, be in at lesst HOT SHUTDOWN within 2 hours and comply with the requirements of Specification 6.7.1.

REACTOR COOLANT SYSTEM PRESSURE

2.1.3 The reactor coolent system pressure, as measured in the reactor vescel steam dome, shall not exceed 1325 psig.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, and 4.

ACTION:

With the reactor coolant system pressure, as measured in the reactor vessel steam dome, above 1325 psig, be in at least HOT SHUTDOWN with reactor coolant system pressure less than or equal to 1325 psig within 2 hours and comply with the requirements of Specification 6.7.1.

SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS

SAFETY LINITS (Continued)

REACTOR VESSEL WATER LEVEL

2.1.4 The reactor vessel water level shall be above the top of the active irradiated fuel.

APPLICABILITY: OPERATIONAL CONDITIONS 3, 4, and 5

ACTION:

With the reactor vessel water level at or below the top of the active irradiated fuel, manually initiate the ECCS to restore the water level, after depressurizing the reactor vessel, if required. Comply with the requirements of Specification 6.7.1.

38751010

SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS

2.2 LIMITING SAFETY SYSTEM SETTINGS

REACTOR PROTECTIC . SYSTEM INSTRUMENTATION SETPOINTS

2.2.1 The reactor protection system instrumentation setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2.1-1.

APPLICABILITY: As shown in Table 3.3.1-1.

ACTION:

With a reactor protection system instrumentation setpoint less conservative than the value shown in the Allowable Values column of Table 2.2.1-1, declare the channel inoperable and apply the applicable ACTION statement requirement of Specification 3.3.1 until the channel is restored to OPERABLE status with its setpoint adjusted consistent with the Trip Setpoint value.

LIMERICK - UNIT 1

¥	NY C	All OWABLE VALUES 1777/125 division of full scale 1777/125 division of full scale 1777/125 division of full scale 18.5% of RAIED 18.6% PONER A.
Intermediate Range Monitor, Keutron Flux High Average Pener Range Monitor. a. Mentree Flux-Upscale, Setdown b. Mentree Flux-Upscale 1) Flow Blased 2] Migh Flux Clamped 2] Migh Flux Clamped C. Insperative C. Insperative C. Insperative Migh Flux Clamped C. Insperative Migh Flux Clamped C. Insperative Mexclor Vessel Steam Down Pressure - Migh	N IN	VALUES 177/125 division of full scale 20% of RAIFD 146 RML POWER 0.50 W- 62%, with 118.5% of RAIFD 118.5% of RAIFD 118.5% of RAIFD 118.5% of RAIED 146 RML POWER
Amerage Pamer Range Konitor: a. Newtraw Flux-Upscale, Setdown b. Neitraw Flux-Upscale 1) Flow Blased 2] Nigh Flow Clamped c. Imperative d. Domacale Mextor Vessel Steam Dome Pressure - Nigh	TONCE IN	177/125 divisio of full scale 20% of RAIFD IHERVAL FOMER 0.58 V. 62%, with 0.58 V. 62%, with 118.5% of RAIFD 118.5% of RAIFD 119.5%
An Internet Range Monitor: a. Mentrem Flux-Upscale, Setdown b. Meitrem Flux-Upscale 1) Flow Blased 2] Migh Flaw Clamped c. Imperative d. Domacale Mextor Vessel Steam Dome Pressure - Migh	NA POWER	of full scale 20% of RAIFD INFORL FONER 0.58 V- 62%, with - mariane 118.5% of RAIFD 118.5% of RAIFD
 Acettree Flux-Upscale, Setdoorn I. No -troe Flux-Upscale I.) item Blased 2) Night Flow Clomped 2) Night Flow Clomped c. Inoperative d. Domecale d. Domecale flownscale flownscale 	NAL PONE	20% of RAIFD INFROMAL FOMER 0.50 W. 62%, with 0.50 W. 62%, with 118.5% of RAIFD 118.5% of RAIFD 118.5% of RAIFD 118.6% ANTED 118.6% ANTED 118.6% ANTED
 b. Netron Flow-Upscale 1) Flow Blased 2) Nigh Flow Clomped c. Inoperative d. Domacale d. Domacale feector Vessel Steam Dome Pressure - Nigh 		IN ONL PONE IN ONL PONE 0.50 V. 678, with 0.50 V. 678, with 1.18.51 of RAIGO 1 118.51 of RAIGO 1
 1) i low Blased 2] Nigh Flaw Clamped c. Imperative d. Downscale d. Downscale feector Vessel Steam Dome Pressure - Nigh 		0.50 V. 67K, with
2] Nigh Flaw Clamped c. Inoperative d. Downscale feector Vessel Steam Dome Pressure - Nigh		III ST OF RAILO I III ST OF RAILO I INCOML FOMR
c. Inoperative d. Downscale Reactor Vessel Steam Dome Pressure - High		IIS.ST of RAIED INERNAL FOMER A. The RAIED
 c. Inoperative d. Downscale Exector Vessel Steam Dome Pressure - High 	2 AI A	INCOMAL FOULR .A. TX of RAILD INCOMAL POUT
d. Downscale Reactor Vessel Steam Doome Pressure - High	2 AI 1	A. OF RATED
Keactor Vessel Steam Dome Pressure - High	AI .	It of RAIED
Reactor Vessel Steam Dome Pressure - High		THE BOAT POLY &
		£ 1757 psig
	12.5 inghes above instrument	11.6 Inches above
5. Nain Steam Line Excitation Value - Classes		Iritrument ters
		4 12% closed
		< 3.6 x full preer
7. Bryneilt Pressure - Nigh		background
8. Scram Bischarge Values Mater Level - Mint	~ 1	< 1.06 psig
a. Level Iransaitter		261' 5 5/8" electio
		< 261' 5 5.1' elev .' ion
	1 >	A The faces
10. Turbine Control Valve Fast Closure,		
	• •	> 465 psta
12. Nanual Scram N.A.		

2-4

LINERICE - UNT 1

Amendment No. 7 AUG 1 4 1987 BASES FOR SECTION 2.0 SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS

..... 8 1385

٩

INTENTIONALLY LEFT BLANK

*

NOTE

The BASES contained in succeeding pages summarize the reasons for the Specifications in Section 2.0, but in accordance with 10 CFR 50.36 are not part of these Technical Specifications.

AUE & 1985

INTENTIONALLY LEFT BLANK

1. 1. 1

đ

.

×

.

2.1 SAFETY LIMITS

BASES

X

1.06

2.0 INTRODUCTION

The fuel cladding, reactor pressure vessel and primary system piping are the principal barriers to the release of radioactive materials to the enviror . Safety Limits are established to protect the integrity of these barriers during normal plant operations and anticipated transients. The fuel cladding integrity Safety Limit is set such that no fuel damage is calculated to occur if the limit is not violated. Because fuel damage is not directly observable, a step-back approach is used to establish a Safety Limit such that the MCPR is not less than 1.07. MCPR greater than 1.07 represents a con-1.06. servative margin relative to the conditions required to maintain fuel cladding integrity. The fuel cladding is one of the physical barriers which separate the radioactive materials from the environs. The integrity of this cladding barrier is related to its relative freedom from perforations or cracking. Although some corrosion or use related cracking may occur during the life of the cladding, fission product migration from this source is incrementally cumulative and continuously measurable. Fuel cladding perforations, however, can result from thermal stresses which occur from reactor operation significantly above design conditions and the Limiting Safety System Settings. While fission product migration from cladding perforation is just as measurable as that from use related cracking, the thermally caused cladding perforations signal a threshold beyond which still greater thermal stresses may cause gross rather than incremental cladding deterioration. Therefore, the fuel cladding Safety Limit is defined with a margin to the conditions which would produce onset of transition boiling, MCPR of 1.0. These conditions represent a significant departure from the condition intended by design for planned operation.

2.1.1 THERMAL POWER, Low Pressure or Low Flow

The use of the (GEXL) correlation is not valid for all critical power calculations at pressures below 785 psig or core flows less than 10% of rated flow. Therefore, the fuel cladding integrity Safety Limit is established by other means. This is done by establishing a limiting condition on core THERMAL POWER with the following basis. Since the pressure drop in the bypass region is essentially all elevation head, the core pressure drop at low power and flows will always be greater than 4.5 psi. Analyses show that with a bundle flow of 28 x 20³ lb/h, bundle pressure drop is nearly independent of bundle power and has a value of 3.5 psi. Thus, the bundle flow with a 4.5 psi driving head will be greater than 28 x 10³ lb/h. Full scale ATLAS test data taken at pressures from 34.7 psis to 800 psis indicate that the fuel assembly critical power at this flow is approximately 3.35 MWT. With the design peaking factors, this corresponds to a THERMAL POWER of more than 50% of RATED THERMAL POWER. Thus, a THERMAL POWER limit of 25% of RATED THERMAL POWER for reactor pressure below 785 psig is conservative.

Amendment No. 7

SAFETY LIMITS

BASES

2.1.2 THERMAL POWER, High Pressure and High Flow

The fuel cladding integrity Safety Limit is set such that no fuel damage is calculated to occur if the limit is not violated. Since the parameters which result in fuel damage are not directly observable during reactor operation, the thermal and hydraulic conditions resulting in a departure from nucleate boiling have been used to mark the beginning of the region where fuel damage could occur. Although it is recognized that a departure from nucleate boiling would not necessarily result in damage to BWR fuel rods, the critical power at which boiling transition is calculated to occur has been adopted as a convenient limit. However, the uncertainties in monitoring the core operating state and in the procedures used to calculate the critical power result in an uncertainty Safety Limit is defined as the CPR in the limiting fuel assembly for which more than 99.9% of the fuel rods in the core are expected to avoid boiling transition considering the power distribution within the core and all uncertainties.

The Safety Limit MCPR is determined using a statistical model that combines all of the uncertainties in operating parameters and the procadures used to calculate critical power. Calculation of the Safety Limit MCPR is described in Reference 1.

Reference:

LDERICK - UNIT 1

 [&]quot;General Electric Standard Application for Reactor Fuel," NEDE-24011-P-A (latest approved revision).

3875101020

LEFT INTENTIONALLY BLANK

LIMERICK - UNIT 1

8 2-3

Amendment No. 7

3875101020

LEFT INTENTIONALLY BLANK

SAFETY LIMITS

BASES

2.1.3 REACTOR COOLANT SYSTEM PRESSURE

The Safety Limit for the reactor coolant system pressure has been selected such that it is at a pressure below which it can be shown that the integrity of the system is not endangered. The reactor pressure vessel is designed to Section III of the ASME Boiler and Pressure Vessel Code 1968 Edition, including Addenda through Summer 1969, which permits a maximum pressure transient of 110%, 1375 psig, of design pressure 1250 psig. The Safety Limit of 1325 psig, as measured by the reactor vessel steam dome pressure indicator, is equivalent to 1375 psig at the lowest elevation of the reactor coolant system. The reactor coolant system is designed to the ASME Boiler and Pressure Vessel Code, 77th Edition, including Addenda through Summer 1977 for the reactor recirculation piping, which permits a maximum pressure transient of 110%, 1375 psig of design pressure, 1250 psig for suction piping and 1500 psig for discharge piping. The pressure Safety Limit is selected to be the lowest transient overpressure allowed by the ASME Boiler and Pressure Vessel Code Section III, Class I.

2.1.4 REACTOR VESSEL WATER LEVEL

With fuel in the reactor vessel during periods when the reactor is shutdown, consideration must be given to water level requirements due to the effect of decay heat. If the water level should drop below the top of the active irradiated fuel during this period, the ability to remove decay heat is reduced. This reduction in cooling capability could lead to elevated cladding temperatures and clad perforation in the event that the water level became less than two-thirds of the core height. The Safety Limit has been established at the top of the active irradiated fuel to provide a point which can be monitored and also provide adequate margin for effective action.

2.2 LIMITING SAFETY SYSTEM SETTINGS

BASES

2.2.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS

The Reactor Protection System instrumentation setpoints specified in Table 2.2.1-1 are the values at which the reactor trips are set for each parameter. The Trip Setpoints have been selected to ensure that the reactor core and reactor coolant system are prevented from exceeding their Safety Limits during normal operation and design basis anticipated operational occurrences and to assist in mitigating the consequences of accidents. Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is equal to or less than the drift allowance assumed for each trip in the safety analyses.

1. Intermediate Range Monitor, Neutron Flux - High

The IRM system consists of 8 chambers, 4 in each of the reactor trip systems. The IRM is a 5 decade 10 range instrument. The trip setpoint of 120 divisions of scale is active in each of the 10 ranges. Thus as the IRM is ranged up to accommodate the increase in power level, the trip setpoint is also ranged up. The IRM instruments provide for overlap with both the APRM and SRM systems.

The most significant source of reactivity changes during the power increase is due to control rod withdrawal. In order to ensure that the IRM provides the required protection, a range of rod withdrawal accidents have been analyzed. The results of these analyses are in Section 15.4 of the FSAR. The most severe case involves an initial condition in which THERMAL POWER is at approximately 1% of RATED THERMAL POWER. Additional conservatism was taken in this analysis by assuming the IRM channel closest to the control rod being withdrawn is bypassed. The results of this analysis show that the reactor is shutdown and peak power is limited to 21% of RATED THERMAL POWER with the peak fuel enthalpy well below the fuel failure threshold of 170 cal/gm. Based on this analysis, the IRM provides protection against local control rod errors and continuous withdrawal of control rods in sequence and provides backup protection for the APRM.

2. Average Power Range Monitor

For operation at low pressure and low flow during STARTUP, the APRM scram setting of 15% of RATED THERMAL FOWER provides adequate thermal margin between the setpoint and the Safety Limits. The margin accommodates the anticipated maneuvers associated with power plant startup. Effects of increasing pressure at zero or low void content are minor and cold water from sources available during startup is not much colder than that already in the system. Temperature coefficients are small and control rod patterns are constrained by the RSCS and RWM. Of all the possible sources of reactivity input, uniform control rod withdrawal is the most probable cause of significant power increase.

LIMERICK - UNIT 1

B 2-6

Aut . 8 1985

LIMITING SAFETY SYSTEM SETTINGS

BASES

REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

Average Power Range Monitor (Continued)

Because the flux distribution associated with uniform rod withdrawals does not involve high local peaks and because several rods must be moved to change power by a significant amount, the rate of power rise is very slow. Generally the heat flux is in near equilibrium with the fission rate. In an assumed uniform rod withdrawal approach to the trip level, the rate of power rise is not more than 5% of RATED THERMAL POWER per minute and the APRM system would be more than adequate to assure shutdown before the power could exceed the Safety Limit. The 15% neutron flux trip remains active until the mode switch is placed in the Run position.

The APRM trip system is calibrated using heat balance data taken during steady state conditions. Fission chambers provide the basic input to the system and therefore the monitors respond directly and quickly to changes due to transient operation for the case of the Neutron Flux>Upscale flow bias setpoint; i.e, for a power increase, the THERMAL POWER of the fuel will be less than that indicated by the neutron flux due to the time constants of the heat transfer associated with the fuel.

The APRM setpoints were selected to provide adequate margin for the Safety Limits and yet allow operating margin that reduces the possibility of unnecessary shutdown. The flow referenced trip setpoint must be adjusted by the specified formula in Specification 3.2.2 in order to maintain these margins when MFLPD is greater than or equal to FRTP.

3. Reactor Vessel Steam Dome Pressure-High

High pressure in the nuclear system could cause a rupture to the nuclear system process barrier resulting in the release of fission products. A pressure increase while operating will also tend to increase the power of the reactor by compressing voids thus adding reactivity. The trip will quickly reduce the neutron flux, counteracting the pressure increase. The trip setting is slightly higher than the operating pressure to permit normal operation without spurious trips. The setting provides for a wide margin to the maximum allowable design pressure and takes into account the location of the pressure measurement compared to the highest pressure that occurs in the system during a transient. This trip setpoint is effective at low power/flow conditions when the turbine stop valve and control fast closure trips are bypassed. For a turbine trip or load rejection under these conditions, the transient analysis indicated an adequate margin to the thermal hydractic limit.

LIMITING SAFETY SYSTEM SETTINGS

BASES

1 m 1 1 1 1

REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

4. Reactor Vessel Water Level-Low

The reactor vessel water level trip setpoint has been used in transient -analyses dealing with coolant inventory decrease. The scram setting was chosen far enough below the normal operating level to avoid spurious trips but high enough above the fuel to assure that there is adequate protection for the fuel and pressure limits.

5. Main Steam Line Isolation Valve-Closure

The main steam line isolation valve closure trip was provided to limit the amount of fission product release for certain postulated events. The MSIVs are closed automatically from measured parameters such as high steam flow, high steam line radiation, low reactor water level, high steam tunnel temperature, and low steam line pressure. The MSIVs closure scram anticipates the pressure and flux transients which could follow MSIV closure and thereby protects reactor vessel pressure and fuel thermal/hydraulic Safety Limits.

6. Main Steam Line Radiation-High

The main steam line radiation detectors are provided to detect a gross failure of the fuel cladding. When the high radiation is detected, a trip is initiated to reduce the continued failure of fuel cladding. At the same time the main steam line isolation valves are closed to limit the release of fission products. The trip setting is high enough above background radiation levels to prevent spurious trips yet low enough to promptly detect gross failures in the fuel cladding.

7. Drywell Pressure-High

High pressure in the drywell could indicate a break in the primary pressure boundary systems or a loss of drywell cooling. The reactor is tripped in order to minimize the possibility of fuel damage and reduce the amount of energy being added to the coolant and to the primary containment. The trip setting was selected as low as possible without causing spurious trips.

LIMERICK - UNIT 1

LIMITING SAFETY SYSTEM SETTING

BASES

REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS (Continued)

Scram Discharge Volume Water Level-High

The scram discharge volume receives the water displaced by the motion of the control rod drive pistons during a reactor scram. Should this volume fill up to a point where there is insufficient volume to accept the displaced water at pressures below 65 psig, control rod insertion would be hindered. The reactor is therefore tripped when the water level has reached a point high enough to indicate that it is indeed filling up, but the volume is still great enough to accommodate the water from the movement of the rods at pressures below 65 psig when they are tripped. The trip setpoint for each scram discharge volume is equivalent to a contained volume of 25.45 gallons of water.

9. Turbine Stop Valve-Closure

The turbine stop valve closure trip anticipates the pressure, neutron flux, and heat flux increases that would result from closure of the stop valves. With a trip setting of 5% of valve closure from full open, the resultant increase in heat flux is such that adequate thermal margins are maintained during the worst design basis transient.

10. Turbine Control Valve Fast Closure, Trip Oil Pressure-Low

The turbine control valve fast closure trip anticipates the pressure, neutron flux, and heat flux increase that could result from fast closure of the turbine control valves due to load rejection with or without coincident failure of the turbine bypass valves. The Reactor Protection System initiates a trip when fast closure of the control valves is initiated by the fast acting solenoid valves and in less than 30 milliseconds after the start of control valve fast closure. This is achieved by the action of the fast acting solenoid valves in rapidly reducing hydraulic trip oil pressure at the main turbine control valve actuator disc dump valves. This loss of pressure is sensed by pressure switches whose contacts form the one-out-of-two-twice logic input to the Reactor Protection System. This trip setting, a faster clos time, and a different valve characteristic from that of the turbine stop valve. Relevant transient analyses are discussed in Section 15.2.2 of the Final Safety Analysis Report.

11. Reactor Mode Switch Shutdown Position

The reactor mode switch Shutdown position is a redundant channel to the automatic protective instrumentation channels and provides additional manual reactor trip capability.

12. Manual Scram

LIMERICK - UNIT 1

The Manual Scram is a redundant channel to the automatic protective instrumentation channels and provides manual reactor trip capability.

INTENTIONALLY LEFT BLANK

SECTIONS 3.0 and 4.0 LIMITING CONDITIONS FOR OPERATION

.

1.5.184

AND

SURVEILLANCE REQUIREMENTS

NS 8 1935

٩

INTENTIONALLY LEFT BLANK

3

1. 1. 1. 1.

3/4.0 APPLICABILITY

LIMITING CONDITION FOR OPERATION

3.0.1 Compliance with the Limiting Conditions for Operation contained in the succeeding Specifications is required during the OPERATIONAL CONDITIONS or other conditions specified therein; except that upon failure to meet the Limiting Conditions for Operation, the associated ACTION requirements shall be met.

3.0.2 Noncompliance with a Specification shall exist when the requirements of the Limiting Condition for Operation and associated ACTION requirements are not met within the specified time intervals. If the Limiting Condition for Operation is restored prior to expiration of the specified time intervals, completion of the Action requirements is not required.

3.0.3 When a Limiting Condition for Operation is not met, except as provided in the associated ACTION requirements, within one hour action shall be initiated to place the unit in an OPERATIONAL CONDITION in which the Specification does not apply by placing it, as applicable, in:

- a. At least STARTUP within the next 6 hours,
- b. At least HOT SHUTDOWN within the following 6 hours, and
- c. At least COLD SHUTDOWN within the subsequent 24 hours.

Where corrective measures are completed that permit operation under the ACTION requirements, the ACTION may be taken in accordance with the specified time limits as measured from the time of failure to meet the Limiting Condition for Operation. Exceptions to these requirements are stated in the individual Specifications.

This Specification is not applicable in OPERATIONAL CONDITION 4 or 5.

3.0.4 Entry into an OPERATIONAL CONDITION or other specified condition shall not be made unless the conditions for the Limiting Condition for Operation are met without reliance on provisions contained in the ACTION requirements. This provision shall not prevent passage through or to OPERATIONAL CONDITIONS as required to comply with ACTION requirements. Exceptions to these requirements are stated in the individual Specifications.

LIMERICK - UNIT 1

APPLICABILITY

SURVEILLANCE REQUIREMENTS

4.0.1 Surveillance Requirements shall be met during the OPERATIONAL CONDITIONS or other conditions specified for individual Limiting Conditions for Operation unless otherwise stated in an individual Surveillance Requirements.

4.0.2 Each Surveillance Requirement shall be performed within the specified time interval with:

CONSTRUCT OF T

.

- A maximum allowable extension not to exceed 25% of the surveillance а. interval, but
- The combined time interval for any 3 consecutive surveillance intervals b. shall not exceed 3.25 times the specified surveillance interval.

4.0.3 Failure to perform a Surveillance Requirement within the specified time interval shall constitute a failure to meet the OPERABILITY requirements for a Limiting Condition for Operation. Exceptions to these requirements are stated in the individual Specificatons. Surveillance requirements do not have to be performed on inoperable equipment.

4.0.4 Entry into an OPERATIONAL CONDITION or other specified applicable condition shall not be made unless the Surveillance Requirement(s) associated with the Limiting Condition for Operation have been performed within the applicable surveillance interval or as otherwise specified.

4.0.5 Surveillance Requirements for inservice inspection and testing of ASME Code Class 1, 2, & 3 components shall be applicable as follows:

- Inservice inspection of ASME Code Class 1, 2, and 3 components and a. inservice testing of ASME Code Class 1, 2, and 3 pumps and valves shall be performed in accordance with Section XI of the ASME Boiler and Pressure Vessel Code and applicable Addenda as required by 10 CFR Part 50, Section 50.55a(g), except where specific written relief has been granted by the Coumission pursuant to 10 CFR Part 50, Section 50.55a(c) (6) (i).
- Surveillance intervals specified in Section XI of the ASME Boiler b. and Pressure Vessel Code and applicable Addenda for the inservice inspection and testing activities required by the ASME Boiler and Pressure Vessel Code and applicable Addenda shall be applicable as follows in these Technical Specifications:

ASME Boiler and Pressure Vessel Code and applicable Addenda terminology for inservice inspection and testing activities

Weekly Monthly Quarterly or every 3 months Semiannually or every 6 months Every 9 months Yearly or annually

Required frequencies for performing inservice inspection and testing activities

At least once per 7 days At least once per 31 days At least once per 92 days At least once per 184 days At least once per 276 days At least once per 366 days

LIMERICK - UNIT 1 3/4 0-2

AUC & 1985

÷.

APPLICABILITY

SURVEILLANCE REQUIREMENTS (Continued)

- c. The provisions of Specification 4.0.2 are applicable to the above required frequencies for performing inservice inspection and testing activities.
- d. Performance of the above inservice inspection and testing activities shall be in addition to other specified Surveillance Requirements.
- e. Nothing in the ASME Boiler and Pressure Vessel Code shall be construed to supersede the requirements of any Technical Specification.

LIMERICK - UNIT 1

3/4 0-3

206 8 1925

ŧ

INTENTIONALLY LEFT BLANK

Г

3/4.1 REACTIVITY CONTROL SYSTEMS

3/4.1.1 SHUTDOWN MARGIN

LIMITING CONDITION FOR OPERATION

3.1.1 The SHUTDOWN MARGIN shall be equal to or greater than:

- a. 0.38% $\Delta k/k$ with the highest worth rod analytically determined, or
- b. 0.28% $\Delta k/k$ with the highest worth rod determined by test.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, 4, and 5.

ACTION:

With the SHUTDOWN MARGIN less than specified:

- a. In OPERATIONAL CONDITION 1 or 2, reestablish the required SHUTDOWN MARGIN within 6 hours or be in at least HOT SHUTDOWN within the next 12 hours.
- b. In OPERATIONAL CONDITION 3 or 4, immediately verify all insertable control rods to be inserted and suspend all activities that could reduce the SHUTDOWN MARGIN. IN OPERATIONAL CONDITION 4, establish SECONDARY CONTAINMENT INTEGRITY within 8 hours.
- c. In OPERATIONAL CONDITION 5, suspend CORE ALTERATIONS and other activities that could reduce the SHUTDOWN MARGIN and insert all insertable control rods within 1 hour. Establish SECONDARY CONTAIN-MENT INTEGRITY within 8 hours.

SURVEILLANCE REQUIREMENTS

4.1.1 The SHUTDOWN MARGIN shall be determined to be equal to or greater than specified at any time during the fuel cycle:

- a. By measurement, prior to or during the first startup after each refueling.
- b. By measurement, within 500 MwD/T prior to the core average exposure at which the predicted SHUTDOWN MARGIN, including uncertainties and calculation biases, is equal to the specified limit.
- c. Within 12 hours after detection of a withdrawn control rod that is immovable, as a result of excessive friction or mechanical interference, or is untrippable, except that the above required SHU"DOWN MARGIN shall be verified acceptable with an increased allowance for the withdrawn worth of the immovable or untrippable control rod.

LIMERICK - UNIT 1

3/4 1-1

REACTIVITY CONTROL SYSTEMS

3/4.1.2 REACTIVITY ANOMALIES

LIMITING CONDITION FOR OPERATION

3.1.2. The reactivity equivalence of the difference between the actual ROD DENSITY and the predicted ROD DENSITY shall not exceed 1% $\Delta k/k$.

APPLICABILITY: OPERATIONAL CONDITION 1 and 2.

ACTION:

With the reactivity equivalence difference exceeding 1% $\Delta k/k$:

a. Within 12 hours perform an analysis to determine and explain the cause of the reactivity difference; operation may continue if the difference is explained and corrected.

station and

b. Otherwise, be in at least HOT SHUTDOWN within the next 12 hours.

SURVEILLANCE REQUIREMENTS

4.1.2 The reactivity equivalence of the difference between the actual ROD DENSITY and the predicted ROD DENSITY shall be verified to be less than or equal to $1\% \Delta k/k$:

- a. During the first startup following CORE ALTERATIONS, and
- b. At least once per 31 effective full power days during POWER OPERATION.

LIMERICK - UNIT 1

3/4 1-2

AUG 8 1565

TO THE R. LEWIS CO., LANSING MICH. & LANSING MICH.

٩

3/4.1.3 CONTROL RODS

CONTROL ROD OPERABILITY

LIMITING CONDITION FOR OPERATION

3.1.3.1 All control rods shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

a.

With one control rod inoperable due to being immovable, as a result of excessive friction or mechanical interference, or known to be untrippable:

- 1. Within 1 hour:
 - a) Verify that the inoperable control rod, if withdrawn, is separated from all other inoperable control rods by at least two control cells in all directions.
 - b) Disarm the associated directional control valves** either:
 - 1) Electrically, or
 - Hydraulically by closing the drive water and exhaust water isolation valves.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours.

- Restore the inoperable control rod to OPERABLE status within 48 hours or be in at least HOT SHUTDOWN within the next 12 hours.
- b. With one or more control rods trippable but inoperable for causes other than addressed in ACTION a, above:
 - If the inoperable control rod(s) is withdrawn, within 1 hour:
 - a) Verify that the inoperable withdrawn control rod(s) is separated from all other inoperable withdrawn control rods by at least two control cells in all directions, and
 - b) Demonstrate the insertion capability of the inoperable withdrawn control rod(s) by inserting the control rod(s) at least one notch by drive water pressure within the normal operating range*.

Otherwise, insert the inoperable withdrawn control rod(s) and disarm the associated directional control valves** either: a) Electrically, or

b) Hydraulically by closing the drive water and exhaust water isolation valves.

*The inoperable control rod may then be withdrawn to a position no further withdrawn than its position when found to be inoperable.

**May be rearmed intermittently, under administrative control, to permit testing associated with restoring the control rod to OPERABLE status.

LIMERICK - UNIT 1

3/4 1-3

5 1 5 1535

LIMITING CONCITION FOR OPERATION (Continued)

ACTION: (Continued)

- If the inoperable control rod(s) is inserted, within 1 hour disarm the associated directional control valves** either:
 - a) Electrically, or
 - b) Hydraulically by closing the drive water and exhaust water isolation valves.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours.

- 3. The provisions of Specification 3.0.4 are not applicable.
- c. With more than 8 control rods inoperable, be in at least HOT SHUTDOWN within 12 hours.

SURVEILLANCE REQUIREMENTS

4.1.3.1.1 The scram discharge volume drain and vent valves shall be demonstrated OPERABLE by:

- a. At least once per 31 days verifying each valve to be open,* and
- D. At least once per 92 days cycling each valve through at least one complete cycle of full travel.

4.1.3.1.2 When above the preset power level of the RWM and RSCS, all withdrawn control rods not required to have their directional control valves disarmed electrically or hydraulically shall be demonstrated UPERABLE by moving each control rod at least one notch:

- a. At least once per 7 days, and
- b. At least once per 24 hours when any control rod is immovable as a result of excessive friction or mechanical interference.

4.1.3.1.3 All control rods shall be demonstrated OPERABLE by performance of Surveillance Requirements 4.1.3.2, 4.1.3.4, 4.1.3.5, 4.1.3.6, and 4.1.3.7.

*These valves may be closed intermittently for testing under administrative controls.

**May be rearmed intermittently, under administrative control, to permit testing associated with restoring the control rod to OPERABLE status.

LIMERICK - UNIT 1

3/4 1-4

ALC: N. W. L. L. MA

1110 8 1985

SURVEILLANCE REQUIREMENTS (Continued)

4.1.3.1.4 The scram discharge volume shall be determined OPERABLE by demonstrating:

- a. The scram discharge volume drain and vent valves OPERABLE, when control rods are scram tested from a normal control rod configuration of less than or equal to 50% ROD DENSITY at least once per 18 months, by verifying that the drain and vent valves:
 - Close within 30 seconds after receipt of a signal for control rods to scram, and
 - Open when the scram signal is reset.
- b. Proper level sensor response by performance of a CHANNEL FUNCTIONAL TEST of the scram discharge volume scram and control rod block level instrumentation at least once per 31 days.

*

CONTROL ROD MAXIMUM SCRAM INSERTION TIMES

LIMITING CONDITION FOR OPERATION

3.1.3.2 The maximum scram insertion time of each control rod from the fully withdrawn position to notch position 5, based on deenergization of the scram pilot valve solenoids as time zero, shall not exceed 7.0 seconds.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

- a. With the maximum scram insertion time of one or more control rods exceeding 7 seconds:
 - Declare the control rod(s) with the slow insertion time inoperable, and
 - Perform the Surveillance Requirements of Specification 4.1.3.2c. at least once per 60 days when operation is continued with three or more control rods with maximum scram insertion times in excess of 7.0 seconds.

Otherwise, be in at least HOT SHUTDOWN within 12 hours.

b. The provisions of Specification 3. D.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.1.3.2 The maximum scram insertion time of the control rods shall be demonstrated through measurement with reactor coclant pressure greater than or equal to 950 psig and, during single control rod scram time tests, the control rod drive pumps isolated from the accumulators:

- a. For all control rods prior to THERMAL POWER exceeding 40% of RATED THERMAL POWER following CORE ALTERATIONS or after a reactor shutdown that is greater than 120 days.
- b. For specifically affected individual control rods following maintenance on or modification to the control rod or control rod drive system which could affect the scram insertion time of those specific control rods, and
- c. For at least 10% of the control rods, on a rotating basis, at least once per 120 days of POWER OPERATION.

LIMERICK - UNIT 1

3/4 1-6

CONTROL ROD AVERAGE SCRAM INSERTION TIMES

LIMITING CONDITION FOR OPERATION

3.1.3.3 The average scram insertion time of all OPERABLE control rods from the fully withdrawn position, based on deenergization of the scram pilot valve solenoids as time zero, shall not exceed any of the following.

Position Inserted From Fully Withdrawn	Average Scram Inser- tion Time (Seconds)	
45	0.43	
39	0.86	
25	1.93	
05	3.49	

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

With the average scram insertion time exceeding any of the above limits, be in at least HOT SHUTDOWN within 12 hours.

SURVEILLANCE REQUIREMENTS

4.1.3.3 All control rods shall be demonstrated OPERABLE by scram time testing from the fully withdrawn position as required by Surveillance Requirement 4.1.3.2.

LIMERICK - UNIT 1

3/4 1-7

A. S 1395

FOUR CONTROL ROD GROUP SCRAM INSERTION TIMES

LIMITING CONDITION FOR OPERATION

3.1.3.4 The average scram insertion time, from the fully withdrawn position, for the three fastest control rods in each group of four control rods arranged in a two-by-two array, based on deenergization of the scram pilot valve solenoids as time zero, shall not exceed any of the following:

Position Inserted From Fully Withdrawn		Average Scram Inser- tion Time (Seconds)	
45	친구 성이 가	0.45	
39		0.92	
25		2.05	
5		3.70	

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

- a. With the average scram insertion times of control rods exceeding the above limits:
 - Declare the control rods with the slower than average scram insertion times inoperable until an analysis is performed to determine that required scram reactivity remains for the slow four control rod group, and
 - Perform the Surveillance Requirements of Specification 4.1.3.2c. at least once per 60 days when operation is continued with an average scram insertion time(s) in excess of the average scram insertion time limit.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours.

b. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.1.3.4 All control rods shall be demonstrated OPERABLE by scram time testing from the fully withdrawn position as required by Surveillance Requirement 4.1.3.2.

LIMERICK - UNIT 1

1.

CONTROL ROD SCRAM ACCUMULATORS

LIMITING CONDITION FOR OPERATION

.....

3.1.3.5 All control rod scram accumulators shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 5*.

ACTION:

- a. In OPERATIONAL CONDITION 1 or 2:
 - With one control rod scram accumulator inoperable, within 8 hours:
 - a) Restore the inoperable accumulator to OPERABLE status, or
 - Declare the control rod associated with the inoperable accumulator inoperable.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours.

- With more than one control rod scram accumulator inoperable, declare the associated control rods inoperable and:
 - a) If the control rod associated with any inoperable scram accumulator is withdrawn, immediately verify that at least one control rod drive pump is operating by inserting at least one withdrawn control rod at least one notch or place the reactor mode switch in the Shutdown position.
 - b) Insert the inoperable control rods and disarm the associated control valves either:
 - 1) Electrically, or
 - Hydraulically by closing the drive water and exhaust water isolation valves.

Otherwise, be in at least HOT SHUTDOWN within 12 hours.

- b. In OPERATIONAL CONDITION 5*:
 - With one withdrawn control rod with its associated scram accumulator inoperable, insert the affected control rod and disarm the associated directional control valves within one hour, either:
 - a) Electrically, or
 - b) Hydraulically by closing the drive water and exhaust water isolation valves.
 - With more than one withdrawn control rod with the associated scram accumulator inoperable or no control rod drive pump operating, immediately place the reactor mode switch in the Shutdown position.
- c. The provisions of Specification 3.0.4 are not applicable.

*At least the accumulator associated with each withdrawn control rod. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

LIMERICK - UNIT 1

3/4 1-9

1.13 114

SURVEILLANCE REQUIREMENTS

- 4.1.3.5 Each control rod scram accumulator shall be determined OPERABLE:
 - a. At least once per 7 days by verifying that the indicated pressure is greater than or equal to 955 psig unless the control rod is inserted and disarmed or scrammed.
 - b. At least once per 18 months by:
 - 1. Performance of a:
 - a) CHANNEL FUNCTIONAL TEST of the leak detectors, and
 - CHANNEL CALIBRATION of the pressure detectors, and verifying an alarm setpoint of 970 ± 15, psig on decreasing pressure.
 - Measuring and recording the time for up to 10 minutes that each individual accumulator check valve maintains the associated accumulator pressure above the alarm set point with no control rod drive pump operating.

CONTROL ROD DRIVE COUPLING

LIMITING CONDITION FOR OPERATION

3.1.3.6 All control rods shall be coupled to their drive mechanisms. <u>APPLICABILITY</u>: OPERATIONAL CONDITIONS 1, 2, and 5*.

ACTION:

8.

- In OPERATIONAL CONDITIONS 1 and 2 with one control rod not coupled to its associated drive mechanism, within 2 hours:
 - If permitted by the RwM and RSCS, insert the control rod drive mechanism to accomplish recoupling and verify recoupling by withdrawing the control rod, and:
 - a) Observing any indicated response of the nuclear instrumentation, and
 - b) Demonstrating that the control rod will not go to the overtravel position.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours.

- If recoupling is not accomplished on the first attempt or, if not permitted by the RWM or RSCS, then until permitted by the RWM and RSCS, declare the control rod inoperable, insert the control rod and disarm the associated directional control valves** either:
 - a) Electrically, or
 - b) Hydraulically by closing the drive water and exhaust water isolation valves.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours.

- b. In OPERATIONAL CONDITION 5* with a withdrawn control rod not coupled to its associated drive mechanism, within 2 hours either:
 - Insert the control rod to accomplish recoupling and verify recoupling by withdrawing the control rod and demonstrating that the control rod will not go to the overtravel position, or
 - If recoupling is not accomplished, insert the control rod and disarm the associated directional control valves** either:
 - a) Electrically, or
 - b) Hydraulically by closing the drive water and exhaust water isolation valves.
- c. The provisions of Specification 3.0.4 are not applicable.

*At least each withdrawn control rod. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

**May be rearmed intermittently, under administrative control, to permit testing associated with restoring the control rod to OPERABLE status.

LIMERICK - UNIT 1

3/4 1-11

ADE E HEL

SURVEILLANCE REQUIREMENTS

4.1.3.6 Each affected control rod shall be demonstrated to be coupled to its drive mechanism by observing any indicated response of the nuclear instrumentation while withdrawing the control rod to the fully withdrawn position and then verifying that the control rod drive does not go to the overtravel position:

a. Prior to reactor criticality after completing CORE ALTERATIONS that could have affected the control rod drive coupling integrity,

ALC: NAMES OF ALL

- b. Anytime the control rod is withdrawn to the "Full out" position in subsequent operation, and
- c. Following maintenance on or modification to the control rod or control rod drive system which could have affected the control rod drive coupling integrity.

ter at the second

CONTROL ROD POSITION INDICATION

LIMITING CONDITION FOR OPERATION

3.1.3.7 The control rod position indication system shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 5*.

- ACTION:

- a. In OPERATIONAL CONDITION 1 or 2 with one or more control rod position indicators inoperable, within 1 hour:
 - Determine the position of the control rod by utilizing the RSCS substitute position display (within preset power level), or:

Street monthly

- Moving the control rod, by single notch movement, to a position with an OPERABLE position indicator,
- Returning the control rod, by single notch movement, to its original position, and
- c) Verifying no control rod drift alarm at least once per 12 hours, or
- Pove the control rod to a position with an OPERABLE position ...dicator, or
- 3. When THERMAL POWER is:
 - a) Within the preset power level of the RSCS, declare the control rod inoperable.
 - b) Greater than the preset power level of the RSCS, declare the control rod inoperable, insert the control rod and disarm the associated directional control valves** either:
 - 1) Electrically, or
 - Hydraulically by closing the drive water and exhaust water isolation valves.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours.

- b. In OPERATIONAL CONDITION 5* with a withdrawn control rod position indicator inoperable, move the control rod to a position with an OPERABLE position indicator or insert the control rod.
- c. The provisions of Specification 3.0.4 are not applicable.

*At least each withdrawn control rod. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

**May be rearmed intermittently, under administrative control, to permit testing associated with restoring the control rod to OPERABLE status.

LIMERICK - UNIT 1

3/4 1-13

1, 5 1:5

11

З.

۲

SURVEILLANCE REQUIREMENTS

4.1.3.7 The control rod position indication system shall be determined OPERABLE by verifying:

- a. At least once per 24 hours that the position of each control rod is indicated,
- D. That the indicated control rod position changes during the movement of the control rod drive when performing Surveillance Requirement 4.1.3.1.2, and
- c. That the control rod position indicator corresponds to the control rod position indicated by the "Full out" position indicator when performing Surveillance Requirement 4.1.3.6b.

12

10

CONTROL ROD DRIVE HOUSING SUPPORT

LIMITING CONDITION FOR OPERATION

3.1.3.8 The control rod drive housing support shall be in place.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.

- ----

ACTION:

With the control rod drive housing support not in place, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the following 24 hours.

1.0.00

SURVEILLANCE REQUIREMENTS

4.1.3.8 The control rod drive housing support shall be verified to be in place by a visual inspection prior to startup any time it has been disassembled or when maintenance has been performed in the control rod drive housing support area.

LIMERICK - UNIT 1

3 4.1.4 CONTROL ROD PROGRAM CONTROLS

ROC WORTH MINIMIZER

LIMITING CONDITION FOR OPERATION

3.1.4.1 The rod worth minimizer (RWM) shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2*' **, when THERMAL POWER is less than or equal to 20% of RATED THERMAL POWER, the minimum allowable preset power level.

ACTION:

- a. With the RWM inoperable, verify control rod movement and compliance with the prescribed control rod pattern by a second licensed operator or other technically qualified member of the unit technical staff who is present at the reactor control console. Otherwise, control rod movement may be only by actuating the manual scram or placing the reactor mode switch in the Shutdown position.
- b. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

The RWM shall be dimonstrated OPERABLE: 4.1.4.1

Deleted

In OPERATIONAL CONDITION 2 within 8 hours prior to withdrawal of control rods for the purpose of making the reactor critical, and in OPERATIONAL CONDITION 1 within 1 hour after RWM automatic initiation when reducing THERMAL POWER, by verifying proper indication of the selection error of at least one out-of-sequence control rod.

- b. In OPERATIONAL CONDITION 2 within 8 hours prior to withdrawal of control rods for the purpose of making the reactor critical, by verifying the rod block function by demonstrating inability to move a withdraw an out-of-sequence control rod. Control rod out-of-sequence.
- c. In OPERATIONAL CONDITION 1 within 1 hour after RWM automatic initiation when reducing THERMAL POWER, by verifying the rod block within / heur function by demonstrating inability to withdraw an out-of-sequence after control rod.

By verifying that the control rod patterns and sequence input to the RWM computer are correctly loaded following any loading of the program into the computer.

*See Special Test Exception 3.10.2.

**Entry into OPERATIONAL CONDITION 2 and withdrawal of selected control rods is permitted for the purpose of determining the OPERABILITY of the RWM prior to withdrawal of control rods for the purpose of bringing the reactor to criticality.

LIMERICK - UNIT 1

d.

Deleter

of lea

the transition

Zone.

10.00.00.20.0

ROD SEQUENCE CONTROL SYSTEM

LIMITING CONDITION FOR OPERATION

3.1.4.2 The rod sequence control system (RSCS) shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2*' **, when THERMAL POWER is less than or equal to 20% RATED THERMAL POWER, the minimum allowable preset power level.

ACTION:

- a. With the RSCS inoperable, control rod movement shall not be permitted, except by a scram.
- b. With an inoperable control rod(s), OPERABLE control rod movement may continue by bypassing the inoperable control rod(s) in the RSCS provided that:
 - The position and bypassing of inoperable control rods is verified by a second licensed operator or other technically qualified member of the unit technical staff, and
 - There are not more than three inoperable control rods in any RSCS group.

SURVEILLANCE REQUIREMENTS

4.1.4.2 The RSCS shall be demonstrated OPERABLE by:

- a. Performance of a system diagnostic function:
 - 1. Within 8 hours prior to each reactor startup, and
 - Prior to movement of a control rod after rod inhibit mode automatic initiation when reducing THERMAL POWER.
- b. Attempting to select and move an inhibited control rod:
 - After withdrawal of the first insequence control rod for each reactor startup, and
 - Within one hour after rod inhibit mode automatic initiation (preset power level) when reducing THERMAL POWER.

*See Special Test Exception 3.10.2

m and a local character of the sec-

**Entry into OPERATIONAL CONDITION 2 and withdrawal of selected control rods is permitted for the purpose of determining the OPERABILITY of the RSCS prior to withdrawal of control rods for the purpose of bringing the reactor to criticality.

LIMERICK - UNIT 1

ROD BLOCK MONITOR

MITING CONDITION FOR OPERATION

3.1.4.3 Both rod block monitor (RBM) channels shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITION 1, when THERMAL POWER is greater than or equal to 30% of RATED THERMAL POWER.

ACTION:

and the second second

a

-

ø

- a. With one RBM channel inoperable:
 - Verify that the reactor is not operating on a LIMITING CONTROL ROD PATTERN, and
 - Restore the inoperable RBM channel to OPERABLE status within 24 hours.

Otherwise, place the inoperable rod block monitor channel in the tripped condition within the next hour.

b. With both RBM channels inoperable, place at least one inoperable rod block monitor channel in the tripped condition within 1 hour.

SURVEILLANCE RESTIREMENTS

4.1.4.3 Each of the above required RBM channels shall be demonstrated OPERABLE by performance of a:

- a. CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION at the frequencies and for the OPERATIONAL CONDITIONS specified in Table 4.3.6-1.
- b. CHANNEL FUNCTIONAL TEST prior to control rod withdrawal when the reactor is operating on a LIMITING CONTROL ROD PATTERN.

LIMERICK - UNIT 1

5

3/4.1.5 STANDBY LIQUID CONTROL SYSTEM

LIMITING CONDITION FOR OPERATION

3.1.5 The standby liquid control system shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 5*

- ACTION:

- a. In OPERATIONAL CONDITION 1 or 2:
 - With only one pump and corresponding explosive valve OPERABLE, restore one inoperable pump and corresponding explosive valve to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours.
 - With the standby liquid control system otherwise inoperable, restore the system to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours.
- b. In OPERATIONAL CONDITION 5*:
 - With only one pump and corresponding explosive valve OPERABLE, restore one inoperable pump and corresponding explosive valve to OPERABLE status within 30 days or insert all insertable control rods within the next hour.
 - With the standby liquid control system otherwise inoperable, insert all insertable control rods within 1 hour.

SURVEILLANCE REQUIREMENTS

4.1.5 The standby liquid control system shall be demonstrated OPERABLE:

- a. At least once per 24 hours by verifying that;
 - The temperature of the sodium pentaborate solution is within the limits of Figure 3.1.5-1.
 - The available volume of sodium pentaborate solution is within the limits of Figure 3.1.5-2.
 - The heat tracing circuit is OPERABLE by determining the temperature of the pump suction piping to be greater than or equal to 70°F.

"With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

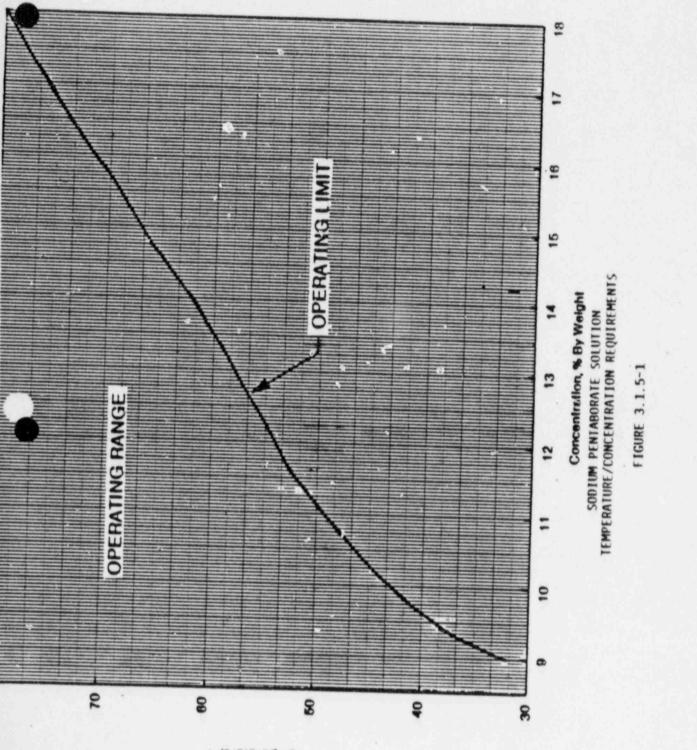
LIMERICK - UNIT 1

3/4 1-19

SU: E 198!

SURVEILLANCE REQUIREMENTS (Continued)

- b. At least once per 31 days by:
 - 1. Verifying the continuity of the explosive charge.
 - Determining that the available weight of sodium pentaborate is greater than or equal to 5500 lbs and the concentration of boron in solution is within the limits of Figure 3.1.5-2 by chemical analysis.*
 - Verifying that each valve (manual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
- c. Demonstrating that, when tested pursuant to Specification 4.0.5, the minimum flow requirement of 41.2 gpm per pump at a pressure of greater than or equal to 1190 psig is met.
- d. At least once per 18 months during shutdown by:
 - Initiating at least one of the standby liquid control system loops, including an explosive valve, and verifying that a flow path from the pumps to the reactor pressure vessel is available by pumping demineralized water into the reactor vessel. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch which has been certified by having one of that batch successfully fired. All injection loops shall be tested in 36 months.
 - **Demonstrating that all heat traced piping is unblocked by pumping from the storage tank to the test tank and then draining and flushing the piping with demineralized water.
 - Demonstrating that the storage tank heaters are OPERABLE by verifying the expected temperature rise of the sodium pentaborate solution in the storage tank after the heaters are energized.

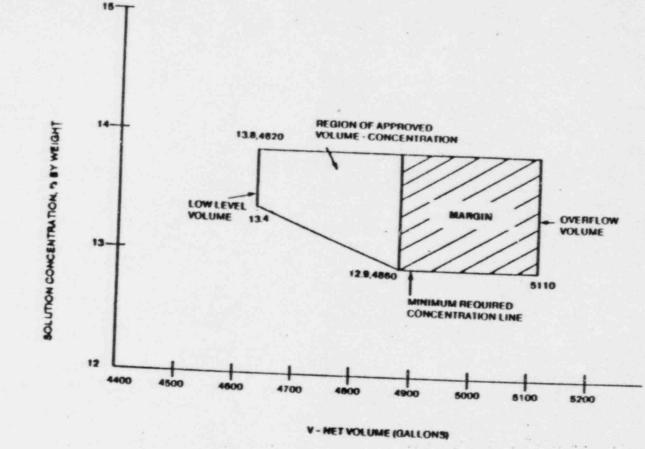

LIMERICK - UNIT 1

3/4 1-20

200 8 1995

^{*}This test shall also be performed anytime water or boron is added to the solution or when the solution temperature drops below 70°F.

^{**}This test shall also be performed whenever all three heat tracing circuits have been found to be inoperable and may be performed by any series of sequential, overlapping or total flow path steps such that the entire flow path is included.


Temperature. F

LIMERICK - UNIT 1

3/4 1-21

ALT @ 1985

٩

SODIUM PENTABURATE SOLUTION VOLUME/CONCENTRATION REQUIREMENTS

FIGURE 3.1.5-2

3/4 1-22

ALIE & 1985

13

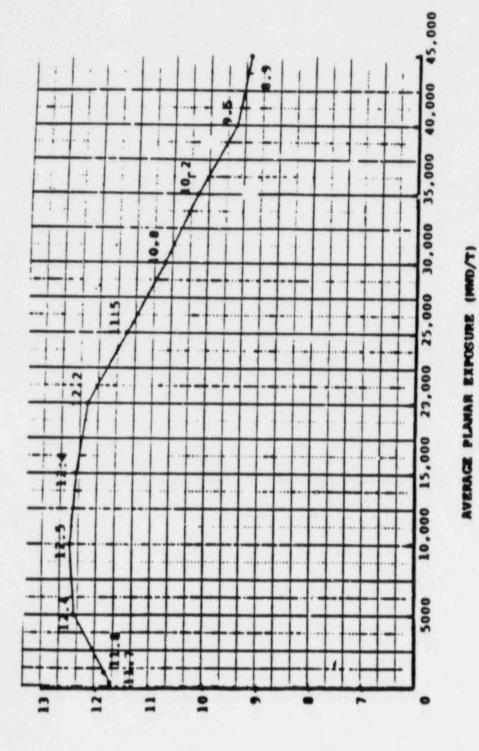
3/4.2 POWER DISTRIBUTION LIMITS

3/4.2.1 AVERAGE PLANAR LINEAR HEAT GENERATION RATE

LIMITING CONDITION FOR OPERATION

3.2.1 All AVERAGE PLANAR LINEAR HEAT GENERATION RATES (APLHGRs) for each type of fuel as a function of AVERAGE PLANAR EXPOSURE shall not exceed the limits shown in Figures 3.2.1-1, 3.2.1-2, 3.2.1-3, 3.2.1-4 and 3.2.1-5.

APPLICABILITY: OPERATIONAL CONDITION 1, when THERMAL POWER is greater than or equal to 25% of RATED THERMAL POWER.


ACIION:

With an APLHGR exceeding the limits of Figure 3.2.1-1, 3.2.1-2, 3.2.1-3, 3.2.1-4, or 3.2.1-5 initiate corrective action within 15 minutes and restore APLHGR to within the required limits within 2 hours or reduce THERMAL POWER to less than 25% of RATED THERMAL POWER within the next 4 hours.

SURVEILLANCE REQUIREMENTS

4.2.1 All APLHGRs shall be verified to be equal to or less than the limits determined from Figures 3.2.1-1, 3.2.1-2, 3.2.1-3, 3.2.1-4 and 3.2.1-5:

- a. At least once per 24 hours,
- b. Within 12 hours after completion of a THERMAL POWER increase of at least 15% of RATED THERMAL POWER, and
- c. Initially and at least once per 12 hours when the reactor is operating with a LIMITING CONTROL ROD PATTERN for APLHGR.
- d. The provisions of Specification 4.0.4 are not applicable.

TINEY HENCE SEALING NOLLYNEN DYSN YWRALL

ADS 8 MMS

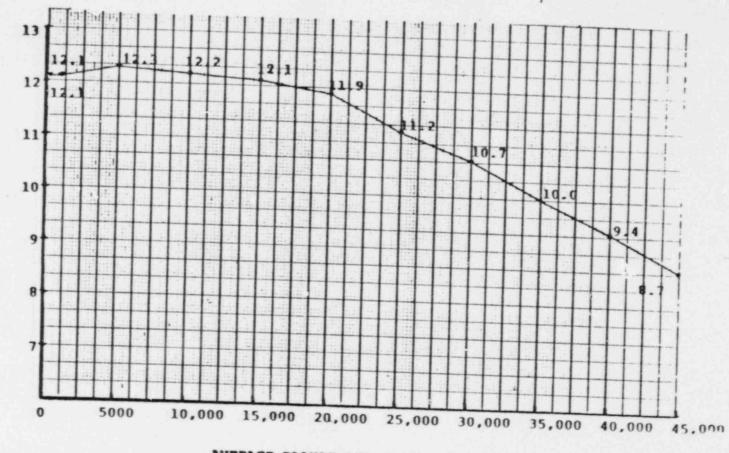

X

FIGURE 3.2.1-1 KPRCK 5278

MAXIMUM AVERAGE PLANAR LINEAR HEAT

GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLAMAR EXPOSURE INITIAL CORE FUEL TYPES POGLA228LIMERICK - UNIT 1

MAXIMIM AVERACE FLANAR LINEAR HEAT CENERATION RATE (KW/ft)

AVERAGE PLANAR EXPOSURE (MWD/T)

MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLINGR) VERSUS AVERAGE PLANAR EXPOSURE INITIAL CORE FUEL TYPES PBC10240- BP8CRB248

FIGURE 3.2.1-2

3/4 2-3


1

n

158

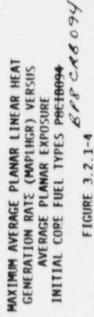
1

140

MANDIN AVERAGE FLANDRAM MANDIN RATE (KW/EL)

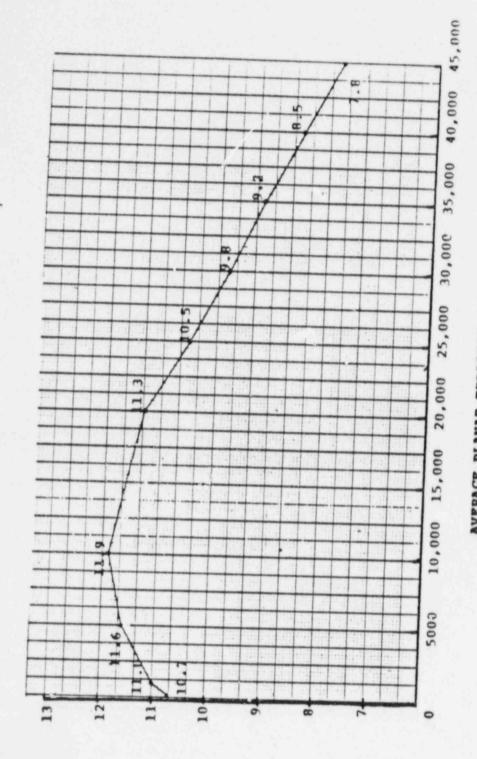
3/4 2-4

A 10.10


LIMERICK - UNIT 1

MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE INITIAL CORE FUEL TYPES POCIDIES

FIGURE 3.2.1-3


AVERAGE PLANAR EXPOSURE (MMD/T)

AUC 8 1985

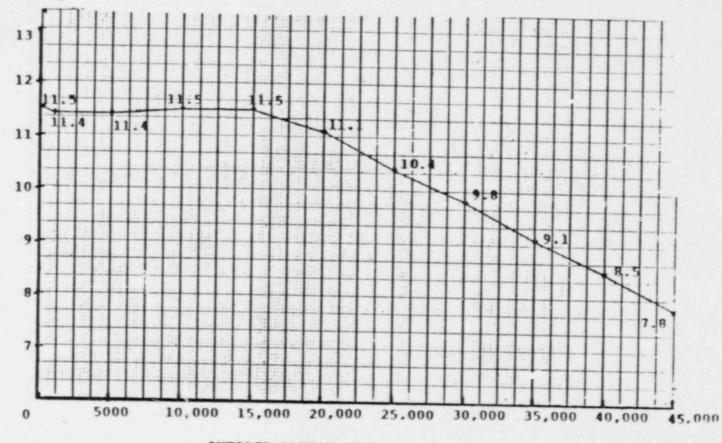
X

AVERAGE PLANAR EXPOSURE (MHD/T)

MAXIMIM AVERAGE PLANAR MAXIMIM AVERATION RATE (KW/ EC)

LIMERICK - UNIT 1

ŧ ... 8 1395


3/4 2-5

3/4

2-6

MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE(KW/ft)

.

4

AVERAGE PLANAR EXPOSURE (MWD/T)

MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS · AVERAGE PLANAR EXPOSURE INITIAL CORE FUEL TYPES POCIDO71 P8 CR8 071

.

FIGURE 3.2.1-5

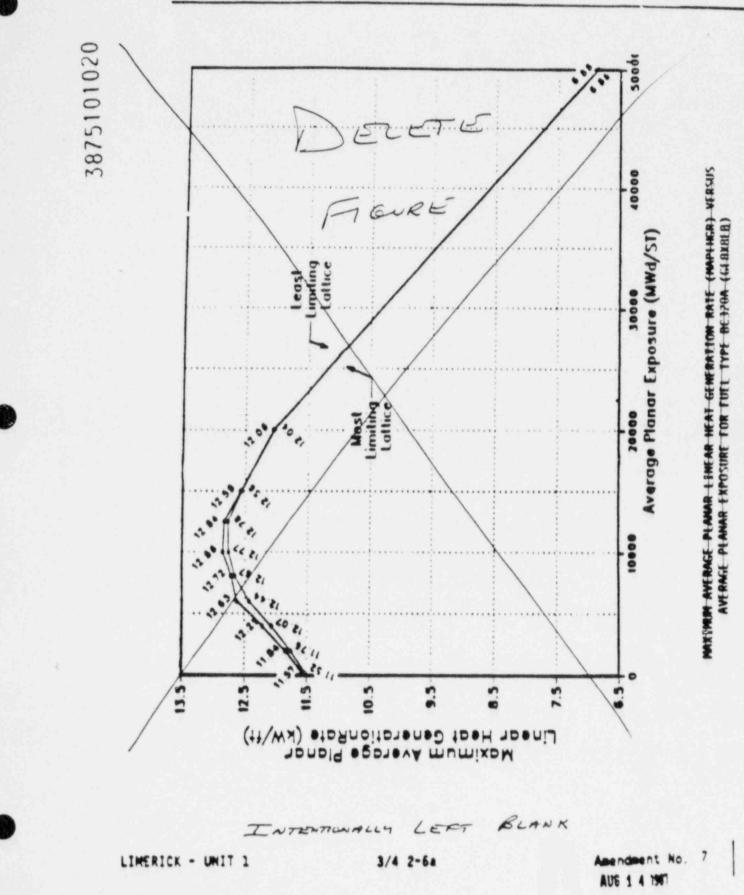


FIGURE 3.2.1-6

INTENTIONALLY LEFT BLANK

POWER DISTRIBUTION LIMITS

3/4.2.2 APRM SETPOINTS

LIMITING CONDITION FOR OPERATION

3.2.2 The APRM flow biased neutron flux-upscale scram trip setpoint (S) and flow biased neutron flux-upscale control rod block trip setpoint (Spg) shall be established according to the following relationships: TOTO PETROTAT

IRI	P SEIPOIN	
S ≤	(0.58₩ +	59%)T
S _{RB}	≤ (0.58₩	+ 50%)T

ALLOWABLE VALUE
S < (0.58W + 62%)T Spp < (0.58W + 53%)T

where: S and See are in percent of RATED THERMAL POWER, W = Loop recirculation flow as a percentage of the loop recirculation flow which produces a rated core flow of 100 million lbs/hr. T = Lowest value of the ratio of FRACTION OF RATED THERMAL POWER

divided by the CORE MAXIMUM FRACTION OF LIMITING POWER DENSITY. T is applied only if less than or equal to 1.0.

APPLICABILITY: OPERATIONAL CONDITION 1, when THERMAL POWER is greater than or equal to 25% of RATED THERMAL POWER.

ACTION:

With the APRM flow biased neutron flux-upsc. le scram trip setpoint and/or the flow biased neutron flux-upscale control rod block trip setpoint less conservative than the value shown in the Allowable Value column for 5 or Spp, as above determined, initiate corrective action within 15 minutes and adjust S and/or See to be consistent with the Trip Setpoint values" within 6 hours or reduce THERMAL POWER to less than 25% of RATED THERMAL POWER within the next 4 hours.

SURVEILLANCE REQUIREMENTS

4.2.2 The FRTP and the MFLPD shall be determined, the value of T calculated, and the most recent actual APRM flow biased neutron flux-upscale scram and flow biased neutron flux-upscale control rod block trip setpoints verified to be within the above limits or adjusted, as required:

- At least once per 24 hours, ۵.
- Within 12 hours after completion of a THERMAL POWER increase of at b. least 15% of RATED THERMAL POWER, and
- Initially and at least once per 12 hours when the reactor is operating c. with MFLPD greater than or equal to FRTP.
- d. The provisions of Specification 4.0.4 are not applicable.

With MFLPD greater than the FRTP during power ascension up to SCX of RATED THERMAL POWER, rather than adjusting the APRM setpoints, the APRM gain may be adjusted such that the APRM readings are greater than or equal to 100% times MFLPD, provided that the adjusted APRM reading does not exceed 100% of RATED THERMAL POWER and a notice of adjustment is posted on the reactor control panel.

LIMERICK - UNIT 1

Amendment No. 7 ASS6 1 4 1987

POWER DISTRIBUTION LIMITS determined using The 3875101020 3/4.2.3 MINIMUM CRITICAL POWER RATIO from Table 3.2.3-1, LIMITING CONDITION FOR OPERATION

3.2.3 The MINIMUM [CRITICAL POWER KATIO (MCPR) shall be equal to or greater than the MCPR limit shown in Figure 3.2.3-le (BP/PBXBR fuel) and Figure 3.2.3-lb (GEEXEES fuel), times the K, shown in Figure 3.2.3-2, provided that the end-of-cycle recirculation pump trip (EOC-RPT) system is OPERABLE per Specification 3.3.4.2, with:

$$\tau = \frac{(\tau_{ave} - \tau_B)}{\tau_A - \tau_B}$$

where:

TA = 0.86 seconds, control rod average scram insertion time limit to notch 39 per Specification 3.1.3.3,

$$\tau_{B} = \frac{0.672}{0.687} + 1.65[\frac{N_{1}}{\Sigma}]^{\frac{1}{2}}(\frac{0.016}{0.052}),$$

$$t_{ave} = \frac{\sum_{i=1}^{n} N_i \tau_i}{\sum_{i=1}^{n} N_i},$$

- n = number of surveillance tests performed to date in cycle.
- N₁ = number of active control rods measured in the ith surveillance test,
- t₁ = everage scram time to notch 39 of all rods measured in the ¹th surveillance test, and
- M1 = total number of active rods measured in Specification 4.1.3.2.a.

APPLICABILITY:

OPERATIONAL CONDITION 1, when THERMAL POWER is greater than or equal to 25% of RATED THERMAL POWER.

LIMERICK - UNIT 1

3/4 2-8

Amendment No. 7

TABLE 3.2.3-1

Minimum Critical Power Ratio (MCPR) Versus Plant Operating Condition

..

Rated Feedwater Temperature Reduction From the Nominal, delta T* (°F)	Maximum Core Flow (% of rated)	MCPR Figure #
0	<u>≤</u> 100	3.2.3-1a
≤ 60	≤ 105	3.2.3-15

*This delta T refers to the planned reduction of feedwater temperature at rated conditions from nominal rated feedwater temperature during the prolonged removal of feedwater heaters from service.

FEF 1 7 194"

LIMERICK - UNIT 1

3/4 2-8a

Amendment No. 3

INTENTIONALLY LEFT BLANK

POWER DISTRIBUTION LIMITS

3875101020

in ACTION & EBOVE.

The appropriate figure taken from Table 3.2.3-1

LIMITING CONDITION FOR OPERATION (Continued)

ACTION

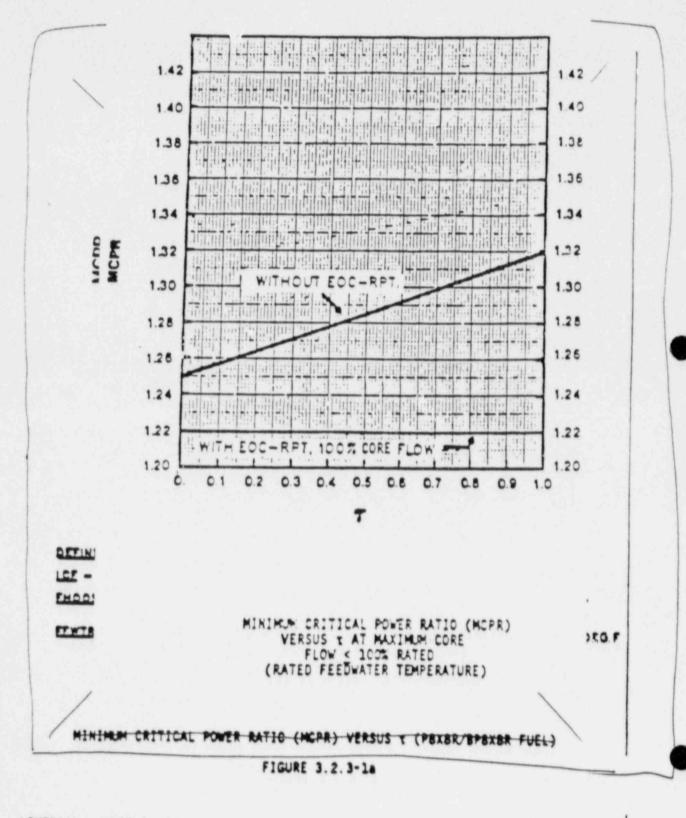
a. With the end-of-cycle recirculation pump trip system inoperable per Specification 3.3.4.2, operation may continue and the provisions of Specification 3.0.4 are not applicable provided that, within 1 hour. MCPR is determined to be greater than or equal to the MCPR limit as a function of the average scram time shown in Figure 3.2.3-1a (BP/PaxeR fuel) and Figure 3.2.3-1b (GE8xSEB fuel), EOC-RPT inoperable curve, times the K, shown in Figure 3.2.3-2.

b. With MCPR less than the applicable MCPR limit shown in Figures 3.2.3-1a 3.2.3-1b and 3.2.3-2; initiate corrective action within 15 minutes and restore MCPR to within the required limit within 2 hours or reduce THERMAL POWER to less than 25% of RATED THERMAL POWER within the next 4 hours.

SURVEILLANCE REQUIREMENTS

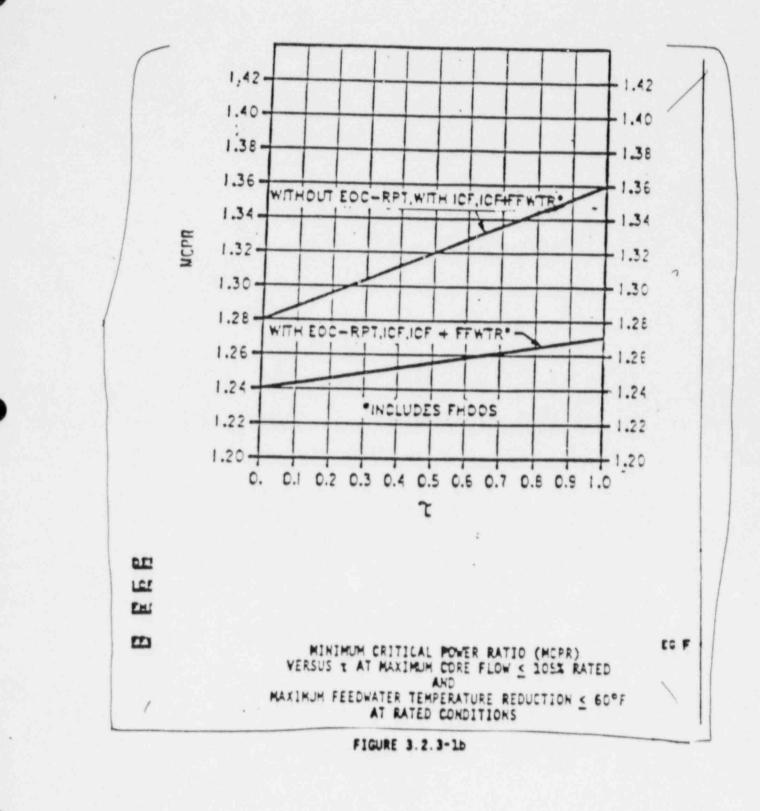
4.2.3 MCPR, with:

- a. t = 1.0 prior to performance of the initial scram time measurements for the cycle in accordance with Specification 4.1.3.2, or
- b. t as defined in Spacification 3.2.3 used to determine the limit within 72 hours of the conclusion of each scram time surveillance test required by Specification 4.1.9.2.


shall be determined to be equal to or greatur than the applicable MCPR limit determined from Figures 3.2.3-12, 3.2.3-15 and 3.2.3-2.

- At least once per 24 hours,
- b. Within 12 hours after completion of a THERMAL POWER increase of at least 15% of RATED THERMAL POWER, and
- c. Initially and at least once per 12 hours when the reactor is operating with a LIMITING CONTROL ROD PATTERN for MCPR.
- d. The provisions of Specification 4.0.4 are not applicable.

- the appropriate figure taken from Table 2.2.3-1 times The Kf Shown in Figure 3.2.3-2.


LIMERICK - UNIT 1

3/4 2-9

LIMERICK - UNIT 1

Amendment No. 7 AUS 1 4 1957

LIMERICK - UNIT 1

3/4 2-104

Amendment No. 7 AUG 1 4 1987

INTENTIONALLY LEFT BLANK

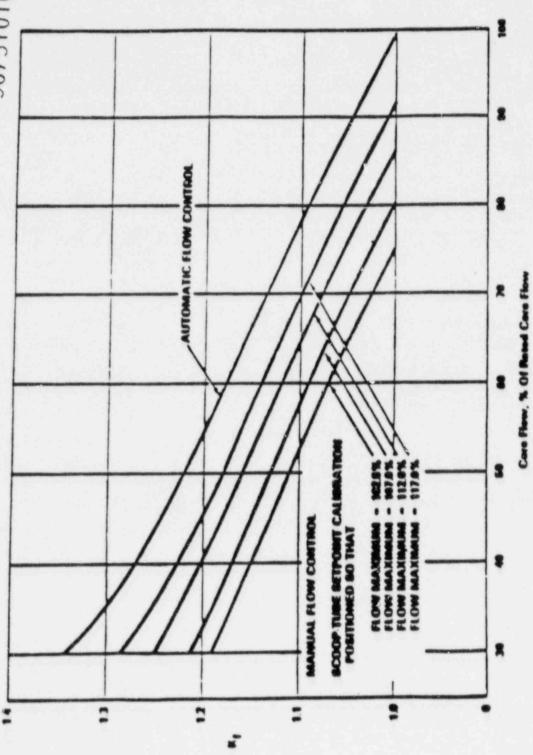


FIGURE 3.2.3-2

AUS 8 MTS

X

POWER DISTRIBUTION LIMITS

3/4.2.4 LINEAR HEAT GENERATION RATE

LIMITING CONDITION FOR OPERATION

3.2.4 The LINEAR HEAT GENERATION RATE (LHGR) shall not exceed 13.4 kW/ft.for BP/PBXBR fuel and 14.4 km/ft for GESXBEB fuel

APPLICABILITY: OPERATIONAL CONDITION 1, when THERMAL POWER is greater than or equal to 25% of RATED THERMAL POWER.

ACTION:

With the LHGR of any fuel rod exceeding the limit, initiate corrective action within 15 minutes and restore the LHGR to within the limit within 2 hours or reduce THERMAL POWER to less than 25% of RATED "HERMAL POWER within the next 4 hours.

SURVEILLANCE REQUIREMENTS

4.2.4 LHGRs shall be determined to be equal to or less than the limit:

- a. At least once per 24 hours,
- b. Within 12 hours after completion of a THERMAL POWER increase of at least 15% of RATED THERMAL POWER, and
- c. Initially and at least once per 12 hours when the reactor is operating on a LIMITING CONTROL ROD PATTERN for LNGR.
- d. The provisions of Specification 4.0.4 are not applicable.

LIMERICK - UNIT 1

3/4.3 INSTRUMENTATION

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1 As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.

APPLICABILITY: As shown in Table 3.3.1-1.

- ACTION:

- a. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip System requirement for one trip system, place the inoperable channel(s) and/or that trip system in the tripped condition* within 1 hour. The provisions of Specification 3.0.4 are not applicable.
- b. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip System requirement for both trip systems, place at least one trip system^{**} in the tripped condition within 1 hour and take the ACTION required by Table 3.3.1-1.

SURVEILLANCE REQUIREMENTS

4.3.1.1 Each reactor protection system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.1.1-1.

4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific reactor trip system.

*An inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these cases, the inoperable channel shall be restored to OPERABLE status within 2 hours or the ACTION required by Table 3.3.1-1 for that Trip Function shall be taken.

**The trip system need not be placed in the tripped condition if this would cause the Trip Function to occur. When a trip system can be placed in the tripped condition without causing the Trip Function to occur, place the trip system with the most inoperable channels in the tripped condition; if both systems have the same number of inoperable channels, place either trip system in the tripped condition.

LIMERICK - UNIT 1

3/4 3-1

f. .: 8 1985

¢

2.1

TABLE 3.3.1-1

REACTOR PROTECTION SYSTEM INSTRUMENTATION

-			TABLE 3.3.1-1		
IMERI		REACTOR PI	ROTECTION SYSTEM INSTRUME	NTATION	
LIMERICK - UNIT	FU	NCTIONAL UNIT	APPLICABLE OPERATIONAL CONDITIONS	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM (a)	ACTION
**	1.	Intermediate Range Monitors ^(b) :			ACTION
		a. Neutron Flux - High	3, 4 5(c)	3 3 3(d)	1 2 3
		b. Inoperative	3. 4 5	3 3 3(d)	1 2 3
3/4	2.	Average Power Range Monitor ^(e) :			,
3-2		a. Neutron Flux - Upscale, Setdown	2 9	2 2	1 2
		 b. Neutron Flux - Upscale 1) Flow Blased 	5(c)	2(d)	3
		2) High Flow Clamped	1	2 2	4
		c. Inoperative	1. 2 3. 4 5(c)	2 2 2(d)	1 2 3
		d. Downscale	1(g)	2	4
	3.	Reactor Vessel Steam Dome Pressure - High	1, 2(f)	2	1
	4.	Reactor Vessel Water Level - Low, Level 3	1, 2	2	1
	5.	Main Steam Line Isolation Valve - Closure	1(g)	1/valve	4

an and the start of the second start

**

S. & San K. C. S. L. S. S. S. S.

REACTOR PROTECTION SYSTEM INSTRUMENTATION

	REACTOR	PROTECTION SYSTEM INS	TRIMENTATION	
FUNC	TIONAL UNIT	APPLICABLE OPERATIONAL CONDITIONS	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM (a)	ACTION
6.	Main Steam Line Radiation - High	1, 2(1)	2	5
1.	Drywell Pressure - High	1, 2(h)	2	1
8.	Scram Discharge Volume Water Level - High			
	a. Level Transmitter	1, 2 5(1)	2 2	1
	b. Float Switch	1, 2 5 (1)	2 2	1
9.	Turbine Stop Valve - Closure	1(J)	4(k)	6
10.	Turbine Control Valve Sast Closure, Trip Oil Pressure - Low	1(j)	2 ^(k)	6
11.	Reactor Mode Switch Shutdown Position	1, 2 3, 4 5	2 2 2	1 7 3
12.	Manual Scram	1, 2 3, 4 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 8

16.

149

West of the States

TABLE 3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION

ACTION STATEMENTS

ACT.			e in at least HOT SHUTDOWN within 12 hours.
ACTION			wrify all insertable control rods to be inserted in the core and lock the reactor mode switch in the Shutdown position within 1 hour.
ACTION	3	-	Suspend all operations involving CORE ALTERATIONS and insert all insertable control rods within 1 hour.
ACTION	4	-	Be in at least STARTUP within 6 hours.
ACTION	5	•	Be in STARTUP with the main steam line isolation valves closed within 6 hours or in at least HOT SHUTDOWN within 12 hours.
ACTION	6	-	Initiate a reduction in THERMAL POWER within 15 minutes and reduce turbine first stage pressure until the function is automatically bypassed, within 2 hours.
ACTION	7	-	Verify all insertable control rods to be inserted within 1 hour.
ACTION	8	•	Lock the reactor mode switch in the Shutdown position within 1 hour.
ACTION	9	•	Suspend all operations involving CORE ALTERATIONS, and insert all insertable control rods and lock the reactor

mode switch in the SHUTDOWN position within 1 hour.

LIMERICK - UNIT 1

AUU 8 1985

TABLE 3.3.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION

TABLE NOTATIONS

- (a) A channel may be placed in an inoperable status for up to 2 hours for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.
- .(b) This function shall be automatically bypassed when the reactor mode switch is in the Run position and the associated APRM is not downscale.
- (c) The "shorting links" shall be removed from the RPS circuitry prior to and during the time any control rod is withdrawn* and shutdown margin demonstrations performed rer Specification 3.10.3.
- (d) The noncoincident NMS reactor trip function logic is such that all channels go to both trip systems. Therefore, when the "shorting links" are removed, the Minimum OPERABLE Channels Per Trip System is 4 APRMs, 6 IRMs and 2 SRMs.
- (e) An APRM channel is inoperable if there are less than 2 LPRM inputs per level or less than 14 LPRM inputs to an APRM channel.
- (f) This function is not required to be OPERABLE when the reactor pressure vessel head is removed per Specification 3.10.1.
- (g) This function shall be automatically bypassed when the reactor mode switch is not in the Run position.
- (h) This function is not required to be OPERABLE when PRIMARY CONTAINMENT INTEGRITY is not required.
- (i) With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
- (j) This function shall be automatically bypassed when turbine first stage pressure is equivalent to a THERMAL POWER of less than 30% of RATED THERMAL POWER.
- (k) Also actuates the EOC-RPT system.

*Not required for control rods removed per Specification 3.9.10.1 or 3.9.10.2.

LIMERICK - UNIT 1

3/4 3-5

· · · · · · · ·

*

TAB	1 6	2	2	- 1	-2
inp	LL.	э.	3	. 1	-2

REACTOR PROTECTION SYSTEM RESPONSE TIMES

INDLE 3.3.1-2					
	REACTOR PROTECTION SYSTEM	RESPONSE TIMES			
FUN	CTIONAL UNIT	RESPONSE TIME (Seconds)			
1.	Intermediate Range Monitors:				
	a. Neutron Flux - High	N. A.			
	b. Inoperative	N. A.			
2.	Average Power Range Monitor*:				
	a. Neutron Flux - Upscale, Setdown	N.A.			
	b. Neutron Flux - Upscale				
	1) Flow Blased	<0.09			
	2) High Flow Clamped	<0.09			
	c. Inoperative	N. A.			
	d. Downscale	N. A.			
3.	Reactor Vessel Steam Dome Pressure - High	< 0.55			
4.	Reactor Vessel Water Level - Low, Level 3	< 1.05			
5.	Main Steam Line Isolation Value - Closure	< 0.06			
6.	Main Steam Line Radiation - High	N. A.			
7.	Drywell Pressure - High	N. A.			
8.	Scram Discharge Volume Water Level - High				
	a. Level Transmitter b. Float Switch	N.A.			
9.	Turbine Stop Valve - Closure	N.A.			
10.	Turbine Control Valve Fast Closure,	≤ 0.06			
	Trip Oil Pressure - Low	< 0.08**			
11.	Reactor North Switch Shutdown Position	N. A.			
12.	Manua? Scram	N.A.			

102

n 8

> *Neutron detectors are exempt from response time testing. Response time shall be measured from the detector output or from the input of the first electronic component in the channel. **Measured from start of turbine contro! valve fast closure.

REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUN	CTIONAL UNIT	CHANNEL . CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION (a)	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
1.	Intermediate Range Monitors: a. Neutron Flux - High	S/U,S(b)	S/U(c), ₩	R	•
		S	W(J)	R	2 3, 4, 5
	b. Inoperative	N.A.	W(j)	N. A.	2, 3, 4, 5
2.	Average Power Range Menitor(f).			
	a. Neutron Flux -	S/U, S(b)	S/U(c), W	SA	2
	Upscale, Setdown	S	W(j)	SA	3, 5
	b. Neutron Flux - Upscale				
	1) Flow Blased	S,D(g)	S/U(c), W	W(d)(e), SA,	1
	2) High Flow Clamped	5	S/U(c), ₩	W(d)(e), SA	1
	c. Inoperative	N.A.	W(j)	N.A.	1, 2, 3, 5
	d. Downscale	s	W	SA	1
3.	Reactor Vessel Steam Dome Pressure - High	s	н	R	1, 2(h)
4.	Reactor Vessel Water Level - Low, Level 3	5	м	R	1, 2
5.	Main Steam Line Isolation Valve - Closure	N.A.	м	R	1
6.	Main Steam Line Radiation - High	s	м	R	1, 2(h)
7.	Drywell Pressure - High	s	м	R	1, 2

LIMERICK - UNIT 1

3/4 3-7

TABLE 4.3.1.1-1 (Continued)

REACTOR PROTECTION SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNC	CTIONAL UNIT	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
8.	Scram Discharge Volume Water Level - High				Source and and they
	a. Level Transmitter	s	м	R	1 2 5(1)
	b. Float Switch	N.A.	м	R	$1, 2, 5(i) \\1, 2, 5(i)$
9.	Turbine Stop Valve - Closure	N.A.	н	R	1
10.	Turbine Control Valve Fast Closure, Trip Oil				
	Pressure - Low	N.A.	м	R	1
11.	Reactor Mode Switch				
	Shutdown Position	N.A.	R	N.A.	1, 2, 3, 4, 5
12.	Manual Scram	N.A.	м	N.A.	1, 2, 3, 4, 5

(a) Neutron detectors may be excluded from CHANNEL CALIBRATION.

3-8

3

1

(b) The IRM and SRM channels shall be determined to overlap for at least ½ decades during each starkup after entering OPERATIONAL CONDITION 2 and the IRM and APRM channels shall be determined to overlap for at least ½ decades during each controlled shutdown, if not performed within the previous 7 days.

(c) Within 24 hours prior to startup, if not performed within the previous 7 days.

(d) This calibration shall consist of the adjustment of the APRM charnel to conform to the power values calculated by a heat balance during OPERATIONAL CONDITION 1 when THERMAL POWER > 25% of RATED THERMAL POWER. Adjust the APRM channel if the absolute difference is greater than 2% of RATED THERMAL POWER. Any APRM channel gain adjustment made in compliance with Specification 3.2.2 shall not be included in determining the absolute difference.

(e) This calibration shall consist of the adjustment of the APRM flow biased channel to conform to a calibrated flow signal.

(f) The LPRMs shall be calibrated at least once per 1000 effective full power hours (EFPH) using the TIP system.

(g) Verify measured core flow (total core flow) to be greater than or equal to established core flow at the existing loop flow (APRM % flow).

(h) This function is not required to be OPERABLE when the reactor pressure vessel head is removed per Specification 3.10.1.

(i) With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

(j) If the RPS shorting links are required to be removed per Specification 3.9.2, they may be reinstalled for up to 2 hours for required surveillance. During this time, CORE ALTERATIONS shall be suspended, and no control rod shall be moved from its existing position. INSTRUMENTATION

3/4.3.2 ISOLATION ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.2 The isolation actuation instrumentation channels shown in Table 3.3.2-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.2-2 and with ISOLATION SYSTEM RESPONSE TIME as shown in Table 3.3.2-3.

- APPLICABILITY: As shown in Table 3.3.2-1.

ACTION:

- a. With an isolation actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.2-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip System requirement for one trip system, place the inoperable channel(s) and/or that trip system in the tripped condition* within 1 hour. The provisions of Specification 3.0.4 are not applicable.
- c. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip System requirement for both trip systems, place at least one trip system** in the tripped condition within 1 hour and take the ACTION required by Table 3.3.2-1.

*An inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur. In these case:, the inoperable channel shall be restored to OPERABLE status within 2 hours or the ACTION required by Table 3.3.2-1 for that Trip Function shall be taken.

**The trip system need not be placed in the tripped condition if this would cause the Trip Function to occur. When a trip system can be placed in the tripped condition without causing the Trip Function to occur, place the trip system with the most inoperable channels in the tripped condition; if both systems have the same number of inoperable channels, place either trip system in the tripped condition.

LIMERICK - UNIT 1

INSTRUMENTATION

SURVEILLANCE REQUIREMENTS

4.3.2.1 Each isolation actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.2.1-1.

4.3.2.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

4.3.2.3 The ISOLATION SYSTEM RESPONSE TIME of each isolation trip function shown in Table 3.3.2-3 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 18 months, system.

t

TABLE 3.3.2-1 ISOLATION ACTUATION INSTRUMENTATION

a second la

X

TRI	P FUNC	TION	ISOLATION SIGNAL (a)	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM (b)	APPLICABLE OPERATIONAL CONDITION	ACTION
1.	MAIN	STEAM LINE ISOLATION				<u>merron</u>
	a.	Reactor Vessel Water Level				
		1) Low, Low-Level 2	8			
		2) Low, Low, Low-Level 1	c	2 2	1, 2, 3 1, 2, 3	21 21
	b.	Main Steam Line				
		Radiation - High	D	2	1, 2, 3	21
	с.	Main Steam Line				
		Pressure - Low	Р	2	1	22
	d.	Main Steam Line				
		Flow - High	E	2/11ne	1, 2, 3	20
	e.	Condenser Vacuum - Low	Q	2	1, 2**, 3**	21
	f.	Main Steam Line Tunnel				
		Temperature - High	F(1)	5-1	1, 2, 3	21
	g.	Turbine Enclosure - Main Steam				
		Line Tunnel Temperature - High	F(t)	B-13	1, 2, 3	21
	h.	Manual Initiation	MA	2	1, 2, 3	24
2.	RHR	SYSTEM SHUTDOWN COOLING MODE IS	OLATION			
	8.	Reactor Vessel Water Level				
		Low - Level 3	٨	2	1, 2, 3	23
	b.	Reactor Vessel (RHR Cut-In			-1 -1 -	23
		Permissive) Pressure - High	v			
				2	1, 2, 3	23
	c.	Manual Initiation	NA	1	1, 2, 3	24

1

.

3/4 3-11

LIMERICK - UNIT 1

05

1985

	Ī	TABLE 3.3.	2-1 (Continued)						
TRIP F	UNCTION	ISOLATION SIGNAL (a)	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM (b)	APPLICABLE OPERATIONAL CONDITION	ACTION				
3. <u>R</u>	EACTOR WATER CLEANUP SYSTEM ISOL	ATION							
a	. RWCS & Flow - High	J	1	1, 2, 3	23				
b	. RWCS Area Temperature - High	J	6	1, 2, 3	23				
c	. RWCS Area Ventilation Δ Temperature - High	J	6	1, 2, 3	23				
d	. SLCS Initiation	y(d)	NA	1, 2, 3	23				
e	. Reactor Vessel Water Level - Low, Low - Level 2	8	2	1, 2, 3	23				
f	. Manual Initiation	NA	1	1, 2, 3	24				
₽. <u>H</u>	HIGH PRESSURE COOLANT INJECTION SYSTEM ISOLATION								
a	HPCI Scom Line & Pressure High	ι	1	1, 2, 3	23				
b.	HPCI Steam Supply Pressure - Low	LA	2	1, 2, 3	23				
c.	HPCI Turbine Exhaust Diaphrag Pressure - High	m L	2	1, 2, 3	23				
đ.	HPC: Equipment Room Temperature - High	ι	1	1, 2, 3	23				
e.	HPCI Equipment Room Δ Temperature - High	L	. 1	1, 2, 3	23				

LIMERICK - UNIT 1

3/4 3-12

ACC 8 1925

4

X

11.1

150	TABLE 3.3. LATION ACTUA	2-1 (Continued)		
MCTION .	GIGNAL (a)	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM (b)	APPLICABLE OPERATIONAL CONDITION	ACTION
H PRESSURE COOLANT INJECTION SYSTE	M ISOLATION	(Continued)		
HPCI Pipe Routing Area Temperature - High	ı.		1, 7, 3	23
Manual Initiation	NA(e)	1/system	1. 2. 3	24
HPCI Steam Line & Press Timer	NA	1	1, 2, 3	21
ACTOR CORE ISOLATION COOLING SYSTE	M ISOLATION			
Reactor Steam Line				
∆ Pressure - High	к	1	1, 2, 3	23
RCIC Steam Supply Pressure - Lo	-	2	1. 2. 3	23
RCIC Turbine Exhaust Diaphraym Pressure - High	ĸ	2	1. 2. 3	23
RCIC'Equipment Rood Temperature - High	ĸ	1	1. 2. 3	23
RCIC Equipment Room A Temperature - High	ĸ	1	1. 2. 3	23
RCIC Pipe Routing Area Temperature - High	к	\$4	1, 2, 3	23
Manual Initiation	NA(r)	1/system	1, 2, 3	24
RCIC Steam Line				
	MCTION Η PRESSURE COOLANT INJECTION SYSTE HPCI Pipe Routing Area Temperature - High Manual Initiation HPCI Steam Line Δ Press Timer ACTOR CORE ISOLATION COOLING SYSTE Reactor Steam Line Δ Pressure - High RCIC Steam Supply Pressure - Lo RCIC Turbine Exhaust Diaphragm Pressure - High RCIC Equipment Room Δ Temperature - High RCIC Pipe Routing Area Temperature - High RCIC Pipe Routing Area Temperature - High Manual Initiation	ISOLATION ACTION MCTION ISOLATION STREATION METION SIGMAL (a) H PRESSURE COOLANT INJECTION SYSTEM ISOLATION HPCI Pipe Routing Area Temperature - High L Manual Initiation NA(e) HPCI Steam Line Δ Press Timer NA ACTOR CORE ISOLATION COOLING SYSTEM ISOLATION Reactor Steam Line K A Pressure - High K RCIC Steam Supply Pressure - Low KA RCIC Turbine Exhaust Diaphragm K Pressure - High K RCIC Equipment Room K A Temperature - High K RCIC Equipment Room K MEDIC Equipment Room K Manual Initiation MA(e)	ISOLATIONOPTRABLE CHANNELS SIGMAL (a)H PRESSURE COOLANT INJECTION SYSTEM ISOLATION (Continued)HPCI Pipe Routing Area Temperature - HighLAManual InitiationNA(e)I/SystemHPCI Steam Line Δ Press TimerNAACTOR CORE ISOLATION COOLING SYSTEM ISOLATIONReactor Steam Line Δ Pressure - HighKRCIC Steam Supply Pressure - LowKARCIC Steam Supply Pressure - LowKARCIC Turbine Exhaust Diaphragm Pressure - HighKRCIC Equipment Room Δ Temperature - HighKRCIC Equipment Room Δ Temperature - HighKRCIC Pipe Routing Area Temperature - HighKRCIC Pipe Routing Area Temperature - HighKMCIC Pipe Routing Area Temperature - HighKRCIC Pipe Routing Area Temperature - HighKManual InitiationNA(e)J/System	ISOLATION ACTUATION INSTRUMENTATIONINCTIONISOLATIONISOLATIONAPPLICABLE OPERABLE CUMNELS OPERATIONAL CONDITIONMCTIONISOLATIONSIGMAL (a)PIR TRIP SYSTEM (b)APPLICABLE OPERATIONAL CONDITIONH PRESSURE COOLANT INJECTION SYSTEM ISOLATION(Continued)HPCI Pipe Routing Area Temperature - High141, 2, 3Manual InitiationNA(e)1/system1, 2, 3HPCI Steam Line Δ Press TimerNA11, 2, 3ACTOR CORE ISOLATION COOLING SYSTEM ISOLATIONReactor Steam Line Δ Pressure - HighK11, 2, 3RCIC Steam Supply Pressure - LowKA21, 2, 3RCIC Turbine Exhaust Diaphraym Pressure - HighK11, 2, 3RCIC Equipment Room Δ Temperature - HighK11, 2, 3RCIC Pipe Routing Area Temperature - HighK31, 2, 3Manual InitiationNA(e)1/system1, 2, 3

1

LIMERICK - UNIT 1

3/4 3-13

AUS 8 1985

X

X

4.1

IMERICK			1	TABLE 3.3. SOLATION ACTU	2-1 (Continued) ATION INSTRUMENTATION		
	TRIP 6.		ICTION	ISOLATION SIGNAL	MINIMIM OPERABLE CHANNELS) PER TRIP SYSTEM	APPLICABLE OPERATIONAL CONDITION	ACTION
T	6.	PRIMARY CONTAINMENT ISOLATION					
		•.	Reactor Vessel Water Level 1) Low, Low - Level 2 2) Low, Low, Low - Level 1	B C	2(6)	1, 2, 3	20 20
		b.	Drywell Pressure - High	н	2(6)	1, 2, 3	20
		c.	North Stack Effluent Radiation - High (9)	w	1	1, 2, 3	23
3/4		d.	Deleted				1
3-14		e.	Reactor Enclosure Ventilation Exhaust Duct-Radiation - High	s	2(4)	1, 2, 3	23
		f.	Outside Atmosphere to Reactor Enclosure & Pressure - Low	U	1	1, 2, 3	23
		g.	Deleted				
		h.	Drywell Pressure - High/ Reactor Pressure - Low	G	2/2	1, 2, 3	26
	Jac	1.	Primary Containment Instrumen Gas Line to Drywell ∆ Pressure-Low	L M	1	1, 2, 3	26
ant No.		j.	Manual Initiation	NA	1	1, 2, 3	24

•

	-
	NIATION
	-
	-
	-
-	-
. 22	z
inned)	-
- 2	Ŧ
7	INSTRUM
-	=
	er.
(Cont i	-
. 5	5
0	x
-	-
-	
	2
-	-
-	~
10	
1	1
3.3.2-1	ACTUATION
	-
3	L
	-
-	-
=	-
-	-
•	_
-	-
1481	•
	1201
	0
	3
	-

LIMER		-	SOLATION ACTUATI	IABLE 3.3.2-1 (Continued) ISOLATION ACTUATION INSTRUMENIATION		
	TRIP FUNCTION	NCT 10M	ISOLATION). (c)	ISOLATION .(c) OPERALL CHANNEL ()	APPLICABLE OPTRALIONAL CONDITION	ACTION
- T 1	R	SECONDARY CONTAINNENT ISOLA. ION				
	*	Reactor Vessel Water Level Low, Low - Level 2	¢	2	1.2.1	¥
	۵	Brywell Pressure - High	Ŧ	2	1.2.1	c ×
	J	Refueling Area Ventilation Exhaust Duct Radiation - High	khaust R	2		c ¥
3/4	ġ.	Reactor Enclosure Ventilation Exhaust Duct Radiation - High 5	n Exhaust S	2	1.2.1	c ¥
3-15	é	Outside Atmosphere To Reactor Enclosure & Pressure - Low		-	1.2.1	c ¥
	2	Outside Atmosphere To Refueling Area Δ Pressure - Low	1 Gui	-	•	s x
	ø	Reactor Enclosure Nanual Initiation	¥	-	1, 2, 3	*
JUL	é	Refueling Area Manual Initiation Initiation	fon NA	-		23

-t

TABLE 3.3.2-1 (Continued) ISOLATION ACTUATION INSTRUMENTATION ACTION STATEMENTS

- ACTION 20 Be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- ACTION 21- Be in at least STARTUP with the associated isolation valves closed within 6 hours or be in at least MOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- ACTION 22 Be in at least STARTUP within 6 hours.

and the state of t

- ACTION 23 IN OPERATIONAL CONDITION 1 or 2, verify the affected system isolation valves are closed within 1 hour and declare the affected system inoperable. In OPERATIONAL CONDITION 3, be in at least COLD SHUTDOWN within 12 hours.
- ACTION 24 Restore the manual initiation function to OPERABLE status within 8 hours or close the affected system isolation valves within the next hour and declare the affected system inoperatie or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- ACTION 25 Establish SECONDARY CONTAINMENT INTEGRITY with the standby gas treatment system operating within 1 hour.
- ACTION 26 Close the affected system isolation valves within 1 hour.

TABLE NOTATIONS

- * When handling irradiated fuel in the secondary containment and during CORE ALTERATIONS and operations with a potential for draining the reactor vessel
- May be bypassed under administrative control, with all turbine stop valves closed.
- (a) See Specification 3.6.3, Table 3.6.3-1 for primary containment isolation valves which are actuated by these isolation signals.
- (b) A channel may be placed in an inoperable status for up to 2 hours for required surveillance without placing the channel or trip system in the tripped condition provided at least one other OPENABLE channel in the same trip system is monitoring that parameter. In addition, for the HPCI system and RCIC system isolation, provided that the redundant isolation valve, inboard or outboard, as applicable, in each line is OPERABLE and all required actuation instrumentation for that valve is OPERABLE, one channel may be placed in an inoperable status for up to 8 hours for required surveillance without placing the channel or trip system in the tripped
- (c) Actuates secondary containment isolation valves shown in Table 3.6.5.2.1-1 and/or 3.6.5.2.2-1 and signals B, H, S, U, R and T also start the standby gas treatment system.
- (d) RWCU system inlet outboard isolation valve closes on SLCS "B" initiation. RWCU system inlet inboard isolation valve closes on SLCS "A" or SLCS "C" initiation.

LIMERICK - UNIT 1

manchement No. 6

J#1 2 1947

TABLE 3.3.2-1 (Continued)

TABLE NOTATIONS

- (e) Manual initiation isolate the steam supply line outboard isolation valve and only following manual or automatic initiation of the system.
- (f) In the event of a loss of ventilation in the Main Steam Line Tunnel Area, the main steam line tunnel temperature - high setpoint may be raised by 50°F for a period not to exceed 30 minutes to permit restoration of the ventilation flow without a spurious trip. During the 30 minute period, an operator, or other qualified member of the technical staff, shall observe the temperature indications continuously, so that, in the event of rapid increases in temperature, the main steam lines shall be manually isolated.
- (g) Wide range accident monitor per Specification 3.3.7.5.
- (h) Those value logics designed with one channels require only one channel per Tripo System. Value logics designed with two channels require two channels per Trip System.

LIMERICK - UNIT 1

1.1 6 1965

TABLE 3.3.2-2

ISOLATION ACTUATION INSTRUMENTATION SETPOINTS

TRI	p fu	ICTION	TRIP SETPOINT	ALLOWABLÉ VALUE
1.	MAI	IN STEAM LINE ISOLATION		
	a.	Reactor Vessel Water Level 1) Low, Low - Level 2 2) Low, Low, Low - Level 1	≥ - 38 inches* ≥ - 129 inches*	 - 45 inches - 136 inches
	b.	Main Steam Line Radiation - High	3.0 x Full Power Background	≤ 3.6 x Full Power Background
	c.	Main Steam Line Pressure - Low	≥ 756 psig	≥ 736 psig
	đ.	Main Steam Line Flow - High	< 108.7 psid	≤ 111.7 psid
	е.	Condenser Vacuum - Low	10.5 psta	≥ 10.1 psia/< 10.9 psia
	f.	Main Steam Line Tunnel Temperature - High	≤ 192°F	≤ 200°F
	g.	Turbine Enclosure - Main Steam Line Tunnel Temperature - High	≤ 165°F	≤ 175°F
	h.	Manual Initiation	N. A.	N.A.
2.	RHR	SYSTEM SHUTDOWN COOLING MODE ISOLATION		
	a.	Reactor Vessel Water Level . Low - Level 3	≥ 12.5 inches*	≥ 11.0 inches
	b.	Reactor Vessel (RHR Cut-in Permissive) Pressure - High	≤ 75 psig	≤ 95 pstg
	с.	Manual Initiation	N.A.	N. A.

LIMERICK - UNIT 1

3/4 3-18

50

5 . 4:

TABLE 3.3.2-2 (Continued)

ISOLATION ACTUATION INSTRUMENTATION SETPOINTS

TRIP	PFUNCTION	TRIP SETPOINT	ALLOWABLE
<u>TRII</u> 3.	REACTOR WATER CLEANUP SYSTEM ISOLATION		
	a. RWCS ∆ Flow - High b. RWCS Area Temperature - High c. RWCS Area Ventilation	≤ 54.9 gpm ≤ 135°F or 122°F**	≤ 65.2 gpm ≤ 145°F or 130°F**
	Δ Temperature - High d. SLCS Initiation	≤ 32°F N.A.	≤ 40°F N.A.
	 Reactor Vessel Water Level - Low, Low, - Level 2 f. Manual Initiation 	≥ ~38 inches*	≥ -45 Inches
4.	HIGH PRESSURE COOLANT INJECTION SYSTEM IS	N.A. OLATION	N. A.
	a. HPCI Steam Line Δ Pressure - High b. HPCI Steam Supply Pressure - Low	≤ 343" H ₂ 0 ≥ 100 psfg	\leq 358" H ₂ O \geq 90 psig
	 c. HPIC Turbine Exhaust Diaphragm Pressure - High d. HPCI Equipment Room 	≤ 10 psig	≤ 20 psig
	Temperature - High e. HPCI Equipment Room	175°F	≥ 165°F, ≤ 200°F
	Δ Temperature - High f. HPCI Pipe Routing Area Temperature - High	< 80°F	≤ 88°F
	g. Manual Initiation	175°F N.A.	≥ 165°F, ≤ 200°F N.A.
	h. HPCI Steam Line Δ Pressure - Timer	$3 \le \tau \le 12.5$ seconds	$2.5 \le \tau \le 13$ seconds

3/4 3-19

LIMERICK - UNIT 1

1

_C 1995

And A to at

12 × į

TABLE 3.3.2-2 (Continued)

ISOLATION ACTUATION INSTRUMENTATION SETPOINTS

TRIP	FUNCTION		TRIP SETPOINT	ALLOWABLE
5.	REACTOR	CORE ISOLATION COOLING SYSTEM ISO	LATION	
		ictor Steam Line Δ ssure - High	≤ 213" H₂0	≤ 223" P ₂ 9
	b. RCI	C Steam Supply Pressure - Low	≥ 64.5 ps1g •	≥ 56.5 psig
	c. RCI Pre	C Turbine Exhaust Diaphragm ssure - High	≤ 10.0 psig	≤ 20.0 ps 'g
		C Equipment Room perature - High	175°F	≥ 165°F, < 200°F
		C Equipment Room emperature - High	≤ 80°F	≤ 88°F
		C Pipe Routing Area perature - High	175°F	≥ 165°F, ≤ 200°F
	g. Man	ual Initiation	N.A.	N.A.
	h. RCI	C Steam Line ∆ Pressure Timer	$3 \le \tau \le 12.5$ seconds	$2.5 \leq \tau \leq 13$ seconds

3/4 3-20

LIMERICK - UNIT 1

10

8 1.8

X

5			TABLE 3	. 3. 2-2 (Continued)	
LIMERICK			ISOLATION ACTUATI	ON INSTRUMENTATION SETPOINTS	
UNIT	TRI	P FUN	CTION	TRIP SETPOINT	ALLOWAB'E VALL
-	6.	PRI	MARY CONTAINMENT ISOLATION		-
		a .	Reactor Vessel Water Level 1. Low, Low - Level 2 2. Low, Low, Low, Level 1	> -38 inches* > -129 inches*	> -45 inches > -136 inches
		b.	Drywell Pressure - High	≤ 1.68 psig	< 1.88 psig
w		с.	North Stack Effluent Radiation - High	< 2.1 µCi/cc	< 4.0 µCi/cc
3/4 3-21		d.	Deleted		
-21		e.	Reactor Enclosure Ventilation Exhaust Duct - Radiation - High	≤ 1.35 mR/h	< 1.5 mR/h
		f.	Outside Atmosphere To Reactor Enclosure & Pressure - Low	2 0.1 inch- Hz 0	> 0.0" inch H2 0
		g.	Deleted		
	Jar	h.	Drywell Pressure - High/ Reactor Pressure - Low	< 1.68 psig/ > 455 psig (decreasing)	< 1.88 psig/ > 435 psig (decreasing)
ant No.	-	1.	Primary Containment Instrument Gas to Drywell & Pressure-Low	> 2.0 psig	> 1.9 psig
6		j.	Manual Initiation	N, A.	N.A.

TABLE 3.3.2-2 (Continued)

3874086670

ISOLATION ACTUATION INSTRUMENTATION SETPOINTS

TRIP	FUN	CTION	TRIP SETPOINT	ALLOWABLE
7.	SEC	DNDARY CONTAINMENT ISOLATION		
	a.	Reactor Vessel Water Level -		
		Low, Low - Level 2	≥ -38 inches*	> -45 inches
	b.	Drywell Pressure - High	≤ 1.68 psig	≤ 1.88 "sig
	с.	Refueling Area Ventilation Exnaust		
		Duct Radiation - High	< 2.0 mR/h	< 2.2 mR/h
	d.	Reactor Enclosure Ventilation Exhaust		
		Duct Radiation - High	<1.35 mR/h	≤ 1.5 mP"
	е.	Outside Atmosphere To Reactor Enclosure	,	
		A Pressure - Low	2 0.1 "inch H2 0	> 0.0 inch H:
	f.	Outside Atmosphere To Refueling Area	김 양성, 노력 관	
		A Pressure - Low	≥ 0.1 inch H_2 0	> 0.0"inch Hz
	9.	Reactor Enclosure Manual		
		Initiation	N.A.	N.A.
	h.	Refueling Area Manual Initiation	N.A.	N.A.

**The low setpoints are for the RWCU Heat Exchanger Rooms; the high setpoints are for the pump rooms.

LIMERICK - UNIT 1

3/4 3-22

nd ant

. .

TABLE 3.3.2-3

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TR	IP FU	NCTION	RESPONSE TIME (Seconds)#
1.	MA	IN STEAM LINE ISOLATION	Cocconde /
	e. .b.	Reactor Vessel Water Level 1) Low, Low - Level 2 2) Low, Low, Low - Level 1 Main Steam Line (L)	$\leq 13^{(a)} \star \star \leq 1.0^{\star}$
		Main Steam Line Radiation - High(b)	< 1.0*/< 13 ^(a) **
	с.	Main Steam Line Pressure - Low	$\leq 1.0^{*} / \leq 13^{(a)_{**}}$
	d.	Main Steam Line Flow - High	$\leq 0.5^{*}/\leq 13^{(a)**}$
	е.	Condenser Vacuum - Low	N.A.
	f.	Main Steam Line Tunnel Temperature - High	N. A.
	g.	Turbine Enclosure - Main Steam Line Tunnel Temperature - High	N. A.
	h.	Manual Initiation	N.A.
2.	RHR	SYSTEM SHUTDOWN COOLING MODE ISOLATION	n. n.
	8.	Reactor Vessel Water Level Low - Level 3	≤ 13 ^(a)
	ь.	Reartor Vessel (RHR Cut-In Permissive) Pressure - High	N. A.
	с.	Manual Initiation	N.A.
3.	READ	CTOR WATER CLEANUP SYSTEM ISOLATION	
	а.	RWCS & Flow - High	≤ 13 ^{##}
	b.	RWCS Area Temperature - High	N. A.
	с.	RWCS Area Ventilation	N.A.
	d.	SLCS Initiation	N. A.
	е.	Reactor Vessel Water Level - Low, Low - Level 2	≤ 13 ^(a)
	1.	Manual Initiation	N. A.

LIMERICK - UNIT 1 3/4 3-23

and a second second

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP	FUNC	TION	RESPONSE TIME (Seconds)#
4.	HIGH	PRESSURE COOLANT INJECTION SYSTEM	
	a.	HPCI Steam Line Pressure - High	≤ 13 ^(a)
•	Þ.	HPCI Steam Supply Pressure - Low	≤ 13 ^(a)
	c.	HPCI Turbine Exhaust Diaphragm Pressure - High	N. A.
	d	HPCI Equipment Room Temperature - High	N. A.
	e.	HPCI Equipment Room	N. A.
	f.	HPCI Pipe Routing Area Temperature - High	N. A.
	ç.	Manual Initiation	N. A.
5. 1	REACT	OR CORE ISOLATION COOLING SYSTEM ISOLA	TION
•	a.	Reactor Steam Line Pressure - High	≤ 13 ^(a)
:	b .	RCIC Steam Supply Pressure - Low	< 13 ^(a)
¢	•	RCIC Turbine Exhaust Diaphragm Pressure - High	N. A.
•	4.	RCIC Equipment Room Temperature - High	N.A.
٠	.]	RCIC Equipment Room 5 Temperature - High	N. A.
f	• {	RCIC Pipe Routing Area Temperature - High	N. A.
9		Manual Initiation	N. A.

LIMERICK - UNIT 1

3/4 3-24

ALI 8 1921

TABLE 3.3.2-3 (Continued)

and the second with the terms of a second stand with a stand with the second stand and the second stands and a

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FL	UNCTION	RESPONSE TIME (Seconds)#
6. PF	RIMARY CONTAINMENT ISOLATION	a state that a state
8.	Reactor Vessel Water Level	
	1) Low, Low - Level 2	< 13 ^(a)
	2) Low, Low, Low - Level 1	< 13 ^(a)
b.	Drywell Pressure - High	< 13 ^(a)
с.	North Stack Effluent Radiation - High	N. A.
d.	Deleted	1
е.	Reactor Enclosure Ventilation Exhaust Duct - Radiation - High	N.A.
ť.	Outside Atmosphere To Reactor Enclosure	N. A.
ç	Deleted	
n.	Drywell Pressure - High/ Reactor Pressure - Low	N. A.
ί.	Primary Containment Instrument Gas to Drywell & Pressure-Low	N. A.
j.	Manual Initiation	N. A.
SEC	ONDARY CONTAINMENT ISOLATION	
4.	Reactor Vessel Water Level Low, Low - Level 2	N. A.
b .	Drywell Pressure - High	N. A.
с.	Refueling Area Ventilation Exhaust Duct Radiation - High	N.A.
đ.	Reactor Enclosure Ventilation Exhaust Duct Radiation - High	N. A.
۰.	Outside Atmosphere to Reactor Enclosure & Pressure - Low	N.A.

JUL 8 1987 Americhant No. 6

LIMERICK - UNIT 1

3/4 3-25

1.1.

TABLE 3.3.2-3 (Continued)

ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME

TRIP FUN	ICTION	RESPONSE TIME (Seconds)#
1.	Outside Atmosphere To Refueling Area & Pressure - Low	N. A.
9 .	Reactor Enclosure Manual Initiation	N. A.
h.	Refueling Area Manual Initiation	N.A.

TABLE NOTATIONS

- (a) Isolation system instrumentation response time specified includes 10 seconds diesel generator starting and 3 seconds for sequence loading delays.
- (b) Radiation detectors are exempt from response time testing. Response time shall be measured from detector output or the input of the first electronic component in the channel.
 - "Isolation system instrumentation response time for MSIV only. No diesel generator delays assumed for MSIVs.
 - **Isolation system instrumentation response time for associated valves except MSIVs.
 - #Isolation system instrumentation response time specified for the Trip Function actuating each valve group shall be added to isolation time shown in Tables 3.6.3-1, 3.6.5.2.1-1 and 3.6.5.2.2-1 for valves in each valve group to obtain ISOLATION SYSTEM RESPONSE TIME for each valve.

##with 45 second time delay.

mondmant No. 6

JUL

LIMERICK - UNIT 1

ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TRIF	P FUN	CTION	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
1.	MAI	N STEAM LINE ISOLATION				·
	a.	Reactor Vessel Water Level				
		1) Low, Low, Level 2	\$	N	R	1
		2) Low, Low, Low - Level 1	5	M	R	1, 2, 3 1, 2, 3
	b.	Main Steam Line				
		Radiation - High	S	м	R	1, 2, 3
	с.	Main Steam Line				
		Pressure - Low	S	м	R	1
	d.	Main Steam Line				
		Flow - High	\$	M	R	1, 2, 3
	e.	Condenser Vacuum - Low	s	м	R	1, 2**, 3**
	f.	Main Steam Line Tunnel				
		Temperature - High	s	м	R	1, 2, 3
	g.	Turbine Enclosure - Main Steam	1.1			
		Line Tunnel Temperature - High	S	м	R	1, 2, 3
	h.	Manual Initiation	N.A.	R	N.A.	1, 2, 3
2.	RHR	SYSTEM SHUTDOWN COOLING MODE IS	OLATION			
	a.	Reactor Vessel Water Level				
		Low - Level 3	S	м	R	1, 2, 3
	b.	Reactor Vessel (RHR Cut-In Permissive) Pressure - High	s	м	R	1, 2, 3
	с.	Manual Initiation	N.A.	R	N. A.	1, 2, 3

LIMERICK - UNIT

-

3/4 3-27

115

6 111

TABLE 4.3.2.1-1 (Continued)

ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TRIP	FUN	CTION	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
3.	REAC	CTOR WATER CLEANUP SYSTEM ISOLAT	ION			
	a.	RWCS & Flow - High	s	н	R	1, 2, 3
	b.	RWCS Area Temperature - High	s	м	R	1, 2, 3
	с.	RWCS Area Ventilation				-1 -1 -
		Δ Temperature - High	S	м	R	1, 2, 3
	d.	SLCS Initiation	N.A.	R	N. A.	1, 2, 3
	e.	Reactor Vessel Water Level - Low, Low, - Level 2	s	м	R	
	f.	Manual Initiation	N.A.	R	N.A.	1, 2, 3
4.	HIGH	PRESSURE COOLANT INJECTION SYS			N.A.	1, 2, 3
	a.	HPCI Steam Line A Pressure - High	s		R	. 1, 2, 3
	b.	HPCI Steam Supply Pressure - Low	s	н	R	1, 2, 3
	c.	HPCI Turbine Exhaust Diaphragm Pressure - High	s	м	R	1, 2, 3
•	d.	HPCI Equipment Room Temperature - High	s	м	R	1, 2, 3
'	e.	HPCI Equipment Room Δ Temperature - High	s	м	R	1, 2, 3
1	f.	HPCI Pipe Routing Area Temperature - High	s	н	R	1, 2, 3
1	g.	Manual Initiation	N.A.	R	N. A.	1, 2, 3
1	h.	HPCI Steam Line A Pressure Timer	N.A.	м	R	1, 2, 3

3/

LIMERICK - UNIT 1

3/4 3-28

IABLE 4.3.2.1-1 (Continued) ISOLATION ACTUATION INSTRUMENTATION SURVETILANCE REQUIREMENTS CHANNEL OPERATIONAL CHANNEL FUNCTIONAL TRIP FUNCTION CHANNEL CONDITIONS FOR WHICH CHECK IEST CALIBRAIION SURVEILLANCE REQUIRED REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION 5. Reactor Steam Line a. A Pressure - High 5 M R 1, 2, 3 RCIC Steam Supply b. Pressure - Low 5 M R 1, 2, 3 RCIC Turbine Exhaust Diaphragm C. Pressure - High 5 M R 1, 2, 3 RCIC Equipment Room d. Temperature - High 5 ĸ R 1, 2, 3 RCIC Equipment Room e. . A Temperature - High \$ H R 1, 2, 3 RCIC Pipe Routing Area 1. Temperature - High 5 R 1, 2, 3 Manual Initiation q. NA N.A. 1, 2, 3 RCIC Steam Line h. **A Pressure Timer** N.A. R 1. 2. 3

-

TABLE 4.3.2.1-1 (Continued)

ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

	TRIP	EIMACTION	HANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
	6.	PRIMARY CONTAINMENT ISOLATION				
		a. Reactor Vessel Water Level 1) Low. Low - Level 2 2) Low .ow, Low - Level 1	s s	M	R	1, 2, 3 1, 2, 3
		b. Drywell Pressure - High	\$	н	R	1, 2, 3
		c. North Stack Effluent Radiation - High	s	Q	R	1, 2, 3
		d. Deleted				
		e. Reactor Enclosure Ventilation Exhaust Duct - Radiation - High	s		R	1, 2, 3
		f. Outside Atmosphere To Reactor Enclosure & Pressure - Low	N.A.		Q	1, 2, 3
		g. Deleted				1.00
Jur		h. Drywell Pressure - High/ Reactor Pressure - Low	s		R	1. 2. 3
		1. Primary Containment Instrument Gas to Drywell & Pressure - Low	N.A.		Q	1, 2, 3
3		j. Manual Initiation	N.A.	R	N.A.	1, 2, 3

LIMERICK - UNIT 1

3/4 3-30

nt No.

IMERICK					MENTATION SURVEILLA	and addition with the second	
- UNIT			CITON	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS FOR WHICH SURVETILANCE REQUIRED
-	7.	2550	ONDARY CONTAINMENT ISOLATION				
		a,	Reactor Vessel Water Level Low, Low - Level 2	s	н	R	
		b.	Drywell Pressure - High	s	н	R	1, 2, 3
		c.	Refueling Area Ventilation Exhaust Duct Radiation - High	s	н	R	
3/4 3-		d.	Reactor Enclosure Ventilation Exhaust Duct Radiation - High	s	м	R	1, 2, 3
3-31		e.	Outside Atmosphere To Reactor Enclosure & Pressure - Low	N.A.	н	Q	1, 2, 3
		1.	Outside Atmosphere To Refueling Area & Pressure - Low	N.A.	H	Q	
100	=	g.	Reactor Enclosure Manual Initiation	N.A.	R	N.A.	1, 2, 3
		h.	Refueling Area Manual Initiation	H.A.	R	N. A.	

8

"When handling irradiated fuel in the secondary containment and during CORE ALTERATIONS and operations with a potential for draining the reactor vessel.

**When not administratively bypassed and/or when any turbine stop valve is open.

INSTRUMENTATION

3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3 The emergency core cooling system (ECCS) actuation instrumentation channels shown in Table 3.3.3-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.3-2 and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in Table 3.3.3-3

APPLICAPILITY: As shown in Table 3.3.3-1.

ACTION:

- a. With an ECCS actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.3-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
 - b. With one or more ECCS actuation instrumentation channels inoperable. take the ACTION required by Table 3 3.3-1.
 - c. With either ADS trip system subsystem inoperable, restore the inoperable trip system to OPERABLE status within:
 - 1. 7 days, provided that the HPCI and RCIC systems are OPERABLE.
 - 2. 72 hours.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and reduce reactor steam dome pressure to less than or equal to 100 psig within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.3.3.1 Each ECCS actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.3.1-1.

4.3.3.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

4.3.3.3 The ECCS RESPONSE TIME of each ECCS trip function shown in Table 3.3.3-3 shall be demonstrated to be within the limit at least once per 18 months. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 18 months where N is the total number of reduidant channels in a specific ECCS trip system.

LIMERICK - UNIT 1

3/4 3-32

AUG 8 1985

TABLE 3.3.3-1

EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

CTION	CHANNELS PER TRIP FUNCTION(a)	APPLICABLE OPERATIONAL CONDITIONS	ACTION				
CORE SPRAY SYSTEM***							
a. Reactor Vessel Water Level - Low Low Low, Level 1 b. Drywell Pressure - High	1 2/pump(b) 2/pump(b)	1, 2, 3, 4*, 5*	30 30				
c. Reactor Vessel Pressure - Low (Permissive)	6 ^(b)		31				
d. Manual Initiation	2 ^(e)	4*, 5* 1, 2, 3, 4*, 5*	32 33				
2. LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM***							
D. Drywell Pressure - High	2	1, 2, 3, 4*, 5* 1, 2, 3	30 30				
d. Injection Valve Differential Pressure-Low	2 1/yalve	1, 2, 3 1, 2, 3, 4*, 5*	31 31				
e. Manual Initiation	1	1, 2, 3, 4*, 5*	33				
HIGH PRESSURE COOLANT INJECTION SYSTEM							
 a. Reactor Vessel Water Level - Low Low Level 2 b. Drywell Pressure - High c. Condensate Storage Tank Level - Low d. Suppression Pool Water Level - High e. Reactor Vessel Water Level - High, Level 8 f. Manual Initiation 	4 4 $2(c)$ 2 $4(d)$ $1/system$	1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3	34 34 35 35 31				
	 a. Reactor Vessel Water Level - Low Low Low, Level 1 b. Drywell Pressure - High c. Reactor Vessel Pressure - Low (Permissive) d. Manual Initiation LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM*** a. Reactor Vessel Water Level - Low Low Low, Level 1 b. Drywell Pressure - High c. Reactor Vessel Pressure - Low (Permissive) d. Injection Valve Differential Pressure-Low (Permissive) e. Manual Initiation HIGH PRESSURE COOLANT INJECTION SYSTEM^{##} a. Reactor Vessel Water Level - Low Low Level 2 b. Drywell Pressure - High c. Condensate Storage Tank Level - Low d. Suppression Pool Water Level - High e. Reactor Vessel Water Level - High 	CORE SPRAY SYSTEM*** a. Reactor Vessel Water Level - Low Low Low, Level 1 2/pump(b) b. Drywell Pressure - High 2/pump(b) c. Reactor Vessel Pressure - Low (Permissive) 6(b) d. Manual Initiation 2(e) LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM*** a. Reactor Vessel Water Level - Low Low Low, Level 1 2 b. Drywell Pressure - High 2 c. Reactor Vessel Pressure - Low (Permissive) 2 d. Injection Valve Differential Pressure-Low 1/valve (Permissive) 1 e. Manual Initiation 1 HIGH PRESSURE COOLANT INJECTION SYSTEM** a. Reactor Vessel Water Level - Low Low Level 2 4 b. Drywell Pressure - High 4(c) c. Gondensate Storage Tank Level - Low 2(c) d. Suppression Pool Water Level - Low 2(c) d. Suppression Pool Water Level - High 2(c) e. Reactor Vessel Water Level - High 2(c)	CORE SPRAY SYSTEM***a. Reactor Vessel Water Level - Low Low, Level 1 $2/pump(b)$ 1, 2, 3, 4*, 5*b. Drywell Pressure - High $2/pump(b)$ 1, 2, 3c. Reactor Vessel Pressure - Low (Permissive) $6^{(b)}$ 1, 2, 3d. Manual Initiation $2^{(e)}$ 4^* , 5*LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM***a. Reactor Vessel Water Level - Low Low Low, Level 121, 2, 3, 4*, 5*b. Drywell Pressure - High21, 2, 3c. Reactor Vessel Vater Level - Low Low Low, Level 121, 2, 3, 4*, 5*d. Injection Valve Differential Pressure-Low1/yalve1, 2, 3, 4*, 5*e. Manual Initiation11, 2, 3, 4*, 5*d. Drywell Pressure - High41, 2, 3c. Condensate COOLANT INJECTION SYSTEM**4a. Reactor Vessel Water Level - Low Low Level 24b. Drywell Pressure - High4c. Condensate Storage Tank Level - Low2d. Suppression Pool Water Level - High2e. Reactor Vessel Water Level - High2d. Suppression Pool Water Level - High2e. Reactor Vessel Water Level - High2d. Suppression Pool Wat				

and the second second second

3/4 3-33

19

and the second second manual second manual second second second second second second second second second second

LIMERICK - UNIT 1

TABLE 3.3.3-1 (Continued)

EMERGENCY CORE COOLING SYSTE: ACTUATION INSTRUMENTATION

TRIP	FUNCTION			C	IMUM OPERABI HANNELS PER TRIP UNCTION(a)		VCLI
4.	AUTOMATIC	DEPRESSURIZATION SYSTEM	***				
	a.	Reactor Vessel Water Lev	el - Low Low Low.	Level 1	2	1, 2, 3	30
	b.	Drywell Pressure - High			2	1, 2, 3	30
	с.	ADS Timer			1	1, 2, 3	31
	d.	Core Spray Pump Discharg	e Pressure - High	(Permissive	1 2	1, 2, 3	31
	e.	RHR LPCI Mode Pump Disch	arge Pressure Hig	gh		1, 2, 3	31
		(Permissive)			4	1, 2, 3	31
	f.	Reactor Vessel Water Lev	el - Low, Leve! 3	(Permissive) 1	1, 2, 3	31
	g.	anual Initiation			2	1, 2, 3	33
	h.	ADS Drywell Pressure Byp	ass Timer		2	1, 2, 3	31
			TOTAL NO.	CHANNELS	MINIMUM	APPLICABLE OPERATIONAL	
			OF CHANNELS(f)	TO TRIP	OPERABLE	CONDITIONS	ACTION
5.	LOSS OF POWER						
		kV Emergency Bus Under-	10				
	2. 4.16	age (Loss of Voltage) kV Emergency Bus Under-	1/bus	1/bus	1/bus	1, 2, 3, 4**, 5**	36
	volt	age (Degraded Voltage)	1/source/	1/source/	1/source/	1, 2, 3, 4**.	5** 37
			bus	bus	bus		

***The Minimum OPERABLE Channels Per Trip Function is per subsystem.

5.

e-, 27

TABLE 3.3.3-1 (Continued)

EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

TABLE NOTATIONS

- (a) A channel may be placed in an inoperable status for up to 2 hours for required surveillance without placing the trip system in the tripped condition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.
- (b) Also provides input to actuation logic for the associated emergency diesel generators.
- (c) One trip system. Provides signal to HPCI pump suction valves only.
- (d) On 1 out of 2 taken twice logic, provides a signal to trip the HPCI pump turbine only.
- (e) The manual initiation push buttons start the respective core spray pump and diesel generator. The "A" and "B" logic manual push buttons also actuate an initiation permissive in the injection valve opening logic.
- (f) A channel as used here is defined as the 127 bus relay for Item 1 and the 127,127Y, and 127Z feeder relays with their associated time delay relays taken together for Item 2.
- * When the system is required to be OPERABLE per Specification 3.5.2.
- Not required to be OPERABLE when reactor steam dome pressure is less than or equal to 100 psig.

** Required when ESF equipment is required to be OPERABLE.

Not required to be OPERABLE when reactor steam dome pressure is less than or equal to 200 psig.

LIMERICK - UNIT 1

3/4 3-35

TABLE 3.3.3-1 (Continued)

EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

ACTION STATEMENTS

- ACTION 30 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement:
 - a. With one channel inoperable, place the inoperable channel in the tripped condition within 1 hour* or declare the associated system inoperable.
 - b. With more than one channel inoperable, declare the associated system inoperable.
- ACTION 31 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, declare the associated ECCS inoperable.
- ACTION 32 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within 1 hour.
- ACTION 33 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, restore the inoperable channel to OPERABLE status within 8 hours or declare the associated ECCS inoperable.
- ACTION 34 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement:
 - a. For one channel inoperable, place the inoperable channel in the tripped condition within 1 hour* or declare the HPCI system inoperable.
 - b. With more than one channel inoperable, declare the HPCI system inoperable.
- ACTION 35 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one inoperable channel in the tripped condition within 1 hour* or declare the HPCI system inoperable.
- ACTION 36 With the number of OPERABLE channels less than the Total Number of Channels, declare the associated emergency diesel generator inoperable and take the ACTION required by Specification 3.8.1.1 or 3.8.1.2, as appropriate.
- ACTION 37 With the number of OPERABLE channels one less than the Total Number of Channels, place the inoperable channel in the tripped condition within 1 hour;* operation may then continue until performance of the next required CHANNEL FUNCTIONAL TEST.

*The provisions of Specification 3.0.4 are not applicable.

LIMERICK - UNIT 1

3/4 3-36

a star i sur sans salst

A.S. 8 198

				٠
		TABLE 3.3.	3-2	
		EMERGENCY CORE COOLING SYSTEM ACTUAT	ION INSTRUMENTATION SETPOI	INTS
	FUNC		TRIP SETPOINT	ALLOWABLE
1.	CORE	SPRAY YSTEM		
	a. b. c. d.	Reactor Vessel Water Level - Low Low Low, Level Drywell Pressure - High Reactor Vessel Pressure - Low Manual Initiation	< 1.68 psig	> -136 inches < 1.88 psig > 435 psig, (decreasing) N.A.
2.	LOW	PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM		
	a. b. c. d. e.	Reactor Vessel Water Level - Low Low Low, Level Drywell Pressure - High Reactor Vessel Pressure - Low Injection Valve Differential Pressure - Low Manual Initiation	< 1.68 psig	 > -136 inches < 1.88 psig > 435 psig, (decreasing) > 68-psid and < 88 psid N.A. 64 84
3.	HIGH	PRESSURE COOLANT INJECTION SYSTEM		
4.	c. d. e. f.	Reactor Vessel Water Level - (Low Low, Level 2) Drywell Pressure - High Condensate Storage Tank Level - Low Suppression Pool Water Level - High Reactor Vessel Water Level - High, Level 8 Manual Initiation MATIC DEPRESSURIZATION SYSTEM	<pre>> -38 inches* < 1.68 psig > 167.8 inches** < 24 feet 1.5 inches < 54 inches N.A.</pre>	<pre>> -45 inches < 1.88 psig > 164.3 inches < 24 feet 3 inches < 60 inches N.A.</pre>
	a. b. c. d. e. f. g.	Reactor Water Level - Low Low Low, Level 1 Drywell Pressure - High ADS Timer Core Spray Pump Discharge Pressure - High RHR LPCI Mode Pump Discharge Pressure-High Reactor Vessel Water Level-Low, Level 3 Manual Initiation ADS Drywell Pressure Sypass Timer	<pre>> -129 inches* < 1.68 psig < 105 seconds > 145 psig,(increasing) > 125 psig,(increasing) > 12.5 inches N.A. < 420 seconds</pre>	<pre>> -136 inches < 1.88 psig < 117 seconds > 125 psig, (increasing), > 115 psig, (increasing) > 11.0 inches N.A. < 450 seconds</pre>

*See Bases Figure B 3/4.3-1.

**Corresponds to 2.25 feet indicated.

.

+

2 3991

LIMERICK - UNIT 1

3/4 3-37

TRIP	FUNC	TION	TRI	P SET		LOWABLE VALUE
5.	LOSS	OF POWER	RELAY			TALUE
	a.	4.16 kV Emergency Bus Undervoltage (Loss of Voltage)	127-118	NA		NA
	b.	4.16 kV Emergency Bus Undervoltage (Degraded Voltage)	RELAY 127-11XOX and 102-11XOX 127Y-11XOX** and 127Y-1-11XOX	a. b. c. a.	4.16 kV Basis 2905 ± 115 volts 120 V Basis 83 ± 3 volts < 1 second time delay 4.16 kV Basis 3640 ± 91 volts 120 V Basis	2905 ± 145 volts 83 ± 4 volts < 1.5 second time delay 3640 ± 182 volts
				с.	194 ± 3 volts < 52 second time delay	104 ± 5.2 volts < 60 second time delay
			1272-11XOX and 162Y-11XOX	a. b. c.	4.16 kV Basis 3745 ± 94 volts 120 V Basis 107 ± 3 volts < 10 second time delay	3745 ± 187 volts 107 ± 5.4 volts < 11 second time delay
			1277-11X0X and 1627-11X0X	a. b. c.	4.16 kV Basis 3745 ± 94 volts 120 V Basis 107 ± 3 volts < 61 second time delay	3745 ± 187 volts 107 ± 5.4 volts ≤ 64 second time delay

TABLE 3.3.3-2 (Continued) EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION SETPOINTS

**This is an inverse time delay voltage relay. The voltages shown are the maximum that will not result in a trip. Some voltage conditions will result in decreased trip times.

3/4 3-38

LIMERICK - UNIT 1

88

1 104

TAB	E.	3	2	2	- 2
inu	de la	÷.	4	1. 107	0

EMERGENCY CORE COOLING SYSTEM RESPONSE TIMES

ECCS	RESPONSE TIME (Seconds)
1. CORE SPRAY SYSTEM	< 27
2. LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM	< 4 0
3. AUTOMATIC DEPRESSURIZATION SYSTEM	N. A.
4. HIGH PRESSURE COOLANT INJECTION SYSTEM	<u>≤</u> 30
5. LOSS OF POWER	N. A.

LIMERICK - UNIT 1

.

÷

•

14

TABLE 4.3.3.1-1

				CHANNEL		- un	
IR	IP FI	IRIP FUNCTION	CHANNEL	FUNCTIONAL	CHANNEL CALIBRATION	CONDITIC SURVEILLA	CONDITIONS FOR WHICH SURVEILLANCE BEOHLBED
Τ.		CORE SPRAY SYSTEM					
	e	Reactor Vessel Water Level -					
		Low Low Low, Level 1	5	x	•	•	;
	þ.	Drywell Pressure - High	5			1. 2. 3.	· 4. 5.
	.;	Reactor Vessel Pressure - Low	5				:
	þ.		N.N.		N.A.	1. 2. 3.	44 54
2.		LOW PRESSURE COOLANT INJECTION MODE OF RHR SYSTEM	OF RHR SYS	IEM			
	÷	Reactor Vessel Water Level -					
		LOW LOW LOW. Level 1	~		•	1	
	þ.	Drywell Pressure - High			* *	1, 2, 3,	4*, 5*
	ť	Reactor Vessel Pressure - Low	5		* 0		
	þ.	Injection Valve Differential			*	1, 4, 3	
		Pressure - Low (Permissive)	5	×	•		
	è	Manual Initiation	N.A.	œ	N.N.	1, 2, 3,	4*. 5*
Э.	HIG	HIGH PRESSURE COOLANT INJECTION SYSTEM***	TEMAAA				
	æ	Reactor Vessel Water Level -					
		Low Low. Level 2	5				
	þ.	Drywell Pressure - High			* 0	1, 2, 3	
	c.	Condensate Storage Tank Level -				.,	
		Low	s.		9	•	
	þ.	Suppression Pool Water Level -			-	1. 4. 3	
		Higt:	S	z		•	
	÷	Reactor Vessel Water Level -				1. 4, 3	
		High, Level 8	s	×	a		
	-	Manual Initiation	N N			1, 4, 3	

TABLE 4.3.3.1-1 (Continued)

EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TR	IP FUNCTION	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
4.	AUTOMATIC DEPRESSURIZATION SYSTEM				not acquired
	a. Reactor Vessel Water Level -				
	Low Low Low, Level 1	S	H		
	b. Drywell Pressure - High	S	M	R	1, 2, 3
	c. ADS Timer	N.A.	M		1, 2, 3
	d. Core Spray Pump Discharge			Q	1, 2, 3
	Pressure - High e. RHR LPCI Mode Pump Discharge	S .	M	R	1, 2, 3
	Pressure - High f. Reactor Vessel Water Level - Low	s.	н	R	1, 2, 3
	Level 3	s	M		
	g. Manual Initiation	N.A.	R	R	1, 2, 3
	h. ADS Drovell Pressure Burness The			N.A.	1, 2, 3
	h. ADS Drywell Pressure Bypass Time	r N.A.	M	0	1, 2, 3
5.	LOSS OF POWER				-1 -1 -
	a. 4.16 kV Emergency Bus Under voltage (Loss of Voltage)	N.A.	R	N.A.	1, 2, 3, 4**, 5**
	 b. 4.16 kV Emergency Bus Under- voltage (Degraded Voltage) 	s			
	(begraded fortage)	2	м	R	1, 2, 3, 4**, 5**

* When the system is required to be OPERABLE per Specification 3.5.2.

** Required OPERABLE when ESF equipment is required to be OPERABLE.

*** Not required to be OPERABLE when reactor steam dome pressure is less than or equal to 200 psig.

Not required to be OPERABLE when reactor steam dome pressure is less than or equal to 100 psig.

きまたのからは、赤のきなのであたっても、ないない、「ひょう」、「はなのない」というであったのであり、そうという

Loss of Voltage Relay 127-11X is not field setable.

3/4 3-41

LIMERICK - UNIT

=

INSTRUMENTATION

3/4.3.4 RECIRCULATION PUMP TRIP ACTUATION INSTRUMENTATION

ATWS RECIRCULATION PUMP TRIP SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.4.1 The anticipated transient without scram recirculation pump trip (ATWS-RPT) system instrumentation channels shown in Table 3.3.4.1-1 shall be OPERABLE with their trip setpoints set consistent with values shown in the Trip Setpoint column of Table 3.3.4.1-2.

APPLICABILITY: OPERATIONAL CONDITION 1.

ACTION:

- a. With an ATWS recirculation pump trip system instrumentation channe' trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.4.1-2, declare the channel inoperable until the channel is restored to OPERABLE status with the channel trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With the number of OPERABLE channels one less than required by the Minimum OPERABLE Channels per Trip System requirement for one or both trip systems, place the inoperable channel(s) in the tripped condition within 1 hour.
- c. With the number of OPERABLE channels two or more less than required by the Minimum OPERABLE Channels per Trip System requirement for one trip system and:
 - If the inoperable channels consist of one reactor vessel water level channel and one reactor vessel pressure channel, place both inoperable channels in the tripped condition within 1 hour, or, if this action will initiate a pump trip, declare the trip system inoperable.
 - If the inoperable channels include two reactor vessel water level channels or two reactor vessel pressure channels, declare the trip system inoperable.
- d. With one trip system inoperable, restore the inoperable trip system to OPERABLE status within 72 hours or be in at least STARTUP within the next 6 hours.
- e. With both trip systems inoperable, restore at least one trip system to OPERABLE status within 1 hour or be in at least STARTUP within the next 6 hours.

SURVEILLANCE REQUIREMENTS

4.3.4.1.1. Each ATWS recirculation pump trip system instrumentation channel shall be demonstrated DPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.4.1-1.

4.3.4.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

LIMERICK - UNIT 1

3/4 3-42

the second second second

210 8 1:11

State State

TABLE 3.3.4.1-1

ATWS RECIRCULATION PUMP TRIP SYSTEM INSTRUMENTATION

MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM*
2
,

*One channel may be placed in an inoperable status for up to 2 hours for required surveillance provided the other channel is OPERABLE.

LIMERICK - UNIT 1

1.23 8 1550

......

1.1

54

14

TA	2		Γ.	2	2	4	1	- 2
10	~	-						- 2

ATWS RECIRCULATION PUMP TRIP SYSTEM INSTRUMENTATION SETPOINTS

TRIP	FUNCTION	SETPOINT	ALLOWABLE VALUE
1.	Reactor Vessel, Water Level - Low Low, Level 2	≥ -38 inches*	≥ -45 inches
2.	Reactor Vessel Pressure - High	≤ 1093 psig	< 1108 psig

*See Bases Figure B3/4 3-1.

LIMERICK - UNIT 1

a rainy

+ ++++

3/4 3-44

AU. 8 1981

12.

4

ŝ

- 2

TABLE 4.3.4.1-1

SURVEILLANCE REQUIREMENTS TRIP FUNCTION CHANNEL CHECK CHANNEL FUNCTIONAL TEST CHANNEL CALIBRATION 1. Reactor Vessel Water Level -Low Low, Level 2 S M R 2. Reactor Vessel Pressure - High S M R

ATWS RECIRCULATION PUMP TRIP ACTUATION INSTRUMENTATION

LIMERICK - UNIT 1

INSTRUMENTATION

END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.4.2 The end-of-cycle recirculation pump trip (EOC-RPT) system instrumentation channels shown in Table 3.3.4.2-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.4.2-2 and with the END-OF-CYCLE RECIRCULATION PUMP TRIP - SYSTEM RESPONSE TIME as shown in Table 3.3.4.2-3.

APPLICABILITY: OPERATIONAL CONDITION 1, when THERMAL POWER is greater than or equal to 30% of RATED THERMAL POWER.

ACTION:

- a. With an end-of-cycle recirculation pump trip system instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.4.2-2, declare the channel inoperable until the channel is restored to OPERABLE status with the channel setpoint adjusted consistent with the Trip Setpoint value.
- b. With the number of OPERABLE channels one less than required by the Minimum OPERABLE Channels per Trip System requirement for one or both trip systems, place the inoperable channel(s) in the tripped condition within 1 hour.
- c. With the number of OPERABLE channels two or more less than required by the Minimum OPERABLE Channels per Trip System requirement for one trip system and:
 - If the inoperable channels consist of one turbine control valve channel and one turbine stop valve channel, place both inoperable channels in the tripped condition within 1 hour.
 - If the inoperable channels include two turbine control valve channels or two turbine stop valve channels, declare the trip system inoprrable.
- d. With one trip system inoperable, restore the inoperable trip system to OPERABLE status within 72 hours or take the ACTION required by Specification 3.2.3.
- e. With both trip systems inoperable, restore at least one trip system to OPERABLE status within one hour or take the ACTION required by Specification 3.2.3.

LIMERICK - UNIT 1

3/4 3-46

INSTRUMENTATION

SURVEILLANCE REQUIREMENTS

4.3.4.2.1 Each end-of-cycle recirculation pump trip system instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.4.2.1-1.

4.3.4.2.2. LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

4.3.4.2.3 The END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM RESPONSE TIME of each trip function shown in Table 3.3.4.2-3 shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least the logic of one type of channel input, turbine control valve fast closure or turbine stop valve closure, such that both types of channel inputs are tested at least once per 36 months. The measured time shall be added to the most recent breaker arc suppression time and the resulting END-OF-CYCLE-RECIRCULATION PUMP TRIP SYSTEM RESPONSE TIME shall be verified to be within its limit.

4.3.4.2.4 The time interval necessary for breaker arc suppression from energization of the recirculation pump circuit breaker trip coil shall be measured at least once per 60 months.

TABLE 3.3.4.2-1

END-DF-CYCLE RECIRCULATION PUMP TRIP SYSTEM INSTRUMENTATION

TRIS	FUNCTION	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM*
1.	Turbine Stop Valve - Closure	2**
2.	Turbine Control Valve-Fast Closure	2**

*A trip system may be placed in an inoperable status for up to 2 hours for required surveillance provided that the other trip system is OPERABLE.

**This function shall be automatically bypassed when turbine first stage pressure is equivalent to THERMAL POWER less than 30% of RATED THERMAL POWER.

LIMERICK - UNIT 1

TABLE 3.3.4.2-2

END-OF-CYCLE RECIRCULATION PUMP TRIP SETPOINTS

TRI	P FUNCTION	TRIP SETPOINT	ALLOWABLE VALUE
1.	Turbine Stop Valve-Closure	≤ 5% closed	< 7% closed
2.	Turbine Control Valve-Fast Closure	≥ 500 psig	≥ 465 psig

TABLE 3.3.4.2-3

END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM RESPONSE TIME

ESPONSE TIME (Milliseconds)
< 175
≤ 175

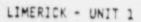

LIMERICK - UNIT 1

TABLE 4.3.4.2.1-1

END-OF-CYCLE RECIRCULATON PUMP TRIP SYSTEM SURVEILLANCE REQUIREMENTS

TRIP FUNCTION		CHANNEL FUNCTIONAL TEST	CHANNEL	
1.	Turbine Stop Valve-Closure	M*	R	
2.	Turbine Control Valve-Fast Closure	M×	R	

*Including trip system logic testing.

INSTRUMENTATION

3/4.3.5 REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.5 The reactor core isolation cooling (RCIC) system actuation instrumentation channels shown in Table 3.3.5-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.5-2.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3 with reactor steam dome pressure greater than 150 psig.

ACTION:

- a. With a RCIC system actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.5-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With one or more RCIC system actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.5-1.

SURVEILLANCE REQUIREMENTS

4.3.5.1 Each RCIC system actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.5.1-1.

4.3.5.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

LIMERICK - UNIT 1

3/4 3-52

All a some

UN	CTION	AL UNITS	MINIMUM OPERABLE CHANNELS PER TRIP FUNCTION*	ACTION
	a.	Reactor Vessel Water Level - Low Low, Level 2	4#	50
	b.	Reactor Vessel Water Level - Higt, Level 8	4#	51
	c.	Condensete Storate Tank Water Level - Low	2**	52
	d.	Manual Initiation	l/system***	53

TABLE 3. 3. 5-1

REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION

*A channel may be placed in an inoperable status for up to 2 hours for required surveillance without placing the trip system in the tripped condition provided all other channels monitoring that parameter are OPERABLE.

**One trip system with one-out-of-two logic.

***One trip system with one channel.

#One trip system with one-out-of-two twice logic.

LIMERICK - UNIT 1

F

TABLE 3.3.5-1 (Continued)

REACTOR CORE ISOLATION COOLING SYSTEM

ACTION STATEMENTS

- ACTION 50 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement:
 - a. With one channel inoperable, place the inoperable channel in the tripped condition within 1 hour or declare the RCIC system inoperable.
 - b. With more than one channel inoperable, declare the RCIC system inoperable.
- ACTION 51 With the number of OPERABLE channels less than required by the minimum OPERABLE channels per Trip System requirement, declare the RCIC system inoperable.
- ACTION 52 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip System requirement, place at least one inoperable channel in the tripped condition within 1 hour or declare the RCIC system inoperable.
- ACTION 53 With the number of OPERABLE channels one less than required by the Minimum OPERABLE Channels per Trip System requirement, restore the inoperable channel to OPERABLE status within 8 hours or declare the RCIC system inoperable.

FUNCTIONAL UNITS		AL UNITS	TRIP SETPOINT	ALLOWABLE
	8.	Reactor Vessel Water Level - Low Low, Level 2	≥-38 inches*	≥-45 inches
	Þ.	Reactor Vessel Water Level - High, Level 8	≤ 54 inches	≤ 60 inches
	c.	Condensate Storage Tank Level - Low	≥ 135.8** inches	≥ 132.3 inches
	d.	Manual Initiation	N. A.	N. A.

TABLE 3.3.5-2

REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION SETPOINTS

*See Bases Figure B 3/4.3-1. **Corresponds to 2.25 feet indicated.

LIMERICK - UNIT 1

1. 1. A.

3/4 3-55

1.1

TABLE 4.3.5.1-1

REACTOR CORE ISOLATION SYSTEM ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

FUNCTIONAL UNITS		CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION
a. Reactor Vessel W Low Low, Level 2	ater Level -	s	м	R
 B. Reactor Vessel W. High, Level 8 	ater Level -	s	м	R
c. Condensate Stora Level - Low	ge Tank	s	м	R
d. Manual Initiation	n	N.A.	R	N. A.

.......

*

F

INSTRUMENTATION

3/4.3.6 CONTROL ROD BLOCK INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

.

3.3.6. The control rod block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.6-2..

APPLICABILITY: As shown in Table 3.3.6-1.

ACTION:

- a. With a control rod block instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.6-2, declare the channel inoperable until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
- b. With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, take the ACTION required by Table 3.3.6-1.

SURVEILLANCE REQUIREMENTS

4.3.6 Each of the above required control rod block trip systems and instrumentation channels shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.6-1.

TABLE 3.3.6-1

-	CONTROL	ROD BLOCK INSTRUMENT	ATION	
<u>IR</u> 1.	IP FUNCTION	MINIMUM OPERABLE CHANNELS PER TRIP FUNCTION	APPLICABLE OPERATIONAL CONDITIONS	ACTION
1.	ROD BLOCK MONITOR (a)			
	a. Upscale	2	1*	60
1	b. Inoperative	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	î*	60
	c. Downscale	2	1*	60
2.	APRM			
	a. Flow Blased Neutron Flux -			
	Upscale	4	1	61
	b. Inoperative	4	1, 2, 5	61
	c. Downscale	4	1	61
	d. Neutron Flux - Upscale, Startup	4	1 2, 5	61
3.	SOURCE RANGE MONITORS ***			
	a. Detector not full in(b)	3	,	~
		2	5	61
	b. Upscale(c)	3	2	61 61
	b. Upscale(C)	2	5	61
	c. Inoperative(c)	3	2	61
	c. Inoperative (C)	2	ŝ	61
	d. Downscale ^(d)	3	2 5 2 5 2 5 2 5 2	61
		2	5	61
4.	INTERMEDIATE RANGE MONITORS			U.
	a. Detector not full in	6	2.5	61
	b. Upscale	6	2.5	61
	c. Inoperative)	6	2.5	61
	d. Downscale(e)	6	2, 5 2, 5 2, 5 2, 5 2, 5	61
¥ 5.	SCRAM DISCHARGE VOLUME			
	a. Water Level-High	2	1, 2, 5**	62
1 6.	REACTOR COOLANT SYSTEM RECIRCULATION	FLOW		
3	a. Upscale	2	1	62
	b. Inoperative	2	i	62
	c. Comparator	2	1	62
7.	REACTOR MODE SWITCH SHUTDOWN POSITIO	IN 2	3. 4	63

TABLE 3.3 6-1 (Continued)

CONTROL ROD WITHDRAWAL BLOCK INSTRUMENTATION

ACTION STATEMENTS

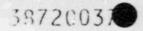
- ACTION 60 Declare the RBM inoperable and take the ACTION required by Specification 3.1.4.3.
- ACTION 61 With the number of OPERABLE channels one or more less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one inoperable channel in the tripped condition within one hour.
- ACTION 62 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within one hour.
- ACTION 63 With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, initiate a rod block.

NOTES

- * WITH THERMAL POWER > 30% OF BATED THERMAL POWER.
- With more than one control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
- "" These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMs, are in the core.
- (a) The RBM shall be automatically bypassed when a peripheral control rod is selected or the reference APRM channel indicates less than 30% of RATED THERMAL POWER.
- (b) This function shall be automatically bypassed if detector count rate is > 100 cps or the IRM channels are on range 3 or higher.
- (c) This function is automatically bypassed when the associated IRM channels are on range 8 or higher.
- (d) This function is automatically bypassed when the IRM channels are on range 3 or higher.
- (e) This function is automatically bypassed when the IRM channels are on range 1.

LIMERICK - UNIT 1

3875101020


TABLE 3. 3. 6-2

CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS

TRIP FUNCTION TRIP SETPOINT ALLOWARLE VALUE 1. ROD BLOCK MONITOR a. Upscale t. flow blased < 0.66 W + 41%, with a < 0.66 W + 44%, with a maximum of. maximum of. 11. high flow clasped < 107% < 110% b. Inoperative N.A. R.A. C. Downscale > 5% of RATED THERMAL POWER > 3% of RATED THERMAL POWER 2. APRN a. Flow Blased Neutron Flux - Upscale < 0.58 W + 50%* < 0.58 W + 53%* b. Inoperative N.A. N.A. c. Downscale > 4% of RATED THERMAL POWER > 3% of RATED THERMAL POWER d. Neutron Flux - Upscale, Startup < 12% of RATED THERMAL POWER < 14% of RATED THERMAL POWER 3. SOURCE RANGE MONITORS a. Detector not full in N.A. N.A. b. Upscale < 1 x 108 cpg < 1.6 x 105 cps c. Inoperative R.A. R.A. d. Downscale > 3 cps** > 1.8 cps** 4. INTERMEDIATE RANGE MONITORS a. Detector not full in N.A. N.A. b. Upscale < 108/125 divisions of < 110/125 divisions of full scale full scale c. Inoperative N.A. N.A. d. Downscale > 5/125 divisions of full > 3/125 divisions of full scale scale 5. SCRAM DISCHARCE VOLUME a. Water Level-High < 257' 5 9/16" elevation*** < 257' 7 9/16" elevation a. Float Switch

LIMERICK - UNIT

3/4 3-60

TABLE 3.3.6-2 (Continued)

CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS

TR	IP FUNCTION	TRIP SETPOINT	ALLOWABLE VALUE
6.	REACTOR COOLANT SYSTEM RECIRCULATION		
	a. Upscale b. Inoperative c. Comparator	< 111% of rated flow N.A. < 10% flow deviation	< 114% of rated flow N.A. < 11% flow deviation
7.	REACTOR MODE SWITCH SHUTDOWN POSITION	Ν.Λ.	N. A.

*The Average Power Range Monitor rod block function is varied as a function of recirculation loop flow (W). The trip setting of this function must be maintained in accordance with Specification 3.2.2.

**May be reduced to 0.7 cps provided the signal-to-noise ratio is > 2.

***Equivalent to 13 gallons/scram discharge volume.

LIMERICK - UNIT

-

3872003733

INTENTIONALLY LEFT BLANK

TABLE 4.3.6-1

CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE REQUIREMENTS

			TABLE 4.3.6-1		
	CONTROL ROD BL	OCX INSTRU	MENTATION SURVEIL	LANCE REQUIREMEN	TS
IRI	P FUNCTION ROD BLOCK MONITOR	CHANNEL	CHANNEL FUNCTIONAL	CHANNEL CALIBRATION ^(a)	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
	a. Upscale b. Inoperative c. Downscale	N. A. N. A. N. A.	S/U(b)(c),M(c S/U(b)(c),M(c S/U(b)(c),M(c) SA) N.A.) SA	1* 1* 1*
2.	APRM				
3.	 a. Flow Biased Neutron Flux - Upscale b. Inoperative c. Downscale d. Neutron Flux - Upscale, Startup SOURCE RANGE MONITORS 	N. A. N. A. N. A. N. A.	S/U(b);M S/U(b);M S/U(b);M S/U(b);M	SA N.A. SA SA	1 1, 2, 5 1 2, 5
	 a. Detector not full in b. Upscale c. Inoperative d. Downscale 	N.A. N.A. N.A. N.A.	S/U(b) W S/U(b) W S/U(b) W S/U(b) W	N. A. SA N. A. SA	2, 5 2, 5 2, 5 2, 5 2, 5
4.	INTERMEDIATE RANGE MONITORS				2, 5
	a. Ditector not full in b. Upscale c. Inoperative d. Downscale	N. A. N. A. N. A. N. A.	S/U(b),W S/U(b),W S/U(b),W S/U(b),W	N. A. SA N. A. SA	2.5 2.5 2.5 2.5 2.5
5.	SCRAM DISCHARGE VOLUME				
6.	a. Water Level-High REACTOR COOLANT SYSTEM RECIRCULATION	N.A.	м	R	1, 2, 5**
	a. Upscale b. Inoperative c. Comparator	N. A. N. A. N. A.	S/U(b),M S/U(b),M S/U(b),M	SA N.A. SA	1 1 1
7.	REACTOR MODE SWITCH SHUTDOWN POSITION	N. A.	R	N. A.	3, 4

TABLE 4.3.6-1 (Continued)

CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TABLE NOTATIONS

- (a) Neutron detectors may be excluded from CHANNEL CALIBRATION.
- (b) Within 24 hours prior to startup, if not performed within the previous 7 days.
- (c) Includes reactor manual control multiplexing system input.

* with THERMAL POWER > 30% of RATED THERMAL POWER.

** With more than one control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.

LIMERICK - UNIT 1

time of the second

INSTRUMENTATION

3/4.3.7 MONITORING INSTRUMENTATION

RADIATION MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.7.1 The radiation monitoring instrumentation channels shown in Table 3.3.7.1-1 shall be OPERABLE with their alarm/trip setpoints within the specified -limits.

APPLICABILITY: As shown in Table 3.3.7.1-1.

ACTION:

- a. With a radiation monitoring instrumentation channel alarm/trip setpoint exceeding the value shown in Table 3.3.7.1-1, adjust the setpoint to within the limit within 4 hours or declare the channel inoperable.
- b. With one or more radiation monitoring channels inoperable, take the ACTION required by Table 3.3.7.1-1.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.1 Each of the above required radiation monitoring instrumentation channels shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the conditions and at the frequencies shown in Table 4.3.7.1-1.

		TABLE 3	.3.7.1-1		
		RADIATION MONITORI	NG INST. JUMENTATION		
INS	TRUMENTATION	MINIMUM CHANNELS APPLICABLE CONDITIONS		ALARM/TRIP SETPOINT	ACTION
1.	Main Control Room Normal Fresh Air Supply Radiation Monitor	4	1,2,3,5 and *	1 x 10-5 µCł/cc	70
2.	Area Monitors				
	a. Criticality Monitors				
	1) Spent Fuel Storage Pool	2	(a)	\geq 5 mR/h and <20mR/h ^(b)	71
	b. Control Room Direct Radiation Monitor	1	At All Times	N.A. (b)	73
3.	Reactor Enclosure Cooling Water Radiation Monitor	1	At All Times	\leq 3 x Background ^(b)	72

3/4 3-64

10 10

1. 19

TABLE 3.3.7.1-1 (Continued)

RADIATION MONITORING INSTRUMENTATION

TABLE NOTATIONS

*When irradiated fuel is being handled in the secondary containment.

(a) With fuel in the spent fuel storage pool.

(b) Alarm only.

ACTION STATEMENTS

ACTION 70 -

With one monitor inoperable, restore the inoperable monitor to the OPERABLE status within 7 days or, within the next 6 hours, initiate and maintain operation of the control room emergency filtration system in the radiation isolation mode of operacion.

With two or more of the monitors inoperable, within one hour, initiate and maintain operation of the control room emergency filtration system in the radiation mode of operation.

- ACTION 71 -
 - 71 With one of the required monitor inoperable, assure a portable continuous monitor with the same alarm setpoint is OPERABLE in the vicinity of the installed monitor during any fuel movement. If no fuel movement is being made, perform area surveys of the monitored area with portable monitoring instrumentation at least once per 24 hours.
- ACTION 72 With the required monitor inoperable, obtain and analyze at least one grab sample of the monitored parameter at least once per 24 hours.
- ACTION 73 With the required monitor inoperable, assure a portable alarming monitor is OPERABLE in the vicinity of the installed monitor or perform area surveys of the monitored area with portable monitoring instrumentation at least once per 24 hours.

LIMERICK - UNIT 1

3/4 3-65

TABLE 4.3.7.1-1

RADIATION MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INS	STRUMENTATION	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE IS REQUIRED
1.	Main Control Room Normal Fresh Air Supply Radiation Monitor	s	м	R	1, 2, 3, 5 and *
2.	Area Monitors				
	a. Criticality Monitors				
	1) Spent Fuel Storag Pool	e S	м	R	(a)
	 b. Control Room Direct Radiation Monitor 	s	н	R	At All Times
3.	Reactor Enclosure Cooling Water Radiation Monitor	s	н	R(b)	At All Times

LIMERICK - UNIT 1

3/4 3-66

€ 1985

TABLE 4.3.7.1-1 (Continued) .

RADIATION MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TABLE NOTATIONS

*When irradiated fuel is being handled in the secondary containment.

(a) With fuel in the spent fuel storage pool.

(b) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Bureau of Standards (NBS) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NBS. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used.

LIMERICK - UNIT 1

INSTRUMENTATION

SEISMIC MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.7.2 The seismic monitoring instrumentation shown in Table 3.3.7.2-1* shall be OPERABLE.

APPLICABILITY: At all times.

ACTION:

- a. With one or more of the above required seismic monitoring instruments inoperable for more than 30 days, prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 10 days outlining the cause of the malfunction and the plans for restoring the instrument(s) to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.2.1 Each of the above required seismic monitoring instruments shall be demonstrated DPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNC-TIONAL TEST, and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.7.2-1.

4.3.7.2.2 Each of the above required seismic monitoring instruments actuated during a seismic event greater than or equal to 0.01g shall be restored to OPERABLE status within 24 hours and a CHANNEL CALIBRATION performed within 5 days following the seismic event. Data shall be retrieved from actuated instruments and analyzed to determine the magnitude of the vibratory ground motion. A Special Report shall be prepared and submitted to the Commission pursuant to Specification 6.9.2 within 10 days describing the magnitude, frequency spectrum and resultant effect upon unit features important to safety.

*Shared with Unit 2.

LIMERICK - UNIT 1

453 × 414

TABLE 3.3.7.2-1

SEISMIC MONITORING INSTRUMENTATION

INS	TRUME	NTS A	ND SENSOR LOCATIONS	MEASUREMENT	MINIMUM INSTRUMENTS OPERABLE
2	Tri	axial	Time-History Accelerographs (T/	A's)	3.24. B.
	a.	Sen	sors		
		1)	XE-VA-102 Primary Containment Foundation (Loc. 109-R15-177)	0 to 1 g	1
		2)	XE-VA-103 Containment Structur (Diaphragm Slab)	re Otolg	1
		3)	XE-VA-104 Reactor Enclosure Foundation (Loc. 111-R11-177)	0 to 1 g	1
		4)	<pre>XE-VA-105 Reactor Piping Suppo (Mn. Stm. Line 'D', El 313', in containment)</pre>	rt 0 to 1 g	1
		5)	XE-VA-106 Gutside Containment on Seismic Category I Equipment (RHR Heat Exchanger Loc. 102-R15-177)		1
		6)	XRSH-VA-107* Foundation of an Independent Seismic Category Structure (Spray Pond Pump House, El 237')	0 to 1 g	1
	b.	Reco	rders (Panel 00C693)		
		1)	XR-VA-102 for XE-VA-102	N. A.	1
		2)	XR-VA-103 for XE-VA-103	N.A.	1
		3)	XR-VA-104 for XE-VA-104	N. A.	1
		4)	XR-VA-105 for XE-VA-105	N. A.	1
		5)	XR-VA-106 for XE-VA-106	N. A.	1

*Includes sensor, trigger, recorder, and backup power supply.

LIMERICK - UNIT 1

a to assess the s

.....

A. A.

5 15 3

TABLE 3.3.7.2-1 (Continued)

and the second

SEISMIC MONITORING INSTRUMENTATION

INS	TRUMENTS AND SENSOR LOCATIONS	MEASUREMENT RANGE	MINIMUM INSTRUMENTS OPERABLE
	c. Triaxial Seismic Trigger (S/T)		
•	 XSH-VA-001 (Activates Items 1.b.1) thru 5) above) 	0 to 1 g	1
2.	Triaxial Peak Recording Accelerograph (P/A'	\$)	
	a. XR-VA-151 Reactor Equipment (Top of reactor vessel head)	0 - 2 g	1***
	 XR-VA-152 Reactor Piping (Mn. Stm. Line 'D,' F1 313', in containment) 	0 - 2 g	1
	c. XR-VA-153 Reactor Equipment Outside Containment (RHR Heat Exchanger, Loc. 203-R15-201)	0 -2g	1
3.	Triaxial Seismic Switches		
	a. XSHH-VA-001 Primary Containment Foundation (Loc. 118-R16-117)	0 - 0.15 g Hot 0 - 0.10 g Ver	riz. 1* rt.
4.	Triaxial Response Spectrum Analyzer (RSA)	1-33.5 Hz	1*, **

With reactor control room indication and annunciation. Receives signal from playback unit fed with data from the Triaxial Accelerographs, Itsm 1.a above. *** Not required to be OPERABLE when the Unit 1 reactor

LIMERICK - UNIT 1 3/4 3-70

1.16 8 1355

TABLE 4.3.7.2-1

SEISMIC MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INSTRUMENTS A	AND SENSOR LOCATIONS	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION
1. Triaxial	Time-History Accelerographs (T/A's)		
a. Sens				
1)	XE-VA-102 Primary Contain- ment Foundation (loc. 109-R15-177)	N. A.	SA	R
2)	XE-VA-103 Containment Structure (Diaphragm Slab)	N. A.	SA	R
3)	XE-VA-104 Reactor Enclosure Foundation (Loc. 111-R11-117	N.A.	SA	R
4)	XE-VA-105 Reactor Piping Support (Mn. Stm. Line 'D,' El 313', in containment)	N. A.	SA	R .
5)	XE-VA-106 Outside Contain- ment on Seismic Category I Equipment, (RHR Heat Exchanger, Loc. 102-R15-177)	N. A.	SA	R
6)	XRSH-VA-107* Foundation of an Independent Seismic Category I Structure (Spray Pond Pump House, El 237')	N. A.	SA	R
b. Recor	ders (Panel 000693)			
1)	XR-VA-102 for XE-VA-102	N. A.	SA	R
2)	XR-VA-103 for XE-VA-103	N. A.	SA	R
3)	XR-VA-104 for XE-VA-104	N. A.	SA	R
4)	XR-VA-105 for XE-VA-105	N. A.	SA	R
5)	XR-VA-106 for XE-VA-106	N.A.	SA	x

*Includes sensor, trigger, recorder, and backup power supply.

LIMERICK - UNIT 1

3/4 3-71 .

60.

.

TABLE 4.3.7.2-1 (Continued)

Sec. Marine Marries

SEISMIC MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INS	TRUME	ENTS AND SENSOR LOCATIONS	CHANNEL	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION
	с.	Triaxial Seismic Trigger (S/T)			
		 XSH-VA-001 (Activities Items 1.b.1) thru 5) above 	N. A.	SA	R
2.	Tri	axial Peak Recording Accelerograph	(P/A's)		
	a.	XR-VA-151 Reactor Equipment (Top of reactor vessel head)	N. A.	N. A.	R
	b.	<pre>XR-VA-152 Reactor Piping (Mn. Stm. Line 'D,' El 313', in containment)</pre>	N. A.	N. A.	R
	c.	XR-VA-153 Reactor Equipment Outside Containment (RHR Heat Exchanger, Loc. 203-R15-201)	N. A.	N.A.	R
3.	Tri	axial Seismic Switches			
	ā.	XSHH-VA-001 Primary Containment Foundation (Loc. 118-R16-177)	N.A.	SA	R
4.	Tria (RS)	axial Response Spectrum Analyzer A)	N. A.	SA	R

LIMERICK - UNIT 1

the 8112----

METEOROLOGICAL MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.7.3 The meteorological monitoring instrumentation channels shown in Table 3.3.7.3-1 shall be OPERABLE.

APPLICABILITY: At all times.

ACTION:

- a. With one or more meteorological monitoring instrumentation channels inoperable for more than 7 days, prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 10 days outlining the cause of the malfunction and the plans for restoring the instrumentation to OPERABLE status.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.3 Each of the above required meteorological monitoring instrumentation channels shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.7.3-1.

La casa

TABLE 3.3.7.3-1

INS	TRUMEN	I		ower 1 rimary)			wer 2 ckup)	MINIMUM INSTRUMENTS OPERABLE
1.	Wind	Speed						
•	a.	Elevation 1	30	feet	or	159	feet	1
	b.	Elevation 2	2 175	feet	or	304	feet	1
2.	Wind	Direction						
	a.	Elevation 1	30	feet	or	159	feet	1
	ь.	Elevation 2	175	feet	or	304	feet	1
3.	Air	Temperature	Difference					
	a	Elevations		feet- feet	or		feet- feet	1

METEOROLOGICAL MONITORING INSTRUMENTATION

LIMERICK - UNIT 1

INS	TRUMENT	CHANNEL	CHANNEL CALIBRATION
1.	Wind Speed		
	a. Elevation 1 (Tower 1 and Tower 2)	D	SA
	b. Elevation 2 (Tower 1 and Tower 2)	D .	SA
2.	Wind Direction		
	a. Elevation 1 (Tower 1 and Tower 2)	D	SA
	b. Elevation 2 (Tower 1 and Tower 2)	D	SA
3.	Air Temperature Difference		
	a. Elevations 266 - 25 ft (Tower 1)	D	SA
	b. Elevations 3D0 - 26 ft (Tower 2)	D	SA

TABLE 4.3.7.3-1 METEOROLOGICAL MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

LIMERICK - UNIT 1

REMOTE SHUTDOWN SYSTEM INSTRUMENTATION AND CONTROLS

LIMITING CONDITION FOR OPERATION

3.3.7.4 The remote shutdown system instrumentation and controls shown in Table 3.3.7.4-1 shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

- a. With the number of OPERABLE remote shutdown system instrumentation channels less than required by Table 3.3.7.4-1, restore the inoperable channel(s) to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours.
- b. With the number of OPERABLE remote shutdown system controls less than required in Table 3.3.7.4-1, restore the inoperable control(s) to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours.
- c. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.4.1 Each of the above required remote shutdown monitoring instrumentation channels shall be demonstrated OPERABLE by performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.7.4-1.

4.3.7.4.2 Each of the above remote shutdown control switch(es) and control circuits shall be demonstrated OPERABLE by verifying its capability to perform its intended function(s) at least once per 18 months.

LIMERICK - UNIT 1

3/4 3-76

1 1 1 10 1 1 1

10 210

TABLE 3.3.7.4-1

REMOTE SHUTDOWN SYSTEM INSTRUMENTATION AND CONTROLS

THET	REMOTE SHUTDOWN SYSTEM INSTRUMENTATION AND CONTROLS	MINIMUM &
1021	RUMENT	INSTRUMENT: OPERABLE
1.	Reactor Vessel Pressure	
2.	Reactor Vessel Water Level	1
3.	Safety/Relief Valve Position, 3 valves	1
4.	Suppression Chamber Water Level	1/valve
5.	Suppression Chamber Water Temperature (Actually RHR Pump "A" Suction Temperature)	1
6.	Drywell Pressure	1
7.	Drywell Temperature	1
8.	RHR System Flow	1
9.	RHR Service Water Pump Discharge Pressure	1
10.	RHR Heat Exchanger Service Water Outlet Pressure	1
11.	RCIC System Flow	1
12.	RCIC Turbine Speed	1
13.	Emergency Service Water Pump Discharge Pressure	1
14.	Condensate Storage Tank Level	1
15.	RHR Heat Exchanger Bypass Valve (HV51-1F048A) Position Indication (0 - 100%)	1
16.	RCIC Turbine Tripped Indication	1
17.	RCIC Turbine Bearing Oil Pressure Low Indication	1
18.	RCIC LP Bearing Oil Temperature High Indication	1
19.	RHR Heat Exchanger Discharge Line High Radiation Indication	1
20.	RARSL' Loop A Return High Radiation Indication	1

TABLE 3.3.7.4-1

REMOTE SHUTDOWN SYSTEM CONTROLS

RCIC SYSTEM	김희님, 비행 김 씨가 있는 것 같은 것이 아니는 것 같은 것이다.
HSS-49-491	Control-Transfer Switch
HSS-49-192	Control-Transfer Switch
HSS-49-293	Control-Transfer Switch
HSS-49-195	Control-Transfer Switch
HSS-49-196	Control-Transfer Switch
HV-49-25076	Control-Steam Line warmup bypass valve
HV-49-1F060	Control-RCIC turb exhaust to suppression pool isolation
HV-50-212	Control-Turb trip throttle valve
HV-50-2F045	Control-Turbine steam supply valve
HV-49-15008	Control-Turbine steam line outboard isolation valve
HV-49-1F007	Control-Turbine steam line inboard isolation valve
HV-49-2F031	Control-RCIC pump suction from suppression pool
HV-49-7.F029	Control-RCIC pump suction from suppression pool
HV-49-2F010	Control-RCIC pump suction from condensate storage tank
HV-49-15019	Control-Minimum flow bypass to suppression pool
HV-49-2F022	Control-Test return to condensate storage tank
HV-50-2F046	Control-RCIC turbine cooling water value
HV-49-25012	Control-RCIC pump disch valve
HV-49-15013	Control-RCIC pump disch valve
IOP220	Control-Vacuum tank condensate pump
20P219 2 .	Control-Barometric condenser vacuum pump
HV-49-2F002	Control-Barometric condenser vacuum pump disch

LIMERICK - UNIT 1

3/4 3-78

5. 8 57

	- (bonchibed)
RCIC SYSTEM (Co	ntinued)
HV-49-15080	Control-Vacuum breaker outboard isolation valve
HV-49-25084	Control-Vacuum breaker inboard isolation valve
FIC-49-18001	Controller-RCIC discharge flow control
E51-\$45	RCIC Turbine Trip Bypass
NUCLEAR BOILER	
HSS-41-191	Control-Transfer switch
2 PSV-41-4F013A	Control-Main steam line safety/relief valve
PSV-41-AF013C	Control-Main steam line safety/relief valve
PSV-41-2F013N	Control-Main steam line safety/relief valve
RHR SYSTEM	
H55-51-292	Control-Transfer switch
HSS-51-293	Control-Transfer switch
HSS-51-494	Control-Transfer switch
HSS-51-195	Control-Transfer switch
HSS-51-196	Control-Transfer switch
HSS-51-297	Control-Transfer switch
HSS-51-198	Control-Transfer switch
HV-51-2009	Control-RHR pump shutdown cooling suction inboard isolation
HV-51-1F008	Control-RHR shutdown cooling suction outboard isolation
HV-51-15006A	Control-ZA RHR loop shutdown cooling suction
HV-51-2 F0068	Control-IB RHR loop shutdown cooling suction
HV-51-2F004A	Control-ZA RHR pump suction
Z LAP202	Control-ZA RHR pump
HS5 + 51-195	Control - Transtar Switch
H55-51-196	Control - Transfor Switch
LIMERICK - UNIT 1	3/4 3-79

.

٩

4.

RHR SYSTEM (Con	tinued)
HV-43-2 F023A	Control-Recirculation pump A suction valve
HSS-43-191	Control-Transfer switch
HV-51-25007A	Control-AA RHR pump minimum flow bypass valve
HV-51-2F048A	Control-IA heat exchanger shell side bypass
-HV-51-2F015A	Control-ZA shutdown cooling injection valve
HV-51-1F022	Control-RHR head spray inboard isolation valve
H V-51-1F023	Control-RHR head spray outboard isolation.
HV-51-2F016A	Control-Reactor containment spray
HV-51-2F011A	Control-ZA heat exchanger flow to suppression pool
HV-51-2F017A	Control-ZA RHR loop injection valve
HV-51-2F024A	Control-ZA RHR loop test return
HV-51-1F027A	Control-Suppression pool sparger isolation
HV-51-1F047A	Control-ZA Heat exchanger shell side inlet
HV-51-2F003A	Control-IA Heat exchanger shell side outlet
HV-51-1 F026A	Control-IA Heat exchanger flow to RCIC
HV-51-2F049	Control-RHR Discharge to radwaste outboard isolation
HV-51-125A	Control-1A/AC test return line to suppression pool
HV-51-4F052A	Control-HPCI steam to RHR heat exchanger
HV-51-253A	Control-HPCI steam to RHR heat exchanger warm-up bypass

RHR SERVICE WATER SYSTEM

HSS-12-015A-2	Control-Spray pond/cooling tower select
HSS-12-0150-2	Control-Spray pond/cooling tower select
HSS-12-016A-2	Control-Spray/bypass select
HSS-12-016C-2	Control-Spray/bypass select

LIMERICK - UNIT 1

3/4 3-80

1.1. 8 115:

.

KHR SERVICE WATER	SYSTEM (Continued)
H55-12-094	Control-Transfer switch
HSS-12-093	Control-Transfer switch
H55-51-1F014A	Control-ZA RHR heat exchanger tube side inlet
0AP506	Control-RHR Service Water pump
HV-51-2 F068A	Control-ZA RHR Heat exchanger tube side outlet

EMERGENCY SERVICE WATER SYSTEM

....

OAP548	Control- ga emergency service water pump
HV #5-11-011A-2	Control-QA Georgency service water disch to RHR service water
HSS-11-091	Control-Transfer switch
HSS-11-092	Cor: ol-Transfer switch
HSS-11-093	Control-Transfer switch

The following valves of the ESW and RHRSW systems are actuated by signals from the transfer switches:

...

HV-12-005	ESW and RHRSW pumps wetwell intertie gate
HV-11-015A	ESW loop A discharge to RHRSW loop B
HV-12-017A	ESW and RHRSW cooling tower return cross-tie

STANDBY AC POWER SUPPLY

	2
152-11509/CSR	101-D11 Safeguard SWGR feeder bkr.
152-11609/CSR	101-D12 Safeguard SWGR feeder bkr.
152-11709/CSR	101-DZ3 Safeguard SWGR feeder bkr.
152-11502/CSR	201-DI1 Safeguard SWGR feeder bkr.
152-11602/CSR	201-DI2 Safeguard SWGR feeder bkr.
152-11702/CSR	201-DI3 Safeguard SWGR feeder bkr.
152-11505/CSR	D214 Safeguard LC XFMR breaker

LIMERICK - UNIT 1

3/4 3-81

.

5. 11 1

· • · • •

1.2.1

X X

STANDEY AC POWER	SUPPLY (Continued)
152-11605/CSR	DX24 Safeguard LC XFMR breaker
152-11705/CSR	Dy34 Safeguard LC XFMR breaker
143-115/CS	Transfer switch
143-116/CS	Transfer switch
- 143-117/CS	Transfer switch

.

 $f \in [-\pi] \times A_{2}^{*}$

**

	10			
TABLE	4.	3.	7.	4-

REMOTE SHUTDOWN SYSTEM INSTRUMENTATION SURVEILLANCE REQUIREMENTS

Ę		REMOTE SHUTDOWN SYSTEM INSTRUMENTATION SURVEILLANCE	REQUIREMENTS	
LIMERICK	INST	RUMENT	CHANNEL CHECK *	CHANNEL
-	1.	Reactor Vessel Pressure	м	R
UNIT	2.	Reactor Vessel Water Level	м	R
**	3.	Safety/Relief Valve Position, 2 alves	M	NA
	4.	Suppression Chamber Water Level		
	5.	Suppression Chamber Water Temperature	2	R
	6.	Drywell Pressure	M	R
	7.	Drywell Temperature		R
	8.	RHR System Flow		R
	9.	RHR Service Water Pump Discharge Pressure		R
3/4	10.	RHR Heat Exchanger Service Water Outlet Pressure		R
ω	11.	RCIC System Flow		R
83	12.	RCIC Turbine Speed		R
	13.	Emergency Service Water Pump Discharge Pressure		R
	14.	Condensate Storage Tank Level 7		R
	15.	RHR Heat Exchanger Bypass Valve (HV51-/IF048A) Position Indication (0 - 100%)		R
	16.	RCIC Turbine Tripped Indication	м	R
	17.	RCIC Turbine Bearing Oil Pressure Low Indication	м	R
	18.	RCIC LP Bearing Oil Temperature High Indication	м	R
	19.		м	R
		RHR Heat Exchanger Discharge Line High Radiation Indication RHRSW Loop A Return High Radiation Indication	м	R
5 1995		trol is not required to be transferred to perform this CHANNEL CHFCK.	m	R

X

ACCIDENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.7.5 The accident monitoring instrumentation channels show in Table 3.3.7.5-1 shall be OPERABLE.

APPLICABILITY: As shown in Table 3.3.7.5-1.

ACTION:

With one or more accident monitoring instrumentation channels inoperable, take the ACTION required by Table 3.3.7.5-1.

SURVEILLANCE REQUIREMENTS

4.3.7.5 Each of the above required accident monitoring instrumentation channels shall be demonstrated OPERABLE by performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3.7.5-1.

*

. :

54

1

5.5

÷.

ACCIDENT MONITORING INSTRUMENTATION

	ACCIDENT MONITOR	ING INSTRUMENTATION			
INS	TRUMENT	REQUIRED NUMBER OF CHANNELS	MINIMUM CHANNELS OPERABLE	APPLICABLE OPERATIONAL CONDITIONS	ACTION
1.	Reactor Vessel Pressure	2	1	1,2	80
2.	Reactor Vessel Water Level	2	1	1,2	80
3.	Suppression Chamber Water Level	2	1	1,2	80
4.	Suppression Chamber Water Temperature	8, 6 locations	6, 1 location	1,2	80
5.	Suppression Chamber Air Temperature	1	1	1,2	80
6.	Drywell Pressure	2	1	1,2	80
7.	Drysell Air Temperature	1	1	1,2	80
8.	Drywell Oxygen Concentration Analyzer	2	î	1,2	
9.	Drywell Hydrogen Concentration Analyzer	2	1	1,2	- 30
10.	Safety/Relief Valve Position Indicators	1/valve	1/valve		80
11.	Primary Containment Post-LOCA Radiation Monitors	4	2	1,290	80
12.	North Stack Wide Range Accident Monitor**	3*	3*	1,2",3" 1,2",3"	81 81
13.	Neutron Flux	2	1	1,2	80

XX XX

Whot required to be OPERABLE until initial criticality.

RUD 1113

ACCIDENT MONITORING INSTRUMENTATION

TABLE NOTATIONS

*Three noble gas detectors with overlapping ranges (10-7 to 10^{-1} , 10^{-4} to 10^2 , 10^{-1} to $10^5 \mu Ci/cc$). *High range noble gas monitor.

ACTION STATEMENTS

ACTION 80 -

- a. With the number of OPERABLE accident monitoring instrumentation channels less than the Required Number of Channels shown in Table 3.3.7 3-1, restore the inoperable channel(s) to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours.
- b. With the number of OPERABLE accident monitoring instrumentation channels less than the Minimum Channels OPERABLE requirements of Table 3.3.7.5-1, restore the incperable channel(s) to OPERABLE status within 48 hours or be in at least HOT SHUTDOWN within the next 12 hours.
- ACTION 81 With the number of OPERABLE accident monitoring instrumentation channels less than required by the Minimum Channels OPERABLE requirement, initiate the preplanned alternate method of monitoring the appropriate parameters within 72 h urs, and
 - a. Either settore the inoperable channel(s) to OPERABLE status within 7 days of the event, or
 - b. Prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within 14 days following the event outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.

LIMERICK - UNIT 1

3/4 3-86

ACCIDENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

	TRUMENT	CHANNEL	CHANNEL CALIBRATION
1.	Reactor Vessel Pressure	H	R
2.	Reactor Vessel Water Level	м	P
3.	Suppression Chamber Water Level	м	P
4.	Suppression Chamber Water Temperature	м	P
5.	Suppression Chamber Air Temperature	н	P
6.	Primary Containment Pressure	H	R
7.	Drywell Air Temperature		8
8.	Drywell Oxygen Concentration Analyzer	м	
9.	Drywell Hydrogen Concentration Analyzer	н	0*
10.	Safety/Relief Valve Position Indicators	н	R
11.	Primary Containment Post LOCA Radiation Monitors	M	R 8**
12.	North Stack Wide Range Accident Monitor***	м	R
13.	Neutron Flux	н	R
			R

*Using calibration gas containing:

a. Zero volume percent hydrogen, balance nitrogen.

b. Five volume percent hydrogen, balance nitrogen.

**CHANNEL CALIBRATION shall consist of an electronic calibration of the channel, not including the detector. for range decades above 10 R/h and a one point calibration check of the detector below 10 R/h with an 'led or portable gamma source.

#Us: ... ibration gas containing:

a. Zero volume percent oxygen, balance nitrogen.

b. Five volume percent oxygen, balance nitrogen,

SOURCE RANGE MONITORS

LIMITING CONDITION FOR OPERATION

- 3.3.7.6 At least the following source range monitor channels shall be OPERABLE: In OPERATIONAL CONDITION 2*, three. 8. b.
 - In OPERATIONAL CONDITION 3 and 4, two.

APPLICABILITY: OPERATIONAL CONDITIONS 2*, 3, and 4.

ACTION:

- In OPERATIONAL CONDITION 2* with one of the above required source a. range monitor channels inoperable, restore at least three source range monitor channels to OPERABLE status within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours.
- In OPERATIONAL CONDITION 3 or 4 with one or more of the above required b. source range monitor channels inoperable, verify all insertable control rods to be inserted in the core and lock the reactor mode switch in the Shutdown position within 1 hour.

SURVEILLANCE REQUIREMENTS

4.3.7.6 Each of the above required source range monitor channels shall be demonstrated OPERABLE by: .

- а. Perfor ance of a:
 - CHANNEL CHECK at least once per: 1.
 - 12 hours in CONDITION 2*, and a)
 - b) 24 hours in CONDITION 3 or 4.
 - CHANNEL CALIBRATION** at least once per 18 months. 2.
- Performance of a CHANNEL FUNCTIONAL TEST: b.
 - Within 24 hours prior to moving the reactor mode switch from 1. the Shutdown position, if not performed within the previous 7 days. and
 - At least once per 31 days. 2.
- Verifying, prior to withdrawal of control rods, that the SRM count C. rate is at least 3.0 cps*** with the detector fully inserted.

"With IRM's on range 2 or below. **Neutron detectors may be excluded from CHANNEL CALIBRATION. ***May be reduced to 0.7 cps provided the signal-to-noise ratio is > 2.

LIMERICK - UNIT 1

3/4 3-88

TRAVERSING IN-CORE PROBE SYSTEM

LIMITING CONDITION FOR OPERATION

3.3.7.7 The traversing in-core probe system shall be OPERABLE with:

- a. Five movable detectors, drives and readout equipment to map the core, and
 - b. Indexing equipment to allow all five detectors to be calibrated in a common location.

APPLICABILITY: When the traversing in-core probe is used for:

- a. Recalibration of the LPRM detectors, and
- b.* Monitoring the APLHGR, LHGR, MCPR, or MFLPD.

ACTION:

With the traversing in-core probe system inoperable, suspend use of the system for the above applicable monitoring or calibration functions. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.7 The traversing in-core probe system shall be demonstrated OPERABLE by normalizing each of the above required detector outputs within 72 hours prior to use for the LPRM calibration function.

*Only the detector(s) in the required measurement location(s) are required to be OPERABLE.

LIMERICK - UNIT 1

E. 8

CHLORINE DETECTION SYSTEM

LIMITING CONDITION FOR OPERATION

3.3.7.8.1 Two independent chlorine detection system subsystems shall be OPERABLE with their alarm and trip setpoints adjusted to actuate at a chlorine concentration of less than or equal to 0.5 ppm.

APPLICABILITY: AN OPERATIONAL CONDITIONS.

ACTION:

- a. With one chlorine detection subsystem inoperable, restore the inoperable detection system to OPERABLE status within 7 days or, within the next 6 hours, initiate and maintain operation of at least one control room emergency filtration system subsystem in the chlorine isolation mode of operation.
- b. With both chlorine detection subsystems inoperable, within 1 hour initiate and maintain operation of at least one control room emergency filtration system subsystem in the chlorine isolation mode of operation.
- c. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.8.1 Each of the above required chlorine detection system subsystems shall be demonstrated OPERABLE by performance of a:

a. CHANNEL CHECK at least once per 12 hours,

CHARLES IN THE R.

- b. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
- c. CHANNEL CALIBRATION at least once per 18 months.

the state of a

TOXIC GAS DETECTION SYSTEM

LIMITING CONDITION FOR OPERATION

3.3.7.8.2 Two independent toxic gas detection system subsystems shall be OPERABLE with their alarm setpoints adjusted to actuate at a toxic gas concentration of less than or equal to:

CHEMICAL	MONITOR SET POINT (ppm)
Ammonia Ethylene Oxide Formaldehyde Vinyl Chloride	25 50 5 10
Phosgene	0.4

APPLICAPILITY: AND OPERATIONAL CONDITIONS.

ACTION:

- a. With one toxic gas detection subsystem inoperable, restore the inoperable detection system to OPERABLE status within 7 days or, within the next 6 hours, initiate and maintain operation of at least one control room emergency filtration system subsystem in the chlorine isolation mode of operation.
- b. With both texic gas detection subsystems inoperable, within 1 hour initiate and maintain operation of at least one control room emergency filtration system subsystem in the chlorine isolation mode of operation.
- c. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.8.2 Each of the above required toxic gas detection system subsystems shall be demonstrated OPERABLE by performance of a:

- a. CHANNEL CHECK at least once per 12 hours,
- b. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
- c. CHANNEL CALIBRATION at least once per 18 months.

LIMERICK - UNIT 1

3/4 3-91

AC5 8 19.5

FIRE DETECTION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.7.9 As a minimum, the fire detection instrumentation for each fire detection zone shown in Table 3.3.7.9-1 shall be OPERABLE.

APPLICABILITY: Whenever equipment protected by the fire detection instrument is required to be OPERABLE.

ACTION:

- a. With the number of OPERABLE fire detection instruments in one or more zones:
 - Less than, but more than one-half of, the Total Number of Instruments shown in Table 3.3.7.9-1 for Function A, restore the inoperable Function A instrument(s) to OPERABLE status within 14 days or within 1 hour establish a fire watch patrol to inspect the zone(s) with the inoperable instrument(s) at least once per hour, unless the instrument(s) is located inside an inaccessible zone, then inspect the area surrounding the inaccessible zone at least once per hour.
 - 2. One less than the Total Number of Instruments shown in Table 3.3.7.9-1 for Function B. or one-half or less of the Total Number of Instruments shown in Table 3.3.7.9-1 for Function A, or with any two or more adjacent instruments inoperable, within 1 hour establish a fire watch patrol to inspect the zone(s) with the inoperable instrument(s) at least once per hour, unless the instrument(s) is located inside an inaccessible zone, then inspect the area surrounding the inaccessible zone at least once per hour.

b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.9.1 Each of the above required fire detection instruments which are accessible during unit operation shall be demonstrated OPERABLE at least once per 6 months by performance of a CHANNEL FUNCTIONAL TEST. Fire detectors which are not accessible during unit operation shall be demonstrated OPERABLE by the performance of a CHANNEL FUNCTIONAL TEST during each COLD SHUTDOWN exceeding 24 hours unless performed in the previous 6 months.

4.3.7.9.2 The NFPA Standard 72D supervised circuits supervision associated with the detector alarms of each of the above required fire detection instruments shall be demonstrated OPERABLE at least once per 6 months.

LIMERICK - UNIT 1

TABLE 3.3.7.9-1

FIRE DETECTION INSTRUMENTATION

INST	RUMENT LOCAT	ICN		TOTAL	NUMBER OF 1	NSTRUMENT
FIRE	STRUCTURE	ELEV.	AREA	HEAT	SMOKE	FLAME
				(x/y)	$\frac{1}{(x/y)}$	$\frac{\Gamma LAME}{(x/y)}$
11	Control	200'	Control Structure Chillers and Chilled Water Pump Area 258	NA	3/0	NA
1M -	Control	200'	Control Structure Chillers and Chilled Water Pump Area 263	NA	3/0	NA
2	Control	217'	13-kV Switchgear Area 336	NA	34/0	NA
53	Control	217'	Battery Room 323 (1D)	1/0	1/0	
64	Control	217'	Battery Room 324 (10)	1/0	1/0	NA
7	Control	239'	Corridor 437	NA	5/0	NA
1017-8	Control	239'	Battery Room 435 (181/182)	1/0		NA
128.9	Control	239'	Battery Room 436 (1A1/1A2	31/0	2/0	NA
// 12-	Control	239'	4 KV Switchgear Compartment 434 (D13)	12/0	1 Z /0 2/0	NA NA
1623	Control	239'	4-kV Switchgear Compartment 435 (011) 430	2/0	2/0	NA
17 14	Control	239'	4-kV Switchgear Compartment 432 (D14) 431	2/0	2/0	NA
18.15	Control	239'	4-kV Switchgear Compartment	2/0	2/0	NA
19 20-	Control	254	4-Ku SLitch Sein Compartment Static Inverter Roop Unit 1 Area 452 429	N# 2/0	Z 4/0	NA
3 22	Control	254'	Cable Spreading Room Unit 1,2 Area 449 450	NA	14/0	NA
24A	Control	269'	Control Room 533	NA	23(a)/0	NA
248	Control	269'	Control Room Utility Room 529	NA	11(b)/0	
240	Control	269'	Control Room Office 531		1/0	NA
240	Control	269'	Control Room Shift Supt. 532	NA	1/0	NA
24E	Control	269'	Control Room Shop 534	NA	1/0	NA
			control your shop 534	NA	1/0 (Photo- Elect)	NA
24F	Control	269'	Control Room Instrument Lab 535	NA	1/0 (Photo- Elect)	NA
24G	Control	269'	Control Room Shift Supt. 532A	NA	1/0	NA
LIMERIC	K - UNIT 1		3/4 3-93		A10 8 10	85
21	Control	254'	Static Inverten Room Unit	Z NA	6/0	NA
	a second s				/	

۴,

THEFT

Aren 453

TABLE 3.3.7.9-1 (Continued)

FIRE DETECTION INSTRUMENTATION

INS	TRUMENT LOCAT	ION		TOTAL	NUMBER OF IN	STRUMENTS
FIR		ELEV.	AREA	HEAT	SMOKE	FLAME
25	Control	289'	Auxiliary Equipment Room 542	2/	(x/y) 57/0 (Ceiling) /01 56/0 (PGCC Floor) 70 14/0	(x7y) NA
26	Control	2001		(Non- PGCC Floor)	(Non- PGCC Floor) 6432/0 (Terminal Cabinets)	
		289'	Remote Shutdown Panel Area 540	0/4 (Non- PGCC Floor)	3/0 (Ceiling Level) 2/0 (Non- PGCC Floor)	NA
27	Control	304 '	Control Structure Fan Room 619	0/23 4/0 (inside plenum)	10/0	NA :
284	Control	332'	SGTS Access Area 625 (SGTS Room Ventilation Exhaust)	4/0 (inside plenum)	NA	NA
288	Control	332'	SGTS Filter Compartment 624	4/0 (inside plenum)	NA	NA
280	Control	332'	Control Room Fresh Air Intale Plenum	NA	3/0	NA
5437	Unit \pm^2 Reactor	177'	RHR Heat Exchanger & (744C) Pump Room 103 (846) (744C)	NA	6/0	NA
55-32	Unit 22 Reactor	177'	RHR Heat Exchanger & Pump Room $\frac{173}{192}$ (#40) (840)	NA	5/0	NA
56.23	Unit 22 Reactor	177'	RCIC Pump Room 108 /79	0/3	2/0	NA
57 24	Unit 2 ² Reactor	177 '	HPCI Pump Room 189/80	0/4	3/0	NA .
58.25	Unit 2 2 Reactor	177'	8 'A' Core Spray Pump Room 110 /81	NA	2/0	NA

LIMERICK - UNIT 1

the equi

INST	RUMENT LOCATIO	ON		TOTAL NU	MBER OF I	NETRINE
FIRE				TOTAL NU	HOLK UP 1	NSTRUMENT
ZONE	STRUCTURE	ELEV.	D	HEAT (x/y)	SMOKE (x/y)	FLAME (x/y)
59-28	Unit 2 Z Reactor	177'	'' Core Spray Pump Rgom 38- 184	NA	2/0	NA
60 37	Unit Z ² Reactor	177'	'9' Core Spray Pump Ropm 14 /85	NA	2/0	NA
6/ 38	Unit X2 Reactor	177'	'&' Core Spray Pump Room 117 /88	NA	2/0	NA
62 23	Unit YZ Reactor	177'	Sump Room 115; Passageway 118 189	NA	4/0	NA
6340	Unit 12 Reactor	177'	Corridor HH 182	NA	2/0	NA
64A 41	Unit Z 2 Reactor	201'	RECW Equipment Area 207-284	0/200 9	3/0	NA
65 424	Unit X 2 Reactor	201'	Safeguard System Access Area 200 Z 79	0/12	3/0	NA
66 43	Unit 22 Reactor	217'	Safeguard System Isolation Valve Area 309 376	NA	\$/0	NA
6744	Unit χ^Z Reactor	217'	Safeguard System Access Area 304 870	0/8// (Southwes 0/3st // (Northeas		NA
68A 45×	Unit YZ Reactor	253'	CRD Hydraulic Equipment Area 402 975	0/16/7	20/0	NA
688 458	Unit Z ² Reactor	253'	Neutron Monitoring System Area 400/79	NA 0/2	2/0	NA
680,450	Unit Z ² Reactor	253'	CRD Repair Room 403 476	NA	2/0	NA
70A ATA	Unit Z ² Reactor	283'	Corridor 506; General Equipment Area 500 574	0/18/15	21/0	NA
708 478	Unit Z Z Reactor	295	Isolation Valve Compartment 523 573	NA	2/0	NA
70 - 470	Unit I Z Reactor	283'	Fuel Pool Cooling Water Pump and Heat Exchanger Area 511 585	NA	2/0	NA
700 478	Unit Z ² Reactor	2831	Isolation Valve Compartment 510/522 584/597	NA	1/0	NA

#Only 13 of these heat detectors are required to be OPERABLE until prior to exceeding 5% of RATED THERMAL POWER.

##Not required to be OPERABLE until prior to exceeding 5% of RATED THERMAL POWER.

LIMERICK - UNIT 1

hin 6 1991

*

0 /14

TABLE 3.3.7.9-1 (Continued) FIRE DETECTION INSTRUMENTATION

INSTRUMENT LOCATION

FTRE

TOTAL NUMBER OF INSTRUMENTS*

, i

ZONE	STRUCTURE	ELEV.	AREA			
			637 638	$\frac{\text{HEAT}}{(x/y)}$	SMOKE (x/y)	FLAME
714484	Unit 1 Reactor	313'	Laydown Areas 601 and 602; Corridor and RERS Fan Area 605		148/0	(x/y) NA
74451A	Unit 1 Reactor	331'	RERS Filter 641 Compartment 618 651	2/0 (inside plenum)	NA	NA
748 518	Unit 1 Reactor	331'	RERS Filter Compartment 612453	2/0 (inside plenum)	NA	NA
83.79	Diesel- Generator	217'	Diesel-Generator Cell Unit 1-2	1/5	4/0	1/0
8480	Diesel- Generator	217'	Diesel-Generator Cell Unit 1-2	1/5	4/0	1/0
P5 -87	Diesel- Generator	217'	Diesel-Generator Cell Unit 2 2	1/5	4/0	1/0
8682	Diesel- Generator	217'	Diesel-Generator Cell Unit 1 2	1/5	4/0	1/0
122A	Spray Pond Pump Structure	268'	ESW and RHRSW Pump Area	NA	4/0	NA
122E	Spray Pond Pump . Structure	251'	RHRSW Valve Compartment	NA	2/0	NA
123A	Spray Pond Pump Structure	268'	ESW and RHRSW Pump Area	NA	4/0	NA
123E	Spray Pond Pump Structure	251'	RHRSW Yalve Compartment	NA	2/0	NA
1244	Diesel- Generator	217'	Diesel-Generator Access Corridor 313 317	NA	4/0	NA
126A	Common Reactor	412'	Names France F	NA	2/0	NA

* (x/y): X is the number of Function A (Early Warning Fire Detection and Notification Only) Instruments.

Y is the number of Function B (Activation of Fire Suppression System and Early Warning Notification) Instruments.

These smoke detectors are located below the suspended ceiling in the (a) Control Room.

These smoke detectors are located above the suspended ceiling in the (b) Control Room. LIMERICK - UNIT 1 201 8 145

3/4 3-96

LOOSE-PART DETECTION SYSTEM

LIMITING CONDITION FOR OPERATION

3.3.7.10 The loose-part detection system shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

- ACTION:

- a. With one or more loose-part detection system channels inoperable for more than 30 days, prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 10 days outlining the cause of the malfunction and the plans for restoring the channel(s) to OPERABLE status.
- b. The provisions of Specification 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.10 Each channel of the loose-part detection system shall be demonstrated OPERABLE by performance of a:

- a. CHANNEL CHECK at least once per 24 hours,
- b. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
- c. CHANNEL CALIBRATION at least once per 18 months.

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.7.11 The radioactive liquid effluent monitoring instrumentation channels shown in Table 3.3.7.11-1 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 3.11.1.1 are not exceeded. The alarm/trip setpoints* of these channels shall be determined and adjusted in accordance with the methodology and parameters in the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILIITY: At all times.

ACTION:

- a. With a radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above specification, immediately suspend the release of radioactive liquid effluents monitored by the affected channel, or declare the channel inoperable.
- b. With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3.7.11-1. Restore the inoperable instrumentation to OPERABLE status within the time specified in the ACTION or explain in the next Semiannual Radioactive Effluent Release Report why this inoperability was not corrected within the time specified.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.11 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3.7.11-1.

*Excluding the flow rate measuring devices which are not determined and adjusted in accordance with the ODCM.

LIMERICK - UNIT 1

A.r. 8 1985

in cases

TABLE 3.3.7.11-1

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

		INSTRUMENT	MINIMUM CHANNELS OPERABLE	ACTION
1.	GROS	S RADIOACTIVITY MONITORS PROVIDING OMATIC TERMINATION OF RELEASE		
	a.	Liquid Radwaste Effluent Line	1	100
2.	PRO	RHR Service Water System Effluent Line Combined Lon S RADIOACTIVITY MONITORS NOT VIDIO TOMATIC TERMINATION RELEASE	1/100p p Effluent	101
	a.	Service Water System Effluent Line	1	101
3.	FLOW	RATE MEASUREMENT DEVICES		
	a.	Liquid Radwaste Effluent Line	1	102
	Þ.	Discharge Line	1	102

TABLE 3.3.7.11-1 (Continued)

ACTION STATEMENTS

ACTION 100 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may continue for up to 14 days provided that prior to initiating a release:

- a. At least two independent samples are analyzed in accordance with Specification 4.11.1.1.1, and
- At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge line valving;

Otherwise, suspend release of radioactive effluents via this pathway.

- ACTION 101 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided that, at least once per 8 hours, grab samples are collected and analyzed for gross radioactivity (beta or gamma) at a limit of detection of at least 10-7 microcurie/mL.
- ACTION 102 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided the flow rate is estimated at least once per 4 hours during actual releases. Pump curves generated in situ may be used to estimate flow.

LIMERICK - UNIT 1

. 1

1 MARTINE 12 MAR

TABLE 4.3.7.11-1

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

LIMERICK		TABLE 4.3.7.11-1 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS					
- UNIT	INS	TRUMENT	CHANNEL CHECK	SOURCE	CHANNEL	CHANNEL FUNCTIONAL TEST	
ч	1.	GROSS RADIOACTIVITY MONITORS PROVIDING AUTOMATIC TERMINATION OF RELEASE					
		a. Liquid Radwaste Effluent Line	Р	Р	R(3)	Q(1)	
	2.	b. RHR Service Water System Effluent Line Combined Line GROSS RADIOACTIVITY MONITORS NOT PROVIDING AUTOMATIC TERMINATION OF RELEASE	, Effluent	м	R(3)	Q(1)	
3/4 3-101	3.	a. Service Water System Effluent Line FLOW RATE MEASUREMENT DEVICES	D	M	R(3)	Q(2)	
		a. Liquid Radwaste Effluent Line	D(4)	N.A.	R	Q	
		b. Discharge Line	D(4)	N.A.	R	Q	

\$05

- 22

TABLE 4.3.7.11-1 (Continued)

TABLE NOTATIONS

- (1) The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolatio. of this pathway and control room alarm annunciation occur if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm/trip setpoint.
 - 2. Circuit failure.
 - 3. Instrument indicates a downscale failure.
- (2) The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm setpoint.
 - 2. Circuit failure.
 - 3. Instrument indicates a downscale failure.
- (3) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Bureau of Standards (NBS) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NBS. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used.
- (4) CHANNEL CHECK shall consist of verifying indication of flow during periods of release. CHANNEL CHECK shall be made at least once per 24 hours on days on which continuous, periodic, or batch releases are made.

LIMERICK - UNIT 1

3/4 3-102

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.7.12 The radioactive gaseous effluent monitoring instrumentation channels shown in Table 3.3.7.12-1 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 3.11.2.1 are not exceeded. The alarm/trip setpoints* of the applicable channels shall be determined in accordance with the methodology and parameters in the ODCM.

APPLICABILITY: As shown in Table 3.3.7.12-1

ACTION:

- a. With a radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Specification, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel or declare the channel inoperable.
- b. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3.7.12-1. Restore the inoperable instrumentation to OPERABLE status within the time specified in the ACTION or explain why this inoperability was not corrected in a timely manner in the next Semiannual Radioactive Effluent Release Report.
- c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.7.12 Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3.7.12-1.

*The alarm/trip setpoints for the Main Condenser Offgas Treatment System Explosive Gas Monitoring System and the Main Condenser Offgas Pretreatment Radiation Monitor are set in accordance with Specification 3.11.2.5 and 3.11.2.6, respectively.

LIMERICK - UNIT 1

3/4 3-103

TABLE 3.3.7.12-1

RADIOACTIVE GAGEOUS EFFLUENT MONITORING INSTRUMENTATION

1.	ма	INSTRUMENT IN CONDENSER OFFGAS TREATMENT SYSTEM EXPLOSIVE GAS MONITORING SYSTEM	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
2.	а. 50		1	**	110
	a.	Noble Gas Activity Monitor	1		111
	b.	Iodine Sampler	1		112
	с.	Particulate Sampler	1		112
	d.	Effluent System Flow Rate Monitor	1 .		
	e.	Sampler Flow Rate Monitor	1		113
3.	NOR	TH STACK EFFLUENT MONITORING YSTEM			113
	a.	Noble Gas Activity Monitor	1		
	b.	Iodine Sampler	1		114
	с.	Particulate Sampler	1		112
	d.	Effluent System Flow Rate Monitor	1		112
	e.	Sampler Flow Rate Monitor		•	113
		A CONTRACT POINT OF	1	•	113

LIMERICK - UNIT 1

411

TABLE 3.3.7.12-1 (Continued)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

	INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABILITY	ACTION
4.	MAIN CONDENSER OFFGAS PRE-TREATMENT RADIOACTIVITY MONITOR			
	a. Noble Gas Activity Monitor	1	**	115
5.	HOT MAINTENANCE SHOP VENTILATION EXHAUST RADIATION MONITOR			115
	a. Iodine Sampler	1	***	112
	b. Particulate Sampler	1	***	112
	c. Effluent System Flow Rate Monitor	1	***	113
	d. Sampler Flow Rate Monitor	1	***	113

3/4 3-105

LIMERICK - UNIT 1

TABLE 3.3.7.12-1 (Continued) TABLE NOTATIONS

*At all times.

**During operation of the main condenser steam jet air ejector and offgas treatment system.

***During operation of the hot maintenance shop ventilation exhaust system.

ACTION STATEMENTS

ACTION 110 -

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, operation of main condenser offgas treatment system may continue for up to 30 days provided grab samples are collected at least once per 4 hours and analyzed within the following 4 hours.

- ACTION 111 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided grab samples are taken at least once per 8 hours and these samples are analyzed for gross activity within 24 hours.
- ACTION 112 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided samples are continuously collected with auxiliary sampling equipment as required
- ACTION 113 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided the flow rate is estimated at least once per 4 hours.
- ACTION 114 With the number of channels OFERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided grab samples are taken at least once per 8 hours and these samples are analyzed for gross activity within 24 hours and provided the mechanical vacuum pumps are not operated.
- ACTION 115 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, releases to the environment may continue for up to 72 hours provided that the North Stack Effluent Noble Gas Activity Monitor is OPERABLE; otherwise, be in at least HOT SHUTDOWN within 12 hours.

12 8 2 2 -

TABLE 4.3.7.12-1

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

- UNIT	INS	TRUMENT	CHANNEL	SOURCE	CHANNEL	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE IS REQUIRED
ч	1.	, MAIN CONDENSER OFFGAS TREATMENT SYSTEM EXPLOSIVE GAS MONITORING SYSTEM					
		a. Hydrogen Monitor	D	N. A.	Q(3)	H	
	2.	SOUTH STACK EFFLUENT MONITORING SYSTEM					
3/4		a. Noble Gas Activity Monitor	D	м	R(2)	Q(1)	
ŝ		b. Iodine Sampler	W (4)	N.A.	N. A.	N. A.	
107		c. Particulate Sampler	₩ (4)	N.A.	N.A.	N.A.	
		d. Effluent System Flow Rate Monitor	D	N.A.	R	0	
		e. Sampler Flow Rate Monitor	D	N.A.	R	0	
	3.	NORTH STACK EFFLUENT MONITORING SYSTEM					
		a. Noble Gas Activity Monitor	D	м	R(2)	Q(1)	
		b. Iodine : Apler	W (4)	N.A.	N. A.	N.A.	
		c. Particulate Sampler	W (4)	N.A.	N. A.	N. A.	
		d. Effluent System Flow Rate Monitor	D	N.A.	R	Q	
7		e. Sampler Flow Rate Monitor	0	N.A.	R	Q	

1. 11

LIMERICK

TABLE 4.3.7.12-1 (Continued)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

INST	TRUME	NT	CHANNEL	SOURCE	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE IS REQUIRED
4.	RAD	N CONDENSER OFFGAS PRE-TREATMEN IOACTIVITY MONITOR (STEAM JET EJECTOR)	т				
	8.	Noble Gas Activity Monitor	D	м	R(2)	Q(1)	**
5.		MAINTENANCE SHOP VENTILATION AUST RADIATION MONITOR					
	а.	Iodine Sampler	W(4)	N. A.	N. A.	N. A.	***
	b.	Particulate Sampler	W(4)	N.A.	N.A.	N. A.	***
	c.	Effluent System Flow Rate Monitor	D	N.A.	R	Q	***
	d.	Sampler Flow Rate Monitor	D	N. A.	R	Q	***

5

TABLE 4.3.7.12-1 (Continued)

TABLE NOTATIONS

* At all times.

- ** During operation of the main condenser steam jet air ejector and offgas treatment system.
- *** During operation of the hot maintenance shop ventilation exhaust system.
- (1) The CHANNEL SUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm/trip setpoint.
 - 2. Circuit failure.
 - Instrument indicates a downscale failure.
 - 4. Instrument controls not set in operate mode.
- (2) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Bureau of Standards (NBS) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NBS. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used.
- (3) The CHANNEL CALIBRATION shall include the use of standard gas samples containing a nominal:
 - 1. 0.0 volume percent hydrogen, balance nitrogen, and
 - 2. 4 volume percent hydrogen, balance nitrogen.
- (4) The iodine cartridges and particulate filters will be changed at least once per 7 days.

LIMERICK - UNIT 1

3/4 3-109

÷.,

INSTRUMENTATION

3/4.3.8 TURBINE OVERSPEED PROTECTION SYSTEM

.

LIMITING CONDITION FOR OPERATION

3.3.8 At least one turbine overspeed protection system shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2. ACTION:

- a. With one turbine control valve and/or one turbine stop valve per high pressure turbine steam lead inoperable and/or with one turbine combined intermediate valve per low pressure turbine steam lead inoperable, restore the inoperable valve(s) to OPERABLE status within 72 hours or close at least one valve in the affected steam lead(s) or isolate the turbine from the steam supply within the next 6 hours.
- b. With the above required turbine overspeed protection system otherwise inoperable, within 6 hours isolate the turbine from the steam supply.

SURVEILLANCE REQUIREMENTS

4.3.8.1 The provisions of Specification 4.0.4 are not applicable.

4.3.8.2 The above required turbine overspeed protection system shall be demonstrated OPERABLE:

a. At least once per 7 days by:

- -

A REAL PROPERTY AND

- Cycling each of the following valves through at least one complete cycle from the running-position:
 - a) For the overspeed protection control system;
 - 1) Six low pressure turbine intercept valves
 - b) For the electrical overspeed trip system and the mechanical overspeed trip system;
 - 1) Four high pressure turbine stop valves, and
 - Six low pressure turbine intermediate stop valves.

LIMERICK - UNIT 1

3/4 3-110

A.1 & 1565

INSTRUMENTATION

SURVEILLANCE REQUIREMENTS (Continued)

- b. At least once per 31 days by:
 - Cycling each of the following valves through at least one complete cycle from the running position:
 - a) For the overspeed protection control system;
 - 1) Four high pressure turbine control valves
 - b) For the electrical overspeed trip system and the mechanical overspeed trip system;
 - 1) Four high pressure turbing control valve
- c. At least once per 18 months by performance of a CHANNEL CALIBRATION of the turbine overspeed protection instrumentation.
- d. At least once per 40 months by disassembling at least one of each of the above valves and performing a visual and surface inspection of all valve seats, disks and stems and verifying no unacceptable flaws or excessive corrosion. If unacceptable flaws or excessive corrosion are found, all other valves of that type shall be inspected.

LIMERICK - UNIT 1

3/4 3-111

INSTRUMENTATION

3/4.3.9 FEEDWATER/MAIN TURBINE TRIP SYSTEM ACTUATION INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.9 The feedwater/main turbine trip system actuation instrumentation channels shown in Table 3.3.9-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.9-2.

APPLICABILITY: As shown in Table 3.3.9-1.

ACTION:

- a. With a feedwater/main turbine trip system actuation instrumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of Table 3.3.9-2, declare the channel inoperable and either place the inoperable channel in the tripped condition until the channel is restored to OPERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value, or declare the associated system inoperable.
- b. With the number of OPERABLE channels one less than required by the Minimum OPERABLE Channels requirement, restore the inoperable channel to OPERABLE status within 7 days or be in at least STARTUP within the next 6 hours.
- c. With the number of OPERABLE channels two less than required by the Minimum OPERABLE Channels requirement, restore at least one of the inoperable channels to OPERABLE status within 72 hours or be in at least STARTUP within the next 6 hours.

SURVEILLANCE REQUIREMENTS

4.3.9.1 Each feedwater/main turbine trip system actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST, and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.9.1-1.

4.3.9.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

LIMERICK - UNIT 1

3/4 3-112

TABLE 3.3.9-1

FEEDWATER/MAIN TURBINE TRIP SYSTEM ACTUATION INSTRUMENTATION

TRIP FUNCTION	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM	APPLICABLE OPERATIONAL CONDITIONS
 Reactor Vessel Water Level-High, Level 8 	4	1

LIMERICK - UNIT 1

3/4 3-113

AB	L 8.		Q .	• 2
		¥ .		-

FEEDWATER/MAIN TURBINE TRIP SYSTEM ACTUATION INSTRUMENTATION SETPOINTS

.

TRIP FUNCTION	TRIP SETPOINT	ALLOWABLE VALUE
 Reactor Vessel Water Level-High, Level 8 	≤ 54 inches*	≤ 55.5 inches

*See Bases Figure B 3/4.3-1

to share a second of second

TABLE 4.3.9.1-1

FEEDWATER/MAIN TURBINE TRIP SYSTEM ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TRI	P FUNCTION	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS FOR WHICH SURVEILLANCE REQUIRED
1.	Reactor Vessel Water Level-High, Level 8	D	м	R	1

LIMERICK - UNIT 1

A 17. 1

3/4 3-115

. 1

INTENTIONALLY LEFT BLANK

3872003733

3/4.4 REACTOR COOLANT SYSTEM

3/4.4.1 RECIRCULATION SYSTEM

RECIRCULATION LOOPS

LIMITING CONDITION FOR OPERATION

3.4.1.1 Two reactor coolant system recirculation loops shall be in operation with:

- a. Total core flow greater than or equal to 45% of rated core flow, or
- b. THERMAL POWER less than or equal to the limit specified in Figure 3.4.1.1-1.

APPLICABILITY: OPERATIONAL CONDITIONS 1* and 2*.

ACTION.

- a With one reactor coolant system recirculation loop not in operation, immediately initiate action to reduce THERMAL POWER to less than or equal to the limit specified in Figure 3.4.1.1-1 within 2 hours and initiate measures to place the unit in at least HOT SHUTDOWN within 12 hours.
- b. With no reactor coolant system recirculation loops in operation, immediately initiate action to reduce THERMAL POWER to less than or equal to the limit specified in Figure 3.4.1.1-1 within 2 hours and initiate measures to place the unit in at least STARTUP within 6 hours and in HOT SHUTDOWN within the next 6 hours.
- c. With two reactor coolant system recirculation loops in operation and total core flow less than 45% of rated core flow and THERMAL POWER oreater than the limit specified in Figure 3.4.1.1-1:
 - Determine the APRM and LPRM** noise levels (Surveillance 4.4.1.1.3):
 - a) At least once per 8 hours, and
 - b) Within 30 minutes after the completion of a THERMAL POWER increase of at least 5% of RATED THERMAL POWER.
 - 2. With the APRM or LPRM** neutron flux noise levels greater than three times their established baseline noise levels, immediately initiate corrective action to restore the noise levels to within the required limits within 2 hours by increasing core flow to greater than 45% of rated core flow or by reducing THERMAL POWER to less than or equal to the limit specified in Figure 3.4.1.1-1.

*See Special Test Exception 3.10.4.

LIMERICK - UNIT 1

^{**}Detector levels A and C of one LPRM string per core octant plus detectors A and C of one LPRM string in the center of the core should be monitored.

3972003733

REACTOR COOLANT SYSTEM

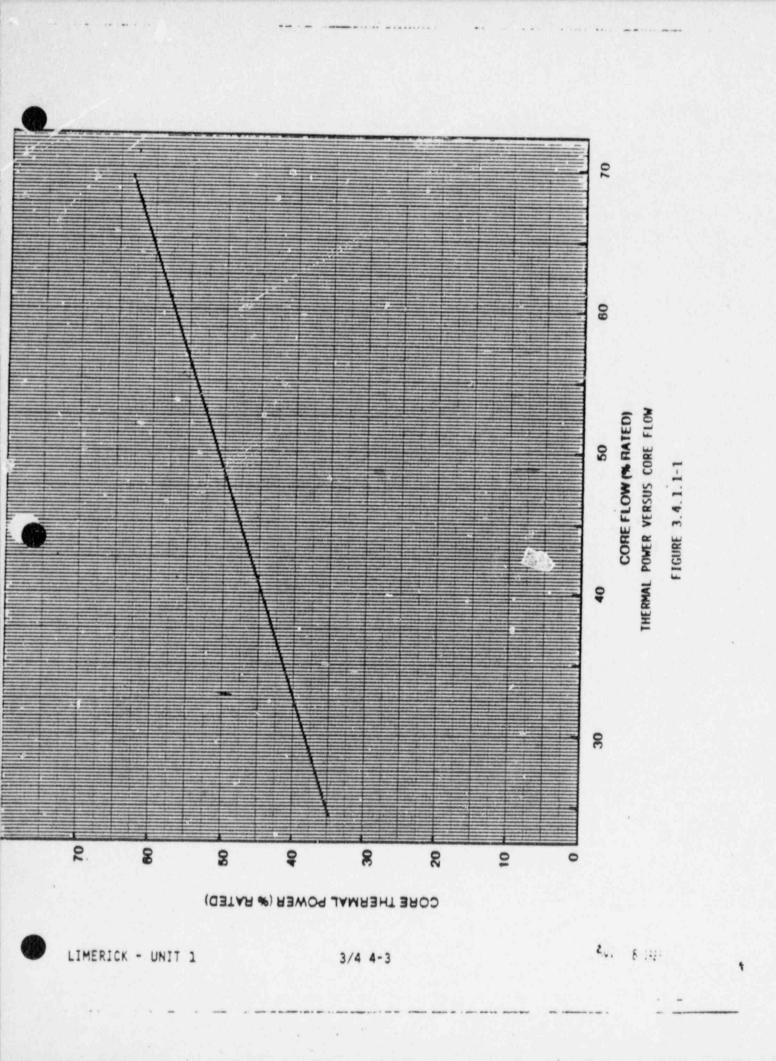
SURVEILLANCE REQUIREMENTS

4.4.1.1.1 Each pump discharge valve shall be demonstrated OPERABLE by cycling each valve through at least one complete cycle of full travel during each startup* prior to THERMAL POWER exceeding 25% of RATED THERMAL POWER.

4.4.1.1.2 Each pump MG set scoop tube mechanical and electrical stop shall be demonstrated OPERABLE with overspeed setpoints less than or equal to 109% and 107%, respectively, of rated core flow, at least once per 18 months.

4.4.1.1.3 Establish a baseline APRM and LPRM** neutron flux noise value within the regions for which monitoring is required (Specification 3.4.1.1, ACTION c) within 2 hours of entering the region for which monitoring is required unless baselining has previously been performed in the region since the last refueling outage.

*If not performed within the previous 31 days.


**Detector levels A and C of one LPRM string per core octant plus detectors A and C of one LPRM string in the center of the core should be monitored.

LIMERICK - UNI: 1

3/4 4-2

FEB 1 7 1987

Amenament No. 3

JET PUMPS

LIMITING CONDITION FOR OPERATION

3.4.1.2 All jet pumps shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

With one or more jet pumps inoperable, be in at least HOT SHUTDOWN within 12 hours.

SURVEILLANCE REQUIREMENTS

4.4.1.2 Each of the above required jet pumps shall be demonstrated OPERABLE prior to THERMAL POWER exceeding 25% of RATED THERMAL POWER and at least once per 24 hours* by determining recirculation loop flow, total core flow and diffuser-to-lower plenum differential pressure for each jet pump and verifying that no two of the following conditions occur when the recirculation pumps are operating at the same speed.

- a. The indicated recirculation loop flow differs by more than 10% from the established pump speed-loop flow characteristics.
- b. The indicated total core flow differs by more than 10% from the established total core flow value derived from recirculation loop flow measurements.
- c. The indicated diffuser-to-lower plenum differential pressure of any individual jet pump differs from the established patterns by more than 10%.

LIMERICK - UNIT 1

^{*}During the startup test program, data shall be recorded for the parameters listed to provide a basis for establishing the specified relationships. Comparisons of the actual data in accordance with the criteria listed shall commence upon the conclusion of the startup test program.

RECIRCULATION PUMPS

LIMITING CONDITION FOR OPERATION

3.4.1.3 Recirculation pump speed shall be maintained within:

a. 5% of each other with core flow greater than or equal to 70% of rated core flow.

b. 10% of each other with core flow less than 70% of rated core flow <u>APPLICABILITY</u>: OPERATIONAL CONDITIONS 1* and 2*.

ACTION:

With the recirculation pump speeds different by more than the specified limits, either:

- a. Restore the recirculation pump speeds to within the specified limit within 2 hours, or
- b. Declare the recirculation loop of the pump with the slower speed not in operation and take the ACTION required by Specification 3.4.1.1.

SURVEILLANCE REQUIREMENTS

4.4.1.3 Recirculation pump speed shall be verified to be within the limits at least once per 24 hours.

*See Special Test Exception 3.10.4.

- -----

IDLE RECIRCULATION LOOP STARTUP

LIMITING CONDITION FOR OPERATION

3.4.1.4 An idle recirculation loop shall not be started unless the temperature differential between the reactor pressure vessel steam space coolant and the bottom head drain line coolant is less than or equal to 145°F, and:

- a. When both loops have been idle, unless the temperature differential between the reactor coolant within the idle loop to be started up as the coolant in the reactor pressure vessel is less than or equal to 50°F, or
- b. When only one loop has been idle, unless the temperature differential between the reactor coolant within the idle and operating recirculation loops is less than or equal to 50°F and the operating loop flow rate is less than or equal to 50% of rated loop flow.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, and 4:

ACTION:

With temperature differences and/or flow rates exceeding the above limits, suspend startup of any idle recirculation loop.

SURVEILLANCE REQUIREMENTS

4.4.1.4 The temperature differentials and flow rate shall be determined to be within the limits within 15 minutes prior to startup of an idle recirculation loop.

3/4.4.2 SAFETY/RELIEF VALVES

LIMITING CONDITION FOR OPERATION

3.4.2 The safety valve function of at least 11 of the following reactor coolant system safety/relief valves shall be OPERABLE with the specified code safety valve function lift settings: *#

- 4 safety/relief valves @ 1130 psig +1%
 5 safety/relief valves @ 1140 psig +1%
 5 safety/relief valves @ 1150 psig +1%

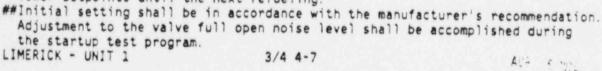
- APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- With the safety valve function of one or more of the above required a. safety/relief valves inoperable, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- With one or more safety/relief valves stuck open, provided that suppresb. sion pool average water temperature is less than 105°F, close the stuck open safety/relief valve(s); if unable to close the stuck open valve(s) within 2 minutes or if suppression pool average water temperature is 110°F or greater, place the reactor mode switch in the Shutdown position.
- With one or more safety/relief valve acoustic monitors inoperable, с. restore the inoperable acoustic monitors to OPERABLE status within 7 days or be in Ft least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.4.2.1 The acoustic monitor for each safety/relief valve shall be demonstrated OPERABLE with the setpoint verified to be 0.20 of the full open noise level ## by performance of a:


- CHANNEL FUNCTIONAL TEST at least once per 31 days, and a a .
- CHANNEL CALIBRATION at least once per 18 months**. b.

4.4.2.2 At least 1/2 of the safety relief valves shall be removed, set pressure tested and reinstalled or replaced with spares that have been previously set pressure tested and stored in accordance with manufacturer's recommendations at least once per 18 months, and they shall be rotated such that all 14 safety relief valves are removed, set pressure tested and reinstalled or replaced with spares that have been previously set pressure tested and stored in accordance with manufacturer's recommendations tested at least once per 40 months.

*The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures.

**The provisions of Specification 4.0.4 are not applicable provided the Surveillance is performed within 12 hours after reactor steam pressure is adequate to perform the test.

#Up to 2 inoperable valves may be replaced with spare OPERABLE valves with lower setpoints until the next refueling.

4

3/4 4-7

3/4.4.3 REACTOR COOLANT SYSTEM LEAKAGE

LEAKAGE DETECTION SYSTEMS

LIMITING CONDITION FOR OPERATION

3.4.3.1 The following reactor coolant system leakage detection systems shall be OPERABLE:

- a. The primary containment atmosphere gaseous radioactivity monitoring system,
- The drywell floor drain sump and drywell equipment drain tank flow monitoring system,
- c. The drywell unit coolers condensate flow rate monitoring system, and
- d. The primary containment pressure and temperature monitoring system.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.*

ACTION:

With only three of the above required leakage detection systems OPERABLE, operation may continue for up to 30 days provided grab samples of the containment atmosphere are obtained and analyzed at least once per 24 hours when the required gaseous radioactive monitoring system, primary containment pressure and temperature monitoring system and/or the drywell unit coolers condensate flow rate monitoring system is inoperable; otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.4.3.1 The reactor coolant system leakage detection systems shall be demonstrated OPERABLE by:

- a. Primary containment atmosphere gaseous radioactivity monitoring systems-performance of a CHANNEL CHECK at least once per 12 hours, a CHANNEL FUNCTIONAL TEST at least once per 31 days and a CHANNEL CALIBRATION at least once per 18 months.
- b. The primary containment pressure shall be monitored at least once per 12 hours and the primary containment temperature shall be monitored at least once per 24 hours.
- c. Drywell floor drain sump and Drywell equipment drain tank flow monitoring system-performance of a CHANNEL FUNCTIONAL TEST at least once per 31 days and a CHANNEL CALIBRATION TEST at least once per 18 months.
- d. Divwell unit coolers condensate flow rate monitoring systemperformance of a CHANNEL FUNCTIONAL TEST at least once per 31 days and a CHANNEL CALIBRATION at least once per 18 months.

*The primary containment atmosphere gaseous radioactivity monitor is not required to be OPERABLE until OPERATIONAL CONDITION 2.

LIMERICK - UNIT 1

OPERATIONAL LEAKAGE

LIMITING CONDITION FOR OPERATION

were a supported with a second to the support

3.4.3.2 Reactor coc'ant system leakage shall be limited to:

- a. NO PRESSURE BOUNDARY LEAKAGE.
- b. 5 gum UNIDENTIFIED LEAKAGE.
- c. 30 gpm total leakage.
- d. 25 gpm total leakage averaged over any 24-hour period.
- e. 1 gpm leakage at a reactor coolant system pressure of 950 ±10 psig from any reactor coolant system pressure isolation valve specified in Table 3.4.3.2-1.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3. ACTION:

- a. With any PRESSURE BOUNDARY LEAKAGE, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- b. With any reactor coolant system leakage greater than the limits in b, C and/or d, above, reduce the leakage rate to within the limits within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- c. With any reactor coolant system pressure isolation valve leakage greater than the above limit, isolate the high pressure portion of the affected system from the low pressure portion within 4 hours by use of at least one other closed manual, deactivated automatic, or check* valves, or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- d. With one or more of the high/low pressure interface valve leakage pressure monitors shown in Table 3.4.3.2-1 inoperable, restore the inoperable monitor(s) to OPERABLE status within 7 days or verify the pressure to be less than the alarm setpoint at least once per 12 hours; restore the inoperable monitor(s) to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

*Which have been verified not to exceed the allowable leakage limit at the last refueling outage or after the last time the valve was disturbed, whichever is more recent.

LIMERICK - UNIT 1

3/4 4-9

F. 6 13.

SURVEILLANCE REQUIREMENTS

4.4.3.2.1 The reactor coolant system leakage shall be demonstrated to be within each of the above limits by:

- a. Monitoring the primary containment atmospheric gaseous radioactivity at least once per 12 hours (not a means of quantifying leakage),
- b. Monitoring the drywell floor drain sump and drywell equipment drain tank flow rate at least once per 12 hours,
- c. Monitoring the drywell unit coolers condensate flow rate at least once per 12 hours,
- d. Monitoring the primary containment pressure at least once per 12 hours (not a means of quantifying leakage),
- e. Monitoring the reactor vessel head flange leak detection system at least once per 24 hours, and
- Monitoring the primary containment temperature at least once per 24 hours (not a means of quantifying leakage).

4.4.3.2.2 Each reactor coolant system pressure isolation valve specified in Table 3.4.3.2-1 shall be demonstrated OPERABLE by leak testing pursuant to Specification 4.0.5 and verifying the leakage of each valve to be within the specified limit:

- a. At least once per 18 months, and
- b. Prior to returning the valve to service following maintenance, repair or replacement work on the valve which could affect its leakage rate.

The provisions of Specification 4.0.4 are not applicable for entry into OPERATIONAL CONDITION 3.

4.4.3.2.3 The high/low pressure interface valve leakage pressure monitors shall be demonstrated OPERABLE with alarm setpoints set less than the allowable values in Table 3.4.3.2-1 by performance of a:

a. CHANNEL FUNCTIONAL TEST at least once per 31 days, and

b. CHANNEL CALIBRATION at least once per 18 months.

LIMERICK - UNIT 1

3/4 4-10

222 8 185

And a first state

TABLE 3.4.3.2-1

2		REACTOR COOL	ANT SYSTEM PRES	SURE ISOLATION V	ALVES
111177 1	1ST ISOLATION VALVE(S) NUMBER(S)	2ND ISOLATION VALVE(S) NUMBER(S)	ALARM SETPOINT (psig)	ALARM ALLOWABLE VALUE (psig)	SERVICE
	HV-52-2F006A HV-52-2F039A	HV-52-1F005	≤ 475	<u><</u> 495	'A' Core Spray Injection
	HV-52-4F0068 HV-52-2F0398	HV-52-408	<u><</u> 475	<u>< 495</u> .	'B' Core Spray/HPCI Injection
	HV-51-27041A HV-51-242A	Z HV-51-2F017A	<u><</u> 400	≤ 420	'A' LPCI Injection
	HV-51-1428	Z HV-51-ÁF017B	<u><</u> 400	<u>≤</u> 420	'B' LPCI Injection
	Z ^Z HV-51-AF041C HV-51-142C	Z HV-51-2F017C	<u><</u> 400	<u>≤</u> 420	'C' LPCI Injection
	² 2 HV-51-1F041D HV-51-142D	Z. HV-51-XF017D	<u><</u> 400	<u>< 420</u>	'D' LPCI Injection
	HV-51-1F022	HV-51-1F023	<u>< 400</u>	<u>e 420</u>	Head Spray -
	HV-51-AF050A HV-51-A51A 22	HV-51-&F015A	<u><</u> 400	≤ 420	'A' Shutdown Cooling Return to 'A' Recirc Loop
	HV-51-4F050B HV-51-451B	2 HV-51-AF0158	<u>≺</u> 400	<u>≤</u> 420	'B' Shutdown Cooling
	Z HV-51-AF009 Z	2 HV-51-2F008	≤ 125	≤ 145	Return to 'B' Recirc Loop Shutdown Cooling Supply From 'B' Recirc Loop

LIMERICK - UNIT 1

3/4 4-11

2.

S 19.5

3/4.4.4 CHEMISTRY

LIMITING CONDITION FOR OPERATION

3.4.4 The chemistry of the reactor coolant system shall be maintained within the limits specified in Table 3.4.4-1.

APPLICABILITY: At all times.

ACTION:

- a. IN OPERATIONAL CONDITION 1:
 - With the conductivity, chloride concentration or pH exceeding the limit specified in Table 3.4.4-1 for less than 72 hours during one continuous time interval and, for conductivity and chloride concentration, for less than 336 hours per year, but with the conductivity less than 10 µmho/cm at 25°C and with the chloride concentration less than 0.5 ppm, this need not be reported to the Commission and the provisions of Specification 3.0.4 are not applicable.
 - 2. With the conductivity, chloride concentration or pH exceeding the limit specified in Taple 3.4.4-1 for more than 72 hours during one continuous time interval or with the conductivity and chloride concentration exceeding the limit specified in Table 3.4.4-1 for more than 336 hours per year, be in at least STARTUP within the next 6 hours.
 - 3. With the conductivity exceeding 10 µmho/cm at 25°C or chloride concentration exceeding 0.5 ppm, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- b. In OPERATIONAL CONDITION 2 and 3 with the conductivity, chloride concentration or pH exceeding the limit specified in Table 3.4.4-1 for more than 48 hours during one continuous time interval, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- c. At all other times:
 - 1. With the:
 - a) Conductivity or pH exceeding the limit specified in Table 3.4.4-1, restore the conductivity and pH to within the limit within 72 hours, or
 - b) Chloride concentration exceeding the limit specified in Table 3.4.4-1, restore the chloride concentration to within the limit within 24 hours, or

perform an engineering evaluation to determine the effects of the out-of-limit condition on the structural integrity of the reactor coolant system. Determine that the structural integrity of the reactor coolant system remains acceptable for continued operation prior to proceeding to OPERATIONAL CONDITION 3.

Act C ...

٩

2. The provisions of Specification 3.0.3 are not applicable.

LIMERICK - UNIT 1

SURVEILLANCE REQUIREMENTS

4.4.4 The reactor coolant shall be determined to be within the specified chemistry limit by:

- a. Measurement prior to pressurizing the reactor during each startup, if not performed within the previous 72 hours.
- b. Analyzing a sample of the reactor coolant for:
 - 1. Chlorides at least once per:
 - a) 72 hours, and
 - b) 8 hours whenever conductivity is greater than the limit in Table 3.4.4-1.
 - 2. Conductivity at least once per 72 hours.
 - 3. pH at least once per:
 - a) 72 hours, and
 - b) 8 hours whenever conductivity is greater than the limit in Table 3.4.4-1.
- c. Continuously recording the conductivity of the reactor coolant, or, when the continuous recording conductivity monitor is inoperable for up to 31 days, obtaining an in-line conductivity measurement at least once per:

1. 4 hours in OPERATIONAL CONDITIONS 1, 2, and 3, and

2. 24 hours at all other times.

d. Performance of a CHANNEL CHECK of the continuous conductivity monitor with an in-line flow cell at least once per:

1. 7 days, and

 24 hours whenever conductivity is greater than the limit in in Table 3.4.4-1.

LIMERICK - UNIT 1

3/4 4-13

LIMERICK			<u>E 3.4.4-1</u> • COOLANT SYSTEM	
K - UNIT			TRY LIMITS	
1 1	OPERATIONAL CONDITION	CHLORIDES	CONDUCTIVITY (umhos/cm @25°C)	pH .
	1	< 0.2 ppm	<u>≤</u> 1.0	5.6 ≤ pH ≤ 8.6
	2 and 3	≤ 0.1 ppm	≤ 2.0	5.6 < pN < 8.6
	At all other times	<u>≤</u> 0.5 ppm	≤ 10.0	5.3 ≤ pH ≤ 8.6

1. 1.

3/4.4.5 SPECIFIC ACTIVITY

LIMITING CONDITION FOR OPERATION

3.4.5 The specific activity of the primary coolant shall be limited to:

- Less than or equal to 0.2 microcurie per gram DOSE EQUIVALENT I-131, and
- b. Less than or equal to 100/E microcuries per gram.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, and 4.

ACTION:

- In OPERATIONAL CONDITION 1, 2, or 3 with the specific activity of the primary coolant;
 - 1. Greater than 0.2 microcurie per gram DOSE EQUIVALENT I-131 but less than or equal to 4 microcuries per gram, operation may continue for up to 48 hours provided that the cumulative operating time under these circumstances does not exceed 800 hours in any consecutive 12-month period. With the total cumulative operating time at a primary coolant specific activity greater than 0.2 microcurie per gram DOSE EQUIVALENT I-131 exceeding 500 hours in any consecutive 6-month period, prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within 30 days indicating the number of hours of operation above this limit. The provisions of Specification 3.0.4 are not applicable.
 - 2. Greater than 0.2 microcurie per gram DOSE EQUIVALENT I-131 for more than 48 hours during one continuous time interval or for more than 800 hours cumulative operating time in a consecutive 12-month period, or greater than 4 microcuries per gram, be in at least HOT SHUTDOWN with the main steam line isolation valves closed within 12 hours.
 - Greater than 100/E microcuries per gram, be in at least HOT SHUTDOWN with the main steamline isolation valves closed within 12 hours.
- b. In OPERATIONAL CONDITION 1, 2, 3, or 4, with the specific activity of the primary coolant greater than 0.2 microcurie per gram DOSE EQUIVALENT I-131 or greater than 100/E microcuries per gram, perform the sampling and analysis requirements of Item 4.a) of Table 4.4.5-1 until the specific activity of the primary coolant is restored to within its limit. A Special Report shall be prepared and submitted to the Commission pursuant to Specification 6.9.2 within 30 days. This report shall contain the results of the specific activity analyses and the time duration when the specific activity of the coolant exceeded 0.2 microcurie per gram DOSE EQUIVALENT I-131 together with the following additional information.

LIMERICK - UNIT 1

3/4 4-15

Alle

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

- c. In OPERATIONAL CONDITION 1 or 2, with:
 - THERMAL POWER changed by more than 15% of RATED THERMAL POWER in 1 hour*, or
 - The off-gas level, at the SJAE, increased by more than 10,000 microcuries per second in 1 hour during steady-state operation at release rates less than 75,000 microcuries per second, or
 - The off-gas level, at the SJAE, increased by more than 15% in 1 hour during steady-state operation at release rates greater than 75,000 microcuries per second.

perform the sampling and analysis requirements of Item 4.b) of Table 4.4.5-1 until the specific activity of the primary coolant is restored to within its limit. Prepare and submit to the Commission a Special Report pursuant to Specification 6.9.2 at least once per 92 days containing the results of the specific activity analysis together with the below additional information for each occurrence.

Additional Information

- 1. Reactor power history starting 48 hours prior to:
 - a) The first sample in which the limit was exceeded, and/or
 - b) The THERMAL POWER or off-gas level change.
- 2. Fuel burnup by core region.
- 3. Clean-up flow history starting 48 hours prior to:
 - a) The first sample in which the limit was exceeded, and/or
 - b) The THERMAL POWER or off-gas level change.
- 4. Off-gas level starting 48 hours prior to:
 - a) The first sample in which the limit was exceeded, and/or
 - b) The THERMAL POWER or off-gas level change.

SURVEILLANCE REQUIREMENTS

4.4.5 The specific activity of the reactor coblant shall be demonstrated to be within the limits by performance of the sampling and analysis program of Table 4.4.5-1.

*Not applicable during the startup test program.

LIMERICK - UNIT 1

3/4 4-16

AN 8 115

TABLE 4.4.5-1

PRIMARY COOLANT SPECIFIC ACTIVITY SAMPLE AND ANALYSIS PROGRAM

L TINU		E OF MEASUREMENT ND ANALYSIS	SAMPLE AND ANALYSIS FREQUENCY OPERATIONAL CONDITIONS IN WHICH SAMPLE AND ANALYSIS IS REQUIRED
	1.	Gross Beta and Gamma Activity Determination	At least once per 72 hours 1, 2, 3
	2.	Isotopic Analysis for DOSE EQUIVALENT I-1 131 Concentration	At least once per 31 days 1
	3.	Radiochemical for E Determination	At least once per 6 months* 1
3/4 4-17	4.	Isotopic Analy,is for Iodine	a) At least once per 4 hours, 1**, 2**, 3**, 4** whenever the specific activity exceeds a limit, as required by ACTION b.
			 b) At least one sample, between 1, 2 2 and 6 hours following the change in THERMAL POWER or off-gas level, as required by ACTION c.
	5.	Isotopic Analysis of an Off- gas Sample Including Quantitative Measurements for at least Xe-133, Xe-135, and Kr-88	At least once per 31 days 1

*Sample to be taken after a minimum of 2 EFPD and 20 days of POWER OPERATION have elapsed since reactor was last subcritical for 48 hours or longer.

**Until the specific activity of the primary coolant system is restored to within its limits.

....

in

Sector States and

LIMERICK . UNIT

3/4.4.6 PRESSURE/TEMPERATURE LIMITS

REACTOR COOLANT SYSTEM

LIMITING CONDITION FOR OPERATION

3.4.6.1 The reactor coolant system temperature and pressure shall be limited in accordance with the limit lines shown on Figure 3.4.6.1-1 (1) curves A and A' for hydrostatic or leak testing; (2) curves B and B' for heatup by non-nuclear means, cooldown following a nuclear shutdown and low power PHYSICS TESTS; and (3) curves C and C' for operations with a critical core other than low power PHYSICS TESTS, with:

- a. A maximum heatup of 100°F in any 1-hour period,
- b. A maximum cooldown of 100°F in any 1-hour period,
- c. A maximum temperature change of less than or equal to 20°F in any 1-hour period during inservice hydrostatic and leak testing operations above the heatup and cooldown limit curves, and
- d. The reactor vessel flange and head flange temperature greater than or equal to 80^{9} F when reactor vessel head bolting studs are under tension. 70

APPLICABILITY: At all times.

ACTION:

With any of the above limits exceeded, restore the temperature and/or pressure to within the limits within 30 minutes; perform an engineering evaluation to determine the effects of the out-of-limit condition on the structural integrity of the reactor coolant system; determine that the reactor coolant system remains acceptable for continued operations or be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

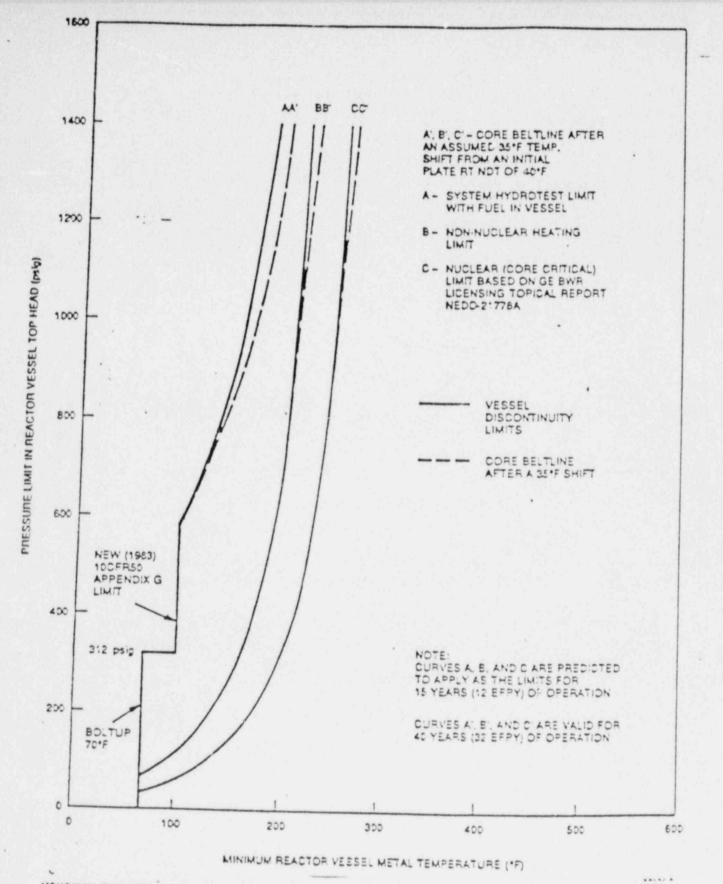
4.4.6.1.1 During system heatup, cooldown and inservice leak and hydrostatic testing operations, the reactor coolant system temperature and pressure shall be determined to be within the above required heatup and cooldown limits and to the right of the limit lines of Figure 3.4.6.1-1 curves A and A', B and B', or C and C' as applicable, at least once per 30 minutes.

LIMERICK - UNIT 1

3/4 4-18

SURVEILLANCE REQUIREMENTS (Continued)

4.4.6.1.2 The reactor coolant system temperature and pressure shall be determined to be to the right of the criticality limit line of Figure 3.4.6.1-1 curves C and C' within 15 minutes prior to the withdrawal of control rods to bring the reactor to criticality and at least once per 30 minutes during system heatup.


4.4.6.1.3 The reactor vessel material surveillance specimens shall be removed and examined, to determine changes in reactor pressure vessel material properties, as required by 10 CFR Part 50, Appendix H in accordance with the schedule in Table 4.4.6.1.3-1. The results of these examinations shall be used to update the curves of Figure 3.4.6.1-1.

4.4.6.1.4 The reactor flux wire specimens shall be removed at the first refueling outage and examined to determine reactor pressure vessel fluence as a function of time and power level and used to modify Figure B 3/4 4.6-1. The results of these fluence determinations in conjunction with Figure B 3/4 4.6-2, shall be used to adjust the curves of Figure 3.4.6.1-1, as required.

4.4.6.1.5 The reactor vessel flange and head flange temperature shall be verified to be greater than or equal to 60° F:

- a. In OPERATIONAL CONDITION 4 when reactor coolant system temperature is:
 - ≤ 100°F, at least once per 12 hours.
 - 2. < 90°F, at least once per 30 minutes.
- b. Within 30 minutes prior to and at least once per 30 minutes during tensioning of the reactor vessel head bolting studs.

LIMERICK - UNIT 1

MINIMUM REACTOR PRESSURE VESSEL METAL TEMPERATURE VS. REACTOR VESSEL PRESSURE

FIGURE 3.4.6.1-1

LIMERICK - UNIT 1

3/4 4-20

AUE 8 1923

	TADLE		•
	INDLC	4.4.6.1.3-1	
	REACTOR VESSEL MATERIAL SURVE	ILLANCE PROGRAM-WITHDRAWAL SCI	HEDULE
CAPSULE NUMBER	VESSEL	LEAD FACTOR*	WITHDRAWAL TIME (EFPY)
H7C 4944 6004 /3/0	277176003 300	1.20	10
117C 4944 6001 / 3/C	7717 GOOZ 1200	1.20	30
1176 4944 GOOL / 3! C	7717 6001 3000	1.20	Spare

× ×

+

3/4 4-21

. .

5 1985

*At 1/4 T.

-

REACTOR STEAM DOME

LIMITING CONDITION FOR OPERATION

3.4.6.2 The pressure in the reactor steam dome shall be less than 1020 psig.

APPLICABILITY: OPERATIONAL CONDITIONS 1* and 2*.

ACTION:

With the reactor steam dome pressure exceeding 1020 psig, reduce the pressure to less than 1020 psig within 15 minutes or be in at least HOT SHUTDOWN within 12 hours.

SURVEILLANCE REQUIREMENTS

4.4.6.2 The reactor steam dome pressure shall be verified to be less than 1020 psig at least once per 12 hours.

*Not applicable during anticipated transients.

LIMERICK - UNIT 1

3/4 4-22

AND THE COMPANY AND ADDRESS OF THE

41.1 8 1505

3/4.4.7 MAIN STEAM LINE ISOLATION VALVES

LIMITING CONDITION FOR OPERATION

3.4.7 Two main steam line isolation valves (MSIVs) per main steam line shall be OPERABLE with closing times greater than or equal to 3 and less than or equal to 5 seconds.

- APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one or more MSIVs inoperable:
 - Maintain at least one MSIV OPERABLE in each affected main steam line that is open and within 8 hours, either:
 - a) Restore the inoperable valve(s) to OPERABLE status, or
 - Isolate the affected main steam line by use of a deactivated MSIV in the closed position.
 - Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.4.7 Each of the above required MSIVs shall be demonstrated OPERABLE by verifying full closure between 3 and 5 seconds when tested pursuant to Specification 4.0.5.

9

LIMERICK - UNIT 1

3/4 4-23

3/4.4.8 STRUCTURAL INTEGRITY

LIMITING CONDITION FOR OPERATION

3.4.8 The structural integrity of ASME Code Class 1, 2, and 3 components shall be maintained in accordance with Specification 4.4.8.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, 4, and 5.

ACTION:

- a. With the structural integrity of any ASME Code Class 1 component(s) not conforming to the above requirements, restore the structural integrity of the affected component(s) to within its limit or isolate the affected component(s) prior to increasing the reactor coolant system temperature more than 50°F above the minimum temperature required by NDT considerations.
- b. With the structural integrity of any ASME Code Class 2 component(s) not conforming to the above requirements, restore the structural integrity of the affected component(s) to within its limit or isolate the affected component(s) prior to increasing the reactor coolant system temperature above 200°F.
- c. With the structural integrity of any ASME Code Class 3 component(s) not conforming to the above requirements, restore the structural integrity of the affected component(s) to within its limit or isolate the affected component(s) from service.
- d. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.4.8 No requirements other than Specification 4.0.5.

LIMERICK - UNIT 1

REACTOR COOLANT SYSTEM

3/4.4.9 RESIDUAL HEAT REMOVAL

HOT SHUTDOWN

LIMITING CONDITION FOR OPERATION

3.4.9.1 Two* shutdown cooling mode loops of the residual heat removal (RHR) system shall be OPERABL² and, unless at least one recirculation pump is in operation, at least one shutdown cooling mode loop shall be in operation** *** with each loop consisting of at least:

- a. One OPERABLE RHR pump, and
- b. One OPERABLE RHR heat exchanger.

APPLICABILITY: OPERATIONAL CONDITION 3, with reactor vessel pressure less than the RHR cut-in permissive setpoint.

ACTION:

- a. With less than the above required RHR shutuown cooling mode loops OPERABLE, immediately initiate corrective action to return the required loops to OPERABLE status as soon as possible. Within 1 hour and at least once per 24 hours thereafter, demonstrate the operability of at least one alternate method rapable of decay heat removal for each inoperable RHR shutdown cooling mode loop. Be in at least COLD SHUTDOWN within 24 hours.****
- b. With no RHR shutdown cooling mode loop in operation, immediately initiate corrective action to return at least one loop to operation as soon as possible. Within 1 hour establish reactor coolant circulation by an alternate method and monitor reactor coolant temperature and pressure at least once per hour.

SURVEILLANCE REQUIREMENTS

4.4.9.1 At least one shutdown cooling mode loop of the residual heat removal system or alternate method shall be determined to be in operation and circulating reactor coolant at least once per 12 hours.

*One RHR shutdown cooling mode loop may be inoperable for up to 2 hours for surveillance testing provided the other loop is OPERABLE and in operation.

**The shutdown cooling pump may be removed from operation for up to 2 hours per 8-hour period provided the other loop is OPERABLE.

***The RHR shutdown cooling mode loop may be removed from operation during hydrostatic testing.

****Whenever two or more RHR subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

LIMERICK - UNIT 1

3/4 4-25

£ 8 1985

REACTUR COOLANT SYSTEM

COLD SHUTDOWN

LIMITING CONDITION FOR OPERATION

3.4.9.2 Two* shutdown cooling mode loops of the residual heat removal (RHR) system shall be OPERABLE and, unless at least one recirculation pump is in operation, at least one shutdown cooling mode loop shall be in operation** *** with each loop consisting of at least:

- a. One OPERABLE RHR pump, and
- b. One OPERABLE RHR heat exchanger.

APPLICABILITY: OPERATIONAL CONDITION 4.

ACTION:

- a. With less than the above required RHR shutdown cooling mode loops OPERABLE, within 1 hour and at least once per 24 hours thereafter, demonstrate the operability of at least one alternate method capable of Gacay heat removal for each inoperable RHR shutdown cooling mode loop.
- b. With no RHR shutdown cooling mode loop in operation, within 1 hour establish reactor coolant circulation by an alternate method and monitor reactor coolant temperature and pressure at least once per hour.

SURVEILLANCE REQUIREMENTS

4.4.9.2 At least one shutdown cooling mode loop of the residual heat removal system or alternate method shall be determined to be in operation and circulating reactor regized at least once per 12 hours.

- "One RHR shutdown cooling mode loop may be inoperable for up to 2 hours for surveillance testing provided the other loop is OPERABLE and in operation.
- **The shutdown cooling pump may be removed from operation for up to 2 hours per 8-hour period provided the other 'sop is OPERABLE.
- ***The shutdown cooling mode loop may be removed from operation during hydrostatic testing.

LIMERICK - UNIT 1

3/4 4-26

C.A. 5 MM

3/4.5.1 ECCS - OPERATING

LIMITING CONDITION FOR OPERATION

- 3.5.1 The emergency core cooling systems shall be OPERABLE with:
 - a. The core spray system (CSS) consisting of two subsystems with each subsystem comprised of:
 - 1. Two OPERABLE CSS pump(s), and
 - An OPERABLE flow path capable of taking suction from the suppression chamber and transferring the water through the spray sparger to the reactor vessel.
 - b. The low pressure coolant injection (LPCI) system of the recidual heat removal system consisting of four subsystems with each subsystem comprised of:
 - 1. One OPERABLE LPCI pump, and
 - 2 An OPERABLE flow path capable of taking suction from the suppression chamber and transferring the water to the reactor vessel.
 - c. The high pressure coolant injection (HPCI) system consisting of:
 - 1. One OPERABLE HPCI pump, and
 - An OPERABLE flow path capable of taking suction from the suppression chamber and transferring the water to the reactor vessel.
 - d. The automatic depressurization system (ADS) with at least five OPERABLE ADS valves.

APPLICABILITY: OPERATIONAL CONDITION 1, 2* ** #, and 3* ** ##.

*The HPCI system is not required to be OPERABLE when reactor steam dome pressure is less than or equal to 200 psig.

**The ADS is not required to be OPERABLE when reactor steam dome pressure is less than or equal to 100 psig.

#See Special Test Exception 3.10.6.

##Two LPCI subsystems of the RHR system may be inoperable in that they are aligned in the shutdown cooling mode when reactor vessel pressure is less than the RHR Shutdown cooling permissive setpoint.

LIMERICK - UNIT 1

3/4 5-1

A. 8 1985

LIMITING CONDIT.	ION FOR OPERATION	(Continued)
	State of the second sec	(sentended)

ACTION:

- a. For the core spray system:
 - With one CSS subsystem inoperable, provided that at least two LPCI subsystems are CPERABLE, restore the inoperable CSS subsystem to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - With both CSS subsystems inoperable, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- b. For the LPCI system:
 - With one LPCI subsystem inoperable, provided that at least one CSS subsystem is OPERABLE, restore the inoperable LPCI pump to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

X

X

2.1 1 11

- 2. With one RHR cross-tie valve (EV-51-Z82 A or B) open, or power not removed from one closed RHR cross-tie valve operator, close the open valve and/or remove power from the closed valves operator within 72 hours, or be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- 3. With no RHR cross-tie valves (HV-51-282 A, B) closed, or power not removed from both closed RHR cross-tie valve operators, or with one RHR cross-tie valve open and power not removed from the other RHR cross-tie valve operator, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- 4. With two LPCI subsystems inoperable, provided that at least one CSS subsystem is OPERABLE, restore at least three LPCI subsystems to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- 5. With three LPCI subsystems inoperable, provided that both CSS subsystems are OPERABLE, restore at least two LPCI subsystems to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- 6. With all four LPCI subsystems inoperable, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.*
- c. For the HPCI system, provided the CSS, the LPCI system, the ADS and the RCIC system are OPERABLE:
 - With the HPCI system inoperable, restore the HPCI system to OPERABLE status within 14 days or be in at least HOT SHUTDOWN within the next 12 hours and reduce reactor steam dome pressure to < 200 psig within the following 24 hours.

"Whenever both shutdown cooling subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain read or coolant temperature as low as practical by use of alternate heat removal methods.

LIMERICK - UNIT 1

3/4 5-2

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

- d. For the ADS:
 - 1. With one of the above required ADS valves inoperable, provided the HPCI system, the CSS and the LPCI system are OPERABLE, restore the inoperable ADS valve to OPERABLE status within 14 days or be in at least HOT SHUTDOWN within the next 12 hours and reduce reactor steam dome pressure to \leq 100 psig within the next 24 hours.
 - 2. With two or more of the above required ADS valves inoperable, be in at least HOT SHUTDOWN within 12 hours and reduce reactor steam dome pressure to \leq 100 psig within the next 24 hours.
- e. With a CSS and/or LPCI header ΔP instrumentation channel inoperable, restore the inoperable channel to OPERABLE status within 72 hours or determine the ECCS header ΔP locally at least once per 12 hours; otherwise, declare the associated CSS and/or LPCI, as applicable, inoperable.
- f. In the event an ECCS system is actuated and injects water into the reactor coolant system, a Special Report shall be prepared and submitted to the Commission pursuant to Specification 6.9.2 within 90 days describing the circumstances of the actuation and the total accumulated actuation cycles to date. The current value of the useage factor for each affected safety injection nozzle shall be provided in this Special Report whenever its value exceeds 0.70.

1 6 . 8 14

SURVEILLANCE REQUIREMENTS

- 4.5.1 The emergency core cooling systems shall be demonstrated OPERABLE by:
 - At least once per 31 days:
 - For the CSS, the LPCI system, and the HPCI system: 1.
 - Verifying by venting at the high point vents that the a) system piping from the pump discharge valve to the system isolation valve is filled with water.
 - Verifying that each valve (manual, power-operated, or b) automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct* position.
 - For the LPCI system, verifying that both LPCI system subsystem 2. cross-tie valves (HV-51-I82 A, B) are closed with power removed from the valve operators.2
 - For the HPCI system, verifying that the HPCI pump flow controller 3. is in the correct position.
 - For the CSS and LPCI system, performance of a CHANNEL FUNCTIONAL 4. TEST of the injection header ΔP instrumentation.
 - Verifying that, when tested pursuant to Specification 4.0.5: b.
 - Each CSS pump in each subsystem develops a flow of at least 1. 3175 gpm against a test line pressure corresponding to a reactor vessel to primary containment differential pressure of > 105 psid plus herd and line losses.
 - Each LPCI pump in each subsystem develops a flow of at least 2. 10,000 gpm against a test line pressure corresponding to a reactor vessel to primary containment differential pressure of > 20 psid plus head and line losses.
 - The HPCI pump develops a flow of at least 5600 gpm against a 3. test line pressure which corresponds to a reactor vessel pressure of 1000 psig plus head and line losses when steam is being supplied to the turbine at 1000, +20, -80 psig.**
 - At least once per 18 months: C.
 - For the CSS, the LPCI system, and the HPCI system, performing a 1. system functional test which includes simulated automatic actuation of the system throughout its emergency operating sequence and verifying that each automatic valve in the flow path actuates to its correct position. Actual injection of coolant into the reactor vessel may be excluded from this test.

> 1775

*Except that an automatic valve capable of automatic return to its ECCS position when an ECCS signal is present may be in position for another mode

** The provisions of Specification 4.0.4 are not applicable provided the surveillance is performed within 12 hours after reactor steam pressure is adequate to perform the test.

LIMERICK - UNIT 1

SURVEILLANCE REQUIREMENTS (Continued)

- For the HPCI system, verifying that:
 - a) The system develops a flow of at least 5600 gpm against a test line pressure corresponding to a reactor vesse? pressure of ≥ 200 psig plus head and line losses, when steam is being supplied to the turbine at 200 + 15, - 0 psig.**
 - b) The suction is automatically transferred from the condensate storage tank to the suppression chamber on a condensate storage tank water level - low signal and on a suppression chamber - water level high signal.
- Performing a CHANNEL CALIBRATION of the CSS, LPCI, and HPCI system discharge line "keep filled" alarm instrumentation.
- Performing a CHANNEL CALIBRATION of the CSS header ΔP instrumentation and verifying the setpoint to be ≤ the allowable value of 4.4 psid.
- 5. Performing a CHANNEL CALIBRATION of the LPCI header ΔP instrumentation and verifying the setpoint to be \leq the allowable value of 3.0 psid.
- d. For the ADS:
 - At least once per 31 days, performing a CHANNEL FUNCTIONAL TEST of the accumulator backup compressed gas system low pressure alarm system.
 - 2. At least once per 18 months:
 - Performing a system functional test which includes simulated automatic actuation of the system throughout its emergency operating sequence, but excluding actual valve actuation.
 - b) Manually opening each ADS valve when the reactor steam dome pressure is greater than or equal to 100 psig^{**} and observing that either:
 - The control valve or bypass valve position responds accordingly, or
 - There is a corresponding change in the measured steam flow.
 - c) Performing a CHANNEL CALIBRATION of the accumulator backup compressed gas system low pressure alarm system and verifying an alarm setpoint of 90 ± 2 psig on decreasing pressure.

** The provisions of Specification 4.0.4 are not applicable provided the surveillance is performed within 12 hours after reactor steam pressure is adequate to perform the test.

LIMERICK - UNIT 1

ADD 8 9624

3/4 S. 2 ECCS - SHUTDOWN

LIMITING CONDITION FOR OPERATION

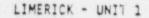
- 3.5.2 At least two of the following shall be OPERABLE:
 - a. Core spray system (CSS) subsystems with a subsystem comprised of:
 - 1. Two OPERABLE CSS pumps, and
 - An OPERABLE flow path capable of taking suction from at least one of the following water sources and transferring the water through the spray sparger to the reactor vessel:
 - a) From the suppression chamber, cr
 - b) When the suppression chamber water level is less than the limit or is drained, from the condensate storage tank containing at least 135,000 available gallons of water, equivalent to a level of 29 feet.
 - Low pressure coolant injection (LPCI) system subsystems with a subsystem comprised of:
 - 1. One OPERABLE LPCI pump, and
 - An OPERABLE flow path capable of taking suction from the suppression chamber and transferring the water to the reactor vessel.

APPLICABILITY: OPERATIONAL CONDITIONS 4 and 5*.

ACTION:

- a. With one of the above required subsystems inoperable, restore at least two subsystems to OPERABLE status within 4 hours or suspend all operations with a potential for draining the reactor vessel.
- b. With both of the above required subsystems inoperable, suspend CORE ALTERATIONS and all operations with a potential for draining the reactor vessel. Restore at least one subsystem to OPERABLE status within 4 hours or establish SECONDARY CONTAINMENT INTEGRITY within the next 8 hours.

"The ECCS is not required to be OPERABLE provided that the reactor vessel head is removed, the cavity is flooded, the spent fuel pool gates are removed, and water level is maintained within the limits of Specifications 3.9.8 and 3.9.9.


LIMERICK - UNIT 1

3/4 5-6

SURVEILLANCE REQUIREMENTS

4.5.2.1 At least the above required ECCS shall be demonstrated OPERABLE per Surveillance Requirement 4.5.1.

4.5.2.2 The core spray system shall be determined OPERABLE at least once per 12 hours by verifying the condensate storage tank required volume when the condensate storage tank is required to be OPERABLE per Specification 3.5.2a.2.b).

3/4 5-7

AU6 8 193

in?

4

÷.

3/4.5.3 SUPPRESSION CHAMBER

LIMITING CONDITION FOR OPERATION

3.5.3 The suppression chamber shall be OPERABLE:

- a. In OPERATIONAL CONDITIONS 1, 2, and 3 with a contained water volume of at least 122,120 ft³, equivalent to a level of 22'0".
- b. In OPERATIONAL CONDITION 4 and 5* with a contained water volume of at least 88,815 ft³, equivalent to a level of 16'0", except that the suppression chamber level may be less than the limit or may be drained provided that:
 - No operations are performed that have a potential for draining the reactor vessel,
 - The reactor mode switch is locked in the Shutdown or Refuel position,
 - The condensate storage tank contains at least 135,000 available gallons of water, equivalent to a level of 29 feet, and
 - 4. The core spray system is OPERABLE per Specification 3.5.2 with an OPERABLE flow path capable of taking suction from the condensate storage tank and transferring the water through the spray sparger to the reactor vessel.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, 4, and 5*.

ACTION:

- a. In OPERATIONAL CONDITION 1, 2 or 3 with the suppression chamber water level less than the above limit, restore the water level to within the limit within 1 hour or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. In OPERATIONAL CONDITION 4 or 5* with the suppression chamber water level less than the above limit or drained and the above required conditions not satisfied, suspend CORE ALTERATIONS and all operations that have a potential for draining the reactor vessel and lock the reactor mode switch in the Shutdown position. Establish SECONDARY CONTAINMENT INTEGRITY within 8 hours.

*The suppression chamber is not required to be OPERABLE provided that the reactor vessel head is removed, the cavity is flooded or being flooded from the suppression pool, the spent fuel pool gates are removed when the cavity is flooded, and the water level is maintained within the limits of Specifications 3.9.8 and 3.9.9.

LIMERICK - UNIT 1

3/4 5-8

490 8 5日

20

A. 4

14

1.5

SURVEILLANCE REQUIREMENTS

4.5.3.1 The suppression chamber shall be determined OPERABLE by verifying the water level to be greater than or equal to, as applicable:

- a. 22'0" at least once per 24 hours.
- b. 16'0" at least once per 12 hours.

4.5.3 2 with the suppression chamber level less than the above limit or drained in OPERATIONAL CONDITION 4 or 5^* , at least once per 12 hours:

 Verify the required conditions of Specification 3.5.3b. to be satisfied, or

b. Verify footnote conditions * to be satisfied.

et.

*

. 1

LIMERICK - UNIT 1

27 8 32

^{*}The suppression chamber is not required to be OPERABLE provided that the reactor vessel head is removed, the cavity is flooded or bring flooded from the suppression pool, the spent fuel pool gates are removed the cavity is flooded, and the water level is maintained within the limits of Specifications 3.9.8 and 3.9.9.

INTENTIONALLY LEFT BLANK

 $\phi \in [$

 $\overline{\gamma}_{1}$

1

1. 1. " " " V. A.

•

•

3/4.6 CONTAINMENT SYSTEMS

3/4.6.1 PRIMARY CONTAINMENT

PRIMARY CONTAINMENT INTEGRITY

LIMITING CONDITION FOR OPERATION

3.6.1.1 PRIMARY CONTAINMENT INTEGRITY shall be maintained.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2*, and 3.

ACTION:

Without PRIMARY CONTAINMENT INTEGRITY, restore PRIMARY CONTAINMENT INTEGRITY within 1 hour or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.1 PRIMARY CONTAINMENT INTEGRITY shall be demonstrated:

- After each closing of each penetration subject to Type B testing, except the primary containment air locks, if opened following Type A or B test, by leak rate testing the seals with gas at P, 44.0 psig, and verifying that when the measured leakage rate for these seals is added to the leakage rates determined pursuant to Surveillance Requirement 4.6.1.2d. for all other Type B and C penetrations, the combined leakage rate is less than or equal to 0.60 L.
- b. At least once per 31 days by verifying that all primary containment penetrations** not capable of being closed by OPERABLE containment automatic isolation valves and required to be closed during accident conditions are closed by valves, blind flanges, or deactivated automatic valves secured in position, except as provided in Table 3.6.3-1 of Specification 3.6.3.
- c. By verifying the primary containment air lock is in compliance with the requirements of Specification 3.6.1.3.
- d. By verifying the suppression chamber is in compliance with the requirements of Specification 3.6.2.1.

LIMERICK - UNIT 1

3/4 6-1

^{*}See Special Test Exception 3.10.1

^{**}Except valves, blind flanges, and deactivated automatic valves which are located inside the containment, and are locked, sealed, or otherwise secured in the closed position. These penetrations shall be verified closed during each COLD SHUTDOWN except such verification need not be performed when the primary containment has not been deinerted since the last verification or more often than once per 92 days.

PRIMARY CONTAINMENT LEAKAGE

LIMITING CONDITION FOR OPERATION

3.6.1.2 Primary containment leakage rates shall be limited to:

- a. An overall integrated leakage rate of less than or equal to L_a , 0.500 percent by weight of the containment air per 24 hours at P_a , 44.0 psig.
- b. A combined leakage rate of less than or equal to 0.60 L for all penetrations and all valves listed in Table 3.6.3-1, except for main steam line isolation valves* and valves which are hydrostatically tested per Table 3.6.3-1, subject to Type B and C tests when pressurized to P, 44.0 psig.
- c. *Less than or equal to 11.5 scf per hour for any one main steam line through the isolation valves when tested at P_t , 22.0 psig.
- d. A combined leakage rate of less than or equal to 1 gpm times the total number of containment isolation valves in hydrostatically tested lines which penetrate the primary containment, when tested at 1.10 P_a, 48.4 psig.

APPLICABILITY: When PRIMARY CONTAINMENT INTEGRITY is required per Specification 3.6.1.1.

ACTION:

With:

- The measured overall integrated primary containment leakage rate exceeding 0.75 L_a, or
- b. The measured combined leakage rate for all penetrations and all valves listed in Table 3.6.3-1, except for main steam line isolation valves* and valves which are hydrostatically tested per Table 3.6.3-1, subject to Type B and C tests exceeding 0.60 L_a, or
- c. The measured leakage rate exceeding 11.5 scf per hour for any one main steam line through the isolation valves, or
- d. The measured combined leakage rate for all containment isolation valves in hydrostatically tested lines which penetrate the primary containment exceeding 1 gpm times the total number of such valves,

restore:

a. The overall integrated leakage rate(s) to less than or equal to 0.75 $\rm L_{a}$, and

*Exemption to Appendix J of 10 CFR Part 50.

LIMERICK - UNIT 1

3/4 6-2

1.15 8 1925

LIMITING CONDITION FOR OPERATION (Continued)

- ACTION: (Continued)
 - b. The combined leakage rate for all penetrations and all valves listed in Table 3.6.3-1, except for main steam line isolation valves* and valves which are hydrostatically tested per Table 3.6.3-1, subject to Type B and C tests to less than or equal to 0.60 L, and
 - c. The leakage rate to less than or equal to 11.5 scf per hour for any one main steam line through the isolation valves, and
 - d. The combined leakage rate for all containment isolation valves in hydrostatically tested lines which pentrate the primary containment to less than or equal to 1 gpm times the total number of such valves,

prior to increasing reactor coolant system temperature above 200°F.

SURVEILLANCE REQUIREMENTS

4.6.1.2 The primary containment leakage rates shall be demonstrated at the following test schedule and shall be determined in conformance with the criteria specified in Appendix J of 10 CFR Part 50 using the methods and provisions of ANSI 45.4-1972 and BN-TOP-1 and verifying the result by the Mass Point Methodology described in ANSI N56.8-1981:

- a. Three Type A Overall Integrated Containment Leakage Rate tests shall be conducted at 40 \pm 10 month intervals during shutdown at P_a, 44.0 psig, during each 10-year service period. The third test of each set shall be conducted during the shutdown for the 10-year plant inservice inspection.
- b: If any periodic Type A test fails to meet 0.75 La, the test schedule

for subsequent Type A tests shall be reviewed and approved by the Commission. If two consecutive Type A tests fail to meet 0.75 $\rm L_a,$

a Type A test shall be performed at least every 18 months until two consecutive Type A tests meet 0.75 L_a , at which time the above test schedule may be resumed.

- c. The accuracy of each Type A test shall be verified by a supplemental test which:
 - 1. Confirms the accuracy of the test by verifying that the difference between the supplemental data and the Type A test data is within 0.25 L_a. The formula to be used is: $[L_0 + L_{am} = 0.25 L_a] \leq L_c \leq [L_0 + L_{am} + 0.25 L_a]$ where $L_c =$ supplemental test result; $L_0 =$ superimposed leakage; $L_{am} =$ measured Type A leakage.
 - Has duration sufficient to establish accurately the change in leakage rate between the Type A test and the supplemental test.
 - Requires the quantity of gas injected into the containment or bled from the containment during the supplemental test to be between 0.75 L and 1.25 L.

*Exemption to Appendix "J" to 10 CFR Part 50.

LIMERICK - UNIT 1

AN CET

SURVEILLANCE REQUIREMENTS (Continued)

- d. Type B and C tests shall be conducted with gas at P_a, 44.0 psig^{*}, at intervals no greater than 24 months^{**} except for tests involving:
 - 1. Air locks,
 - 2. Main steam line isolation valves,
 - Containment isolation valves in hydrostatically tested lines which penetrate the primary containment, and
- e. Air locks shall be tested and demonstrated OPERABLE per Surveillance Requirement 4.6.1.3.
- f. Main steam line isolation valves shall be leak tested at least once per 18 months.
- g. Containment isolation valves in hydrostatically tested lines which penetrate the primary containment shall be leak tested at least once per 18 months.
- h. The provisions of Specification 4.0.2 are not applicable to Specifications 4.6.1.2a., 4.6.1.2b., 4.6.1.2c., 4.6.1.2d., and 4.6.1.2e.

*Unless a hydrostatic test is required per Table 3.6.3-1.

**A Type C test interval extension to May 26, 1986 is permissible for primary containment isolation valves identified by an asterisk in the inboard and outboard isolation barrier columns of Table 3.6.3-1, Part A, as discussed in Application for Amendment of Facility Operating License dated December 18, 1985.

LIMERICK - UNIT 1

Amendment No. 2

1.4. 5. ***

X

PRIMARY CONTAINMENT AIR LOCKS

LIMITING CONDITION FOR OPERATION

3.6.1.3 The primary containment air lock shall be OPERABLE with:

- a. Both doors closed except when the air lock is being used for normal transit entry and exit through the containment, then at least one air lock door shall be closed, and
- b. An overall air lock leakage rate of less than or equal to 0.05 $\rm L_a$ at $\rm P_a, 44.0~psig.$

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2*, and 3.

ACTION:

- a. With one primary containment air lock door inoperable:
 - Maintain at least the OPERABLE air lock door closed and either restore the inoperable air lock door to OPERABLE status within 24 hours or lock the OPERABLE air lock door closed.
 - Operation may then continue until performance of the next required overall air lock leakage test provided that the OPERABLE air lock door is verified to be locked closed at least once per 31 days.
 - Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 4. The provisions of Specification 3.0.4 are not applicable.
- b. With the primary containment air lock inoperable, except as a result of an inoperable air lock door, maintain at least one air lock door closed; restore the inoperable air lock to OPERABLE status within 24 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

*See Special Test Exception 3.10.1.

LIMERICK - UNIT 1

3/4 6-5

SURVEILLANCE REQUIREMENTS

- 4.6.1.3 The primary containment air lock shall be demonstrated OPERABLE:
 - a. By verifying the seal leakage rate to be less than or equal to 5 scf per hour when the gap between the door seals is pressurized to 10 psig:
 - within 72 hours after each closing, except when the air lock is being used for multiple entries, then at least once per 72 hours; and
 - prior to establishing PRIMARY CONTAINMENT INTEGRITY when the air lock has been used and no maintenance has been performed on the air lock.**
 - b. By conducting an over 'l air lock leakage test at P_a, 44.0 psig, and by verifying that the overall air lock leakage rate is within its limit:
 - 1. At least once per 6 months,* and
 - Prior to establishing PRIMARY CONTAINMENT INTEGRITY when maintenance has been performed on the air lock that could affect the air lock sealing capability.**
 - c. At least once per 6 months by verifying that only one door in the air lock can be opened at a time.***

*The provisions of Specification 4.0.2 are not applicable.

**Exemption to Appendix J, Paragraph III.D.2.(b)(11) of 10 CFR Part 50.

LIMERICK - UNIT 1

3/4 6-6

105 5 1012

^{***}Except that the airlock doors need not be opened to verify interlock OPERA-BILITY when the primary containment is inerted, provided that the airlock doors' interlock is tested within 8 hours after the primary containment has been deinerted and provided the shield door to the airlock is maintained locked closed.

MSIV LEAKAGE CONTROL SYSTEM

LIMITING CONDITION FOR OPERATION

A.

3.6.1.4 Two independent MSIV leakage control system (LCS) subsystems shall be OPERABLE.

and the second

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

With one MSIV leakage control system subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.4 Each MSIV leakage control system subsystem shall be demonstrated OPERABLE:

- a. At least once per 31 days by:
 - Starting the blower(s) from the control room and operating the blower(s) for at least 15 minutes.
 - Energizing the heaters and verifying a temperature rise indicating heater operation on downstream piping.
- b. During each COLD SHUTDOWN, if not performed within the previous 92 days, by cycling each motor operated valve through at least one complete cycle of full travel.
- c. At least once per 18 months by:
 - Performance of a functional test which includes simulated actuation of the subsystem throughout its operating sequence, and verifying that each interlock and timer operates as designed, each automatic valve actuates to its correct position and the blower starts.
 - Verifying that the blower(s) develops at least the below required vacuum at the rated capacity:
 - a) Inboard valves, 15" H20 at 100 scfm.
 - b) Outboard valves, 15" H₂O at 200 scfm.
- d. By verifying the operating instrumentation to be OPERABLE by performance of a:
 - 1. CHANNEL CHECK at least once per 24 hours,
 - 2. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
 - 3. CHANNEL CALIBRATION at least once per 18 months.

LIMERICK - UNIT 1

3/4 6-7

PRIMARY CONTAINMENT STRUCTURAL INTEGRITY

LIMITING CONDITION FOR OPERATION

3.6.1.5 The structural integrity of the primary containment shall be maintained at a level consistent with the acceptance criteria in Specification 4.6.1.5.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

With the structural integrity of the primary containment not conforming to the above requirements, restore the structural integrity to within the limits within 24 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.5.1 The structural integrity of the exposed accessible interior and exterior surfaces of the primary containment, including the liner plate, shall be determined during the shutdown for each Type A containment leakage rate test by a visual inspection of those surfaces. This inspection shall be performed prior to the Type A containment leakage rate test to verify no apparent changes in appearance or other abnormal degradation.

4.6.1.5.2 <u>Reports</u> Any abnormal degradation of the primary containment structure detected during the above required inspections shall be reported in a Special Report to the Commission pursuant to Specification 6.9.2 within 30 days. This report shall include a description of the condition of the liner and concrete, the inspection procedure, the tolerances on cracking, and the corrective actions taken.

LIMERICK - UNIT 1

Line C M13

DRYWELL AND SUPPRESSION CHAMBER INTERNAL PRESSURE

Lader - Barari Bara

LIMITING CONDITION FOR OPERATION

3.6.1.6 Drywell and suppression chamber internal pressure shall be maintained between 0.0 and +2.0 psig. -1.0

.APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

With the drywell and/or suppression chamber internal pressure outside of the specified limits, restore the internal pressure to within the limit within 1 hour or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.6 The drywell and suppression chamber internal pressure shall be determined to be within the limits at least once per 12 hours.

195 : 1 195

ŧ

LIMERICK - UNIT 1

3/4 6-9

DRYWELL AVERAGE AIR TEMPERATURE

LIMITING CONDITION FOR OPERATION

3.6.1.7 Drywell average air temperature shall not exceed 135°F.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

With the drywell average air temperature greater than 135°F, reduce the average air temperature to within the limit within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.7 The drywell average air temperature shall be the volumetric average of the temperatures at the following locations and shall be determined to be within the limit at least once per 24 hours:

	Elevation	Azimuth*
а.	330'	45°, 90°, 225°
b.	320'	105°, 225°, 345°
с.	260'	50°, 165°, 285°
d.	248'	50°, 165°, 285 ° 300 11°, 74°, 150°, 182°, 253°, 337°

*At least one reading from each elevation is required for a volumetric average calculation.

LIMERICK - UNIT 1

3/4 6-10

AU3 8 1985

CONTRACTOR AND

DRYWELL AND SUPPRESSION CHAMBER PURGE SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.1.8 The drywell and suppression chamber purge system may be in operation for up to 90 hours each 365 days with the supply and exhaust isolation valves in one supply line and one exhaust line open for inerting, deinerting, or pressure control.*

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

a. With a drywell and/or suppression chamber purge supply and/or exhaust isolation valve open, except as permitted above, close the valve(s) within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.1.8 Before being opened, the drivell and suppression chamber purge supply and exhaust butterfly isolation values shall be verified not to have been open for more than 90 hours in the previous 365 days."

*Valves open for pressure control are not subject to the 90 hour per 365 day limit provided the 1-inch/2-inch bypass line is being utilized.

LIMERICK - UNIT 1

3/4.6.2 DEPRESSURIZATION SYSTEMS

SUPPRESSION CHAMBER

LIMITING CONDITION FOR OPERATION

3.6.2.1 The suppression chamber shall be OPERABLE with:

- a. The pool water:
 - Volume* between 122,120 ft³ and 134,600 ft³, equivalent to a level between 22' 0" and 24' 3", and a
 - Maximum average temperature of 95°F except that the maximum average temperature may be permitted to increase to:
 - a) 105°F during testing which adds heat to the suppression chamber.
 - b) 110°F with THERMAL POWER less than or equal to 1% of RATED THERMAL POWER.
 - c) 120°F with the main steam line isolation valves closed following a scram.
- b. Drywell-to-suppression chamber bypass leakage less than or equal to 10% of the acceptable A/\sqrt{K} design value of 0.0500 ft².
- c. At least eight suppression pool water temperature instrumentation indicators.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With the suppression chamber water level outside the above limits, restore the water level to within the limits within 1 hour or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With the suppression charber average water temperature greater than 95°F, restore the average temperature to less than or equal to 95°F within 24 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours, except, as permitted above:
 - 1. With the suppression chamber average water temperature greater than 105°F during testing which adds heat to the suppression chamber, stop all testing which adds heat to the suppression chamber and restore the average temperature to less than 95°F within 24 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 2. With the suppression chamber average water temperature greater than:
 - a) 95°F for more than 24 hours and THERMAL POWER greater than 1% of RATED THERMAL POWER, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.

*

+

A10 8 140

b) 110°F, place the reactor mode switch in the Shutdown position and operate at least one residual heat removal loop in the suppression pool cooling mode.

*Includes the volume inside the pedestal.

LIMERICK - UNIT 1

3/4 6-12

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

- With the suppression chamber average water temperature greater than 120°F, depressurize the reactor pressure vessel to less than 200 psig within 12 hours.
- c. With only one suppression chamber water level indicator OPERABLE and/or with less than eight suppression pool water temperature indicators, one in each of the eight locations OPERABLE, restore the inoperable indicator(s) to OPERABLE status within 7 days or verify suppression chamber water level and/or temperature to be within the limits at least once per 12 hours.
- d. With no suppression chamber water level indicators OPERABLE and/or with less than seven suppression pool water temperature indicators covering at least seven locations OPERABLE, restore at least one water level indicator and at least seven water temperature indicators to OPERABLE status within 48 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- e. With the drywell-to-suppression chamber bypass leakage in excess of the limit, restore the bypass leakage to within the limit prior to increasing reactor coolant temperature above 200°F.

SURVEILLANCE REQUIREMENTS

4.6.2.1 The suppression chamber shall be demonstrated OPERABLE:

- a. By verifying the suppression chamber water volume to be within the limits at least once per 24 hours.
- b. At least once per 24 hours by verifying the suppression chamber average water temperature to be less than or equal to 95°F, except:
 - At least once per 5 minutes during testing which adds heat to the suppression chamber, by verifying the suppression chamber average water temperature less than or equal to 105°F.
 - At least once per hour when suppression chamber average wrter temperature is greater than or equal to 95°F, by verifying:
 - a) Suppression chamber average water temperature to be less than or equal to 110°F, and
 - b) THERMAL POWER to be less than or equal to 1% of RATED THERMAL POWER 12 hours after suppression chamber average water temperature has exceeded 95°F for more than 24 hours.
 - At least once per 30 minutes following a scram with suppression chamber average water temperature greater than or equal to 95°F, by verifying suppression chamber average water temperature less than or equal to 120°F.

LIMERICK - UNIT 1

3/4 6-13

SURVEILLANCE REQUIREMENTS (Continued)

- c. By verifying at least two suppression chamber water level indicators and at least 8 suppression pool water temperature indicators in at least 8 locations, OPERABLE by performance of a:
 - 1. CHANNEL CHECK at least once per 24 hours,
 - 2. CHANNEL FUNCTIONAL TEST at least once per 31 days, and
 - 3. CHANNEL CALIBRATION at least once per 18 months,

with the water level and temperature alarm setpoint for:

- 1. High water level < 24'15"
- 2. High water temperature:
 - a) First setpoint < 95°F
 - b) Second setpoint < 105°F
 - c) Third setpoint < 110°F
 - d) Fourth setpoint < 120°F
- d. At least once per 18 months by conducting a drywell-to-suppression chamber bypass leak test at an initial differential pressure of 4 psi and verifying that the A/\sqrt{k} calculated from the measured leakage is within the specified limit. If any drywell-to-suppression chamber bypass leak test fails to meet the specified limit, the test schedule for subsequent tests shall be reviewed and approved by the Commission. If two consecutive tests fail to meet the specified limit, a test shall be performed at least every 9 months until two consecutive tests meet the specified limit, at which time the 18 month test schedule may be resumed.

LIMERICK - UNIT 1

3/4 6-14

1:1. 8. 1521

SUPPRESSION POOL SPRAY

LIMITING CONDITION FOR OPERATION

3.6.2.2 The suppression pool spray mode of the residual heat removal (RHR) system shall be OPERABLE with two independent loops, each loop consisting of:

- a One OPERABLE RHR pump, and
- b. An OPERABLE flow path capable of recirculating water from the suppression chamber through an RHR heat exchanger and the suppression pool spray sparger(s).

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one suppression pool spray loop inoperable, restore the inoperable loop to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With both suppression pool spray loops inoperable, restore at least one loop to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN* within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.2 The suppression pool spray mode of the RHR system shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each valve (manual, poweroperated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
- b. By verifying that each of the required RHR pumps develops a flow of at least 500 gpm on recirculation flow through the RHR heat exchanger and the suppression pool spray sparger when tested pursuant to Specification 4.0.5.

"Whenever both RHR subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

LIMERICK - UNIT 1

SUPPRESSION POOL COOLING

LIMITING CONDITION FOR OPERATION

3.6.2.3 The suppression pool cooling mode of the residual heat removal (RHR) system shall be OPERABLE with two independent loops, each loop consisting of:

- a. One OPERABLE RHR pump, and
- b. An OPERABLE flow path capable of recirculating water from the suppression chamber through an RHR heat exchanger.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one suppression pool cooling loop inoperable, restore the inoperable loop to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With both suppression pool cooling loops inoperable, be in at least HOT SHUTDOWN w' ...in 12 hours and in COLD SHUTDOWN* within the next 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.3 The suppression pool cooling mode of the RHR system shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each value (manual, poweroperated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
- b. By verifying that each of the required RHR pumps develops a flow of at least 10,000 gpm on recirculation flow through the RHR heat counger, the suppression pool and the full flow test line when toold pursuant to Specification 4.0.5.

"Whenever both RHR subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat ramoval methods.

LIMERICK - UNIT 1

3/4 6-16

_

1

The State of the S

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

LIMITING CONDITION FOR OPERATION

3.6.3 The primary containment isolation valves and the reactor instrumentation line excess flow check valves shown in Table 3.6.3-1 shall be OPERABLE with isolation times less than or equal to those shown in Table 3.6.3-1.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one or more of the primary containment isolation valves shown in Table 3.6.3-1 inoperable, maintain at least one isolation valve OPERABLE in each affected penetration that is open and within 4 hours either:
 - 1. Restore the inoperable valve(s) to OPERABLE status, or
 - Isolate each affected penetration by use of at least one deactivated automatic valve secured in the isolated position,* or
 - Isolate each affected penetration by use of at least one closed manual valve or blind flange.*
 - 4. The provisions of Specification 3.0.4 are not applicable provided that within 4 hours the affected penetration is isolated in accordance with ACTION a.2. or a.3. above, and provided that the associated system, if applicable, is declared inoperable and the appropriate ACTION statements for that system are performed.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

- b. With one or more of the reactor instrumentation line excess flow check valves shown in Table 3.6.3-1 inoperable, operation may continue and the provisions of Specifications 3.0.3 and 3.0.4 are not applicable provided that within 4 hours either:
 - 1. The inoperable valve is returned to OPERABLE status, or
 - The instrument line is isolated and the associated instrument is declared inoperable.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

*Isolation valves closed to satisfy these requirements may be reopened on an intermittent basis under administrative control.

LIMERICK - UNIT 1

3/4 6-17

SURVEILLANCE REQUIREMENTS

4.6.3.1 Each primary containment isolation valve shown in Table 3.6.3-1 shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by cycling the valve through at least one complete cycle of full travel and verifying the specified isolation time.

4.6.3.2 Each primary containment automatic isolation valve shown in Table 3.6.3-1 shall be demonstrated OPERABLE during COLD SHUTDOWN or REFUELING at least once per 18 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its isolation position.

4.6.3.3 The isolation time of each primary containment power operated or automatic valve shown in Table 3.6.3-1 shall be determined to be within its limit when tested pursuant to Specification 4.0.5.

4.6.3.4 Each reactor instrumentation line excess flow check valve shown in Table 3.6.3-1 shall be demonstrated OPERABLE at least once per 18 months by verifying that the valve checks flow.

4.6.3.5 Each traversing in-core probe system explosive isolation valve shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying the continuity of the explosive charge.
- b. At least once per 18 months by removing the explosive squib from the explosive valve, such that each explosive squib in each explosive valve will be tested at least once per 90 months, and initiating the explosive squib. The replacement charge for the exploded squib shall be from the same manufal ared batch as the one fired or from another batch which has been certified by having at least one of that batch successfully fired. No squib shall remain in use beyond the expiration of its shelf-life and/or operating life, as applicable.

* A 92 week interval ending on May 26, 1986 is permissible for the first cycle.

LIMERICK - UNIT 1

3/4 6-18

Amendment No. 1 2/6/86

TABLE 3.6.3-1

PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&1D
003B	CONTAINMENT INSTRUMENT GAS SUPPLY - HEADER 'B'	59-7005B (CK)	RV59-1298	NA 7	C,H,S		59
0030-2	CONTAINMENT INSTRUMENT GAS SUPPLY TO ADS VALVES E & K	59- X 112*(CK)	HV59-4518*	NA 45	м		59
007A(B,C,D)	MAIN STEAM LINE 'A'(B,C,D)	2 HV41-1F022A (B,C,D)	2	5*	C.D.E.F.P.Q	6	a
			HV41-AF026A (B,C,D)2	5*	· C,D,E,F,P,Q	6	
			HV40-AF001B	45	EA	6	
		2	(F,K,P) (XV40-401B (F,K,P) SEE PART B, THIS TABLE)	NA		6,1	
008	MAIN STEAM LINE CRAIN	HV41-2F016	11V41-AF019	30 30	C,D,E,F,P.Q C,D,E,F,P,Q	4	41
009A	FEEDWATER	41-JF010A(CK)	2 HV41-2F074A(CK) 41-2036A(CK) 2 IV41-2308 2	NA 45			41
T			11141-133A 2 11141-109A 2	45 NA		32	
			2 HV41-AF032A(CK) 2 HV55-AF105 2 HV44-AF039(CK)	NA 30 NA		7	
0			(X-9B) 7 41-7016(X-9B, X-44)	NA		31	

5				5.3-1 (Continued)					
EX.	3		PART A - PRIMARY CO	ONTAINMENT ISOLATIO	N VALVES				
LIMERICK - UNIT	PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX. ISOL. TIME. LF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&I	D
-	0098	FEEDWATER	41-¥F010В(СК) 2	2 HV41-JF074B(CK) 41-J036B(CK) 2	NA NA NA			41	
				HV41-130A 2 HV41-133B 2 HV41-209B 2	45 45 NA		32		
				2 HV41-AF032B(CX) 2 HV49-AF013 2 HV49-XF039(CK)		LFCC			
3/4				(X-9A) 2 41-2016(X-9A, X-44)	NA		31		
6-	010		2						
20	010	RCIC STEAM SUPPLY	HV49-XF007	2 HV49-XF008	7.2* 7.2*	К. КА К. КА	5	49	
			2	HV49-45076	45	K, KA			
	011	HPCI STEAM SUPPLY	HV55-2F002	2 HV55-ÁF003	12* 12*	L, LA L, LA	5	55	
			~		45	L, LA			
Amen	012	RHR SHUTDOWN COOLING SUPPLY	マ HV51-&F009 PSV51- & 55		100 NA	A,V	9,22	51	
di			200		100	A.V			
Amendment No.	013A(B)	RHR SHUTDOWN COOLING RETURN	HV51-1F050A*(B*) (CK) 2 0 0	r	NA	A,V	9,72	51	1
			11V51-151A*(B*)	2	20	A 1/			
2			3		45	A.V A.V			1
	014	RWCU - SUCTION	HV44-2F001*		10*	8.J.Y		41	1
100				HV44-A1 004*	10*	8.J.Y			

3874086670

·* ** '

LIMERICK			PART A - PRIMARY CON INBOARD	OUTBOARD	ion metry				
X - UNIT	PENETRATION	FUNCTION	ISOLATION BARRIER	I SOLATION BARRIER	MAX. ISOL. TIME. IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&	10
-	016A	CORE SPRAY INJECTION	HV52-2F006A(CK) HV52-2F039A	, 11V52-A1005	NA 7		9.22 9.22	52	
	0168	CORE STARY INJECTION	2 HV52-AFG06B(CK) HV52-AF0398	2	18 NA 7		9,22 9,22	52	
	Deleted		2	HV52-108(CK)	NA		.,		
	017	RPV HEAD SPRAY	HV51-1F022 P5V51-122	*	60- NA-	A.V	4.9.22	-91	
3/2			2	HV51-15023	135	A.V-			
3/4 6-21	021	SERVICE AIR TO DRYWELL	2 15-1140	15-7139	NA NA			15	
	022	DRYWELL PRESSURE INSTRUMENTATION	20.	11V42-X47C	45		10	42	
	023	RECW SUPPLY TO RECIRC PUMPS	HV13-106*	20	40 (c,H	11,8,	13	1
				HV13-108*	30	с,Н	11,48		1
*			20	IN13-109-0	NA		29 11,13		1
Amendment	024	RECW RETURN FROM RECIRC PUMPS	HV13-107*	20	4	с,н	11,50,	13	1
20	ž			IN13-111*	30 4	.,14	11,28,		1
ð	ω 			IN13-110*	NA		й,в		1

TABLE 3.6. J-1 (Continued)

2

3874086670

a set a series

IABLE 3.6.3-1 (Continued)

(20) 8.H.S.U.W.R.T 3.11.14 8.H.S.U.W.R.T 3.11.14 8.H.S.U.W.R.T 3.11.14 8.H.S.U.W.R.T 11.11 8.H.S.U.W.R.T 11.11 8.H.S.U.W.R.T 11.14 8.H.S.U.R.T 11.13 8.H.S.U.R.R.T 11.13 8.H.S.U.R.R.T 11.13 8.H.R.S 11 8.H.R.S <th>A PENETRATION • NUMBER</th> <th>FUNCTION</th> <th>INBOARD I SOLATION BARRIER</th> <th>OUTBOARD I SOLATION BARRIER</th> <th>MAX. ISOL. I.IME. IF APP.</th> <th>TSOL. STGNAL(S), IF APP.</th> <th>MOTES</th> <th>P&10</th>	A PENETRATION • NUMBER	FUNCTION	INBOARD I SOLATION BARRIER	OUTBOARD I SOLATION BARRIER	MAX. ISOL. I.IME. IF APP.	TSOL. STGNAL(S), IF APP.	MOTES	P&10
Andrease Second Science Science MISJ-J21(R-201A) Second Science Science Science MISJ-J21(R-201A) Zaud Zaud Zaud Zaud Ell Sciuler, Risson Zaud Zaud Zaud Ell Sciuler, Risson Ell Sciuler, Risson Zaud Zaud Zaud Ell Sciuler, Risson Ell Sciuler, Risson Zaud Zaud Ell Sciuler, Risson Ell Sciuler, Risson Ell Sciuler, Risson Zaud Zaud Zaud Ell Sciuler, Risson Ell Sciuler, Risson Ell Sciuler, Risson Zaud Zaud Zaud Zaud Ell Sciuler, Risson Ell Sciuler, Risson Ell Sciuler, Risson Zaud Zaud Zaud Zaud Zaud Ell Sciuler, Risson Ell Sciuler, Risson Zaud Zaud Zaud Zaud Zaud Zaud Zaud Montell Funder Exhausti Zaud Zaud Zaud Zaud Zaud Zaud	1036				(310)(26)	(20)		
And a construct		DRIVELL PUNCE SUPPLY	HV57-J21(X-201A)		5**	B H S U N D T		5
30. Zoue 20.01/2 50.000 60.000 <td></td> <td>Hadrow Rucomonuce -</td> <td></td> <td>r 1</td> <td>5**</td> <td>B.H.S.U.W.R.I</td> <td></td> <td>n</td>		Hadrow Rucomonuce -		r 1	5**	B.H.S.U.W.R.I		n
Zade		B" Inwer	2	60V-LSVH	··· · · · ·	8.H.R.S -		
$\begin{array}{c ccccc} & (WSY-JAI) & (WSY-JAI) & (S^{*} = 0) & (WSY-JAI) & (S^{*} = 0) & (WSY-JAI) &$	Second Second	-		(X-201A)		""""""""""""""""""""""""""""""""""""""	=	
DKYMELL PURGE EXHMUST Z Z M/57-J14 S B,H,S,U,W,R,T Hispocoseco Kccondence Z H/957-J14 S S B,H,S,U,W,R,T Hispocoseco Kccondence - Z H/57-J15 S B,H,S,U,W,R,T Joint Z H/957-J15 S B,H,S,U,W,R,T Joint Z H/957-J15 S B,H,S,U,W,R,T Joint Z H/957-J15 S B,H,S,U,W,R,T Joint Joint S S B,H,S,U,W,R,T Joint Joint S S B,H,S,U,W,R,T Joint Joint S S S Joint S Joint S S Joint S S S S Joint S S S S Z M S S S Z M S S S Z M S S S Z M M S S Z M M S S Loop Superver MA3-JEIO M M H,M,G.S M M M M,M,G.S M<	& list all aco	2		- 167-75NI	5**	B.H.S.U.W.R.I		
DKWELL PURGE EXIMUST KY57-JIA 5 5 8.H.5.U.W.R.T Z W57-JIA Z W57-JIA S W57-JIA 5 8.H.5.U.W.R.T Z Y S P20/A Z Y57-ZOA Z SY57-J1A 5 8.H.5.U.W.R.T Z Y S P20/A J TLUCT B.H.5.U.W.R.T 8.H.5.U.W.R.T Z Y S P20/A J Y Y2 J Y2 B.H.8.5 8.H.8.5 Z Y S Y YA J Y Y2 J Y2 J Y2 B.H.8.5 B.H.8.5 Z MARLIL H2/02 SAMPLE SY57-J32 J Y2 J Y2 J Y2 B.H.8.5 J Y2 DRYMELL H2/02 SAMPLE SY57-J32 SY57-J42 S B.H			r	SEY-ISAH	e**	B.H.S.U.W.R.I		
<i>Hisoconeus Z Hisoconeus Z Hiscure B</i> , <i>H</i> , <i>S</i> , <i>U</i> , <i>W</i> , <i>H</i> , <i>H</i> , <i>B</i> , <i>H</i> , <i>S</i> , <i>U</i> , <i>W</i> , <i>H</i> , <i>H</i> , <i>B</i> , <i>H</i> , <i>S</i> , <i>U</i> , <i>W</i> , <i>H</i> , <i>H</i> , <i>H</i> , <i>S</i> , <i>L</i> , <i>W</i> , <i>H</i>	026	DEYMELL PURCE EXHAUST	11-13A	7				
Hyperconduct -2 HVS7-161 - - 9 - 8,4,5,0,4,1 Zy Syzon - 25057139 HVS7-161 - 2 9 - 8,4,5,0,4,1 Zy Syzon - - - - - - 9 - 8,4,5,0,4,1 Zy Syzon - - - - - - 9 - 8,4,5,0,4,1 Zy Syzon -<					5	8.H.S.U.N.R.I		33
74 Toucor 25 55-719 2 5 8.4,5,0,8,1 11,14 24 55 2014 25 55 8.4,5,0,8,1 11,33 24 55 2014 39-7128(CK) 100 8.4,5,0,8,1 11,33 24 55 2014 5 8.4,5,0,8,1 11,33 24 55 2014 5 8.4,5,0,8,1 11,33 24 55 2014 5 8.4,5,0,8,1 11,33 24 50 50 FUT TO ADS VALVES 59-7128(CK) 11,53 8.4,8,5 11 CONTAINMENT INSTRUMENT 59-7128(CK) 100 8.0 8.4,8,5 11 CONTAINMENT INTOTO 50 100 8.0 8.4,8,5 11 RECINC LOOP SAMPLE 1043-16020 10 8.0 8.4,8,5 11 RECINC LOOP SAMPLE 1043-16020 10 8.0 8.4,8,5 11 DRYMELL H2/02 SAMPLE 5057-442 5 8.4,8,5 11 C 2 5 8.4,8,5 11 DRYMELL H2/02 SAMPLE 507-443 5			2 HV57-161 -			B.H.S.U.R.I	-	
ZYS+ZOLA Z WYS7-A15 5 B,H,S,U,W,R,T 11,33 ZYS+ZOLA SYS7-ZOLA SYS7-A15 5 B,H,S,U,W,R,T 11,33 ZYS+ZOLA S9-J128(CK) WYS7-J172 5 B,H,S,U,W,R,T 11,33 CONTAINMENT INSTRUMENT S9-J128(CK) WYS9-J51A 45 M M CONTAINMENT INSTRUMENT S9-J128(CK) WYS9-J51A 45 M CONTAINMENT INSTRUMENT S9-J128(CK) WYS9-J51A 45 M CONTAINMENT INSTRUMENT S9-J128(CK) WYS9-J51A 45 M M,M,GS MW43-Jff019 MV43-Jff020 10 B,D M,M,GS MW43-Jff020 10 B,D B,H,R,S 11 M,M,GS SV57-J32 SV57-J42 5 B,H,R,S 11 DRVMELL H2/02 SAMPLE SV57-J32 SV57-J43 5 B,H,R,S 11 DRVMELL H2/02 SAMPLE SV57-J34 SV57-J44 5 5 11 DRVMELL H2/02 SAMPLE SV57-J34 SV57-J44 5 5 11 CR SV57-J44 S S 5 11 DRVMELL H2/02 SAMPLE SV57-J34 SV57-J44 S 5 11		1	2 5451-139	2	 	B.H.R.S	4	
ZYS+Zold Z WSJ-J17 Z S B,H,B,S,U,R,T 11 CONTAINMENT INSTRUMENT S9-J128(CK) WS9-J51A 45 M GAS SUPPLY TO ADS VALVES MA3-AFO10 WV33-AFO20 10 B,D H,M,GS RECIRC LOOP SAMPLE SV57-J32 Z 10 B,D DRYMELL H2/02 SAMPLE SV57-J32 Z 5 B,H,R,S 11 DRYMELL H2/02 SAMPLE SV57-J33 Z 5 B,H,R,S 11 DRYMELL H2/02 SAMPLE SV57-J34 SV57-AA2 5 B,H,R,S 11 DRYMELL H2/02 SAMPLE SV57-J34 SV57-AA2 5 B,H,R,S 11 DRYMELL H2/02 SAMPLE SV57-J34 SV57-AA2 5 B,H,R,S 11	8. I.I.			HV57-A15	9	BHSHWDT		
CONTAINMENT INSTRUMENT 2 SV57-J45 Z 5 B,H,R,S 11 CONTAINMENT INSTRUMENT 59-J128(CK) - - - - - - 11 GAS SUPPLY TO ADS VALVES 59-J128(CK) - - - - - - - 11 GAS SUPPLY TO ADS VALVES 59-J128(CK) - - - - - - - 11 GAS SUPPLY TO ADS VALVES - 59-J128(CK) - - - - - - 11 GAS SUPPLY TO ADS VALVES - 11 RECINC LOOP SAMPLE SV57-J32 2 2 5 B,H,R,S 11 - - - - - - - - - - - - - - - </td <td>5467-245</td> <td>4-201A</td> <td></td> <td>HV57-117 2</td> <td>5**</td> <td>B.H.S.U.R.I</td> <td></td> <td></td>	5467-245	4-201A		HV57-117 2	5**	B.H.S.U.R.I		
CONTAINMENT INSTRUMENT 59-/128(CK) Z M GAS SUPPLY TO ADS VALVES 59-/128(CK) HV59-/151A 45 M RECIRC LOOP SAMPLE HV43-/1019 HV43-/1020 10 8.0 M RECIRC LOOP SAMPLE HV43-/1019 HV43-/1020 10 8.0 B M RECIRC LOOP SAMPLE SV57-/132 Z 5 5 B M B M RECIRC LOOP SAMPLE SV57-/132 Z 5 5 B M B M RECIRC LOOP SAMPLE SV57-/132 Z 5 5 B M B M RECIRC LOOP SAMPLE SV57-/132 Z 5 5 B M B B M B B M B M B M B B M B M B M B M B M B M B M B M B M B M	and 1:35 = 11 a	[5000	~ ~	2 541-15AS	\$	B.H.R.S		
Case Superv To Nos Valves Muss-JSIA As M H,M,4.5 RECIRC LOOP SAMPLE HVA3-ÅF019 HVA3-ÅF020 10 8.0 RECIRC LOOP SAMPLE HVA3-ÅF020 10 8.0 8.0 Z Z 5 5 8.0 DRYMELL HZ/02 SAMPLE SV57-ÅA2 5 8.0 8.0 Z Z 5 5 8.0 11 Z Z 5 5 8.0 8.0 11 DRYMELL HZ/02 SAMPLE SV57-ÅA2 5 8.0 8.0 8.0 Z Z 5 5 8.0 8.0 8.0 Z 5 5 8.0 8.0 8.0 8.0 A 5 5 8.0 8.0 8.0 8.0 A 5 5 8.0 8.0 8.0 8.0	027A	CONTAINMENT INSTRUMENT	59-1128/CK1	r				
H,M,45 RECIRC LOOP SAMPLE HV43-Åf019 RV43-Åf019 HV43-Åf020 10 8.0 RECIRC LOOP SAMPLE XV57-Å102 10 8.0 8.0 8.0 Z Z SV57-Å12 5 8.0 8.0 11 DRYMELL H2/02 SAMPLE SV57-Å13 SV57-Å12 5 8.0 8.0 8.0 DRYMELL H2/02 SAMPLE SV57-Å14 5 5 8.0 8.0 11 DRYMELL H2/02 SAMPLE SV57-Å14 5 5 8.0 8.0 11 DRYMELL H2/02 SAMPLE SV57-Å14 5 5 8.0 8.0 11		GAS SUPPLY TO ADS VALVES	(unlossed on	MV59-151A	**			65
RECIRC LOOP SAMPLE HV43-ÅF019 Z 10 8.0 Z Z 8.0 8.0 8.0 DRYMELL H2/02 SAMPLE SV57-Å32 SV57-Å32 SV57-Å32 5 8.0 Z Z 5 5 8.0 8.0 11 Z Z 5 5 8.0 8.0 11 Z Z 5 5 8.0 8.0 11 Z Z 5 5 8.0 11 11 Z 2 5 5 8.0 11 11 Z 2 5 5 8.0 8.0 11 DRYMELL N2/02 SAMPLE 5 5 8.0 8.0 11 Z 5 5 8.0 8.0 11 Z 5 5 8.0 8.0 8.0 11 SV51-Å44 5 5 8.0 8.0 8.0 3.0 3.0 FV5		H.M.45						
Z HV43-AF020 IO B.N.P.S DRYMELL H2/02 SAMPLE SV57-X32 Z SV57-X32 SV57-X32 B.N.P.S II Z Z SV57-X32 SV57-A42 S B.N.P.S II Z SV57-A34 SV57-A42 S B.N.P.S II Z SV57-A42 S B.N.R.S II Z SV57-A44 S B.N.R.S II DRYMELL H2/02 SAMPLE SV57-A44 S B.N.R.S II Z B.N.R.S S SY57-A44 S S S DRYMELL H2/02 SAMPLE SV57-A44 S S S S S DRYMELL H2/02 SAMPLE SV57-A44 S S S S S DRYMELL H2/02 SAMPLE SV57-A44 S S S S S	0284-1	RECIRC LOOP SAMPLE	HV43-JED19	ſ				
DRYMELL H2/02 SAMPLE SV57-X32 2 5 8.11.R.S 11 2 SV57-A32 5 8.11.R.S 11 2 DRYMELL H2/02 SAMPLE SV57-A34 5 8.11.R.S 11 2 DRYMELL H2/02 SAMPLE SV57-A34 5 10 8.11.R.S 11, 34 - FUS7-C-DO-2018 90** 5.11, 35 11 34				HV43-AF020	10	8.0		-
DRYMELL N2/02 SAMPLE SV57-A32 2 5 8.11.8.5 11 2 SV57-A42 5 8.11.8.5 11 2 DRYMELL N2/02 SAMPLE SV57-A34 5 8.11.8.5 11 2 SV57-A42 5 11 2 SV57-A44 5 SV77-5 11 2 SV57-2 SV47 5 11 2 SV77-2 SV47 5 11 2 SV77-2 SV77 5 11 2 SV77 5 SV77			2					
Z SV51-A42 S B,H,R,S II DRYMELL H2/02 SAMPLE SV51-A14 S B,H,R,S II Complete SV51-A14 S SV51-A14 S B,H,R,S II DRYMELL H2/02 SAMPLE SV51-A14 S SV51-A14 S SV51-A14 S B,H,R,S II DRYMELL H2/02 SAMPLE SV51-A14 S S S S R,H,R,S II DRYMELL H2/02 SAMPLE SV51-A14 S S S B,H,R,S II CV51-A14 S S S S S S S S DRYMELL H2/02 SAMPLE SV51-A14 S	7-1070	DRYNELL HZ/UZ SAMPLE	26X-19AS	5	5	B.H.P.S	=	57
028A-3 DRYMELL H2/02 SAMPLE SV57-A34 2 5 8.H.R.S 11 SV57-A44 5 8.H.R.S 11 - FV57-C-D0-2018 90** 8.Y.R.S 11,34			2	24V-15A5	5	B.H.R.S	=	
5457-444 5 B.H.K.S II -FUS7-C-DO-2018 90 3,4,8,5 11,34	028A-3	DRYMELL H2/02 SAMPLE	NS7-134	7	\$	B.H.R.S	11	13
90#** 3,4,8,5				444 SV51-444	5	B.H.K.S	=	
90#** B.H.R.S	1			FV57-C-DO		8,4,8,5	1,34	
				- No. 7 - No.		18. H.R.S	1.34	

1.1

e . e

TABLE .	3.6.3-1	(Continue	d
	···· ·	1 concinue.	ιa.,

PART A - PRIMARY CONTAINMENT ISOLATION VALVES

			Sector Contractor					
PENET	RATION	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD 1SOLATION BARRIER	MAX. ISOL. TIME. IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	MOTES	P&11
028B	*	DRYWELL H2/02 SAMPLE	2	7				
0200		UNTWELL M2/02 SAMPLE	SV57-/133	Z SV57-143 SV57-195	5 5 5	B,H,R,S B,H,R,S B,H,R,S	11 11 11	57
0308-	1	DRYWELL PRESSURE INSTRUMENTATION	2 .	11V42-147A	45		10	42
035 # (в	TIP PURGE	59-1056(CK) (DOUBLE "O" RING)		NΛ			59
			2	HV59-131	7	B.H.S	16	
035C-	G	TIP DRIVES	XV59-X41A-E (DOUBLE "O" RING)	2	NA	B,11	11,16,21	59
				XV59-240A-E	NA		11,16	
037A-	D	CRD INSERT LINES	BALL CHECK	нси	NA NA		12 12	47
038A-	D	CRD WITHDRAW LINES SDV VENTS & DRAINS		HCU Z XV47-AF010	NA 25		12	47
		SOUTHING DIAMING		XV47-JF180 Z XV47-JF011 Z	25 30 25		30 30 30	
			Z	XV47- XF 181 Z	30		30	
039A(B)	DRYWELL SPRAY	HV51-#F021A(B)	Z HV51-1F016A(B)	160 160		1.11 11	51
040E		DRYWELL PRESSURE INSTRUMENTATION	2	2 HV42-1470	45		10	42
040F-	Z	CONTAINMENT INSTRUMENT GAS -SUCTION	HV59-101	Z 11V59-202	45	С, И, S С, Н, S	5	59

			TABLE 3.6.	3-1 (Continued)				
LIME		방 속에서 관금 정갑	PART A - PRIMARY CON	TAINMENT ISOLATI	ON VALVES			
LIMERICK - UNIT	NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&10
17 1	040G-1	ILRT DATA ACQUISITION	2 60- 1 057	2 60-1058	NA		5,11 11	60
	010G-2	ILRT DATA ACQUISITION	2 60-1071 2	Z 60-1070	NA NA		5,11 11	60
	040H-1	CONTAINMENT INSTRUMENT GAS SUPPLY - HEADER 'A'	59-2005A(CK) Z	Z HV59-129A	NA 7	C,II,S		59
3/4	042	STANDBY LIQUID CONTROL	48-1F007(CK) (X-16)	Z 11V48-1F006A	NA 60		29	48
4 6-24	043B	MAIN STEAM SAMPLE	HV41-1F084 2	2 HV41- "F085	10 10	8.0 8.0		41
	044	RWCU ALTERNATE RETURN	41-1017	41-101 A-9A, X-9B) Z PSV41-112	NA NA		5,31	41
Amendment	045A(B,C,D)	LPCI INJECTION 'A'(0,C,D)	HV51-1F041A*(B,C* D*)(CK) HV51-142A*(B,C*, D*) Z	Z IIV51-XF017A*	7 38	NA	9,22	9,22 5
No	050A-1	DRYWELL PRESSURE INSTRUMENTATION		(B,C2,D2) HV42-147B	45		10	42
	053	DRYWELL CHILLED WATER SUPPLY - LOOP 'A'	2 HV87-128*	Z HV87-#20A* HV87-#25A* Z	60 60 60	С.Н С, <i>Н</i> С, <i>Н</i>	11 11,820, 599 11,230,282	87
	0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•				•	

TADIF 3 C 3 1

.....

11

,

		PART A - PRIMARY CON	TATINHENT ISOLAT	ION VALVES			
PENETRATION	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX. ISOL. TIME. IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&
054	DRYWELL CHILLED WATER RETURN - LOOP 'A'	HV87-129*	11V87-121A	60 60	С,Н С, <i>Н</i>		87
			HVC7-1244*	60	C, H	11,280, 299 11,280,	
055	DRYWELL CHILLED WATER	HV87-122*				78	
	SUPPLY - LOOP 'B'	HV87-122-	ZQ		C.H	11	87
			HV87-1208*	60	C, H	11,28,	
		2 0	HV87-1258*	60	C,H	29	9
056	DRYWELL CHILLED WATER	HV87-123*	2 ~	60	С.Н		
	RETURN - LOOP 'B'		HV87-1218*	60	C,H	11	87
		Z	HV87-1248*	60	C,H	11,28	
061-1	RECIRC PUMP 'A' SEAL	43-1004A(CK)	Z	NA	-,-		
	PURGE	is you m(ch)	(XV43-103A -	NA		15	43
			SEE PART 8.			1	
		2 9	THIS TABLE)				
061-2	RECIRC PUMP 'B' SEAL	43-40048*(CK)	2	NA			
	PURGE		(XV43-2038 -	NA		15	43
			SEE PART B.			•	
		Z	THIS TABLE)				
062	DRYWELL H2/02 SAMPLE	SV57- (50(X-220A)	2	5	B.H.R.S		
	RETURN, N2 MAKE-UP		5457-159	5	8,11,R,S	11	57
ž			(X-220A) -				
=			(x-220A) HV57-A16 2	30**	B.H.R.S	11	
3 1986			(X-220A) SV57-190 Z	5	8, H, R, S		

FINERRICK PENETRATION	FUNCTION	IMBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX. ISOL. TIME. IF APP. (SEC)(26)	ISOL. SIGNAL(S). IF APP. (20)	NOTES	P&10
۲		2	SV57-191 (X-220A)	5	8, H, R, S	11	
116	STANDBY LIQUID CONTROL	48-1F007(CK) (X-42)	2 HV48-1F0068	NA 60			48
1178-1	DRYWELL RADIATION MONITORING SUPPLY	SV26-190A	7	5	B.H.R.S	29	
1178-2	DRYWELL RADIATION	2	SV26-1908	5	B,H,R,S	11 11	26
3/4	MONITORING RETURN	SV26-190C Z	Z SV26-1900	5 5	R.H.R.S B.H.R.S	11	26
6 201A	SUPPRESSION POOL PURGE SUPPLY	HV57-124 Z HV57-131(x-25)		5** 5**	8.H.S.U.W.R.T	3.11.14	57
ove benenor]	HOROGEN RECEMBINICE	HV57-164 Z	HV57-X09(X-25)	9	B.H.S.U.W.R.T B.H.R.S	3,11,14 - 3,11,14 - 11	
US7-221(X-25) Rlist allacross		Z	HV57-1472 HV57-121(X-25)	6** 5**	8, H, S, U, W, R, T 8, H, S, U, W, R, T	11 11	
202	SUPPRESSION POOL PURGE	HV57-104 HV57-105 2 - HV57-162	2	5** 15**	B,H,S,U,R,I	3,11,14,3 8 ,11	3 57
Bus7-285 adlistall	HHOROGEN RECOMMENCE - A" EXHAUST	Z	HV57-112 Z HV57-118	9	-8,H,R,S 8,H,S,U,W,R,T 8,H,S,U,R,T	-3,11,14 11, 33 11	1
# Cacross _	RHR PUMP SUCTION		5V57-105 7 H= 57-266 HV51-16004A(B.	5 9 240	B, H, R, S B, H, R, S	11 //	
•			c,0) ² Z			4,22, 19,29	51
			PSV51-XF030A(B, C,D)	NA		22	
-		L	4157-269	9	B, H, R, S	11	

TABLE 3.6.3-1 (Continued)

[n

LIMERICK		P		6.3-1 (Continued) ONTAINMENT ISOLATIO	N VALVES		•		
RICK - UNIT	NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP.	NOTES	PAID	,
11	204A(B)	RHR PUMP TEST LINE AND CONTAINMENT COOLING		2 11V51-225A(B)	180	(20)	4,22,29	51	
	205A(B)	SUPPRESSION POOL SPRAY		Z HV51-1F027A*(B)	45	C,G	п	51	1
	206A(B,C,D)	CS PUMP SUCTION		Z HV52-4F001A (B,C,D)	160		4,22,29	52	
	207A(B)	CS PUMP TEST AND FLUSH			23	C,G	5,22	52	
3/4	2088	CS PUMP MINIMUM RECIRC		2 HV52-1F0318	45	LECH	5,22,29		
4 6-27		HPCI PUMP SUCTION		HV55-21042	160	L,IA	1.22	55	
27	210	HPCI TURBINE EXHAUST		HV55-AF072	120		4,22,29		
	212	HPCI PUMP TEST AND FLUSH		HV55-1F071	40	8,11	1,22	55	
	214	RCIC PUMP SUCTION		Z HV49-1F031	60		4,22,29		
	215	RCIC TURBINE EXHAUST		11V49-1:060	80		1,22,29		
An	216	RCIC MINIMUM FLOW		HV49-7F019	8	LERC	5,22	49	

			IABLE 3.	6.3	3-1 (Continued)				
LIMERICK		PA	IRT A - PRIMARY C	ONT	AINMENT ISOLATI	ON VALVES			
RICK - UNIT	PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER		OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&1D
1 1	217	RCIC VACUUM PUMP DISCH	2 HV49-ÅF002 Z		2 49-11028(CK)	60 NA		5,29	49
	218	INSTRUMENT GAS TO VACUUM RELIEF VALVES	59-1001(CK)		Z HV59-135	NA 7	С,Н,S		59
	219A	INSTRUMENTATION - SUPPRESSION POOL LEVEL			2 HV55-421	45		10	55
3/4 6	2198	INSTRUMENTATION - SUPPRESSION POOL LEVEL			2 HV55-120 ·	45		10	55
6-28	220A	H2/02 SAMPLE RETURN	Z SV57-191(X-62)	212	man provin or j	5 5 30** 5	B,H,R,S B,H,R,S B,H,R,S B,H,R,S	11 11 11 11	57
	229A				SV57-459(X-62)	5	B,H,R,S	ii	
	2208	INSTRUMENTATION - SUPPRESSION POOL PRESSURE SUPPRESSION POOL LEVEL			sv57-101 2	5		10	57
	221A	WETWELL H2/02 SAMPLE	SV57-281		R SV57-A41 SV57-A84	5 5 5	B.H.R.S B.H.R.S B.H.R.S	11 11 11	57
	2218	WETWELL H2/02 SAMPLE	2 SV57-183		SV57-186	5 5	B,H,R,S B,H,R,S	11 11	57

TABLE 3	.6.3.1	(Continued)

5		TABLE 3.	.6.3.1 (Continued)				
	PA	RT A - PRIMARY (CONTAINMENT ISOLAT	TON VALVES			
PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(36)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&10
- 225	RHR VACUUM RELIEF SUCTION	HV51-230	2 HV51- X 31	60 60	В,Н В,Н	4.11	51
226A	RHR MINIMUM RECIRC		HV51-205A	40		4,22,29	51
2268	RHR MINIMUM RECIRC	2	HV51-1058	40		4,22,29	51
227	ILRT DATA ACQUISITION SYSTEM	60-2073	60-2074	NA NA		5	60
2280	HPCI VACUUM RELIEF	HV55-2F095	2 HV55-2F093	40 40	H,LA H,LA	4,11,24	55
o 230B	INSTRUMENTATION - DRYWELL SUMP LEVEL		HV61-102	45		1,23,29	61
		2	HV61-412 7 HV61-432 7	45 45		23,29 23,29	61
231A	DRYWELL FLOOR DRAIN SUMP DISCHARGE	HV61-110	₹ HV61-111	30 30	В,Н В,Н	11,22 11,22	61
2318	DRYWELL EQUIPMENT DRAIN TANK DISCHARGE	HV61-130	2 HV61-131	30 30	В,Н В,Н	11,22	61
235	CS PUMP MINIMUM RECIRC		2 HV52-AF031A	45	4F, C, H	5,22,29	52
236	HPCI PUMP MINIMUM RECIRC		2 HV55-JF012	15	LEHP	5,22	5

1.1

- 5.15
- \$ 192

- + +

	P	ART A - PRIMARY	CONTAINMENT ISOLATI	ON VALVES			
PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&10
237-1	SUPPRESSION POOL CLEANUP PUMP SUCTION	HV52-127 2	PSV52-127	60 NA	в,н	4,11,22	52
237-2	SUPPRESSION POOL		HV52-128	60	B,H	11,22	
	LEVEL INSTRUMENTATION		HV52-139 SV52-139 2	45 6		10 10	52
238	RHR RELIEF VALVE DISCHARGE		HV-C-51-7F1048	18	C,G		51
			PSV51-2068 -7 PSV51-2F0558 -7			19 19	
239	RHR RELIEF VALVE		PSV51-2018	NA		19	
	DISCHARGE		HV-C-51-AF103A PSV51-A06A 7	18 NA	C,G	19	51
			PSV51-2F055A 2 PSV51-201A 2	NA NA		19 19	
240	RHR RELIEF VALVE DISCHARGE	2	PSV51-11097	NA			51
241	RCIC VACUUM RELIEF	2 HV49-AF084	2	40	H, KA	4,11,24	40
			HV49-1F080	40	H,KA	11,24	

AUE 8 1985

.

	PAPT P - PPI		3-1 (Continued)				
PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX. ISOL. TIME. IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	F&1D
003A-1	INSTRUMENTATION - 'D' MAIN STEAM LINE FLOW		XV41-10700 -2 XV41-210730 -2			1	41
003A-2	INSTRUMENTATION - 'A' RECIRC PUMP SEAL PRESSURE		XV43-2F003A 2			ı	43
003C-1	INSTR HPCI STEAM FLOW		XV55-XF024A 2			1	55
0030-2	INSTR HPCI STEAM FLOW		XV55-11024C 2			1	55
003D-1	INSTR 'A' MAIN STEAM LINE FLOW	- 2	XV41-11070A -2 XV41-11073A -2			1	41
007A(B,C,D)	INSTR - 'A'(B,C,D) MAIN STEAM LINE PRESSURE	(HV41-TF022A(B, C,D) SEE PART A THIS TABLE)	R (HV41-AF02BA (B,C, D) SEE PART A THIS TABLE)	5* 5*	C.D.E.F.P.Q C.D.E.F.P.Q	6 6	41
			₹ (HV40-XF001B (F,K,P) SEE PART A THIS TABLE) XV40-X01B(F,	45	E,A	76 1,6	
020A-1			K,P) 2			1,0	
	INSTR - RPV LEVEL		XV42-1F0458			1	42
020A-2	INSTR - 'B' LPCI DELTA P		XV51-1028			1	51
020A-3	INSTR - 'D' LPCI DELTA P		XV51-2038			1	51
0208-1	INSTR - RPV LEVEL		XV42-2F045C				
0208-2	INSTR - 'C' LPCI DELTA P		XV51-102C			1	42 51

-

	PART B - P	RIMARY CONTAINMEN	T ISOLATION EXCESS	FLOW CHECK VALV	ES		
PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBCARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP.	NOTES	P&ID
0278-1	INSTR - HPCI FLOW		XV55-AF0248	(JCC/(20)	(20)		
0278-2	INSTR - HPCI FLOW		XV55-2F024D			1	55
029A	INSTR - RPV FLANGE LEAKAGE		xv41-2009			1	55 41
0298	INSTR - CS DELTA P		2 XV52-AF018A				
030A	INSTR - 'D' MAIN STEAM FLOW		₹ XV41-AF071D XV41-2F072D ₹			1	52 41
0308-2	INSTR - 'C' MAIN STEAM LINE FLOW		2 XV41-AF071C XV41-AF072C 2			1	41
031A	INSTR - JET PUMP FLOW		2 XV42-2F059B (JP1) 2 XV42-2F059D (JP2) 2 XV42-2F059F			1	42
0318	INSTR - JET PUMP FLOW		(JP3) 2 XV42-AF059H (JP4) 2 XV42-XF051B (JP5) 2 XV42-XF053B (JP6)			1	42

0.

5.00

PENETRATION NUMBER	FUNCTION	INBOARD I SOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX. ISOL. TIME. IF APP.	ISOL. SIGNAL(S), IF APP.	NOTES	P\$10
	INSTR - JET PUMP FLOW		2 XV42-AF059M (JP6) 2 XV42-AF059P XV42-AF059P (JP7) 2	TarVar	1071	-	42
	INSTR - JET PUMP FLOW	1	XVA2-XF0595 (JP9) XVA2-JF059U (JP9) XV42-AF0510 XV42-AF0510 (JP10) Z			-	42
	INSTR-PRESSURE ABOVE CORE PLATE	, 1	XV42-AF0530 (JF10) XV42-AF055 XV42-AF055			-	45
	INSTR-PRESSURE BELOW CORE PLATE	I	XV42-AF061			-	42
	INSTR-RCIC STEAM FLOW	1	XV49-AF044A.C			-	40
	INSTR - 'C' MAIN STEAM LINE FLOW	1	XV41-AF070C XV41-Y073C 2			1	42-41
	INSTR - RECIRC FLOW	1	2 XV43-AF009C XV43-AF0100 2			-	43
	INSTR - RECIRC FLOW	1	XV43-4F0090 XV43-4F010C			-	43

IABLE 3.6.3-1 (Continued)

,

L

....

1.4

*

PENETRATION NUMBER	FUNCTION	IMARY CONTAINMEN INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&11
040A	INSTR - JET PUMP FLOW		2 xv42-zF059L (JP15) 2 xv42-zF059N (JP17) 2 xv42-zF059R (JP18)			1	42
0408	INSTR - JET PUMP FLOW		2 XV42-XF059G (JP14) 2 XV42-XF051A (JP16) 2 XV42-XF053A (JP16)			1	42
400	INSTR - JET PUMP FLOW		2 XV42-AF059A (JP11) 2 XV42-AF059C (JP12) 2 XV42-XF059E (JP13) 2			1	42
400-1	INSTR - PRESSURE BELOW CORE PLATE	-	XV42-1F057			1	42
100-2	INSTR - RWCU BOTTOM DRAIN FLOW	·· · .	XV44-270 XV44-271 2			1	44

TABLE 3.6.3-1 (Continued)

	Den
	π.
	≝
	∍
	~
	Ē
	-
	ب
	-
	=
1	00
6	2
2	
-	-
**	-
1	
1	
	3
	2
U	2
~	
	1
-	4
-	11
-	
1	3
-	21
TARI	• 1
-	• 1

PENETRAFION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX. ISOL. TIME. IF APP.	ISOL. SIGNAL(S), IF APP.	NOTES
1-3040	INSTR - REIC STEAM FLOW	1	XV49-460448 XV49- FF044B	[stc](26)	(20)	-
040H-2	INSTT 'B' RECIRC PUMP COOLER FLOW	1	XV87-7568 XV87-7578 Z			11
1-140	INSTR - RMCU FLOW	1				3
041-2	INSTR - 'A' LPCI DELTA P	1	XV51-Z03A			
VEN0 /4	INSTR - RECIRC LOOP 'A' DELTA P	1	XV43-7F040A.C			
5 047	INSTR - RWCU FLOW	:	Z XV44-A02D			
0484-1	INSTR - RPV LEVEL	1	XV42-JF0658			
048A-2	INSTR - CS DELTA P	1	XV52-110188			
0488	INSTR - RPV LEVEL	1	XV42-AF065A			
049A,B	INSTR - 'A' AND 'B' MAIN STEAM LINE FLOW	1	XV41-160724 8 2			-
0504-2	INSTR 'B' RECIRC FLOW	1	XV43-XF011A			

8 1995

IMERICA		CO.IIIIIII	IT ISOLATION EXCESS	FLOW CHECK VALV	ES		
PENETRATION	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&10
₩ 050A-3	INSTR 'B' RECIRC FLOW		XV43-2F0118 XV43-2F012A Z		<u> </u>	1	43
0508-1	INSTR - 'A' RECIRC PUMP SEAL PRESSURE		XV43-2F004A			1	43
050B-2	INSTR - 'A' RECIRC PUMP COOLER FLOW		2 XV87-156A XV87-157A 2			17	87
051A-1	INSTR - 'A' RECIRC LINE FLOW	-	XV43-1F009A XV43-1F0108 2			1	43
051A-2	INSTR - 'A' RECIRC LINE FLOW	-	2 XV43-1F0098 XV43-1F010A 2			1	43
0518	INSTR - JET PUMP FLOW		2 XV42-IF059T (JP19) 2 XV42-IF051C (JP20) 2 KV42-IF053C (JP20)			1	42
052A	INSTR - 'B' MAIN STEAM LINE FLOW		Z XV41-AF070B XV41-AF073B 7			1	41
0528-1	INSTR - 'B' RECIRC LINE FLOW	~	XV43-1F011C,D			1	43
0528-2	INSTR - 'B' RECIRC LINE FLOW	-	XV43-AF012C,D			1	43
057	INSTR - RWCU FLOW		XV44-2020			1	44

TABLE 3.6.3-1 (Continued)

٠

-

TABLE 3.6.3-1 (Continued)

PART B - PRIMARY CONTAINMENT ISOLATION EXCESS FLOW CHECK VALVES

	(1, 2, 2)	PART B - PR	IMARY CONTAINMENT	ISOLATION EXCESS	FLOW CHECK VALV	re.		
	ETRATION IBER	FUNCTION	INBOARD ISOLATION BARRIER	OUIBOARD ISOLATION BARRIER	MAX. ISOL. TIME. IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P\$10
058	۸	INSTR - RECIRC LOOP 'B' DELTA P		XV43-XF0408		1007	1	43
061	-1	RECIRC PUMP SEAL PURGE	R (43-A004A(CK) - See Part A of this table)	₹ XV43-203A			15 1	13
061	-2	RECIRC PUMP SEAL PURGE	2 (43-X004B(CK) See Part A of this table)	₹ XV43-∕1038			15 1	43
063-	-1	INSTR - RECIRC LOOP 'B' DELTA P		2 XV43-AF040D			1	41
063-	-2	INSTR - 'B' RECIRC PUMP SEAL PRESSURE	-	2 XV43-AF004B XV43-AF003B -2			1	43
065A	•	INSTR - RPV PRESSURE		2 XV42-2F0438			1	
065B	3	INSTR - RPV PRESSURE		XV42-11049A			275.00	42
066A	1-1	INST-RPV LEVEL		2 XV42-1F0450			1	42
066A	1-2	INSTR - 'B' LPCI DELTA P		₹ XV51-A02D XV51-A03D ₹			1	42 51
066B		INST - RPV LEVEL		2 XV42-AF045A				
0668	-2	INST - 'A' LPCI DELTA P		XV51-202A XV51-203C 7			1	42
067A		INSTR - RPV PRESSURE		XV42-1F0498				4.2

The second second second

PENETRATION	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P& [1]
0678-1	INSTR - RPV PRESSURE	-	XV42-2F043A		<u></u>		42
0678-2	INSTR - RPV LEVEL		XV42-AF041			1	42
102A	INS? JET PUMP, REACTOR LEVEL		XV42-185A(JP16)			1	42
107	INST JET PUMP, REACTOR LEVEL		2 XV42-185B(JP5)			1	42

r

TABLE 3.6.3-1 (Continued)

-

AUG & 1985

TABLE 3.6.3-1 (Continued)

PART C - PRIMARY CONTAINMENT PENETRATIONS (TYPE B)

-			<u>1/</u>	BLE 3.6.3-1 (Co	intinued)			
LMEXICK		PART	C - PRIMARY CONTAI	NMENT PENETRATI	ONS (TYPE B)			
- UNIT	PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARDIED	MAX. ISOL. TIME. IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P*10
-	NA	DRYWELL HEAD FLANGE	DOUBLE O-RING		김 씨는 이 영향		2	60
	001	EQUIPMENT ACCESS DOOR	DOUBLE O-RING				2	60
	002	EQUIPMENT ACCESS DOOR AND PERSONNEL LOCK	DOUBLE O-RING	14 19			2,18	60
	004	HEAD ACCESS MANHOLE	DOUBLE O-RING				2	60
	006	CRD REMOVAL HATCH	DOUBLE O-RING					
in n	100A-D	NEUTRON MONITORING SYSTEM	CANISTER				2	60
00	101A-D	RECIRC PUMP POWER	CANISTER				8	60
	103A,B	TEMPERATURE AND LOW LEVEL SIGNALS	CANISTER		-		8 8	60 60
	104A-D	CRD POSITION INDICATOR	CANISTER					
	105A-E	MISCELLANEOUS LOW- VOLTAGE CONTROL POWER	CANISTER				8 8	60 60
	106A-C	LOW-VOLTAGE CONTROL	CANISTER				8	60

11 on. 193

12.1

LIMER	PART	C - PRIMARY CONTAI	6.3-1 (Continue NMENT PENETRATI	4	•		
PENETRATION NUMBER	FUNCTION	INBOARD ISOLATION BARRIER	OUTBOARD ISOLATION BARRIER	MAX.ISOL. TIME.IF APP. (SEC)(26)	ISOL. SIGNAL(S), IF APP. (20)	NOTES	P&10
₩ 200A,B	ACCESS HATCH	DOUBLE O-RING				2	60
222	INDICATION AND CONTROL	CANISTER				8	60
230A	STRAIN GAUGE INSTR.	CANISTER				. 8	60

Second and Strength

PRIMARY CONTAINMENT ISOLATION VALVES

NOTES

- Instrumentation line isolation provisions consist of an orifice and excess flow-check valve or remote manual isolation valve. The excess flow-check valve is subjected to operability testing, but no Type C test is performed or required. The line does not isolate during a LOCA and can leak only if the line or instrument should rupture. Leaktightness of the line is verified during the integrated leak rate test (Type A test).
- Penetration is sealed by a blind flange or door with double 0-ring seals. These seals are leakage rate tested by pressurizing between the 0-rings.
- 3. Inboard butterfly valve tested in the reverse direction.
- Inboard gate valve tested in the reverse direction.
- 5. Inboard globe valve tested in the reverse direction.
- 6. The MSIVs and this penetration are tested by pressurizing between the valves. Testing of the inboard valve in the reverse direction tends to unseat the valve and is therefore conservative. The valves are Type C tested at a test pressure of 22 psig.
- 7. Gate valve tested in the reverse direction.
- 8. Electrical penetrations are tested by pressurizing between the seals.
- 9. The isolation provisions for this penetration consist of two isolation valves and a closed system outside containment. Because a water seal is maintained in these lines by the safeguard piping fill system, the inboard valve may be tested with water. The outboard valve will be pneumatically tested.
- 10. The valve does not receive an isolation signal but remains open to measure containment conditions post-LOCA. Leaktightness of the penetration is verified during the Type A test. Type C test is not required.
- 11. All isolation barriers are located outside containment.
- Leakage monitoring of the control rod drive insert and withdraw line is provided by Type A leakage rate test. Type C test is not required.
- 13. The motor operators on HV-13-109 and HV-13-110 are not connected to any power supply.
- 14. Valve is provided with a separate testable seal assembly, with double concentric O-ring seals installed between the pipe flange and valve flange facing primary containment. Leakage through these seals is included within the Type C leakage rate for this penetration.

LIMERICK - UNIT 1

....

3/4 6-41

AUE & igs:

PRIMARY CONTAINMENT ISOLATION VALVES

NOTES (Continued)

15. Check valve used instead of flow orifice.

- 16. Penetration is sealed by a flange with double O-ring seals. These seals are isakage rate tested by pressurizing between the O-rings. Both the TIP Purge Supply (Penetration 35%) and the TIP Drive Tubes (Penetration 35C-G) are welded to their respective flanges. Leakage through these seals is included in the Type C leakage rate total for this penetration. The ball the shear valves (XV-Z4DA-E) because squib firing is required for closure. Shear valves (XV-Z40A-E) are normally open.
- 17. Instrument line isolation provisions consist of an excess flow check valve. Because the instrument line is connected to a closed cooling water system inside containment, no flow orifice is provided. The line does not isolate during a LOCA and can leak only if the line or instrument should rupture. Leaktightness of the line is verified during the integrated leak rate test (Type A test).
- In addition to double "O" ring seals, this penetration is tested by pressurizing volume between doors per Specification 4.6.1.3.
- 19. The RHR system safety pressure relief valves will be exempted from the initial LLRT. The relief valves in these lines will be exposed to contain ment pressure during the initial LLRT and all subsequent ILRTs. In addition, modifications will be performed at the first refueling to facilitate local testing or removal and bench testing of the relief valves during subsequent LLRTs. Those relief valves which are flanged to facilitate removal
- and are will be equipped with double D-ring seal assemblies on the flange closest to primary containment. by the end of the first refueling outage. These seals will be leak rate tested by pressurizing between the O-rings, and the results added into the Type C total for this penetration.
 - 20. See Specification 3.3.2, Table 3.3.2-1, for a description of the PCRVICS isolation signal(s) that initiate closure of each automatic isolation valve. In addition, the following non-PCRVICS isolation signals also initiate closure of selected valves:
 - EA Main steam line high pressure, high steam line leakage flow, low MSIV-LCS dilution air flow
 - LFHP With HPCI pumps running, opens on low flow in associated pipe, closes when flow is above setpoint
 - LFRC With RCIC pump running, opens on low flow in associated pipe, closes when flow is above setpoint
 - LFCH with CSS pump running, opens on low flow in associated pipe, closes when flow is above setpoint
 - LFCC Steam supply valve fully closed or RCIC turbine stop valve fully closed

All power operated isolation valves may be opened or closed remote manually.

LIMERICK - UNIT 1

3/4 6-42

135 8 1985

×

X

X

×

are

Personal Street

- & Martin Sala in Marine to 1

PRIMARY CONTAINMENT ISOLATION VALVES

NOTES (Continued)

- Automatic isolation signal causes TIP to retract; ball valve closes when probe is fully retracted.
- 22. Isolation barrier remains water filled or a water seal remains in the line post-LOCA. Isolation valve may be tested with water. Isolation valve leakage is not included in 0.60 La total Type 8 & C tests.
- 23. Valve does not receive an isolation signal. . alves will be open during Type A test. Type C test not required.
- 24. Both isolation signals required for valve closure.
- 25. Deleted
- 26. Valve stroke times listed are maximum times verified by testing per Specification 4.0.5 acceptance criteria. The closure times for isolation valves in lines in which high-energy line breaks could occur are identified with a single asterisk. The closure times for isolation valves in lines which provide an open path from the containment to the environs are identified with a double asterisk.
- 27. The reactor vessel head seal leak detection line (penetration 29A) excess flow check valve is not subject to OPERABILITY testing. This valve will not be exposed to primary system pressure except under the unlikely conditions of a seal failure where it could be partially pressurized to reactor pressure. Any leakage path is restricted at the source; therefore, this valve need not be OPERABILITY tested.
- 28. Automatic isolation logic to be added by the end of the first refueling. outsee. Deleted.
- Valve may be open during normal operation; capable of manual isolation from control room. Position will be controlled procedurally.
- 30. Valve normally open, closes on scram signal.
- Valve 41-Z016 is an outboard isolation barrier for penetrations X-9A, B and X-44. Leakage through valve 41-Z016 is included in the total for penetration X-44 only.
- 32. Feedwater long-path recirculation valves are sealed closed whenever the reactor is critical and reactor pressure is greater than 600 osig. The valves are expected to be opened only in the following instances:
 - Flushing of the condensate and feedwater systems during plant startup.
 - Reactor pressure vessel hydrostatic testing, which is conducted following each refueling outage prior to commencing plant startup.

Therefore, value stroke timing in accordance with Specification 4.0.5 is not required. Rutematic Isolation Value and a

33. Valve also constitutes a Refueling Area Secondary Containment Automatic Isolation Valve as shown in Table 3.6.5.2.2-1, respectively.

Table 3.6.5. 2.1-1 and

JUL 8 1947

LIMERICK - UNIT 1

3/4 6-43

Assendment No. 6

34. Isolation signal causes recombinen to trip; value closes when recombined is not operating. CONTAINMENT SYSTEMS

3/4.6.4 VACUUM RELIEF

SUPPRESSION CHAMBER - DRYWELL VACUUM BREAKERS

LIMITING CONDITION FOR OPERATION

3.6.4.1 Each pair of suppression chamber - drywell vacuum breakers shall be OPERABLE and closed.

APPLICABILITY: OPERATIONAL CONT TIONS 1, 2, and 3.

ACTION:

- a. With one or more vacuum breakers in one pair of suppression chamber drywell vacuum breakers inoperable for opening but known to be closed, restore the inoperable pair of vacuum breakers to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With one suppression chamber drywell vacuum breaker open, verify the other vacuum breaker in the pair to be closed within 2 hours: restore the open vacuum breaker to the closed position within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in CCLD SHUTDOWN within the following 24 hours.
- c. With one position indicator of any suppression chamber drywell vacuum breaker inoperable:
 - Verify the other vacuum breaker in the pair to be closed within 2 hours and at least once per 15 days thereafter, or
 - 2. Verify the vacuum breaker(s) with the inoperable position indicator to be closed by conducting a test which demonstrates that the ΔP is maintained at greater than or equal to 0.7 psi for one hour without makeup within 24 hours and at least once per 15 days thereafter.

Otherwise, be in at least HOT SHUTDOwn within the next 12 hours and in COLD SHUTDOwn within the following 24 hours.

Pre-

0

The set of the set of a set of the set of

CONTAINMENT SYSTEMS

Sand Presenter .

SURVEILLANCE REQUIREMENTS

4.6.4.1 Each suppression chamber - drywell vacuum breaker shall be:

- a. Verified closed at least once per 7 days.
- b. Demonstrated OPERABLE:
 - At least once per 31 days and within 2 hours after any discharge of steam to the suppression chamber from the safety/relief valves, by cycling each vacuum breaker through at least one complete cycle of full travel.
 - At least once per 31 days by verifying both position indicators OPERABLE by observing expected valve movement during the cycling test.
 - 3. At least once per 18 months by;

a) Verifying each value's opening setpoint, from the closed position, to be 0.5 psid \pm 5%, and

- Verifying both position indicators OPERABLE by performance of a CHANNEL CALIBRATION.
- c) Verifying that each outboard valve's position indicator is capable of detecting disk displacement >0.050", and each inboard valve's position indicator? is capable of detecting disk displacement >0.120".

• •

CONTAINMENT SYSTEMS

38740864

3/4.6.5 SECONDARY CONTAINMENT

REACTOR ENCLOSURE SECONDARY CONTAINMENT INTEGRITY

IMITING CONDITION FOR OPERATION

3.6.5.1.1 REACTOR ENCLOSURE SECONDARY CONTAINMENT INTEGRITY shall be maintained. <u>APPLIC'S'LITY</u>: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

Without REACTOR ENCLOSURE SECONDARY CONTAINMENT INTEGRITY, restore REACTOR ENCLOSURE SECONDARY CONTAINMENT INTEGRITY within 4 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24

SURVEILLANCE REDUIRSMENTS

4.6.2.1.1 REACTOR ENCLOSURE SECONDARY CONTAINMENT INTEGRITY shall be demon-

- a. Verifying at least once per 24 hours that the pressure within the reactor enclosure secondary containment is greater than or equal to 0.25 inch of vacuum water gauge.
- b. Verifying at least once per 31 days that:
 - All reactor enclosure secondary containment equipment hatches and blowout panels are closed and sealed.
 - 2. At least one door in each access to the reactor enclosure secondary containment is closed.
 - 3. All reactor enclosure secondary containment penetrations not capable of being closed by OPERABLE secondary containment automatic isolation dampers/valves and required to be closed during accident conditions are closed by valves, blind flanges, slide gate dampers or deactivated automatic dampers/valves secured in position.
- c. At least once per 18 months:

 Verifying that one standby get treatment subsystem will draw down the reactor enclosure secondary containment to greater than or eval to 0.25 inch of vacuum water gauge in less than or equal to i seconds with the reactor enclosure recirc system in operation, and

ter than or equal to 0.25 inch of vacuum water ctor enclosure secondary containment at a flow fing 1250 cfm with wind Speeds of £ 7.0 mph

eien 30', or, if that instrument on Tower ! Tower 2, elevation 1551. Jul 8 M

B SALCK - UNIT 1

Amandmant No. 6

to a first the state of the second of the

CONTAINMENT SYSTEMS

3/4.6.5 SECONDARY CONTAINMENT

REFUELING AREA SECONDARY CONTAINMENT INTEGRITY

LIMITING CONDITION FOR OPERATION

3.6.5.1.2 REFUELING AREA SECONDARY CONTAINMENT INTEGRITY shall be maintained.

APPLICABILITY: OPERATIONAL CONDITION ..

ACTION:

and the second

Without REFUELING AREA SECONDARY CONTAINMENT INTEGRITY, suspend handling of irradiated fuel in the secondary containment, CORE ALTERATIONS and operations with a potential for draining the reactor vessel. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.6.5.1.2 REFUELING AREA SECONDARY CONTAINMENT INTEGRITY shall be demonstrated by:

- a. Verifying at least once per 24 hours that the pressure within the refueling area secondary containment is greater than or equal to 0.25 inch of vacuum water gauge.
- b. Verifying at least once per 31 days that:
 - All refueling area secondary containment equipment hatches and blowout panels are closed and sealed.
 - At least one door in each access to the refueling area secondary containment is closed.
 - 3. All refueling area secondary containment penetrations not capable of being closed by OPERABLE secondary containment automatic isolation dampers/valves and required to be closed during accident conditions are closed by valves, blind flanges, slide gate dampers or deactivated automatic dampers/valves secured in position.
- c. At least once per 18 months:

Operating one standby gas treatment subsystem for one hour and maintaining greater than or equal to 0.25 inch of vacuum water gauge in the refueling area secondary containment at a flow rate not exceeding 754 cfm.

"When irradiated fuel is being handled in the refueling area secondary containment and during CORE ALTERATIONS and operations with a potential for draining the reactor vessel.

JUL 8 1987

LIMERICK - UNIT 1

Amardiant No. 6

REACTOR CONTAINMENT SYSTEMS

REACTOR ENclusing SECONDARY CONTAINMENT AUTOMATIC ISOLATION VALVES

LIMITING CONDITION FOR OPERATION

3.6.5.2.1 The reactor enclosure secondary containment ventilation system automatic isolation valves shown in Table 3.6.5.2.1-1 shall be OPERABLE with isolation times less than or equal to the times shown in Table 3.6.5.2.1-1.

a start and a start

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

and a supple and and the second states and the second

ACTION:

with one or more of the reactor secondary containment ventilation system automatic isolation valves shown in Table 3.6.5.2.1-1 inoperable, maintain at least one isolation valve OPERABLE in each affected penetration that is open and within 8 hours either:

- a. Restore the inoperable valves to OPERABLE status, or
- b. Isolate each affected penetration by use of at least one deactivated valve secured in the isolation position, or
- c. Isolate each affected penetration by use of at least one closed manual valve, or b'ind flange, or slide gate domper.

Otherwise, in OPERATIONAL CONDITION 1, 2 or 3, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours

SURVEILLANCE REQUIREMENTS

4.6.5.2.1 Each reactor enclosure secondary containment ventilation system automatic isolation valve shown in Table 3.6.5.2.1-1 shall be demonstrated OPERABLE:

- Prior to returning the value to service after maintenance, repair or replacement work is performed on the value or its associated actuator. control or power circuit by cycling the value through at least one complete cycle of full travel and verifying the specified isolation time.
- b. At least once per 18 months by verifying that on a containment isolation test signal each isolation valve actuates to its isolation position.
- c. By verifying the isolation time to be within its limit at least once per 92 days.

the second s

PEA	CTOR ENCLOSURE (ZONE 20)	MAXIMUM	\sim
VAL	VE FUNCTION	ISOLATION TIME (Seconds)	ISOLATION SIGNALS
1.	Reactor Enclosure Ventilation Supply Valve HV-76-107		
2.	Reactor Enclosure Ventilation Supply	5	€,¥,\$,U
3.	Valve HV-76-108 Reactor Enclosure Ventilation Exhaust	5	₿,₭,\$,∪
	Valve HV-76-157 Reactor Enclosure Ventilation Exhaust	5	B,H,S,U
1	Valve HV-76-258	5	B,H,S,U
	Reactor Enclosure Equipment Compartment Exhaust Valve HV-76-141	5	8,H,S,U
6.	Reactor Enclosure Equipment Compartment Exhaust Valve HV-76-242	5	8,H,S,U
7.	Drywell Purge Exhaust Valve HV-76-030	5	8, H, S, U, R, * 1
E.	Drywell Purge Exhaust Valve HV-76-031	5	8.H.S.U.R.T
	Orguell Purge Exhaust Inboard Val. HV-57-114 (Unit 1)	ri 5	R, H S, K, W, R, T
	Drywell Purge Exhaust Outbourd 1 HV-57-115 (Unit 1)	Valve 6	B, H, S, K, W, R, T
	Suppression Port Purge Exhaust Value HU-57-104 (Unit 1)	Indoard 5	B, H, S, U, W, R, T
	Suppression Pool Purge Exhaust Value HV-57-112 (Unit1)	Outboard 6	B, H, S, K, W, R, T
)			
	e Specification 3.3.2, Table 3.3.2-1, for in ch automatic valve. The provisions of Specification		

TABLE 3.6.5.2.1-

JUL 8 8

LIMERICK - UNIT 1

Amandment No. 6

CONTAINMENT SYSTEMS

A to be to

REFUELING AREA SECONDARY CONTAINMENT AUTOMATIC ISOLATION VALVES

3.6.5.2.2 The refueling area secondary containment ventilation system auto atic isolation valves shown in Table 3.6.5.2.2-1 shall be OPERABLE with isolation times less than or equal to the times shown in Table 3.6.5.2.2-1.

APPLICABILITY: OPERATIONAL CONDITION .

ACTION:

With one or more of the refueling area secondary containment ventilation system automatic isolation valves shown in Table 3.6.5.2.2-1 inoperable, maintain at least one isolation valve OPERABLE in each affected penetration that is open and within 8 hours either:

- a. Restore the inoperable valves to OPERABLE status, or
- b. Isolate each affected penetration by use of at least one deactivated valve secured in the isolation position, or
- c. Isolate each affected penetration by use of at least one closed manual valve, blind flange or slide gate damper.

Otherwise, in Operational Condition *, suspend handling of irradiated fuel in the refueling area secondary containment, CORE ALTERATIONS and operations with a potential for draining the reactor vessel. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.6.5.2.2 Each refueling area secondary containment ventilation system automatic isolation valve shown in Table 3.6.5.2.2-1 shall be demonstrated OPERABLE:

- a. Prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by cycling the valve through at least one complete cycle of full travel and verifying the specified isolation time.
- b. At least once per 18 months by verifying that on a containment isolation test signal each isolation valve actuates to its isolation position.
- c. By verifying the isolation time to be within its limit at least once per 92 days.

JUL 8 1987

LIMERICK . UNIT 1

[&]quot;When irradiated fuel is bying handled in the refueling area secondary containment and during CORE ALTERATIONS and operations with a potential for draining the reactor vessel.

		REFUELING AREA SECONDARY CONTAINMENT AUTOMATIC ISOLATION VA	VENTILATION SYSTEM	\vee
	VAL	UELING AREA (ZONE III) VE FUNCTION	MAXIMUM ISOLATION TIME (Seconds)	ISOLATION SIGNALS
		Refueling Area Ventilation Supply Valve HV-76-117 (Unit 1)	5	R,T
		Refueling Area Ventilation Supply Valve HV-76-118 (Unit 1)	5	R,T
	3.	Refueling Area Ventilation Exhaust Valve HV-76-167 (Unit 1)	5	R,T
	4.	Refueling Area Ventilation Exhaust Valve HV-76-168 (Unit 1)	5	R,T
\langle	5.	Refueling Area Ventilation Supply Valve HV-76-217 (Unit 2)	5	R,T
×	6.	Refueling Area Ventilation Supply Valve HV-76-218 (Unit 2)	5	R,T
×	7.	Refueling Area Ventilation Exhaust Valve HV-76-267 (Unit 2)	5	R,T
× 1	8.	Refueling Area Ventilation Exhaust Valve HV-76-268 (Unit 2)	5	R,T
9	9.	Drywel: Purge Exhaust Valve HV-76-030	5	B,H,S,U.R.T
10).	Drywell Purge Exhaust Valve HV-76-031	5	B, H, S, U, R, T
11		Drywell Purge Exhaust Inboard Valve HV-57-114 (Unit 1)	5	8, H, S, U, W, R, T
12		Drywell Purge Exhaust Outboard Valve HV-57-115 (Unit 1)	6	B,H,S,U,W,R,T
13		Suppression Pool Purge Exhaust inboard Valve HV-57-104 (Unit 1)	5	8, H, S, U, W, R, T
14		Suppression Pool Purge Exhaust Outboard Valve HV-57-112 (Unit 1)	6	B,H,S,U,W,R,T

TABLE 3.6.5.2.2-1

The second s

.

LIMERICK - UNIT 1

JUL 8 1987

Americant No.

6

3/4 6-51

REF	UELING AREA (ZONE III)	MAXIMUM	
	VE FUNCTION	ISOLATION TIME (Seconds)	ISOLATION SIGNALS(a)
15.	Drywell Purge Exhaust Inboard Valve HV-57-214 (Unit 2)	5	B,H,S,U,W,R,1
.6.	Drywell Purge Exhaust Outboard Valve HV-57-215 (Unit 2)**	6	8.H.S.U.W.R.1
7.	Suppression Pool Purge Exhaust Inboard Valve HV-57-204 (Unit 2)	5	B,H,S,U,W.R,
8.	Supe sion Pool Purge Exhaust Outboard Valve mv-57-212 (Unit 2)	6	B.H.S.U.W.R.T

the set of the set of a set of the set of the

The provisions of Specification 3.0.4 are not applicable.

3/4 6-51a

(a) See Specification 3.3.2, Table 3.3.2-1, for isolation signals that operate each automatic isolation valve.

LIMERICK - UNIT 1

X

. . .

Amendment No. 6

JUL 8 1987

Section 1. Section 1.

CONTAINMENT SYSTEMS

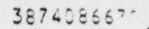
STANDBY GAS TREATMENT SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.5.3 Two independent standby gas treatment subsystems shall be OPERABLE APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, and *.

ACTION:

- a. With one standby gas treatment subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 7 days, or:
 - In OPERATIONAL CONDITION 1, 2, or 3, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - In Operational Condition ", suspend handling of irradiated fuel in the secondary containment, CORE ALTERATIONS and operations with a potential for draining the reactor vessel. The provisions of Specification 3 0 3 are not applicable
- b. With both standby gas treatment subsystems inoperable in Operational Condition *, suspend handling of irradiated fuel in the secondaly containment, CORE ALTERATIONS or operations with a potential for draining the reactor vessel. The provisions of Specification 3.0.3 are not applicable.


SURVEILLANCE REQUIREMENTS

4.6.5.3 Each standby gas treatment subsystem shall be demonstrated OPERABLE:

a. At least once per 31 days by initiating, from the control room, flow through the HEPA filters and charcoal adsorbers and verifying that the subsystem operates with the heaters OPERABLE.

"When irradiated fuel is being handled in the secondary containment and during CORE ALTERATIONS and operations with a potential for draining the reactor vessel.

LIMERICK - UNIT 1

INTENT IONALLY LEFT BLANK

2. 2.

CONTAINMENT SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

and a second second

- b. At least once per 18 months or (1) after any structural maintenance on the HEPA filter or charcoal adsorber housings, or (2) following painting, fire, or chemical release in any ventilation zone communicating with the subsystem by:
 - Verifying that the subsystem satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than 0.05% and uses the test procedure guidance in Regulatory Positions C.5.a. C.5.c and C.5.d of Regulatory Guide 1.52, Revision 2, March 1978, and the system flow rate is 3000 cfm ± 10%.
 - 2. Verifying within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978, meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978. for a methyl iodide penetration of less than 0.175%; and
 - 3. Verify that when the fan is running the subsystem flowrate is 2800 cfm minimum from each reactor enclosure (Zones I and II) and 2200 c/m minimum from the refueling area (Zone III) when tested in accordance with ANSI N510-1980.
 - 4. Verify that the pressure drop across the refueling area to SGTS prefilter is less than 0.25 inches water gage while operating at a flow rate of 2400 cfm ± 10%.
- c. After every 720 hours of charcoal adsorber operation by verifying within 3. days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978, meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978, for a methyl iodide penetration of less than 0.175%.
- d. At least once per 18 months by:
 - Verifying that the pressure drop across the combined HEPA filters and chargoal adsorber banks is less than 9.1 inches water gauge while operating the filter train at a flow rate of 8400 cfm ± 10%.

"Specified subsystem flow rate is for a two unit operation During the Unit 2 construction phase, the Unit 1 subsystem flow rate will be 2800 cfm minimum from the reactor inclosure and 2200 cfm minimum from the refueling area (Zone III).

LIMECICK - UNIT 1

JUL 8 MM7

CUNTAINMENT SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

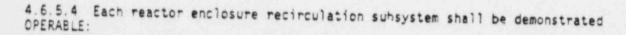
- Verifying that the fan starts and isolation valves necessary to draw a suction from the refueling area or the reactor enclosure recirculation discharge open on each of the following test signals:
 - a) Manual initiation from the control room, and
 - b) Simulated automatic initiation signal.
- Verifying that the standby gas treatment system can be placed in the cooldown mode of operation from the control room.
- 4. Verifying that the temperature differential across each heater is \geq 15°F when tested in accordance with ANSI N510-1980.
- e. After each complete or partial replacement of a HEPA filter bank by verifying that the HEPA filter bank satisfies the inplace penetration and leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 while operating the system at a flow rate of 3000 cfm ± 10%.
- f. After each complete or partial replacement of a charcoal adsorber bank by verifying that the charcoal adsorber bank satisfies the inplar penetration and leakage testing acceptance criteria of less than 0.05k. in accordance with AMSI NSID-1980 for a halogenated hydrocarbon refrigerant test gas while operating the system at a flow rate of 3000 cfm ± 10%.
- Prior to initial criticality of Unit 2 or after any major system alteration:
 - Verify that when the SGTS fan is running the subsystem flowrate is 2800 cfm minimum from each reactor enclosure (Zones I and II) and 2200 cfm minimum from the refueling area (Zone III).
 - 2. Verify that one standby gas treatment subsystem will drawdown meactor enclosure Zone X secondary containment to greater than or equal to 0.25 inch of vacuum water gage in less than or equal to 121 seconds with the reactor enclosure recirculation system in operation and the adjacent reactor enclosure and refueling area zones are in their isolation modes.

LIMERICK - UNIT 1

CONTAINMENT SYSTEMS

REACTOR ENCLOSURE RECIRCULATION SYSTEM

LIMITING CONDITION FOR OPERATION


3.6.5.4 Two independent reactor enclosure recirculation subsystems shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

- ACTION:

- a. With one reactor enclosure recirculation subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 7 days, or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With both reactor enclosure recirculation subsystems inoperable, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

- a. At least once per 31 days by initiating, from the control room, flow through the HEPA filters and charcoal adsorbers and verifying that the subsystem operates properly.
- b. At least once per 18 months or (1) after any structural maintenance on the HEPA filter or charcoal adsorber housings, or (2) following painting, fire, or chemical release in any ventilation zone communicating with the subsystem by:
 - Verifying that the subsystem satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than 0.05% and uses the test procedure guidance in Regulatory Positions C.5.a, C.5.c, and C.5.d of Regulatory Guide 1.52, Revision 2, March 1978, and the system flow rate is 60,000 cfm ± 10%.
 - Verifying within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978, meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978, for a methyl iodide penetration of less than 1%; and
 - Verifying a subsystem flow rate of 60,000 cfm ± 10% during system operation when tested in accordance with ANSI N510-1980.

LIMERICK - UNIT 1

3/4 6-55

1.1. S 1901.

CONTAINMENT SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- c. After every 720 hours of charcoal adsorber operation by verifying within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978, meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978, for a methyl iodide penetration of less than 1%.
- d. At least once per 18 months by:
 - 1. Verifying that the pressure drop across the combined prefilter, upstream and downstream HEPA filters, and charcoal adsorber banks is less than 6 inches water gauge while operating the filter train at a flow rate of 60,000 cfm \pm 10%, verifying that the prefilter pressure drop is less than 0.8 inch water gauge and that the pressure drop across each HEPA is less than 2 inches water gauge.
 - Verifying that the filter train starts and the isolation valves which take suction on and return to the reactor enclosure open on each of the following test signals:
 - a. Manual initiation from the control room, and
 - Simulated automatic initiation signal.
 - 3. Verifying that the reactor enclosure recirculation system can . be placed in the cooldown mode from the Control Room.
- e. After each complete or partial replacement of a HEPA filter bank by verifying that the HEPA filter bank satisfies the inplace penetration and leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 while operating the system at a flow rate of 60,000 cfm \pm 10%.
- f. After each complete or partial replacement of a charcoal adsorber bank by verifying that the charcoal adsorber bank satisfies the inplace penetration and leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 for a halogenated hydrocarbon refrigerant test gas while operating the system at a flow rate of 60,000 cfm ± 10%.

LIMERICK - UNIT 1

3/4 6-56

CONTAINMENT SYSTEMS

DRYWELL AND SUPPRESSION CHAMBER DXYGEN CONCENTRATION

LIMITING CONDITION FOR OPERATION

3.6.6.3 The drywell and suppression chamber atmosphere oxygen concentration shall be less than 4% by volume.

* APPLICABILITY: OPERATIONAL CONDITION 1*, during the time period:

- a. Within 24 hours** after THERMAL POWER is greater than 15% of RATED THERMAL POWER, following startup, to
- b. Within 24 hours** prior to reducing THERMAL POWER to less than 15% of RATED THERMAL POWER, preliminary to a scheduled reactor shutdown.

ACTION:

With the drywell and/or suppression chamber oxygen concentration exceeding the limit, restore the oxygen concentration to within the limit within 24 hours or be in at least STARTUP within the next 8 hours.

SURVEILLANCE REQUIREMENTS

4.6.6.3 The drywell and suppression chamber oxygen concentration shall be verified to be within the limit within 24 hours after THERMAL POWER is greater than 15% of RATE. THERMAL POWER and at least once per 7 days thereafter.

*See Special Test Exception 3.10.5.
**Specification 3.6.1.8 is applicable during this 24 hour period.

LIMERICK - UNIT 1

3/4 6-59

£ 46 \$ 1555

INTENTIONALLY LEFT BLANK

CONTAINMENT SYSTEMS

3/4.6.6 PRIMARY CONTAINMENT ATMOSPHERE CONTROL

PRIMARY CONTAINMENT HYDROGEN RECOMBINER SYSTEMS

LIMITING CONDITION FOR OPERATION

3.6.6.1 Two independent primary containment hydrogen recombiner systems shall be OPERAB'S.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

With one primary containment hydrogen recombiner system inoperable, restore the inoperable system to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours.

SURVEILLANCE REQUIREMENTS

4.6.6.1 Each primary containment hydrogen recombiner system shall be demonstrated OPERABLE:

- a. At least once per 6 months by performance of:
 - 1. A CHANNEL CHECK of all Control Room Recombiner Instrumentation.
 - 2. A Trickle Heat Circuit check.
 - 3. A Heater Coil Check.
 - A verification of valve operation by stroking all the valves to their proper positions.
- b. At least once per 18 months by:
 - Performing a CHANNEL CALIBRATION of all control room recombiner instrumentation and control circuits.
 - Verifying the integrity of all heater electrical circuits by performing a resistance to ground test within 30 minutes following the below required functional test. The resistance to ground for any heater phase shall be greater than or equal to DPO megohms.
 - Verifying through a visual examination that there is no evidence of abnormal conditions within the recombiner enclosure; i.e., loose wiring or structural connections, deposits of foreign materials, etc.
 - 4. Verifying during a recombiner system functional test that the minimum heater outlet gas temperature increases to greater than or equal to 1150°F within 120 minutes and maintained for at least one hour.
- c. By measuring the states leakage rate:
 - As a part of the overall integrated leakage rate test required by Specification 3.6.1.2, or
 - By measuring the laakage rate of the system outside of the containment isolation values at P_a, 44.0 psig, on the schedule required by Specification 4.6.1.2, and including the measured leakage as a part of the laakage determined in accordance with Specification 4.6.1.2.

LIMERICK - UNIT 1

3/4 6-57

CONTAINMENT SYSTEMS

DRYWELL HYDROGEN MIXING SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.6.2 Four independent crywell unit cooler hydrogen mixing subsystems Z (ZAV212, ZBV212, ZGV212, ZHV212) shall be OPERABLE with each subsystem consisting of one unit cooler fan.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

With one drywell unit cooler hydrogen mixing subsystem incperable, restore the inoperable subsystem to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours.

SURVEILLANCE REQUIREMENTS

4.6.6.2 Each drywell unit cooler hydrogen mixing subsystem shall be demonstrated OPERABLE at least once per 92 days by:

- a. Starting the system from the control room, and
- b. Verifying that the system operates for at least 15 minutes.

3/4.7 PLANT SYSTEMS

3/4.7.1 SERVICE WATER SYSTEMS

RESIDUAL HEAT REMOVAL SERVICE WATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.1.1 At least the following independent residual heat removal service water (RHRSW) system subsystems, with each subsystem comprised of:

- a. Two OPERABLE RHRSW pumps, and
- An OPERABLE flow path capable of taking suction from the RHR service b. . water pumps wet pits which are supplied from the spray pond or the cooling tower basin and transferring the water through one RHR heat exchanger.

shall be OPERABLE:

- In OPERATIONAL CONDITIONS 1, 2, and 3, two subsystems. 8.
- In OPERATIONAL CONDITIONS 4 and 5, the subsystem(s) associated with b. systems and components required OPERABLE by Specification 3.4.9.1, 3.4.9.2, 3.9.11.1, and 3.9.11.2.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, 4, and 5.

ACTION:

- Α.
- In OPERATIONAL CONDITION 1, 2, or 3: A, B, C, D 1. With "RHRSW pump A or B inoperable, verify the capability to power RHRSW pump C or D, as applicable, from the applicable Unit 1 diesel generator but within 2 hours and at least once per 12 hours thereafter; restore the inoperable pump to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - With RHRSW pump C or D inoperable, restore the inoperable pump to 2. OPERAELE status within 92 days or be in at least HOT SHULDOWN within the next 12 hours and in COLD SHULDOWN within the following 24 hours
 - 23. With RHRSW pumps A and B inoperable, restore RHRSW pump A or B to OPERABLE status within & hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours. With one RHRSW pump in each subsystem inoperable, restore at least one of the inoperable RHRSW pumps to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 3 A. With one RHRSW subsystem (RHRSW pumps A&C or B&D) inoperable. restore the inoperable subsystem to OPERABLE status with at least one OPERABLE RHRSW pump within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

ALC \$ 1545

otherwise

LIMERICK - UNIT 1

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

otherwise

- 4 B. With both RHRSW subsystems inoperable, restore at least one subsystem to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN* within the following 24 hours.
- b. In OPERATIONAL CONDITION 3 or 4 with the RHRSW subsystem(s), which is associated with an RHR loop required OPERABLE by Specification 3.4.9.1 or 3.4.9.2, inoperable, declare the associated RHR loop inoperable and take the ACTION required by Specification 3.4.9.1 or 3.4.9.2, as applicable.
- c. In OPERATIONAL CONDITION 5 with the RHRSW subsystem(s), which is associated with an RHR loop required OPERABLE by Specification 3.9.11.1 or 3.9.11.2, inoperable, declare the associated RHR system inoperable and take the ACTION required by Specification 3.9.11.1 or 3.9.11.2, as applicable.
- d. In all OPERATIONAL CONDITIONS, if any connection between the RHRSW and Limerick Unit 2 is open, the appropriate subsystem shall be declared inoperable. The inoperable subsystem shall be restored to OPERABLE status within 8 bours or be is at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours

SURVEILLANCE REQUIREMENTS

4.7.1.1 At least the above required residual heat removal service water system subsystem(s) shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each valve in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
- b. At least once per 18 months during shutdown by verifying that the isolation function occurs on a radiation test signal.

*Whenever both RHRSW supsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

LIMERICK - UNIT 1

3/4 7-2

AUS 5 1855

EMERGENCY SERVICE WATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.1.2 At least the following independent emergency service water system loops, with each loop comprised of:

- a. Two OPERABLE emergency service water pumps, and
- b. An OPERABLE flow path capable of taking suction from the emergency service water pumps wet pits which are supplied from the spray pond or the cooling tower basin and transferring the water to the associated safety-related equipment,

shall be OPERABLE:

- a. In OPERATIONAL CONDITIONS 1, 2, and 3, two loops.
- b. In OPERATIONAL CONDITIONS 4, 5, and *, one loop.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, 4, 5, and *.

ACTION:

- a. In OPERATIONAL CONDITION 1, 2, or 3:
 - With one emergency service water pump inoperable, restore the inoperable pump to OPERABLE status within 45 days or be in a least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 2. With one emergency service water pump in each loop inoperable, restore at least one inoperable pump to OPERABLE status within 30 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
 - 3. With one emergency service water system loop inoperable, elign all the diesel generators to the available loop and declare all equipment aligned to the inoperable loop inoperable. TRestore the inoperable loop to OPERABLE status with at least one OPERABLE pump within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With only one emergency service water pump and its associated flow path OPERABLE, restore at least two pumps with at least one flow path to OPERABLE status within 72 hours or:
 - In OPERATIONAL CONDITION 4 or 5, declare the associated safety related equipment inoperable and take the ACTION required by Specifications 3.5.2 and 3.8.1.2.

"When handling irradiated fuel in the secondary containment. "Until after completion of confirmatory flow testing, all the diesel generators shall not be aligned to the available loop and those not aligned shall have their equipment declared inoperable.

LIMERICK - UNIT 1

3/4 7-3

214 8 1925

** The dissel generators may be aligned to the OPERABLE emigency service water Eystern loop provided confirmatory flow testing has been performed. These dissel generators not aligned to the OPERABLE emigency service water Eystern loop shall be declared in operable.

LIMITING CONDITION FOR OFERATION (Continued)

- In Operational Condition *, verify adequate cooling remains available for the diesel generators required to be OPERABLE or declare the associated diesel generator(s) inoperable and take the ACTION required by Specification 3.8.1.2. The provisions of Specification 3.0.3 are not applicable.
- c. In all OPERATIONAL CONDITIONS, if any connection between ESW and Limerick Unit 2 is open, the appropriate subsystem shall be declared Inoperable. The inoperable system shall be restored to OPERABLE status within 8 hours, or be in at least HOT SHUTDOWN within the pext 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.7.1.2 At least the above required emergency service water system loop(s) shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each valve (manual, poweroperated, or automatic) that is not locked, sealed, or otherwise secured in position, is in its correct position.
- b. At least once per 18 months during shutdown, by verifying that:
 - Each automatic valve actuates to its correct position on its appropriate ESW pump start signal.
 - Each pump starts automatically when its associated diesel generator starts.

ULTIMATE HEAT SINK

LIMITING CONDITION FOR OPERATION

3.7.1.3 The spray pond shall be OPERABLE with:

- a. A minimum pond water level at or above elevation 250' Mean Sea Level, (single-unit operation) and
- b. A pond water temperature of less than or equal to 88°F.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, 3, 4, 5, and *.

ACTION:

With the requirements of the above specification not satisfied:

- a. In OPERATIONAL CONDITION 1, 2, or 3, be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- b. In OPERATIONAL CONDITION 4 or 5, declare the RHRSW system and the emergency service water system inoperable and take the ACTION required by Specifications 3.7.1.1 and 3.7.1.2.
- c. In Operational Condition *, declare the emergency service water system inoperable and take the ACTION required by Specification 3.7.1.2. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.7.1.3 The spray pond shall be determined OPERABLE:

- a. By verifying the pond water level to be greater than its limit at least once per 24 hours.
- b. By verifying the water surface temperature (within the upper two feet of the surface) to be less than or equal to 88°F:
 - at least once per 4 hours when the spray pond temperature is greater than or equal to 80°F; and
 - at least once per 2 hours when the spray pond temperature is greater than or equal to 85°F; and
 - at least once per 24 hours when the spray pond temperature is greater than 32°F.
- c. By verifying all piping above the frost line is drained within 1 hour after being used.

"when handling irradiated fuel in the secondary containment.

LIMERICK - UNIT 1

3/4 7-5

AUC & YES

3.4.7.2 CONTROL ROOM EMERGENCY FRESH AIR SUPPLY SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.2 Two independent control room emergency fresh air supply system subsystems shall be OPERABLE.

APPLICABILITY: All OPERATIONAL CONDITIONS and *. ACTION:

- a. In OPERATIONAL CONDITION 1, 2, or 3 with one control room emergency fresh air supply subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. In OPERATIONAL CONDITION 4, 5, or *:
 - With one control room emergency fresh air supply subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 7 days or initiate and maintain operation of the OPERABLE subsystem in the radiation isulation mode of operation.
 - With both control room emergency fresh air supply subsystems inoperable, suspend CORE ALTERATIONS, handling of irradiated fuel in the secondary containment and operations with a potential for draining the reactor vessel.
- c. The provisions of Specification 3.0.3 are not applicable in Operational Condition *.

SURVEILLANCE REQUIREMENTS

4.7.2 Each control room emergency fresh air supply subsystem shall be demonstrated OPERABLE:

- a. At least once per 12 hours by verifying the control room air temperature to be less than or equal to 85°F effective temperature.
- b. At least once per 31 days on a STAGGERED TEST BASIS by initiating, from the control room, flow through the HEPA filters and charcoal adsorbers and verifying that the subsystem operates with the heaters OPERABLE.
- c. At least once per 18 months or (1) after any structural maintenance on the HEPA filter or charcoal adsorber housings, or (2) following painting, fire, or chemical release in any ventilation zone communicating with the subsystem by:
 - Verifying that the subsystem satisfies the in-place penetration and bypass leakage testing acceptance criteria of less than 0.05% and uses the test procedure guidance in Regulatory Positions C.5.a, C.5.c, and C.5.d of Regulatory Guide 1.52, Revision 2, March 1978, and the system flow rate is 3000 cfm + 10°.

135 2 11

٠

"When irradiated fuel is being handled in the secondary containment.

LIMERICK - UNIT 1

in these

3/4 7-6

3875065750

PLANT SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- 2. Verifying within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978, meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978, for a methyl iodide penetration of less than 1%; and
- Verifying a subsystem flow rate of 3000 cfm + 10% during subsystem operation when tested in accordance with ANSI N510-1980.
- d. After every 720 hours of charcoal adsorber operation by verifying within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978, meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978, for a methyl iodide penetration of less than 1%
- e. At least once per 18 months by:
 - Verifying that the pressure drop across the combined prefilter, upstream and downstream HEPA filters, and charcoal adsorber banks is less than 6 inches water gauge while operating the subsystem at a flow rate of 3000 cfm + 10%; verifying that the prefilter pressure drop is less than 0.8 inch water gauge and that the pressure drop across each HEPA is less than 2 inches water gauge.
 - Verifying that on each of the below chlorine isolation mode actuation test signals, the subsystem automatically switches to the chlorine isolation mode of operation and the isolation valves close within 5 seconds:
 - Outside air intake high chlorine, and
 - b) Manual initiation from the control room.
 - 3. Verifying that on each of the below radiation isolation mode cctuation test signals, the subsystem automatically switches to the radiation isolation mode of operation and the control room is maintained at a positive pressure of at least 1/8 inch water gauge relative to the turbine enclosure and auxiliary equipment room and outside atmosphere during subsystem operation with an outdoor air flow rate less than or equal to 525* cfm:
 - a) Outside air intake high radiation, and
 - b) Manual initiation from control room.

*An allowable outdoor airflow rate of less than or equal to 2100 cfm is permissible until the issuance of the Unit 2 full power operating license.

JUN 2 1987

LIMERICK - UNIT 1

Amendment No. 5

3875065750

PLANT SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- f. After each complete or partial replacement of a HEPA filter bank by verifying that the HEPA filter bank satisfies the inplace penetration and bypass leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 while operating the system at a flow rate of 3000 cfm + 10%.
- 9. After each complete or partial replacement of a charcoal adsorber bank by verifying that the charcoal adsorber bank satisfies the inplace penetration and bypass leakage testing acceptance criteria of less than 0.05% in accordance with ANSI N510-1980 for a halogenated hydrocarbon refrigerant test gas while operating the system at a flow rate of 3000 cfm ± 10%.

0

-

6

...

0

3/4.7.3 REACTOR CORE ISOLATION COOLING SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.3 The reactor core isolation cooling (RCIC) system shall be OPERABLE with an OPERABLE flow path capable of automatically taking suction from the suppression pool and transferring the water to the reactor pressure vessel.

APPLICABILITY: OPERATIONAL CONDITIONS 1, " and 3 with reactor steam dome pressure greater than 150 psi:

ACTION:

- a. With the RCIC system inoperable, operation may continue provided the HPCI system is OPERABLE; restore the RCIC system to OPERABLE status within 14 days. Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and reduce reactor steam dome pressure to less than or equal to 150 psig within the following 24 hours.
- b. In the event the RCIC system is actuated and injects water into the reactor coolant system, a Special Report shall be prepared and submitted to the Commission pursuant to Specification 6.9.2 within 90 days describing the circumstances of the actuation and the total accumulated actuation cycles to date.

SURVEILLANCE REQUIREMENTS

4.7.3 The RCIC system shall be demonstrated OPERABLE:

- a. At least once per 31 days by:
 - Verifying by venting at the high point vents that the system piping from the pump discharge valve to the system isolation valve is filled with water.
 - Verifying that each valve (manual, power-operated, or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
 - 3. Verifying that the pump flow controller is in the correct position.
- b. At least once per 92 days by verifying that the RCIC pump develops a flow of greater than or equal to 600 gpm in the test flow path with a system head corresponding to reactor vessel operating pressure when steam is being supplied to the turbine at 1000 + 20, - 80 psig.*

*The provisions of Specification 4.0.4 are not applicable provided the surveillance is performed within 12 hours after reactor steam pressure is adequate to perform the test.

LIMERICK - UNIT 1

Ó

3/4 7-9

3

SURVEILLANCE REQUIREMENTS (Continued)

- c. At least once per 18 months by:
 - Performing a system functional test which includes simulated automatic actuation and restart and verifying that each automatic valve in the flow path actuates to its correct position. Actual injection of coolant into the reactor vessel may be excluded.
 - Verifying that the system will develop a flow of greater than or equal to 600 gpm in the test flow path when steam is supplied to the turbing at a pressure of 150 + 15, - 0 psig.*
 - Verifying that the suction for the RCIC system is automatically transferred from the condensate storage tank to the suppression pool on a condensate storage tank water level-low signal.
 - Performing a CHANNEL CALIBRATION of the RCIC system discharge line "keep filled" level alarm instrumentation.

*The provisions of Specification 4.0.4 are not applicable provided the surveiliance is performed within 12 hours after reactor steam pressure is adequate to perform the tests.

LIMERICK - UNIT 1

3/4 7-10

٤

3/4.7.4 SNUBBERS

LIMITING CONDITION FOR OPERATION

3.7.4 All snubbers shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3. OPERATIONAL CONDITIONS 4 and 5 for snubbers located on systems required OPERABLE in those OPERATIONAL CONDITIONS.

- ACTION:

With one or more snubbers inoperable on any system, within 72 hours replace or restore the inoperable snubber(s) to OPERABLE status and perform an engineering evaluation per Specification 4.7.4g on the attached component or declare the attached system inoperable and follow the appropriate ACTION statement for that system.

SURVEILLANCE REQUIREMENTS

4.7.4 Each snubber shall be demonstrated OPERABLE by performance of the following augmented inservice inspection program and the requirements of Specification 4.0.5.

a. Inspection Types

As used in this specification, type of snubber shall mean snubbers of the same design and manufacturer, irrespective of capacity.

b. Visual Inspections

Snubbers are categorized as inaccessible or accessible during reactor operation. Each of these groups (inaccessible and accessible) may be inspected independently according to the schedule below. The first inservice visual inspection of each type of snubber shall be performed after 4 months but within 10 months of commencing POWER OPERATION and shall include all snubbers. If all snubbers of each type on any system are found OPERABLE during the first inservice visual inspection, the second inservice visual inspection of that system shall be performed at the first refueling outage. Otherwise, subsequent visual inspections of a given system shall be performed in accordance with the following schedule:

SURVEILLANCE REQUIREMENTS (Continued)

No. Inoperable Shubbers of Each Type on Any System per Inspection Period 1 2 3,4 5,6,7 8 or more No. Inoperable Shubbers of Subsequent Visual Inspection Period*# 18 months ± 25% 12 months ± 25% 6 months ± 25% 62 days ± 25% 31 days ± 25%

c. Visual Inspection Acceptance Criteria

Visual inspections shall verify (1) that there are no visible indications of damage or impaired OPERABILITY, (2) attachments to the foundation or supporting structure are secure, and (3) fasteners for attachment of the snubber to the component and to the snubber anchorage are secure. Snubbers which appear inoperable as a result of visual inspections may be determined OPERABLE for the purpose of establishing the next visual inspection interval, providing that: (1) the cause of the rejection is clearly established and remedied for that particular snubber and for other snubbers irrespective of type on that system that may be generically susceptible; and/or (2) the affected snubber is functionally tested in the as found condition and determined OPERABLE per Specifications 4.7.4f. For those snubbers common to more than one system, the OPERABILITY of such snubbers shall be considered in assessing the surveillance schedule for each of the related systems.

d. Transient Event Inspection

An inspection shall be performed of all snubbers attached to sections of systems that have experienced unexpected, potentially damaging transients, as determined from a review of operational data or a visual inspection of the systems, within 72 hours for accessible systems and 6 months for inaccessible systems following this determination. In addition to satisfying the visual inspection acceptance criteria, freedom-of-motion of mechanical snubbers shall be verified using at least one of the following: (1) manually induced snubber movement; or (2) evaluation of in-place snubber piston setting; or (3) stroking the mechanical snubber through its full range of travel.

#The provisions of Specification 4.0.2 are not applicable.

LIMERICK - UNIT 1

ALL S MID

^{*}The inspection interval for each type of snubber on a given system shall not be lengthened more than one step at a time unless a generic problem has been identified and corrected; in that event the inspection interval may be lengthened one step the first time and two steps thereafter if no inoperable snubbers of that type are found on that system.

SURVEILLANCE REQUIREMENTS (Continued)

e. Functional Tests

During the first refueling shutdown and at least once per 18 months thereafter during shutdown, a representative sample of snubbers shall be tested using one of the following sample plans for each type of snubber. The sample plan shall be selected prior to the test period and cannot be changed during the test period. The NRC Regional Administrator shall be notified in writing of the sample plan selected prior to the test period or the sample plan used in the prior test period shall be implemented:

- At least 10% of the total of each type of snubber shall be functionally tested either in-place or in a bench test. For each snubber of a type that does not meet the functional test acceptance griteria of Specification 4.7.4f., an additional 10% of that type of snubber shall be functionally tested until no more failures are usund or until all snubbers of that type have been functionally tested; or
- 2) A representative sample of each type of snubber shall be functionally tested in accordance with Figure 4.7.4-1. "C" is the total number of snubbers of a type found not meeting the acceptance requirements of Specification 4.7.4f. The cumulative number of snubbers of a type tested is denoted by "N'. At the end of each day's testing, the new values of "N" and "C" (previous day's total plus current day's increments) shall be plotted on Figure 4.7.4-1. If at any time the point plotted falls on or above the "Rejact" line all snubbers of that type shall be functionally tested. If at any time the point plotted falls on or below the "Accept" line, testing of snubbers of that type may be terminated. When the point plotted lies in the "Continue Testing" region, additional snubbers of that type shall be tested until the point falls in the "Accept" region or the "Reject" region, or all the snubbers of that type have been tested. Testing equipment failure during functional testing may invalidate that day's testing and allow that day's testing to resume anew at a later time, providing all snubbers tested with the failed equipment during the day of equipment failure are retested; or
- 3) An initial representative sample of 55 snubbers of each type shall be functionally tested. For each snubber type which does not meet the functional test acceptance criteria, another sample of at least one-half the size of the initial sample shall be tested until the total number tested is equal to the initial sample size multiplied by the factor, 1 + C/2, where "C" is the number of snubbers found which do not meet the functional test acceptance criteria. The results from this sample plan shall be plotted using an "Accept" line which follows the equation N = 55(1 + C/2). Each snubber point should be plotted as soon as the snubber is tested. If the point plotted falls on or below the "Accept" line, testing of that type of snubber may be terminated. If the point plotted falls above the "Accept" line, testing must continue until the point falls on or below the "Accept" line or all the snubbers of that type have been tested.

LIMERICK - UNIT 1

AUE - 8 1995

SURVEILLANCE REDUIREMENTS (Continued)

The representative sample selected for the function test sample plans shall be randomly selected from the snubbers of each type and reviewed before beginning the testing. The review shall ensure as far as practical that they are representative of the various configurations, operating environments, range of size, and capacity of snubbers of each type. Snubbers placed in the same locations as snubbers which failed the previous functional test shall be retested at the time of the next functional test but shall not be included in the sample plan, and failure of this functional test shall not be the sole cause for increasing the sample size under the sample plan. If during the functional testing, additional sampling is required due to failure of only one type of snubber, the functional testing results shall be reviewed at the time to determine if additional samples should be limited to the type of snubber which has failed the functional testing.

f. Functional Test Acceptance Criteria

The snubber functional test shall verify that:

- Activation (restraining action) is achieved within the specified range in both tension and compression;
- Snubber bleed, or release rate where required, is present in both tension and compression, within the specified range (hydraulic snubbers only);
- For mechanical snubbers, the force required to initiate or maintain motion of the snubber is within the specified range in both directions of travel; and
- 4) For snubbers specifically required not to displace under continuous load, the ability of the snubber to withstand load without displacement.

Testing methods may be used to measure parameters indirectly or parameters other than those specified if those results can be correlated to the specified parameters through established methods.

g. Functional Test Failure Analysis

An engineering evaluation shall be made of each failure to meet the functional test acceptance criteria to determine the cause of the failure. The results of this evaluation shall be used, if applicable, in selecting snubbers to be tested in an effort to determine the OPERABILITY of other snubbers irrespective of type which may be subject to the same failure mode.

For the snubbers found inoperable, an angineering evaluation shall be performed on the components to which the inoperable snubbers are attached. The purpose of this engineering evaluation shall be to determine if the components to which the inoperable snubbers are attached were adversely affected by the inoperable snubbers are in order to ensure that the component remains capable of meeting the designed service.

LIMERICK - UNIT 1

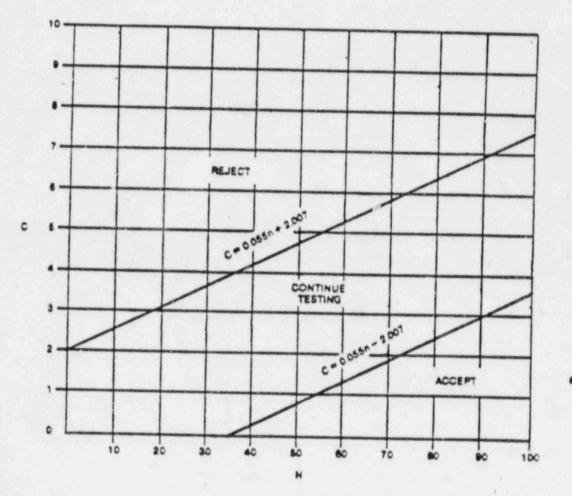
3/4 7-14

100 8 1993

SURVEILLANCE REDUIREMENTS (Continued)

If any snubber selected for functional testing either fails to lock up or fails to move, i.e., frozen-in-place, the cause will be evaluated and if caused by manufacturer or design deficiency all snubbers of the same type subject to the same defect shall be functionally tested. This testing requirement shall be independent of the requirements stated in Specification 4.7.4e. for snubbers not meeting the functional test acceptance criteria.

h. Functional Testing of Repaired and Replaced Snubbers


Snubbers which fail the visual inspection or the functional test acceptance criteria shall be repaired or replaced. Replacement snubbers and snubbers which have repairs which might affect the functional test result shall be tested to meet the functional test criteria before installation in the unit. Mechanical snubbers shall have met the acceptance criteria subsequent to their most recent service, and the freedom-of-motion test must have been performed within 12 months before being installed in the unit.

i. Snubber Service Life Replacement Program

The service life of all snubbers shall be monitored to ensure that the service life is not exceeded between surveillance inspections. The maximum expected service life for various seals, springs, and other critical parts shall be extended or shortened based on monitored test results and failure history. Critical parts shall be replaced so that the maximum service life will not be exceeded during a period when the snubber is required to be OPERABLE. The parts replacements shall be documented and the documentation shall be retained in accordance with Specification 6.10.3.

fine & iner

1 A.

FIGURE 4.7.4-1

SAMPLE PLAN 2) FOR SNUBBER FUNCTIONAL TEST

LIMERICK - UNIT 1 3/4 7-16

1.05 E 1985

٠

3/4.7.5 SEALED SOURCE CONTAMINATION

LIMITING CONDITION FOR OPERATION

3.7.5 Each sealed source containing radioactive material either in excess of 100 microcuries of beta and/or gamma emitting material or 5 microcuries of alpha emitting material shall be free of greater than or equal to 0.005 microcurie of removable contamination.

APPLICABILITY: At all times.

ACTION:

- a. With a sealed source having removable contamination in excess of the above limit, withdraw the sealed source from use and either:
 - 1. Decontaminate and repair the sealed source, or
 - Dispose of the sealed source in accordance with Commission Regulations.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable

SURVEILLANCE REQUIREMENTS

4.7.5.1 Test Requirements - Each sealed source shall be tested for leakage and/or contamination by:

- a. The licensee, or
- Other persons specifically authorized by the Commission or an Agreement State.

The test method shall have a detection sensitivity of at least 0.005 microcurie per test sample.

4.7.5.2 Test Frequencies - Each category of sealed sources, excluding startup sources and fission detectors previously subjected to core flux, shall be tested at the frequency described below.

- a. Sources in use At least once per 6 months for all sealed sources containing radioactive material:
 - 1. With a half-life greater than 30 days, excluding Hydrogen 3, and
 - In any form other than gas.

LIMERICK - UNIT 1

3/4 7-17

ALS 8 1935

- 4

SURVEILLANCE REQUIREMENTS (Continued)

- b. Stored sources not in use Each sealed source and fission detector shall be tested prior to use or transfer to another licensee unless tested within the previous 6 months. Sealed sources and fission detectors transferred without a certificate indicating the last test date shall be tested prior to being placed into use.
- c. <u>Startup sources and fission detectors</u> Each sealed startup source^{*} and fission detector shall be tested within 31 days prior to being subjected to core flux or installed in the core and following repair or maintenance to the source.

4.7.5.3 <u>Reports</u> - A report shall be prepared and submitted to the Commission on an annual basis if sealed source or fission detector leakage tests reveal the presence of greater than or equal to 0.005 microcurie of removable contamination.

* Except The Cf -252 startup source which shall be tested within 6 months priore to being subjected to core flux or installed in The core and fillowing repair or main tename to the source. LIMERICK - UNIT 1 3/4 7-18

3/4.7.6 FIRE SUPPRESSION SYSTEMS

FIRE SUPPRESSION WATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.6.1 The fire suppression water system shall be OPERABLE with:

- a. Two OPERABLE fire suppression pumps, one electric motor driven and one diesel engine driven, each with a capacity of 2500 gpm, with their discharge aligned to the fire suppression header.
- Separate fire water supplies, each with a minimum contained volume of 317,000 gallons, and 300
- C. An OPERABLE flow path capable of taking suction from the Unit 1 Cooling Tower Basin and the Unit 2 Cooling Tower Basin and transferring the water through distribution piping with OPERABLE sectionalizing control or isolation valves to the yard hydrant curb valves, the last valve ahead of the water flow alarm device on each wet pipe sprinkler system and the last valve ahead of the deluge valve on each deluge, spray, or pre-action sprinkler system and the last valve ahead of the fire hose stations required to be OPERABLE per Specifications 3.7.6.2, 3.7.6.5, and 3.7.6.6.

APPLICABILITY: At all times.

ACTION:

- a. With one pump and/or one water supply inoperable, restore the inoperable equipment to OPERABLE status within 7 days or provide an alternate backup pump or supply. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.
- b. With the fire suppression water system otherwise inoperable, establish a backup fire suppression water system within 24 hours.

SURVEILLANCE REQUIREMENTS

4.7.6.1.1 The fire suppression water system shall be demonstrated OPERABLE:

- a. At least once per 7 days by verifying the minimum contained water supply volume.
- b. At least once per 31 days by starting the electric motor-driven fire suppression pump and operating it for at least 15 minutes on recirculation flow.
- c. At least once per 31 days by verifying that each valve (manual, poweroperated, or automatic) in the flow path is in its correct position.

LIMERICK - UNIT 1

3/4 7-19

SURVEILLANCE REQUIREMENTS (Continued)

- d. At least once per 12 months by performance of a system flush.
- e. At least once per 12 months by cycling each testable valve in the flow path through at least one complete cycle of full travel.
- f. At least once per 18 months by performing a system functional test which includes simulated automatic actuation of the system throughout its operating sequence, and:
 - Verifying that each fire suppression pump develops at least 2500 gpm at a system head of 125 psig.
 - Cycling each valve in the flow path that is not testable during plant operation through at least one complete cycle of full travel, and
 - Verifying that each fire suppression pump starts to maintain the fire suppression water system pressure greater than or equal to 95 psig.
- g. At least once per 3 years by performing a flow test of the system in accordance with Chapter 5, Section 11 of the Fire Protection Handbook, 14th Edition, published by the National Fire Protection Association.

4.7.6.1.2 The diesel-driven fire suppression pump shall be demonstrated OPERABLE:

- a. At least once per 31 days by:
 - Verifying the fuel day tank contains at least 330 gallons of fuel.
 - Starting the diesel-driven pump from ambient conditions and operating for greater than or equal to 30 minutes on recirculation flow.
- b. At least once per 92 days by verifying that a sample of diesel fuel from the fuel storage tank, obtained in accordance with ASTM-D270-75, is within the acceptable limits specified in Table 1 of ASTM D975-77 when checked for viscosity, water, and sediment.
- c. At least once per 18 months by subjecting the diesel to an inspection in accordance with procedures prepared in conjunction with its manufacturer's recommendations for the class of service.

LIMERICK - UNIT 1

3/4 7-20

۲

SURVEILLANCE REQUIREMENTS (Continued)

4.7.6.1.3 The diesel-driven fire pump starting 24-volt battery bank and charger shall be demonstrated OPERABLE:

- a. At least once per 7 days by verifying that:
 - 1. The electrolyte level of each cell is above the plates,
 - The pilot cell specific gravity, corrected to 77°F and full electrolyte level, is greater than or equal to 1.260, and
 - 3. The overall battery voltage is greater than or equal to 24 volts.
- b. At least once per 92 days by verifying that the specific gravity is appropriate for continued service of the battery.
- c. At least once per 18 months by verifying that:

812

- The batteries, cell plates, and battery racks show no visual indication of physical damage or abnormal deterioration, and
- Battery-to-battery and terminal connections are clean, tight, free of corrosion, and coated with anticorrosion material.

1.11

SETS Access Area 625, EL 332'

PLANT SYSTEMS

SPRAY AND/OR SPRINKLER SYSTEMS

LIMITING CONDITION FOR OPERATION

3.7.6.2 The following spray and sprinkler systems shall be OPERABLE:

28A

Fire Zone Description Reactor Enclosure Hatchway Water Curtains: 1. EL 253' 2. EL 283' 3. EL 313' 638 Fire Area Separation Water Curtains: 71A 484 Area 602 EL 313' 1. Area 304; EL 217' (2-curtaine) 689 45A 2. 67 44 3. Cable Spreading Room, Room 450, EL 254', Control Structure Fan Room, EL 304' 619 23 22 27 27 CREFAS System Filters, EL 304' 288 SGTS Filters, Compartment 624, and SGTS Access Area 625, EL 332' 179 56 23 RCIC Pump Room, Room 108, F1 177' 5724 HPCI Pump Room, Room 109, EL 177' RECW Area EL 201' /Po 644 412 RECW Areas EL 201' IPO 284 Safeguard System Access Area 200 EL 201' 279 65 4th 67.44 Safeguard System Access Area 304, EL 217' (Partial) (Z'systems) CRD Hydraulic Equipment Area 402, Reactor Enclosure, 68A 454 EL 253' (Partial) (2systems) Neutron Monitoring System Area 406, El 253' (Partial). 458 70 A 474 General Equipment Area 506 and Corridor 506, Reactor Enclosure, EL 283' (Partial) 579 540 744×8 Reactor Enclosure Recirculation System Filters, EL 331' 51A & B Diesel Generator cells (4 Cells) 79.00.01.02 Arans 6512 88,84,85,86

APPLICABILITY: Whenever equipment protected by the spray and/or sprinkler systems is required to be OPERABLE.

ACTION:

a. With one or more of the above required spray and/or sprinkler systems inoperable, within 1 hour establish a continuous fire watch with backup fire suppression equipment for those areas in which redundant systems or components could be damaged; for other areas, establish an hourly fire watch patrol.

b. The provisions of Specification 3.0.3 and 3.0.4 are not applicable.

"Not required to be OPERABLE until prior to exceeding 5% of RATED THERMAL POWER. Q

LIMERICK - UNIT 1

653

SURVEILLANCE REDUIREMENTS

4.7.6.2 Each of the above required spray and sprinkler systems shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each valve (manual, poweroperated, or automatic) in the flow path is in its correct position.
- b. At least once per 12 months by cycling each testable valve in the flow path through at least one complete cycle of full travel.
- c. At least once per 18 months:
 - By performing a system functional test which includes simulated automatic actuation of the system, and:
 - Verifying that the automatic valves in the flow path actuate to their correct positions on a test signal, and
 - b) Cycling each valve in the flow path that is not testable during plant operation through at least one complete cycle. of full travel.
 - By a visual inspection of the dry pipe spray and sprinkler headers to verify their integrity, and
 - By a visual inspection of each sprinkler nozzle's spray area to verify that the spray patharn is not obstructed.
- d. At least once per 3 years by performing an air or water flow test through each open head spray and sprinkler header system and verifying each open head spray nozzle and sprinkler header system is unobstructed, except the chancoal filter system spray nozzles which only need to be visually inspected and verified to be unobstructed each time the charcoal is changed.

LIMERICK - UNIT 1

3/4 7-23

.

1. 1. 1

1

CO. SYSTEMS

LIMITING CONDITION FOR OPERATION

3.7.6.3 The following low pressure CO2 system shall be OPERABLE:

a. Control Room Entrance, Hose Rack OHR601 and OSR 602.

APPLICABILITY: Whenever equipment protected by the CO2 systems is required to

ACTION:

a. With the above required CO_2 system inoperable, within 1 hour establish a continuous fire watch with backup fire suppression equipment for those areas in which redundant systems or components could be damaged; for other areas, establish an hourly fire watch patrol.

b. The provisions of Specification 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.7.6.3.1 The above required low pressure CO_2 system shall be demonstrated OPERABLE at least once per 7 days by verifying the CO_2 storage tank level to be greater than 25% and pressure to be greater than 265 psig.

4.7.6.3.2 The above required CO_2 system shall be demonstrated OPERABLE at least once per 31 days by verifying that each valve (manual, power-operated, or automatic) in the flow path is in its correct position.

LIMERICK - UNIT 1

3/4 7-24

.2

HALON SYSTEMS

LIMITING CONDITION FOR OPERATION

3.7.6.4 The following Halon systems shall be OPERABLE with the storage tanks having at least 95% of full charge reight and 90% of full charge pressure:

- a. Remote Shutdown Panel Area 540, EL 289' (Raised Floor), and
- b. Auxiliary Equipment Room 542, EL 289' (Raised Floor).

APPLICABILITY: Whenever equipment protected by the Halon systems is required

ACTION:

- a. With one or more of the above required Halon systems inoperable, within 1 hour establish a continuous fire watch with backup fire suppression equipment for those areas in which redundant systems or components could be damaged; for other areas, establish an hourly fire watch patrol.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.7.6.4 Each of the above required Halon systems shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each valve (manual, poweroperated, or automatic) in the flow path is in its correct position.
- At least once per 6 months by verifying Halon storage tank weight and pressure.
- c. At least once per 18 months by:
 - Performance of a functional test of the general alarm circuit and associated alarm and interlock devices, and

41.

111 1 8 1978

2. Performance of a system flow test to assure no blockage.

FIRE HOSE STATIONS

LIMITING CONCITION FOR OPERATION

3.7.6.5 The fire hose stations shown in Table 3.7.6.5-1 shall be OPERABLE.

APPLICABILITY: Whenever equipment in the areas protected by the fire hose stations is required to be OPERABLE.

ACTION:

- a. With one or more of the fire hose stations shown in Table 3.7.6.5-1 inoperable, provide gated wye(s) on the nearest OPERABLE hose station(s). One outlet of the wye shall be connected to the standard length of hose provided at the hose station. The second outlet of the wye shall be connected to a length of hose sufficient to provide coverage for the area left unprotected by the inoperable hose station. Where it can be demonstrated that the physical routing of the fire hose would result in a recognizable hazard to operating technicians, plant equipment, or the hose itself, the fire hose shall be stored in a roll at the outlet of the OPERABLE hose station. Signs shall be mounted above the gated wye(s) to identify the proper hose to use. The above ACTION shall be accomplished within 1 hour if the inoperable fire hose is the primary means of fire suppression; otherwise route the additional hose within 24 hours.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REDUIREMENTS

4.7.6.5 Each of the fire hose stations shown in Table 3.7.6.5-1 shall be demonstrated OPERABLE:

- a. At least once per 31 days by a visual inspection of the fire hose stations accessible during plant operation to assure all required equipment is at the station.
- b. At least once per 18 months by:
 - Visual inspection of the fire hose stations not accessible during plant operation to assure all required equipment is at the station.
 - 2. Removing the hose for inspection and reracking, and
 - Inspecting all gaskets and replacing any degraded gaskets in the couplings.
- c. At least once per 3 years by:
 - Par_fally opening each hose station valve to verify valve OPERABILITY and no flow blockage.
 - Conducting a hose hydrostatic test at a pressure of 150 psig or at least 50 psig above the maximum fire main operating pressure, whichever is greater.

LIMERICK - UNIT 1

TABLE 3.7.6.5-1

FIRE HOSE STATIONS

Sec. 8. 10

	LOCATION		ELEVATION	HOSE RACK
	1.	Control Enclosure:		
		Stairwell	350'	1HR-141
		Stairwell, Outside SGTS Room	332'	1HR-140
		Stairwell, Outside Fan Room	304	1HR-103
	С., н.	Outside 13kV Switchgear Room	217'	Z 1HR-116
	Room	Stairwell, Outside Aux Equip Rm	289'	1HR-130
berter		Stainwell, Outside Cable Spreading Rm-	254	ZAHR-250
E . 2 •	73.3	Wall, Outside 4kV Switchgear & Battery Rooms 466 Corridor 448, South Side of 4kV	239'	2 1HR-251
		Switchgear & Battery Rooms	239'	2.1HR-122
		Wall, Corridor 265 277	200'	Z-1+1R-120
		Wall, Corridor 164 /66	180'	Z AHR-121
	2.	Refueling Area:		
		St Corner Refuel Floor	352'	Z7HR-201
-		Ne Corner Refuel Floor	352'	Z1HR-202
		North Wall-Center	352 '	ZZHR-203
		South Wall-Center	352'	22HR-204
		Reactor Enclosure Dni+ 2:		
		Ste SW Corner Reactor Enclosure	331'	2HR-205
	11	SW Corner Reactor Enclosure (RERS Fan Area)	313'	21HR-207
	5	Mr Corner Reactor Enclosure (Laydown Area <u>601</u>) SE Corner Reactor Enclosure	313'	Z 1HR-208
		NW (Near Refuel Floor Exh. Fans)	313'	2 1HR-209
		NE Corner Reactor Enclosure (Near Load Center)	313'	Z1HR-210
		(Corridor 506)	283'	Z 1HR-215
		(Corridor 506) S80	283'	21HR-216

LIMERICK - UNIT 1

Inu

3/4 7-27

dente manere de la construction

4,* ¢ 88

TABLE 3.7.6.5-1 (Continued)

FIRE HOSE STATIONS

LOCATION Unit 2:	ELEVATION	HOSE RACK
3. <u>Reactor Enclosure</u> : (Continued)		
SECorner Reactor Enclosure NWSLC Pumps Area 500) 574	2831	2 1HR-217
HE Corner Reactor Enclosure	283'	IHR-218
SArea 4024, Near CRD Repair)	Ren 253'	2 AHR-223
(Near Drywell Squip Natch)	253'	2
West Wall St Gorner Reactor Enclosure		AHR-224 Z
(Near Drywell Personnel Lock) Weig Unit //Unit Z Airlock Weig Wall Reactor Enclosure	() 253'	1HR-225
(Near Tr Machines)	253'	ZHR-226
(Near Hest Walt Reactor Enclosure (Near Heci Equip Hatch)	217	Z IHR-232
NE Ne Corner Reactor Enclosure (Near Supp Pool Access Hatch)	217'	z
East Wall Reactor Enclosure		2HR-233 Z
NW (Near Bouipment Airlock 300) NE Corner Reactor Enclosure	217'	IHR-234
(Near MCC-D124-R-G) Stair No. 2) 217'	ZHR-235
(Near MCC DI34-R=H). Stain No	201'	Z AHR-240
Ne Corner Reactor Enclosure (Near MCC D134-R-H1) E7ev. a.Q. Nest Wall Reactor Enclosure	Stair 202'	Z XHR-241
NW (Near RECW Heat Exchangers)	201	Z XHR-242
ME Corner Reactor Enclosure (Near RECW Pumps)	201'	2 IHR-243
SE Corner Reactor Enclosure	177'	ZHR-252
Me Corner Reactor Enclosure	177'	Z 1HR-253
NE Corner Reactor Enclosure	177'	2 2HR-142

LIMERICK - UNIT 1

-

3/4 7-28

YARD FIRE HYDRANTS AND HOSE CART HOUSES

LIMITING CONDITION FOR OPERATION

· · · · · ·

3.7.6.6 The yard fire hydrants and hose cart houses shown in Table 3.7.6.6-1 shall be OPERABLE.

APPLICAEILITY: Whenever equipment in the areas protected by the yard fire hydrants is required to be OPERABLE.

ACTION:

a. With one or more of the yard fire hydrants or hose cart houses shown in Table 3.7.6.6-1 inoperable, within 1 hour have sufficient additional lengths of 2 1/2 inch diameter hose located in an adjacent OPERABLE hose cart house to provide service to the unprotected area(s) if the inoperable fire hydrant or hose cart house is the primary means of fire suppression; otherwise provide the additional hose within 24 hours.

1.1. 5 182-

b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.7.6.6 Each of the yard fire hydrants and hose cart houses shown in Table 3.7.6.6-1 shall be demonstrated OPERABLE:

- a. At least once per 31 days by visual inspection of the hose cart house to assure all required equipment is at the hose house.
- b. At least once per 6 months, during March, April, or May and during September, October, or November, by visually inspecting each yard fire hydrant and verifying that the hydrant barrel is dry and that the hydrant is not damaged.
- c. At least once per 12 months by:
 - Conducting a hose hydrostatic test at a pressure of 150 psig or at least 50 psig above the maximum fire main operating pressure, whichever is greater.
 - 2. Replacement of all degraded gaskets in couplings.
 - 3. Performing a flow check of each hydrant.

TABLE 3.7.6.6-1

YARD FIRE HYDRANTS AND HOSE CART HOUSES

LOCATION	HYDRANT	NUMBER
West of Diesel Generator Enclosure	FH	#19
South of Diesel Generator Enclosure	FH	#8

LOCATION

HOSE CART HOUSE NUMBER

West of Diesel Generator Enclosure

HCH #1

LIMERICK - UNIT 1

100.0

3/4 7-30

3/4.8 ELECTRICAL POWER SYSTEMS

3/4.8.1 A.C. SOURCES

A.C. SOURCES - OPERATING

LIMITING CONDITION FOR OPERATION

3.8.1.1 As a minimum, the following A.C. electrical power sources shall be OPERABLE:

- Two physically independent circuits between the offsite transmission a. network and the onsite Class 1E distribution system, and b.
 - Four separate and independent diesel generators, each with:
 - A separate day tank containing a minimum of 200 gallons of fuel, 1.
 - A separate fuel storage system containing a minimum of 33,500 2. gallons of fuel, and
 - 3. A separate fuel transfer pump.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3. ACTION:

- with one diesel generator of the above required A.C. electrical power a. : sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance Requirements 4.8.1.1.1a. and 4.8.1.1.2a.4., for one diesel generator at a time, within 24 hours and at least once per 7 days thereafter; restore the inoperable diesel generator to OPERABLE status within 92 days or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- With two diesel generators of the above required A.C. electrical power b. sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance Requirements 4.8.1.1.1a. and 4.8.1.1.2a.4., for one diesel generator at a time, within 1 hour and at least once per 8 hours thereafter; restore at least one of the inoperable diesel generators to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- with three diesel generators of the above required A.C. electrical с. power sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance Requirements 4.8.1.1.1.a. and 4.8.1.1.2a.4., for one diesel generator at a time, within 1 hour and at least once per 8 hours thereafter; restore at least one of the inoperable diesel generators to OPERABLE status within 2 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- With one offsite circuit and one diesel generator of the above required d. A.C. electrical power sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance Requirements 4.8.1.1.1a. and 4.8.1.1.2a.4. within 1 hour and at least once per 8 hours thereafter. Restore at least two offsite circuits and at

LIMERICK - UNIT 1

3/4 8-1

1.2 8 195

ELECTRICAL POWER SYSTEMS

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

least three of the above required diesel generators to OPERABLE status within 72 hours from time of initial loss or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

- e. With two diesel generators of the above required A.C electrical power sources inoperable, in addition to ACTION b., above, verify within 2 hours that all required systems, subsystems, trains, components, and devices that depend on the remaining diesel generators as a source of emergency power are also OPERABLE; otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- f. With one offsite circuit of the above required A.C. electrical power sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance Requirements 4.8.1.1.1a. and 4.8.1.2a.4, for one diesel generator at a time, within 1 hour and at least once per 8 hours thereafter; restore at least two offsite circuits to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- 9. With two of the above required offsite circuits inoperable, demonstrate the OPERABILITY of all of the above required diesel generators by performing Surveillance Equirement 4.8.1.1.2a.4., for one diesel generator at a time, within 1 hour and at least once per 8 hours thereafter, unless the diesel generators are already operating; restore at least one of the inoperable offsite circuits to OPERABLE status within 24 hours or be in at least HOT SHUTDOWN within the next 12 hours. With only one offsite circuit restored to OPERABLE status, restore at least two offsite circuits to OPERABLE status within 72 hours from time of initial loss or be in at least HOT SHUTDOWN within the next 12 hours.
- h. With one offsite circuit and two diesel generators of the above required A.C. electrical power sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance Requirements 4.8.1.1.1a. and 4.8.1.1.2a.4. within 1 hour and at least once per 8 hours thereafter; restore at least one of the above required inoperable A.C. sources to OPERABLE status within 12 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours. Restore at least two offsite circuits and at least three of the above required diesel generators to OPERABLE status within 72 hours from time of initial loss or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

LIMERICK - UNIT 1

3/4 8-2

AUE E 185"

where it is not a manufacture

3/4.7.7 FIRE RATED ASSEMBLIES

LIMITING CONDITION FOR OPERATION

3.7.7 All fire rated assemblies, including walls, floor/ceilings, cable tray enclosures and other fire barriers, separating safe shutdown fire areas or separating portions of redundant systems important to safe shutdown within a fire area, and all sealing devices in fire rated assembly penetrations, including fire doors, fire windows, fire dampers, cable, piping and ventilation cuct penetration seals and ventilation seals, shall be OPERABLE.

APPLICABILITY: At all times.

ACTION:

- a. With one or more of the above required fire rated assemblies and/or sealing devices inoperable, within 1 hour establish a continuous fire watch on at least one side of the affected assembly(s) and/or sealing device(s) or verify the OPERABILITY of fire detectors on at least one side of the inoperable assembly(s) and sealing device(s) and establish an hourly fire watch patrol.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.7.7.1 Each of the above required fire rated assemblies and penetration scaling devices shall be verified OPERABLE at least once per 18 months by performing a visual inspection of:

- a. The exposed surfaces of each fire rated assembly.
- b. Each fire window, fire damper, and associated hardware.
- c. At least 10% of each type of sealed penetration, except internal conduit seals. If apparent changes in appearance or abnormal degradations are found, a visual inspection of an additional 10% of each type of sealed penetration shall t made. This inspection process shall continue until a 10% sample with no apparent changes in appearance or abnormal degradation is found. Samples shall be selected such that each penetration seal will be inspected at least once per 15 years.

LIMERICK - UNIT 1

3/4 7-31

SURVEILLANCE REQUIREMENTS (Continued)

4.7.7.2 Each of the above required fire doors which are not electrically supervised shall be prified OPERABLE by inspecting the closing mechanism and latches at least once per 6 months, and by verifying:

- a. That each locked-closed fire door is closed at least once per 7 days.
- b. That each unlocked fire door without electrical supervision is closed at least once per 24 hours.

4.7.7.3 Each of the above required fire doors which are electrically supervised shall be verified OPERABLE:

- a. By verifying that each locked-closed fire door is closed at least once per 7 days.
- b. By verifying the OPERABILITY of the fire door supervision system for each electrically supervised fire door by performing a CHANNEL FUNCTIONAL TEST at least once per 31 days.
- c. By inspecting the closing mechanism and latches at least once per 6 months.

SURVEILLANCE REDUIREMENTS

4.8.1.1.1 Each of the above required independent circuits between the offsite transmission network and the onsite Class IE distribution system shall be:

- a. Determined OPERABLE at least once per 7 days by verifying correct breaker alignments and indicated power availability, and
- b. Demonstrated JPERABLE at least once per 18 months during shutdown by transferring, manually and automatically, unit power supply from the normal circuit to the alternate circuit.
- -4.0.1.1.2 Each of the above required diesel generators shall be demonstrated OPERABLE:
 - a. In accordance with the frequency specified in Table 4.8.1.1.2-1 on a STAGGERED TEST BASIS by:
 - 1. Verifying the fuel level in the day fuel tank.
 - 2. Verifying the fuel level in the fuel storage tank.
 - Verifying the fuel transfer pump starts and transfers fuel from the storage system to the day fuel tank.
 - 4. Verifying the diesel starts from ambient conditions* and accelerates to at least 882 rpm in less than or equal to 10 seconds. The generator voltage and frequency shall reach 4285 ± 420 volts and 60 ± 1.2 Hz within 10 seconds after the start signal. The diesel generator shall be started for this test by using one of the following signals:
 - a) Manual.**
 - b) . Simulated loss-of-offsite power by itself.
 - c) Simulated loss-of-offsite power in conjunction with an ESF actuation test signal.
 - d) An ESF actuation test signal by itself.
 - Verifying the diesel generator is synchronized, loaded to greater than or equal to 2850 kW in less than or equal to 200 seconds, and operates with this load for at least 60 minutes.
 - Verifying the diesel generator is aligned to provide standby power to the associated emergency busses.
 - Verifying the pressure in all diesel generator air start receivers to be greater than or equal to 225 psig.

"The diesel generator start (10 sec) and subsequent loading (200 sec) from ambient conditions shall be performed at least once per 184 days in these surveillance tests. All other engine starts and loading for the purpose of this surveillance testing may be preceded by an engine prelube period and/or other warmup procedures recommended by the manufacturer so that mechanical stress and wear on the diesel engine is minimized.

**If diesel generator started manually from the control room, 10 seconds after the automatic prelube period.

LIMERICK - UNIT 1

.

3/4 8-3

SURVEILLANCE REQUIREMENTS (Continued)

- b. By removing accumulated water:
 - From the day tank at least once per 31 days and after each occasion when the diesel is operated for greater than 1 hour, and
 - From the storage tank at least once per 31 days.
- By sampling new fuel oil in ac areas with ASTM D4057-81 prior to addition to the storage tanks
 - By verifying in accordance of the tests specified in ASTM D975-81 prior to addition to the storage tanks that the sample has:
 - a) An API Gravity of within 0.3 degrees at 60°F or a specific gravity of within 0.0016 at 60/60°F, when compared to the supplier's certificate or an absolute specific reality at 60/60°F of greater than or equal to 0.83 but that than or equal to 0.89 or an API gravity at 60°F of greater than or equal to 27 degrees but less than or equal to 39 begrees.
 - b) A kinematic viscosity at 40°C of greater than or equal to 1.9 centistokes, but less than or equal to 4.1 centistokes, if gravity was not determined by comparison with the supplier's certification.
 - c) A flash point equal to or greater than 125°F, and
 - d) A clear and bright appearance with proper color when tested in accordance with ASTM D4176-82.
 - 2) By verifying within 31 days of obtaining the sample that the other properties specified in Table 1 of ASTM D975-81 are bet when tested in accordance with ASTM D975-81 except that the analysis for sulfur may be performed in accordance with ASTM D1552-79 or ASTM D2622-82.
- d. At least once every 31 days by obtaining a sample of fuel oil from the storage tanks in accordance with ASTM D2276-78, and verifying that total particulate contamination is less than 10 mg/liter when checked in accordance with ASTM D2276-78, Method A.
- e. At least once per 18 months, during shutdown, by:
 - Subjecting the diesel to an inspection in accordance with procedures prepared in conjunction with its manufacturer's recommendations for this class of standby service.
 - Verify the diesel generator capability to reject a load of greater than or equal to that of the RHR Pump Motor (992 Kw) for each diesel generator while maintaining voltage at 4285 ± 420 volts and frequency at 60 ± 1.2 hz.

LIMERICK - UNIT 1

3/4 8-4

AUT 8 1985

SURVEILLANCE REQUIREMENTS (Continued)

- Verifying that the following diesel generator lockout features prevent diesel generator starting only when required:
 - a) Control Room Switch In Pull-To-Lock (With Local/Remote Switch in Remote)
 - b) Local/Remote Switch in Local.
 - c) Emergency Stop
- f. At least once per 10 years or after any modifications which could affect diesel generator interdependence by starting all four diesel generators simultaneously, during shutdown, and verifying that all four diesel generators accelerate to at least 882 rpm in less than or equal to 10 seconds.
- g. At least once per 10 years by:
 - Draining each fuel oil storage tank, removing the accumulated sediment and cleaning the tank using a sodium hypochlorite or equivalent solution, and
 - Performing a pressure test of those portions of the diesel fuel oil system designed to Section III, subsection ND of the ASME Code in accordance with ASME Code Section XI Article IWD-5000.

4.8.1.1.3 <u>Reports</u> - All diesel generator failures, valid or non-valid, shall be reported to the Commission in a Special Report pursuant to Specification 6.9.2 within 30 days. Reports of diesel generator failures shall include the information recommended in Regulatory Position C.3.b of Regulatory Guide 1.108, Revision 1, August 1977. If the number of failures in the last 100 valid tests, on a per nuclear unit basis, is greater than or equal to 7, the report shall be supplemented to include the additional information recommended in Regulatory Position C.3.b of Regulatory Guide 1.108, Revision 1, August 1977.

TABLE 4.8.1.1.2-1

DIESEL GENERATOR TEST SCHEDULE

MBER OF FAILURES IN ST 100 VALID TESTS*	TEST FREQUENCY				
[−] ≤ 1	At least once per 31 days				
2	At least once per 14 days				
3	At least once per 7 days				
2 4	At least once per 3 days				

*Criteria for determining number of failures and number of valid tests shall be in accordance with Regulatory Position C.2.e of Regulatory Guide 1.108, Revision 1, August 1977, where the last 100 tests are determined on a per nuclear unit basis. For the purposes of this test schedule, only valid tests conducted after the OL issuance date shall be included in the computation of the "last 100 valid tests." Entry into this test schedule shall be made at the 31-day test frequency.

LIMERICK - UNIT 1

18

SURVEILLANCE REQUIREMENTS (Continued)

- Verifying the diesel generator capability to reject a load of 2850 kW without tripping. The generator voltage shall not exceed 4784 volts during and following the load rejection.
- Simulating a loss-of-offsite power by itself, and:
 - a) Verifying deenergization of the emergency busses and load shedding from the emergency busses.
 - b) Verifying the diesel generator starts on the auto-start signal, energizes the emergency busses within 10 seconds, energizes the auto-connected loads through the individual load timers and operates for greater than or equal to 5 minutes while its generator is loaded with the shutdown loads. After energization, the steady-state voltage and frequency of the emergency busses shall be maintained at 4285 ± 420 volts and 60 ± 1.2 Hz during this test.
- 5. Verifying that on an ECCS actuation test signal, without lossof-offsite power, the diesel generator starts on the auto-start signal and operates on standby for greater than or equal to 5 minutes. The generator voltage and frequency shall reach 4285 \pm 420 volts and 60 \pm 1.2 Hz within 10 seconds after the auto-start signal; the steady state generator voltage and frequency shall be maintained within these limits during this test.
- Simulating a loss-c/-offsite power in conjunction with an ECCS actuation test signal, and:
 - Verifying deenergization of the emergency busses and load shedding from the emergency busses.
 - b) Verifying the diesel generator starts on the auto-start signal, energizes the emergency busses within 10 seconds, energizes the auto-connected shutdown loads through the individual load timers and operates for greater than or equal to 5 minutes while its generator is loaded with the emergency loads. After energization, the steady-state voltage and frequency of the emergency busses shall be maintained at 4285 \pm 420 volts and 60 \pm 1.2 Hz during this test.
- Verifying that all automatic diesel generator trips, except engine overspeed and generator differential over-current are automatically bypassed upon an ECCS actuation signal.

LIMERICK - UNIT 1

\$UG 8 1965

. . . **1**

SUPVEILLANCE REQUIREMENTS (Continued)

- 8. Verifying the diesel generator operates for at least 24 hours. During the first 2 hours of this test, the diesel generator shall be loaded to greater than or equal to 3135 kW and during the remaining 22 hours of this test, the diesel generator shall be loaded to greater than or equal to 2850 kW. The generator voltage and frequency shall reach 4285 ± 420 volts and 60 ± 1.2 Hz within 10 seconds** after the start signal; the steady-state generator voltage and frequency shall be maintained within these limits during this test. Within 5 minutes after completing this 24-hour test, perform Surveillance Requirement 4.8.1.1.2e.4.b).*
- Verifying that the auto-connected loads to each diesel generator do not exceed the 2000-hour rating of 3100 kW.
- 10. Verifying the diesel generator's capability to:
 - a) Synchronize with the offsite power source while the generator is loaded with its emergency loads upon a simulated restoration of offsite power,
 - b) Transfer its loads to the offsite power source, and
 - c) Be restored to its standby status.
- Verifying that with the diesel generator operating in a test mode and connected to its bus, a simulated ECCS actuation signal overrides the test mode by (1) returning the diesel generator to standby operation, and (2) automatically energizes the emergency loads with offsite power.
- Verifying that the automatic load sequence timers are OPERABLE with the interval between each load block within ± 10% of its design interval.

*If Surveillance Requirement 4.8.1.1.2e.4.b) is not satisfactorily completed, it is not necessary to repeat the preceding 24-hour test. Instead, the diesel generator may be operated at 2850 kW for 1 hour or until operating temperature has stabilized.

**If diesel generator started manually from the control room, 10 seconds after the automatic prelubs period.

LIMERICK - UNIT 1

3/4 8-6

A.C. SOURCES - SHUTDOWN

LIMITING CONDITION FOR OPERATION

3.8.1.2 As a minimum, the following A.C. electrical power sources shall be OPERABLE:

- a. Ore circuit between the offsite transmission network and the onsite Class 1E distribution system, and
- b. Two diesel generators each with:
 - 1. A day fuel tank containing a minimum of 200 gallons of fuel.
 - A fuel storage system containing a minimum of 33,500 gallons of fuel.
 - 3. A fuel transfer pump.

APPLICABILITY: OPERATIONAL CONDITIONS 4, 5, and *.

ACTION:

- a. With less than the above required A.C. electrical power sources OPERABLE, suspend CORE ALTERATIONS, handling of irradiated fuel in the secondary containment, operations with a potential for draining the reactor vessel and crane operations over the spent fuel storage pool when fuel assemblies are stored therein. In addition, when in OPERATIONAL CONDITION 5 with the water isvel less than 22 feet above the reactor pressure vessel flange, immediately initiate corrective action to restore the required power sources to OPERABLE status as soon as practical.
- b. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.8.1.2 At least the above required A.C. electrical power sources shall be demonstrated OPERABLE per Surveillance Requirements 4.8.1.1.1, 4.8.1.1.2, and 4.8.1.1.3, except for the requirement of Specification 4.8.1.1.2a.5.

"When handling irradiated fuel in the secondary containment.

LIMERICK - UNIT 1

3/4 8-9

3/4.8.2 D.C. SOURCES

D.C. SOURCES - OPERATING

LIMITING CONDITION FOR OPERATION

3.8.2.1 As a minimum, the following D.C. electrical power sources shall be OPERABLE:

a. Division 1, Consisting of: 2 125-Volt Battery IA1 (ZA1D101). 22. 125-Volt Battery 2A22(2A20101). 2 125-Volt Battery Charges IBCA1 (IA10103). 3. 4. 125-Volt Battery Charger ZBCA2 (XA2D103). Division 2, Consisting of: b. 1. 125-Volt Battery IBI (1810101). 2. 125-Volt Battery 2182 2(1820101). 2 3. 125-Volt Battery Charger 21BCB1 (1810103). 4. 125-Volt Battery ChargerZIBCB2 (2820103). Division 3, Consisting of: 2 C. 1. 125-Volt Battery IC (ICD101). 125-Volt Battery Charger IBCC (ICD103). 2. Division 4, Consisting of F 2 d. 1. 125-Volt Battery 20 (200101). 2 125-Volt Battery Charger ABCD (ADD103). 2.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

With any battery and/or charger of the above required D.C. electrical power sources inoperable, restore the inoperable division battery to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.8.2.1 Each of the above required division batteries and chargers shall be demonstrated OPERABLE:

- a. At least once per 7 days by verifying that:
 - The parameters in Table 4.8.2.1-1 meet the Category A limits, and
 - Total battery terminal voltage for each 125-volt battery is greater than or equal to 131 volts on float charge.

LIMERICK - UNIT 1

3/4 8-10

403 8 1915

SURVEILLANCE REQUIREMENTS (Continued)

- b. At least once per 92 days and within 7 days after a battery discharge with battery terminal voltage below 105 volts or battery overcharge with battery terminal voltage above 150 volts, by verifying that:
 - 1. The parameters in Table 4.8.2.1-1 meet the Category B limits,
 - 2. There is no visible corrosion at either terminals or connectors, or the connection resistance of these items is less than 150×10^{-6} ohm, and
 - 3. The average electrolyte temperature of each sixth cell is $\geq 60^{\circ}$ F.
- c. At least once per 18 months by verifying that:
 - The cells, cell plates and battery racks show no visual indication of physical damage or abnormal deterioration.
 - The cell-to-cell and terminal connections are clean, tight, free of corrosion and coated with anticorrosion material.
 - 3. The resistance of each cell-to-cell and terminal connection is less than or equal to 150×10^{-6} ohm excluding cable intercell connections, and
 - The battery chargers will supply the currents listed below at a minimum of 132 volts for at least 8 hours:

Charger'	Current (Amperes)
Z ZBCA1	300
Z, IBCA2	300
2 18CB1	300
Z ZBCB2	300
ZIBCC	75
2 2800	75

- d. At least once per 18 months, during shutdown, by verifying that either:
 - The battery capacity is adequate to supply and maintain in OPERABLE status all of the actual emergency loads for the design duty cycle when the battery is subjected to a battery service test, or
 - 2. The battery capacity is adequate to supply a dummy load of the following profile while maintaining the battery terminal voltage greater than or equal to 105 volts for the nominal 125-volt batteries and 210 volts for the nominal 125/250-volt batteries:

LIMERICK - UNIT 1

3/4 8-11

110 8 1425

×

XXXXX

		LOAD CYCLE	(amps)		
Division	Battery	0-1 Min.	1-239 Min.	239-240 Min.	
1	Z ZAI Z ZAZ	546 449	168 129	187 147	××
11	2 AB1 2 AB2	889 823	158 119	321 282	× ×
111	210	193	31	31	~
IV	210	169	21	21	×

SURVEILLANCE REQUIREMENTS (Continued)

Each 125/250-volt battery is rated at 1500 ampere-hours at an 8-hour discharge rate, based on a terminal voltage of 1.75 voltsper-cell at 77°F.

Each 125-volt battery is rated at 250 ampere-hours at an 8-hour discharge rate, based on a terminal voltage of 1.75 volts-per-cell at $77^{\circ}F$.

- e. At least once per 60 months during shutdown by verifying that the battery capacity is at least 80% of the manufacturer's rating when subjected to a performance discharge test. At this once per 60 month interval, this performance discharge test may be performed in lieu of the battery service test (Specification 4.8.2.1.d).
- f. At least once per 18 months during shutdown performance discharge tests of battery capacity shall be given to any battery that shows signs of degradation or has reached 85% of the service life expected for the application. Degradation is indicated when the battery capacity drops more than 10% of rated capacity from its average on previous performance tests, or is below 90% of the manufacturer's rating.

LIMERICK - UNIT 1

3/4 8-12

	CATEGORY A ⁽¹⁾	CATEGORY B(2)		
Parameter ·	Limits for each designated pilot cell	Limits for each connected cell	Allowable ⁽³⁾ value for each connected cell	
Electrolyte Level	>Minimum level indication mark, and < %" above maximum level indication mark	>Minimum level indication mark, and < ½" above maximum level indication mark	Above top of plates, and not overflowing	
Float Voltage	≥ 2.13 volts	\geq 2.13 volts ⁽⁴⁾	> 2.07 volts	
Specific (5) Gravity	≥ 1.195 ⁽⁶⁾	≥ 1.190	Not more than 0.020 below the average of all connected cells	
		Average of all connected cells > 1.200	Average of all connected cells 2 1.190 ⁽⁶⁾	

TABLE 4.8.2.1-1

BATTERY SURVEILLANCE REQUIREMENTS

- (1) For any Category A parameter(s) outside the limit(s) shown, the battery may be considered OPERABLE provided that within 24 hours all the Category B measurements are taken and found to be within their allowable values, and provided all Category A and B parameter(s) are restored to within limits within the next 6 days.
- (2) For any Category B parameter(s) outside the limit(s) shown, the battery may be considered OPERABLE provided that the Category B parameters are within their allowable values and provided the Category B parameter(s) are restored to within limits within 7 days.
- (3) Any Category B parameter not within its allowable value indicates an inoperable battery.
- (4) May be corrected for average electrolyte temperature.
- (5) Corrected for electrolyte temperature of 77°F and full level.

(6) Or battery charging current is less than 1 amperes when on float charge.

1:0 8 1965

D.C. SDURCES - SHUTDOWN

LIMITING CONDITION FOR OPERATION

3.8.2.2 As a minimum, two of the following four divisions of the D.C. electrical power sources system shall be OPERABLE with:

- a. Division 1, Consisting of: 2
 1. 125-Volt Battery IA1 (IA1D101).
 2. 125-Volt Battery2IA22(IA2D101).
 3. 125-Volt Battery Charger2IBCA1 (IA1D103).
 4. 125-Volt Battery Charger2IBCA2 (IA2D103).
 2
- Division 2, Consisting of: 2
 1. 125-Volt Battery²2B1 (AB10101).
 2. 125-Volt Battery²2B22(AB20101). Z
 3. 125-Volt Battery Charger²2BCB1 (AB10103).
 4. 125-Volt Battery Charger²2BCB2 (AB20103).
- Division 3, Consisting of: Z
 1. 125-Volt BatteryZIC (ACD101). Z
 2. 125-Volt Battery Charger IBCC (ICD103).
- d. Division 4, Consisting of: 2
 1. 125-Volt Battery ID (IDD101). 2
 2. 125-Volt Battery Charger IBCD (IDD103).

APPLICABILITY: OPERATIONAL CONDITIONS 4, 5, and *.

ACTION:

- a. With less than two divisions of the above required D.C. electrical power sources OPERABLE, suspend CORE ALTERATIONS, handling of irradiated fuel in the secondary containment and operations with a potential for draining the reactor vessel.
- b. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.8.2.2 At least the above required battery and charger shall be demonstrated OPERABLE per Surveillance Requirement 4.8.2.1.

*When handling irradiated fuel in the secondary containment.

LIMERICK - UNIT 1

3/4 8-14

1 6 633

3/4.8.3 ONSITE POWER DISTRIBUTION SYSTEMS

DISTRIBUTION - OPERATING

LIMITING CONDITION FOR OPERATION

3.8.3.1 The following power distribution system divisions shall be energized: a. A.C. power distribution: 1. Division 1, Consisting of: 2 2 a) 4160-VAC Bus: DZ1 (ZOA115) b) 480-VAC Load Center: 2 D1142(10B201) 480-VAC Motor Control Centers: c) · 0114 R-C1 (108219) Z DZ14-R-C (ZOB213) 2 D114-5-L (00B519) Z D114-R-G (108211) Z 2 DI14-R-G1 (108215) Z 2 DI14-D-G (108515) 2 120-VAC Distribution Panels: d) ZZ0Y101 Z 10Y206 01Y501 2. Division 2, Consisting of: Z 2 a) 4160-VAC Bus: D12 (10A116) b) 480-VAC Load Center: Z DJ24 (10B202) Z c) 480-VAC Motor Control Centers: B124-R-C1 (108220) Z DZ24-R-C (208214) Z D124-S-L (00B520) 2-D124-R-G (IOB212) 2 DI24-R-G1 (108216) 2 2 D124-D-G (108516) 2 d) 120-VAC Distribution Panels: Z. 40Y102 2 IOY207 02Y501 3. Division 3, Consisting of: Z Z DI3 (10A117) 4160-VAC Bus: a) 480-VAC Load Center: b) Z D134 (10B203) Z 480-VAC Motor Control Centers: c) Z DI34-R-H1 (108221) Z Z DY34-R-H (108217) Z Z DZ34-R-E (108223) Z D134-C-B (00B131) 2 DI34-D-G (ZOB517) 2 2 D234-S-L (00B521) d) 120-VAC Distribution Panels: 2104103 2 20Y163 03Y501 4. Division 4, Consisting of: Z Z 24 (ZOA118) a) 4160-VAC Bus: b) 480-VAC Load Center: D744 (708204) 2 2

LIMERICK - UNIT 1

3/4 8-15

1. 8 1000

2

b

LIMITING CONDITION FOR OPERATION (Continued)

-			STATE OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.			the second se	which and the state of the stat	
		c)	480-VAC 1	Motor Control	Centers:	Z H DX44-R- Z DY44-R-H Z DY44-R-H Z DY44-R-E D144-C-B Z DX44-D-G	(108222) (108218) (108224)	NNN N
		d)	120-VAC [Distribution	Panels:	D244-5-L 2 IOY104 2 IOY164 04Y501	(00B522)	
	D.C.	Powe	r Distribu	tion Panels				
æ	1.	Divi	sion 1, 'Co	onsisting of:				
		a) b) c)	250-V DC 250-V DC	Fuse Box: Motor Contro' Distribution	Centers: Panels:	ZIFA ZIDA ZIPPA1 ZIPPA2 ZIPPA3	(1AD105) (10D201) (1AD102) (1AD501)	ZZZZ
	2.	Divi	sion 2, Co	insisting of:		ZAFFAS	(ZAD162)	2
		a) b)	250-V DC 250-V DC	Fuse Box: Motor Control	Centers:	21FB 27DB-1	(180105) (100202)	22
		c)	125-V DC	Distribution	Panels:	ZIDB-2 ZIPPB1 ZIPPB2 ZIPPB3	(100203) (180102) (180501)	NNNN
	3.	Divis	sion 3, Co	nsisting of:		ZAFFDS	(1BD162)	4
		a) b)	125-V DC 125-V DC	Fuse Box: Distribution	Panels:	21FC 21PPC1 21PPC2 21PPC3	(1CD105) (1CD102) (1CD501)	2222
	4.	Divis	ion 4, Co	nsisting of:		ZAFFLS	(2CD162)	2
		a) b)	125-V DC 125-V DC	Fuse Box: Distribution	Panels:	ZZFD ZZPPD1 ZZPPD2 ZZPPD3	(1DD102)	2222

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

a. With one of the above required A.C. distribution system divisions not energized, reenergize the division within 24 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

LIMERICK - UNIT 1

LIMITING CONDITION FOR OPERATION (Continued)

b. With one of the above required D.C. distribution system divisions not energized, reenergize the division within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.8.3.1 Each of the above required power distribution system divisions shall be determined energized at least once per 7 days by verifying correct breaker alignment and voltage on the busses/MCCs/panels.

.

1

t-

.....

*

٩

DISTRIBUTION - SHUTDOWN

LIMITING CONDITION FOR OPERATION

3.8.3.2 As a minimum, 2 of the 4 divisions of the power distribution system shall be energized with:

a. A.C.	power	distribution:
---------	-------	---------------

- 1. Division 1, Consisting of:
 - a) 4160-VAC Bus:
 - b' 480-VAC Load Center:
 - c) 480-VAC Motor Control Centers:

d) 120-VAC Distribution Panels:

2. Division 2, Consisting of:

- a) 4160-VAC Bus:
- b) 480-VAC Load Center:
- c) 480-VAC Motor Control Centers:

d) 120-VAC Distribution Panels:

3. Division 3, Consisting of:

- a) 4160-VAC Bus:
- b) 480-VAC Load Center:
- c) 480-VAC Motor Control Centers:

d) 120-VAC Distribution Panels:

- 4. Division 4, Consisting of:
 - a) 4160-VAC Bus:
 - b) 480-VAC Load Center:

LIMERICK - UNIT 1

2 DI14-D-G (IOB515) Z 2 IOY101 2 IOY206 01Y501 2 DI2 (IOA116) Z 2 DI24 (IOB202) Z <u>D124-R-C1 (1OB220)</u> 2 DI24-R-C (IOB214) Z D124-S-L (0OB520) 2 DI24-R-G (IOB212) Z 2 DI24-R-G1 (IOB216) Z 2 DI24-D-G (IOB516) Z 2 IOY102 2 IOY207 02Y501

DZ1 (10A115) 2

2 DI14 (A0B201) 2 DI14 R-C1 (10B219)

2 D114-R-C (108213) 2 D114-S-L (008519) 2 D114-R-G (108211)2

2 DI14-R-G1 (208215) 2

2

Z D13 (IOA117) Z Z D134 (IOB203) Z Z D134-R-H1 (IOB221) Z Z D134-R-H (IOB217) Z Z D134-R-E (IOB223) Z D134-C-B (OOB131) Z D134-D-G (IOB517) Z D234-S-L (OOB521) Z IOY103 Z IOY163 O3Y501

2 Z D74 (X0A118) D744 (20B204) 2 Z

6196 8 1965

2 Z HI D144-R-8 c) 480-VAC Motor Control Centers: (10B222) Z 2 DI44-R-H (IOB218)Z Z D144-R-E (XOB224)2 D144-C-B (00B132) 2 DZ44-D-G (ZOB518) Z 0244-S-L (00B522) 120-VAC Distribution Panels: d) 210Y104 Z Z0Y164 04Y501 b. D.C. power distribution: Division 1, Consisting of: 1. a) 250-V DC Fuse Box: ZAFA (XAD105) 2 250-V DC Motor Control Center: b) 2 Z ZDA (200201) 125-V DC Distribution Panels: c) 2 IPPAL (1AD102) 2 ZAPPA2 (1AD501) 2 2 IPPA3 (2AD162) 2 Division 2, Consisting of: 2. (s 250-V DC Fuse Box: ZIFB (IBD105) 2 250-V DC Motor Control Centers: b) 2 IDB-1 (100202) Z Z IDB-2 (200203) 2 c) 125-V DC Distribution Panels: Z IPPB1 (IBD102) 2 2 IPPB2 (ABD501) 2 ZIPPB3 (IBD162) 2 3. Division 3, Consisting of: 125-V DC Fuse Box: a) ZIFC 22 (ICD105) 125-V DC Distribution Panels: b) 2 APPCI (ICD102) Z APPC2 2 (2CD501) Z IPPC3 2 (2CD162) Division 4, Consisting of: 4. a) 125-V DC Fuse Box: ZAFD (ADD105) Z b) 125-V DC Distribution Panels: ZAPPDI (200102) 2 ZIPPD2 ZIPPD3 (1DD501) 2 (200162) 2 APPLICABILITY: OPERATIONAL CONDITIONS 4, 5, and *.

LIMITING CONDITION FOR OPERATION (Continued)

ACTION:

a. With less than two divisions of the above required A.C. distribution system energized, suspend CORE ALTERATIONS, handling of irradiated fuel in the secondary containment and operations with a potential for uraining the reactor vessel.

b. With less than two divisions of the above required D.C. distribution system evergized, suspend CORE ALTERATIONS, handling of irradiated fuel in the secondary containment and operations with a potential for draining the reactor vessel.

*When handling irradiated fuel in the secondary containment.

LIMERICK - UNIT 1

3/4 8-19

FLE & 1925

٠

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

c. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.8.3.2 At least the above required power distribution system divisions shall be determined energized at least once per 7 days by verifying correct breaker alignment and voltage on the busses/MCCs/panels.

3/4.8.4 ELECTRICAL EQUIPMENT PROTECTIVE DEVICES

PRIMARY CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

3.8.4.1 All primary containment penetration conductor overcurrent protective devices shown in Table 3.8.4.1-1 shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2, and 3.

ACTION:

- a. With one or more of the above required containment penetration conductor overcurrent devices shown in Table 3.8.4.1-1 inoperable:
 - Restore the protective device(s) to OPERABLE status or deenergize the circuit(s) by tripping and locking, racking out, or removing the alternate device or racking out or removing the inoperable device within 72 hours, and
 - 2. Declare the affected system or component inoperable, and
 - Verify at least once per 7 days thereafter the alternate device is tripped and locked, racked out, or removed, or the inoperable device is racked out or removed.

Otherwise, be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

b. The provisions of Specification 3.0.4 are not applicable to overcurrent devices which have the inoperable device racked out or removed or, which have the alternate device tripped, racked out, or removed.

SURVEILLANCE REQUIREMENTS

4.8.4.1 Each of the primary containment penetration conductor overcurrent protective devices shown in Table 3.8.4.1-1 shall be demonstrated OPERABLE:

- a. At least once per 18 months:
 - By verifying that the medium voltage 4.16 kV circuit breakers are OPERABLE by selecting, on a rotating basis, at least 10% of the circuit breakers and performing:
 - a) A CHANNEL CALIBRATION of the associated protective relays, and
 - b) An integrated system functional test which includes simulated automatic actuation of the system and verifying that each relay and associated circuit breakers and overcurrent control circuits function as designed.
 - c) For each circuit breaker found inoperable during these functional tests, an additional representative sample of at least 10% of all the circuit breakers of the inoperable type shall also be functionally tested until no more failures are found or all circuit breakers of that type have been functionally tested.

1. 1955

- +

LIMERICK - UNIT 1

3/4 8-21

SURVEILLANCE REQUIREMENTS (Continued)

- 2. By selecting and functionally testing a representative sample of at least 10% of each type of the 480 VAC circuit breakers. Circuit breakers selected for functional testing shall be selected on a rotating basis. Testing of these circuit breakers shall consist of injecting a current with a value equal to 300% of the pickup of the long time delay trip element and 150% of the pickup of the short time delay trip element, and verifying that the circuit breaker operates within the time delay bandwidth for that current specified by the manufacturer. The instantaneous element shall be tested by injecting a current equal to ±20% of the pickup value of the element and verifying that the circuit breaker trips instantaneously with no intentional time delay. Molded case circuit breaker testing shall also follow this procedure except that generally no more than two trip elements, time delay and instantaneous, will be involved. Circuit breakers found inoperable during functional testing shall be restored to OPERABLE status prior to resuming operation. For each circuit breaker found inoperable during these functional tests, an additional representative sample of at least 10% of all the circuit breakers of the inoperable type shall also be functionally tested until no more failures are found or all circuit breakers of that type have been functionally tested.
- b. At least once per 60 months by subjecting each circuit breaker to an inspection and preventive maintenance in accordance with procedures prepared in conjunction with its manufacturer's recommendations.

TABLE 3.8.4.1-1

PRIMARY CONTAINMENT PENETRATION CONDUCTOR

OVERCURRENT PROTECTIVE DEVICES

1. 4160-VOLT CIRCUIT BREAKERS

CIRCUIT BREAKER NO.	LOCATION	SYSTEMS OR EQUIPMENT POWERED
152-20101	Z 20A201	Z ZA Reactor Recirc Pump
152-20102	2 20A201	'A' RPT Breaker 2 IA Reactor Recirc Pump
152-20201	Z10A202	'B' RPT Breaker 2 AB Reactor Recirc Pump
152-20202	Z 20A202	'A' RPT Breaker 2 AB Reactor Recirc Pump 'B' RPT Breaker

2. 480-VOLT MOLDED CASE BREAKERS*

*Primary and backup breakers have the same device numbers and are located in the same Motor Control Center cubicle.

CIRCUIT BREAKER NO.	LOCATION	TYPES	SYSTEMS OR EQUIPMENT POWERED
52-21108	D114-R-G	IM HFB100 TM HFB100	Z 1A1 Drywell Area Unit Cooler 1A1V212
52-21109	D114-R-G	IM HFB100 TM HFB100	ZZE1 Drywell Area Unit Cooler ZE1V212
52-21110	D114-R-G	IM HFB100 TM HFB100	ZACI Drywell Area Unit Cooler ZC1V212
52-21111	D214-R-G	IM HFB100 TM HFB100	ZIGI Drywell Area Unit Cooler AG1V212
52-21124	DAI4-R-G	IM HFB25 TM HFB100	RHR S/D Clg. Suction Inbro Isol Viv HV-51-7F009
52-21125	0114-R-G 2	IM HFB25	Rx Head Spray Inbrd Isol Viv HV-51-1F022-
52-21126	D)14-R-G	IM HFB50-25 TM HFB100	RWCU Inbrd 2 Isol Viv HV-44-1F001
52-21138	DAIA-R-G Z	IM HFB25 TM HFB40	Mn Stm Line Drain Inbrd Isol Vlv HV-41-2F016
52-21141	0114-R-G	IM HFB25 TM HFB40	Inst Gas Compr Suct Line Inbrd Isol Viv HV-59-201 Z

TABLE 3.8.4.1-1 (Continued)

PRIMARY CONTAINMENT PENETRATION CONDUCTOR

OVERCURRENT PROTECTIVE DEVICES

2. 480-VOLT MOLDED CASE BREAKERS (Continued)

and a set of the set of the set of

.

6

BREAKER NO.	LOCATION	TYPES	SYSTEMS OR EQUIPMENT POWERED
52-21208	D424-R-G	IM HFB100	ZIBI Drywell Area Unit
	2	TM HFB100	Cooler 181V212
52-21209	D224-R-G	IM HFB100	ZIF1 Drywell Area Unit
	2	TM HFB100	Cooler IF1V212
52-21210	D724-R-G	IM HFB100	ZID1 Drywell Area Unit
	2	TM HFB100	Cooler 101V212
52-21211	DZ24-R-G	IM HFE100	2 dH1 Drywell Area Unit
	Z	TM HFB100	Cooler ZHIV212
52-21216	D124-R-G	IM HFB25	ZIB Reactor Recirc Pump
	2	TM HFB100	Suction Viv HV-43-1F023E
52-21309	D114-R-C	IM HFB50	Feedwater Line 'A' Inbro
	2	TM HFB150	Maint VIV HV-41-ZFOILA
52-21707	DZ34-R-H	IM HFB100	Z 102 Drywell Area Unit
	2	TM HFB100	Cooler AC2V212
52-21708	DZ34-R-H	IM HFB100	Z IG2 Drywell Area Unit
	2	TM HFB100	Cooler AG2V212
52-21807	D744-R-H	IM HFB100	2 102 Drywell Area Unit
	2	TM HFB100	Cooler ID2V212
52-21808	D144-R-H	IM HFB100	2 1F2 Drywell Area Unit
	2	TM HFB100	Cooler AF2V212
52-22310	DZ34-R-E	IM HFB100	Z ZA2 Drywell Area Unit
	2	TM HFB100	Cooler XA2V212
52-22311	D134-R-E	IM HFB100	ZAE2 Drywell Area Unit
	2	TM HFB100	Cooler #E2V212
52-22313	D734-R-E	IM HFB25	RCIC Mn Stan Supply Inbrd
	Z	TM HFB40	ISO1 VIV HV-49-2F007
52-22314	DA 34-R-E	IM HFB50	Feedwater Line 'B' Inbrd
	2	TM HFB100	Maint Viv HV-41-2F0118

LIMERICK - UNIT 1

3/4 8-24

101 8.1955

.. 1

TABLE 3.8.4.1-1 (Continued)

PRIMARY CONTAINMENT PENETRATION CONDUCTOR

OVERCURRENT PROTECTIVE DEVICES

2. 480-VOLT MOLDED CASE BREAKERS (Continued)

CIRCUIT BREAKER NO.	LOCATION	TYPES	SYSTEMS OR EQUIPMENT POWERED
52-22410	D144-R-E	IM HFB100 TM HFB100	Z XB2 Drywell Area Unit Cooler / B2V212
52-22411	D¥44-R-E 2	IM HFB100 TM HFB100	ZAH2 Drywell Area Unit Cooler ZH2V212
52-22418	D744-R-Е 2	IM HFB50 TM HFB150	HPCI Mn Stm Supply Inbrd Isol Viv HV-55-1F002
52-22516	2,1148-R-C	IM HFB25 TM HFB100	ZIA Reac Recirc Pump Suction VLV HV-43-AF023A
52-22518	2714B-R-C	IM HFB25 TM HFB100	ZIA Reac Recirc Pump Discharge VLV HV-43-IF031A
52-22520	2 2148-R-C	IM HFB25 TM HFB40	Reactor Bottom Head Drain VL HV-44-XF100
52-22536	2 X148-R-C	IM HFB25 TM HFB40	Rweit Flow Control VL Reactor Bottom Head Drain VL HV 44-2F105
52-22534	21148-R-C	IM HFB25 TM HFB40	Reactor Vessel Head Vent HV-41-ZF001
52-22535	Z 148-R-C	IM HFB25 TM HFB40	Reactor Vessel Head Vent HV-41-ZF005
52-22537	ZZ148-R-C	TM HFB15 TM HFB20	Disposal Cask Removal Cart Hoist 20H236
52-22538	2714B-R-C	TM HFB15 TM HFB20	Control Rod Drive Platform Hoist 20H229
52-22608	2 1248-R-C	TM HFB15 TM HFB20	CRD Equipment Handling Platform 20N22508 20W 20.
52-22618	Z 2248-R-C	IM HFB25 TM HFB100	Z ZB Reac. Recirc. Pump Discharge VLV HV-43-ZF031B
52-22622	Z1248-R-C	TM HFB125	Permanent Plant In-Containmen Welding System XONW201

LIMERICK - UNIT 1

201 S 1985

Г

TABLE 3.8.4.1-1 (Continued)

PRIMARY CONTAINMENT PENETRATION CONDUCTOR

OVERCURRENT PROTECTIVE DEVICES

2. 480-VOLT MOLDED CASE BREAKERS (Continued)

CIRCUIT BREAKER NO.	LOCATION	TYPES	SYSTEMS OR EQUIPMENT POWERED
*52-22626 1L36 (Main Brea	21248-R-C ker)21136	TM HFB50 EB3090**	Unit Z Reactor Enclosure Lighting XFMR ZX28
*52-22630	2,1248-R-C	TM HFB20 TM HFB20	ZA Reac. Recirc. Pump Motor Hoist ZAH203
*52-22631	2 1248-R-C	TM HFB20 TM HFB20	Z ZB Reac. Recirc. Pump Motor Hoist ZBH203
52-22634	21248-R-C	IM HFB25 TM HFB40	Reactor Vessel Head Vent HV-41-1F002
*52-22707	2,114C-R-A	TM HFB15 TM HFB15	Mn Stm Relief Vlv Removal Hoist 20H232
*52-22708	2214C-R-A	TM HFB15 TM HFB15	Mn Stm Relief Vlv Removal Hoist ZOH230

*These breakers shall be administratively maintained open in OPERATIONAL CONDITIONS 1, 2 and 3 and are not required to be tested.

2

**208 VAC circuit breaker

ABBREVIATIONS:

TM Thermal Magnetic

Instantaneous Magnetic IM

LIMFRICK - UNIT 1

MOTOF-OPERATED VALVES THERMAL OVERLOAD PROTECTION

LIMITING CONDITION FOR OPERATION

3.8.4.2 The thermal overload protection of all Class 1E motor operated valves shall be either:

- Continously bypassed for all valves with maintained position control switches; or,
- b. Bypassed only under accident conditions for all valves with springreturn-to-normal control switches.

APPLICABILITY: Whenever the motor-operated valve is required to be OPERABLE.

ACTION:

With the thermal overload protection for one or more of the above required valves not bypassed continuously or only under accident conditions, as applicable, restore the thermal overload bypass within 8 hours or declare the affected valve(s) inoperable and apply the appropriate ACTION statement(s) for the affected system(s).

SURVEILLANCE REQUIREMENTS

4.8.4.2.1 The thermal overload protection for the above reasons which are continuously bypassed and temporarily placed in force only when the valve motor is undergoing periodic or maintenance testing shall be verified to be bypassed following periodic or maintenance testing during which the thermal overload protection was temporarily placed in force.

4.8.4.2.2 At least once per 18 months, a CHANNEL FUNCTIONAL TEST of all those valves which are bypassed only under accident conditions (valves with spring-return-to-normal control switches) shall be performed to verify that the thermal overload protection will be bypassed under accident conditions.

LIMERICK - UNIT 1

dafi i kingg

REACTOR PROTECTION SYSTEM ELECTRICAL POWER MONITORING

LIMITING CONDITION FOR OPERATION

3.8.4.3 Two reactor protection system (RPS) electric power monitoring channels for each inservice RPS Inverter or alternate power supply shall be OPERABLE.

APPLICABILITY: At all times.

ACTION:

- a. With one RPS electric power monitoring channel for an inservice RPS Inverter or alternate power supply inoperable, restore the inoperable power monitoring channel to OPERABLE status within 72 hours or remove the associated RPS Inverter or alternate power supply from service.
- b. With both RPS electric power monitoring channels for an inservice RPS Inverter or alternate power supply inoperable, restore at least one electric power monitoring channel to OPERABLE status within 24 hours or remove the associated RPS Inverter or alternate power supply from service.

SURVEILLANCE REQUIREMENTS

4.8.4.3 The above specified RPS electric power monitoring channels shall be determined OPERABLE:

- a. At least once per six months by performance of a CHANNEL FUNCTIONAL TEST.
- b. At least once per 18 months by demonstrating the OPERABILITY of overvoltage, undervoltage, and underfrequency protective instrumentation by performance of a CHANNEL CALIBRATION including simulated automatic actuation of the protective relays, tripping logic, and output circuit breakers and verifying the following setpoints.
 - 1. Overvoltage < 132 VAC,
 - 2. Undervoltage > 109 VAC,
 - Underfrequency > 57 Hz.

LIMERICK - UNIT 1

3/4 8-28

٠

3/4.9 REFUELING OPERATIONS

3/4.9.1 REACTOR MODE SWITCH

LIMITING CONDITION FOR OPERATION

3.9.1 The reactor mode switch shall be OPERABLE and locked in the Shutdown or Refuel position. When the reactor mode switch is locked in the Refuel position:

- a. A control rod shall not be withdrawn unless the Refuel position onerod-out interlock is OPERABLE.
- b. CORE ALTERATIONS shall not be performed using equipment associated with a Refuel position interlock unless at least the following Refuel position interlocks associated with that equipment are OPERABLE:
 - 1. All rods in.
 - 2. Refuel platform position.
 - 3. Refuel platform hoists fuel-loaded.
 - Service platform hoist fuel-loaded.

APPLICABILITY: OPERATIONAL CONDITION 5* **.

ACTION:

- a. With the reactor mode switch not locked in the Shutdown or Refuel position as specified, suspend CORE ALTERATIONS and lock the reactor mode switch in the Shutdown or Refuel position.
- b. With the one-rod-out interlock inoperable, lock the reactor mode switch in the Shutdown position.
- c. With any of the above required Refuel position equipment interlocks inoperable, suspend CORE ALTERATIONS with equipment associated with the inoperable Refuel position equipment interlock.

*See Special Test Exceptions 3.10.1 and 3.10.3.

**The reactor shall be maintained in OPERATIONAL CONDITION 5 whenever fuel is in the reactor vessel with the vessel head closure bolts less than fully tensioned or with the head removed.

LIMERICK - UNIT 1

3/4 9-1

A 1985

SURVEILLANCE REQUIREMENTS

4.9.1.1 The reactor mode switch shall be verified to be locked in the Shutdown or Refuel position as specified:

- a. Within 2 hours prior to:
 - 1. Beginning CORE ALTERATIONS, and
 - Resuming CORE ALTERATIONS when the reactor mode switch has been unlocked.
- b. At least once per 12 hours.

4.9.1.2 Each of the above required reactor mode switch Refuel position interlocks* shall be demonstrated OPERABLE by performance of a CHANNEL FUNCTIONAL TEST within 24 hours prior to the start of and at least once per 7 days during control rod withdrawal or CORE ALTERATIONS, as applicable.

4.9.1.3 Each of the above required reactor mode switch Refuel position. interlocks* that is affected shall be demonstrated OPERABLE by performance of a CHANNEL FUNCTIONAL TEST prior to resuming control rod withdrawal or CORE ALTERATIONS, as applicable, following repair, maintenance or replacement of any component that could affect the Refuel position interlock.

*The reactor mode switch may be placed in the Run or Startup/Hot Standby position to test the switch interlock functions provided that all control rods are verified to remain fully inserted by a second licensed operator or other technically qualified member of the unit technical staff.

3872005592

REFUELING OPERATIONS

3/4.9.2 INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.9.2 At least two source range monitor (SRM) channels* shall be OPERABLE and inserted to the normal operating level with:

- a. Continuous visual indication in the control room,
- b. At least one with audible alars in the control roos,
- c. One of the required SRM detectors located in the quadrant where CORE ALTERATIONS are being performed and the other required SRM detector located in an adjacent quadrant, and
- d. Unless adequate shutdown margin has been demonstrated, the shorting links shall be removed from the RPS circuitry prior to and during the time any control rod is withdrawn.**

APPLICABILITY: OPERATIONAL CONDITION 5.***

ACTION:

With the requirements of the above specification not satisfied, immediately suspend all operations involving CORE ALTERATIONS and insert all insertable control rods.

SURVEILLANCE REQUIREMENTS

4.9.2 Each of the above required SRM channels shall be demonstrated OPERABLE by:

- a. At least once per 12 hours:
 - 1. Performance of a CHANNEL CHECK,
 - Verifying the detectors are inserted to the normal operating level, and
 - During CORE ALTERATIONS, verifying that the detector of an OPERABLE SRM channel is located in the core quadrant where CORE ALTERATIONS are being performed and another is located in an adjacent quadrant.

*These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMs, are in the core. The use of special movable detectors during CORE ALTERATIONS in place of the normal SRM nuclear detectors is permissible as long as these special detectors are connected to the normal SRM circuits.

**Not required for control rods removed per Specification 3.9.10.1 or 3.9.10.2.

LIMERICK - UNIT 1

3/4 9-3

Amendment No. 4 MAY 1 1 1987

*** See Special Test Exception 3.10.7.

3872005592

1

REFUELING OPERATIONS

SURVEILLANCE REQUIREMENTS (Continued)

- b. Performance of a CHANNEL FUNCTIONAL TEST:
 - 1. Within 24 hours prior to the start of CORE ALTERATIONS, and
 - 2. At least once per 7 days.
- c. Verifying that the channel count rate is at least 3.0 cps:*
 - 1. Prior to control rod withdrawal,
 - 2. Prior to and at least once per 12 hours during CORE ALTERATIONS, and
 - 3. At least once per 24 hours.
- d. Verifying, within 8 hours prior to and at least once per 12 hours during, that the RPS circuitry "shorting links" have been removed during:
 - 1. The time any control rod is withdrawn, ** or
 - 2. Shutdown margin demonstrations.

*May be reduced to 0.7 cps provided the signal-to-noise ratio is > 2. These channels are not required when sixteen or fewer fuel assemblies, adjacent to the SRMs, are in the core.

**Not required for control rods removed par Specification 3.9.10.1 or 3.9.10.2. MAY 1 1 1987

LIMERICK - UNIT 1

Amendment No. 4

3/4.9.3 CONTROL ROD POSITION

LIMITING CONDITION FOR OPERATION

3.9.3 All control rods shall be inserted.*

APPLICABILITY: OPERATIONAL CONDITION 5, during CORE ALTERATIONS. **

ACTION:

With all control rods not inserted, suspend all other CORE ALTERATIONS, except that one control rod may be withdrawn under control of the reactor mode switch Refuel position one-rod-out interlock.

SURVEILLANCE REQUIREMENTS

4.9.3 All control rods shall be verified to be inserted, except as above specified:

Within 2 hours prior to: 8.

- 1. The start of CORE ALTERATIONS.
- The withdrawal of one control rod under the control of the reactor mode switch Refuel position one-rod-out interlock.
- b. At least once per 12 hours.

*Except control rods removed per Specification 3.9.10.1 or 3.9.10.2. **See Special Test Exception 3.10.3.

LIMERICK - UNIT 1

3/4 9-5

3 4.9.4 DECAY TIME

LIMITING CONDITION FOR OPERATION

3.9.4 The reactor shall be subcritical for at least 24 hours.

APPLICABILITY: OPERATIONAL CONDITION 5, during movement of irradiated fuel in the reactor pressure vessel.

ACTION:

With the reactor subcritical for less than 24 hours, suspend all operations involving movement of irradiated fuel in the reactor pressure vessel.

SURVEILLANCE REQUIREMENTS

4.9.4 The reactor shall be determined to have been subcritical for at least 24 hours by verification of the date and time of subcriticality prior to movement of irradiated fuel in the reactor pressure vessel.

*

100

3/4.9.5 COMMUNICATIONS

LIMITING CONDITION FOR OPERATION

3.9.5 Direct communication shall be maintained between the control room and refueling floor personnel.

APPLICABILITY: OPERATIONAL CONDITION 5, during CORE ALTERATIONS.*

ACTION:

When direct communication between the control room and refueling floor personnel cannot be maintained, immediately suspend CORE ALTERATIONS.*

SURVEILLANCE REQUIREMENTS

4.9.5 Direct communication between the control room and refueling floor personnel shall be demonstrated within 1 hour prior to the start of and at least once per 12 hours during CORE ALTERATIONS.*

*Except movement of incore instrumentation and control rods with their normal drive system.

LIMERICK - UNIT 1

3/4.9.6 REFUELING PLATFORM

LIMITING CONDITION FOR OPERATION

3.9.6 The refueling platform shall be OPERABLE and used for handling fuel assemblies or control rods within the reactor pressure vessel.

APPLICAEILITY: During handling of fuel assemblies or control rods within the reactor pressure vessel.

ACTION:

With the requirements for refueling platform OPERABILITY not satisfied, suspend use of any inoperable refueling platform equipment from operations involving the handling of control rods and fuel assemblies within the reactor pressure vessel after placing the load in a safe condition.

SURVEILLANCE REQUIREMENTS

4.9.6.1 The refueling platform main hoist used for handling of control rods or fuel assemblies within the reactor pressure vessel shall be demonstrated OPERABLE within 7 days prior to the start of such operations by:

- a. Demonstrating operation of the overload cutoff on the main hoist when the load exceeds 1150 ± 50 pounds.
- b. Demonstrating operation of the hoist loaded control rod block interlock on the main hoist when the load exceeds 485 ± 50 pounds.
- c. Demonstrating operation of the redundant loaded interlock on the main hoist when the load exceeds 550 + 0, - 115 pounds.
- d. Demonstrating operation of the uptravel interlock when uptravel brings the top of the active fuel to 8 feet 6 inches below the normal water level.

LIMERICK - UNIT 1

WATCH MARKING COMM

SURVEILLANCE REQUIREMENTS (Continued)

4.9.6.2 The refueling platform frame-mounted auxiliary hoist used for handling of control rods within the reactor pressure vessel shall be demonstrated OPERABLE within 7 days prior to the use of such equipment by:

- a. Demonstrating operation of the overload cutoff on the frame mounted hoist when the load exceeds 1000 ± 50 pounds.
- b. Demonstrating operation of the uptravel mechanical stop on the frame mounted hoist when uptravel brings the top of active fuel to 8 feet 6 inches below the normal fuel storage pool water level.
- c. Demonstrating operation of the control rod block interlock on the frame mounted hoist when the load exceeds 400 ± 50 pounds.

4.9.6.3 The refueling platform monorail mounted auxiliary hoist used for handling of control rods within the reactor pressure vessel shall be demonstrated OPERABLE within 7 days prior to the use of such equipment by:

- a. Demonstrating operation of the overload cutoff on the monorall hoist when the load exceeds 1000 \pm 50 pounds.
- b. Demonstrating operation of the uptravel mechanical stop on the monorail hoist when uptravel brings the top of active fuel to 8 feet 6 inches below the normal fuel storage pool water level.
- c. Demonstrating operation of the control rod block interlock on the monorail hoist when the load exceeds 400 ± 50 pounds.

3/4. 9.7 CRANE TRAVEL-SPENT FUEL STORAGE POOL

LIMITING CONDITION FOR OPERATION

3.9.7 Loads in excess of 1200 pounds shall be prohibited from travel over fuel assemblies in the spent fuel storage pool racks.

APPLICABILITY: With fuel assemblies in the spent fuel storage pool racks.

ACTION:

With the requirements of the above specification not satisfied, place the crane load in a safe condition. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.9.7 Crane interlocks which prevent crane travel over fuel assemblies in the spent fuel storage pool racks shall be demonstrated OPERABLE within 7 days prior to and at least once per 7 days during crane operation.

3/4.9.8 WATER LEVEL - REACTOR VESSEL

LIMITING CONDITION FOR OPERATION

3.9.8 At least 22 feet of water shall be maintained over the top of the reactor pressure vessel flange.

APPLICABILITY: During handling of fuel assemblies or control rods within the reactor pressure vessel while in OPERATIONAL CONDITION 5 when the fuel assemblies being handled are irradiated or the fuel assemblies seated within the reactor vessel are irradiated.

ACTION:

With the requirements of the above specification not satisfied, suspend all operations involving handling of fuel assemblies or control rods within the reactor pressure vessel after placing all fuel assemblies and control rods in a safe condition.

SURVEILLANCE REQUIREMENTS

4.9.8 The reactor vessel water level shall be determined to be at least its minimum required depth within 2 hours prior to the start of and at least once per 24 hours during handling of fuel assemblies or control rods within the reactor pressure vessel.

LIMERICK - UNIT 1

3/4 9-11

3/4.9.9 WATER LEVEL - SPENT FUEL STORAGE POOL

LIMITING CONDITION FOR OPERATION

3.9.9 At least 22 feet of water shall be maintained over the top of irradiated fuel assemblies seated in the spent fuel storage pool racks.

APPLICABILITY: Whenever irradiated fuel assemblies are in the spent fuel storage pool.

ACTION:

With the requirements of the above specification not satisfied, suspend all movement of fuel assemblies and crane operations with loads in the spent fuel storage pool area after placing the fuel assemblies and crane load in a safe condition. The provisions of Specification 3.0.3 are not applicable.

SURVEILLANCE REQUIREMENTS

4.9.9 The water level in the spent fuel storage pool shall be determined to be at least at its minimum required depth at least once per 7 days.

3/4.5.10 CONTROL ROD REMOVAL

SINGLE CONTROL ROD REMOVAL

LIMITING CONDITION FOR OPERATION

3.9.10.1 One control rod and/or the associated control rod drive sechanism may be removed from the core and/or reactor pressure vessel provided that at least the following requirements are satisfied until a control rod and associated control rod drive mechanism are reinstalled and the control rod is fully inserted in the core.

- a. The reactor mode switch is OPERABLE and locked in the Shutdown position or in the Refuel position per Table 1.2 and Specification 3.9.1.
- b. The source range monitors (SRM) are OPERABLE per Specification 3.9.2.
- c. The SHUTDOWN MARGIN requirements of Specification 3.1.1 are satisfied, except that the control rod selected to be removed;
 - May be assumed to be the highest worth control rod required to be assumed to be fully withdrawn by the SHUTDOWN MARGIN test, and
 - Need not be assumed to be immovable or untrippable.
- d. All other control rods in a five-by-five array centered on the control rod being removed are inserted and electrically or hydraulically disarmed or the four fuel assemblies surrounding the control rod or control rod drive mechanism to be removed from the core and/or reactor vessel are removed from the core cell.
- e. All other control rods are inserted.

APPLICABILITY: OPERATIONAL CONDITIONS 4 and 5.

ACTION:

With the requirements of the above specification not satisfied, suspend removal of the control rod and/or associated control rod drive mechanism from the core and/or reactor pressure vessel and initiate action to satisfy the above requirements.

SURVEILLANCE REQUIREMENTS

4.9.10.1 Within 4 hours prior to the start of removal of a control rod and/or the associated control rod drive mechanism from the core and/or reactor pressure vessel and at least once per 24 hours thereafter until a control rod and associated control rod drive mechanism are reinstalled and the control rod is inserted in the core, verify that:

- a. The reactor mode switch is OPERABLE per Surveillance Requirement 4.3.1.1 or 4.9.1.2, as applicable, and locked in the Shutdown position or in the Refuel position with the "one rod out" Refuel position interlock OPERABLE per Specification 3.9.1.
- b. The SRM channels are OPERABLE per Specification 3.9.2.
- c. The SHUTDOWN MARGIN requirements of Specification 3.1.1 are satisfied per Specification 3.9.10.1c.
- d. All other control rods in a five-by-five array centered on the control rod being removed are inserted and electrically or hydraulically disarmed or the four fuel assemblies surrounding the control rod or control rod drive mechanism to be removed from the core and/or reactor vessel are removed from the core cell.

e. All other control rods are inserted.

0

REFUELING OPERATIONS

MULTIPLE CONTROL ROD REMOVAL

LIMITING CONDITION FOR OPERATION

3.9.10.2 Any number of control rods and/or control rod drive mechanisms may be removed from the core and/or reactor pressure vessel provided that at least the following requirements are satisfied until all control rods and control rod drive mechanisms are reinstalled and all control rods are inserted in the core.

- a. The reactor mode switch is OPERABLE and locked in the Shutdown position or in the Refuel position per Specification 3.9.1, except that the Refuel position "one-rod-out" interlock may be bypassed, as required, for those control rods and/or control rod drive mechanisms to be removed, after the fuel assemblies have been removed as specified below.
- b. The source range monitors (SRM) are OPERABLE per Specification 3.9.2.
- c. The SHUTDOWN MARGIN requirements of Specification 3.1.1 are satisfied.
- d. All other control rods are either inserted or have the surrounding four fuel assemblies removed from the core cell.
- e. The four fuel assemblies surrounding each control rod or control rod drive mechanism to be removed from the core and/or reactor vessel are removed from the core cell.

APPLICABILITY: OPERATIONAL CONDITION 5.

ACTION:

With the requirements of the above specification not satisfied, suspend removal of control rods and/or control rod drive mechanisms from the core and/or reactor pressure vessel and initiate action to satisfy the above requirements.

SURVEILLANCE REQUIREMENTS

4.9.10.2.1 Within 4 hours prior to the start of removal of control rods and/or control rod drive mechanisms from the core and/or reactor pressure vessel and at least once per 24 hours thereafter until all control rods and control rod drive mechanisms are reinstalled and all control rods are inserted in the core, verify that:

- a. The reactor mode switch is OPERABLE per Surveillance Requirement 4.3.1.1 or 4.9.1.2, as applicable, and locked in the Shutdown position or in the Refuel position per Specification 3.9.1.
- b. The SRM channels are OPERABLE per Specification 3.9.2.
- c. The SHUTDOWN MARGIN requirements of Specification 3.1.1 are satisfied.
- d. All other control rods are either inserted or have the surrounding four fuel assemblies removed from the core cell.
- e. The four fuel assemblies surrounding each control rod and/or control rod drive mechanism to be removed from the core and/or reactor vessel are removed from the core cell.

4.9.10.2.2 Following replacement of all control rods and/or control rod drive mechanisms removed in accordance with this specification, perform a functional test of the "one-rod-out" Refuel position interlock, if this function had been bypassed.

3/4.9.11 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION

HIGH WATER LEVEL

LIMITING CONDITION FOR OPERATION

3.9.11.1 At least one shutdown cooling mode loop of the residual heat removal (RHR) system shall be OPERABLE and in operation* with at least:

- a. One OPERABLE RHR pump, and
- b. One OPERABLE RHR heat exchanger.

APPLICABILITY: OPERATIONAL CONDITION 5, when irradiated fuel is in the reactor vessel and the water level is greater than or equal to 22 feet above the top of the reactor pressure vessel flange.

ACTION:

- a. With no RHR shutdown cooling mode loop OPERABLE, within 1 hour and at least once per 24 hours thereafter, demonstrate the OPERABILITY of at least one alternate method capable of decay heat removal. Otherwise, suspend all operations involving an increase in the reactor decay heat load and establish SECONDARY CONTAINMENT INTEGRITY within 4 hours.
- b. With no RHR shutdown cooling mode loop in operation, within 1 hour establish reactor coolant circulation by an alternate method and monitor reactor coolant temperature at least once per hour.

SURVEILLANCE REQUIREMENTS

4.9.11.1 At least one shutdown cooling mode loop of the residual heat removal system or alternate method shall be verified to be in operation and circulating reactor coolant at least once per 12 hours.

*The shutdown cooling pump may be removed from operation for up to 2 hours per 8-hour period.

LIMERICK - UNIT 1

LOW WATER LEVEL

LIMITING CONDITION FOR OPERATION

3.9.11.2 Two shutdown cooling mode loops of the residual heat removal (RHR) system shall be OPERABLE and at least one loop shall be in operation,* with each loop consisting of at least:

.

- a. One OPERABLE RHR pump, and
- b. One OPERABLE RHR heat exchanger.

<u>APPLICABILITY</u>: OPERATIONAL CONDITION 5, when irradiated fuel is in the reactor vessel and the water level is less than 22 feet above the top of the reactor pressure vessel flange.

ACTION:

- a. With less than the above required shutdown cooling mode loops of the RHR system OPERABLE, within 1 hour and at least once per 24 hours thereafter, demonstrate the OPERABILITY of at least one alternate method capable of decay heat removal for each inoperable RHR shutdown cooling mode loop.
- b. With no RHR shutdown cooling mode loop in operation, within 1 hour establish reactor coolant circulation by an alternate method and monitor reactor coolant temperature at least once per hour.

SURVEILLANCE REQUIREMENTS

4.9.11.2 At least one shutdown cooling mode loop of the residual heat removal system or alternate method shall be verified to be in operation and circulating reactor coolant at least once per 12 hours.

*The shutdown cooling pump may be removed from operation for up to 2 hours per 8-hour period.

LIMERICK - UNIT 1

3/4 9-18

3/4.10 SPECIAL TEST EXCEPTIONS

3/4.10.1 PRIMARY CONTAINMENT INTEGRITY

LIMITING CONDITION FOR OPERATION

3.10.1 The provisions of Specifications 3.6.1.1, 3.6.1.3, and 3.9.1 and Table 1.2 may be suspended to permit the reactor pressure vessel closure head and the drywell head to be removed and the primary containment air lock doors to be open when the reactor mode switch is in the Startup position during low power PHYSICS TESTS with THERMAL POWER less than 1% of RATED THERMAL POWER and reactor coolant temperature less than 200°F.

APPLICABILITY: OPERATIONAL CONDITION 2, during low power PHYSICS TESTS.

ACTION:

With THERMAL POWER greater than or equal to 1% of RATED THERMAL POWER or with the reactor coolant temperature greater than or equal to 200°F, immediately place the reactor mode switch in the Shutdown position.

SURVEILLANCE REQUIREMENTS

4.10.1 The THERMAL POWER and reactor coolant temperature shall be verified to be within the limits at least once per hour during low power PHYSICS TESTS.

3/4.10.2 ROD SEQUENCE CONTROL SYSTEM

LIMITING CONDITION FOR OPERATION

3.10.2 The sequence constraints imposed on control rod groups by the rod worth minimizer (RWM) per Specification 3.1.4.1 and by the rod sequence control system (RSCS) per Specification 3.1.4.2 may be suspended by means of bypass switches for the following tests provided that control rod movement prescribed for this testing is verified by a second licensed operator or other technically qualified - member of the unit technical staff present at the reactor console:

- a. Shutdown margin demonstration, Specification 4.1.1.
- b. Control rod scram, Specification 4.1.3.2.
- c. Control rod friction measurements.
- d. Startup Test Program with the THERMAL POWER less than 20% of RATED THERMAL POWER.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2.

ACTION:

With the requirements of the above specification not satisfied, verify that the RWM and the RSCS are OPERABLE per Specifications 3.1.4.1 and 3.1.4.2, respectively.

SURVEILLANCE REQUIREMENTS

4.10.2 When the sequence constraints imposed by the RSCS and/or RWM are bypassed, verify;

- a. That movement of control rods from 75% ROD DENSITY to the RSCS preset power level is blocked or limited to the approved control rod withdrawal sequence during scram and friction tests.
- b. That movement of control rods during shutdown margin demonstrations is limited to the prescribed sequence per Specification 3.10.3.
- c. Conformance with this specification and test procedures by a second licensed operator or other technically qualified member of the unit technical staff.

LIMERICK - UNIT 1

3/4 10-2

3/4.10.3 SHUTDOWN MARGIN DEMONSTRATIONS

LIMITING CONDITION FOR OPERATION

3.10.3 The provisions of Specification 3.9.1, Specification 3.9.3, and Table 1.2 may be suspended to permit the reactor mode switch to be in the Startup position and to allow more than one control rod to be withdrawn for shutdown margin demonstration, provided that at least the following requirements are satisfied.

- a. The source range monitors are OPERABLE with the RPS circuitry "shorting links" removed per Specification 3.9.2.
- 5. The rod worth minimizer is OPERABLE per Specification 3.1.4.1 and is programmed for the shutdown margin demonstration, or conformance with the shutdown margin demonstration procedure is verified by a second licensed operator or other technically qualified member of the unit technical staff.
- c. The "continuous rod withdrawal" control shall not be used during out-of-sequence movement of the control rods.
- d. No other CORE ALTERATIONS are in progress.

APPLICABILITY: OPERATIONAL CONDITION 5, during shutdown margin demonstrations.

ACTION:

with the requirements of the above specification not satisfied, immediately place the reactor mode switch in the Shutdown or Refuel position.

SURVEILLANCE REQUIREMENTS

4.10.3 Within 30 minutes prior to and at least once per 12 hours during the performance of a shutdown margin demonstration, verify that;

- a. The source range monitors are OPERABLE per Specification 3.9.2,
- b. The rod worth minimizer is OPERABLE with the required program per Specification 3.1.4.1 or a second licensed operator or other technically qualified member of the unit technical staff is present and verifies compliance with the shutdown margin demonstration procedures, and
- c. No other CORE ALTERATIONS are in progress.

LIMERICK - UNIT 1

3/4 10-3

3/4.10.4 RECIRCULATION LOOPS

LIMITING CONDITION FOR OPERATION

3.10.4 The requirements of Specifications 3.4.1.1 and 3.4.1.3 that recirculation loops be in operation may be suspended for up to 24 hours for the performance of:

- a. PHYSICS TESTS, provided that THERMAL POWER does not exceed 5% of RATED THERMAL POWER, or
- b. The Startup Test Program.

APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2, during PHYSICS TESTS and the Startup Test Program.

ACTION:

- a. With the above specified time limit exceeded, insert all control rods.
- b. With the above specified THERMAL POWER limit exceeded during PHYSICS TESTS, immediately place the reactor mode switch in the Shutdown position.

SURVEILLANCE REQUIREMENTS

4.10.4.1 The time during which the above specified requirement has been suspended shall be verified to be less than 24 hours at least once per hour during PHYSICS TESTS and the Startup Test Program.

4.10.4.2 THERMAL POWER shall be determined to be less than 5% of RATED THERMAL POWER at least once per hour during PHYSICS TESTS.

٩

3/4.10.5 OXYGEN CONCENTRATION

LIMITING CONDITION FOR OPERATION

3.10.5 The provisions of Specification 3.6.6.3 may be suspended during the performance of the Startup Test Program until either the required 100% of RATED THERMAL POWER trip tests have been completed or the reactor has operated for 120 Effective Full Power Days.

.

.

1

126 8 705:

s .

A.

APPLICABILITY: OPERATIONAL CONDITION 1.

ACTION

With the requirements of the above specification not satisfied, be in at least STARTUP within 6 hours.

4.10.5 The Effective Full Power Days of operation shall be verified to be less than 120, by calculation, at least once per 7 days during the Startup Test Program.

3/4.10.6 TRAINING STARTUPS

LIMITING CONDITION FOR OPERATION

3.10.6 The provisions of Specification 3.5.1 may be suspended to permit one RHR subsystem to be aligned in the shutdown cooling mode during training startups provided that the reactor vessel is not pressurized, THERMAL POWER is less than or equal to 1% of RATED THERMAL POWER and reactor coolant temperature is less than 200°F.

APPLICABILITY: OPERATIONAL CONDITION 2, during training startups.

ACTION:

With the requirements of the above specification not satisfied, immediately place the reactor mode switch in the Shutdown position.

SURVEILLANCE REQUIREMENTS

4.10.6 The reactor vessel shall be verified to be unpressurized and the THERMAL POWER and reactor coolant temperature shall be verified to be within the limits at least once per hour during training startups.

· ():

3/4.10.7 SPECIAL INSTRUMENTATION - INITIAL CORE LOADING

LIMITING CONDITION FOR OPERATION

3.10.7 During initial core loading within the Startup Test Program the provisions of Specification 3. 29.2 may be suspended provided that at least two source range monitor (SRM) channels with detectors inserted to the normal operating level are OPERABLE with:

- One of the required SRM channels continuously indicating* in the control room,
- b. One of the required SRM detectors located in the quadrant where CORE ALTERATIONS are being performed and the other required SRM detector located in an adjacent quadrant,**
- c. The RPS "shorting links" shall be removed prior to and during fuel loading,
- c. The reactor mode switch is OPERABLE and locked in the REFUEL position.

APPLICABILITY: OPERATIONAL CONDITION 5

ACTION

With the requirements of the above specification not satisfied, immediately suspend all operations involving CORE ALTERATIONS and insert all insertable control rods.

SURVEILLANCE REQUIREMENTS

4.10.7 Each of the above required SRM channels shall be demonstrated OPERABLE by:

- a. Within 1 hour prior to and at least once per 12 hours during CORE ALTERATIONS:
 - 1. Performance of a CHANNEL CHECK***
 - 2. Confirming that the above required SRM detectors are at the
 - normal operating level and located in the quadrants required by Specification 3.10.7.

APR 11 low

*Up to 16 fuel bundles may be loaded without a visual indication of count rate.

**The use of special movable detectors during CORE ALTERATIONS in place of the normal SRM nuclear detectors is permissible as long as these special detectors are connected to the normal SRM circuits.

***Check may be performed by use of movable neutron source. HOPE CREEK 3/4 10-7

SURVEILLANCE REQUIREMENTS (Continued)

4.10.7. (Continued)

- 3. The RPS "shorting links" are removed.
- 4. The reactor mode switch is locked in the REFUEL position.
- b. Performance of a CHANNEL FUNCTIONAL TEST within 24 hours prior to the start and at least once per 7 days during CORE ALTERATIONS.
- c. Verifying for at least one SRM channel that the count rate is at least 0.7 cps*:
 - 1. Immediately following the loading of the first 16 fuel bundles.
 - 2. At least once per 12 hours thereafter during CORE ALTERATIONS.

*Provided signal-to-noise is ≥ 2 . Otherwise, 3 cps.

3/4 10-8

3/4.11 RADIOACTIVE EFFLUENTS

3/4.11.1 LIQUID EFFLUENTS

CONCENTRATION

LIMITING CONDITION FOR OPERATION

3.11.1.1 The concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS (see Figure 5.1.3-1) shall be limited to the concentrations specified in 10 CFR Part 20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to 2×10^{-4} microcuries/ml total

APPLICABILITY: At all times.

ACTION:

With the concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS exceeding the above limits, immediately restore the concentration to within the above limits.

SURVEILLANCE REQUIREMENTS

4.11.1.1.1 Radioactive liquid wastes shall be sampled and analyzed according to the sampling and analysis program of Table 4.11.1.1.1.1.

4.11.1.1.2 The results of the radioactivity analyses shall be used in accordance with the methodology and parameters in the ODCM to assure that the concentrations at the point of release are maintained within the limits of Specification 3.11.1.1.

TABLE 4.11.1.1.1-1

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

LIQUID RELEASE TYPE		SAMPLING FREQUENCY	MINIMUM ANALYSIS FREQUENCY	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT DF DETECTION (LLD)* (µC1/mL)
Α.	Batch Waste Release Tanks ^b	P Each Batch	P Each Batch	Principal Gamma Emitters	5x10-7
				I-131	1x10-6
1.	Floor Drain Sample Tank No. 2	P One Batch/M		Dissolved and Entrained Gases (Samma Emitters)	1×10-5
2.	Laundry Drain Sample Tank	P Each Batch	M Composite ^d	H-3	1×10-5
				Gross Alpha	1x10-7
		P Each Batch	Q Composite ^d	5-89, 5-90	5×10-8
			composite	Fe-55	1x10-6
Β.	Continuous Release	W Grab Sample	×	Principal Gamma Emitters	5x10-7
bined Loop -				1-131	1x10-6
1.	RHR Service Water System Effluent Line	Grab Sample	٣	Dissolved and Entrained Gases (Gamma Emitters)	1×10-5
2.	Service Water System Effluent Line ^f	W Grab Sample	M Composite ^d	H-3	1×10-8
				Gross Alpha	1×10-7
		W Grab Sample	Q Composite ^d	5-89, 5-90	5×10-8
		ar as sample	composite	Fe-35	1x10-6

LIMERICK - UNIT 1

C

3/4 11-2

and in the later

AUC 8 1585

1205

TABLE 4.11.1.1.1-1 (Continued)

TABLE NOTATIONS

^aThe LLC is defined, for purposes of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a

For a particular measurement system, which may include radiochemical separation:

 $LLD = \frac{4.66s_{b}}{E \cdot V \cdot 2.22 \times 10^{6} " Y \cdot exp (-\lambda\Delta t)}$

Where:

LLD is the a priori lower limit of detection as defined above (as microcuries per unit mass or volume).

s, is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency, as counts per disintegration,

V is the sample size, in units of mass or volume,

2.22 x 10° is the number of disintegrations per minute per microcurie,

Y is the fractional radiochemical yield, when applicable,

 $\boldsymbol{\lambda}$ is the radioactive decay constant for the particular radionuclide, and

At for the plant effluents is the elapsed time between the midpoint of sample collection and time of counting.

Typical values of E, V, Y, and At should be used in the calculation.

It should be recognized that the LLD is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as an a posteriori (after the fact) limit for a particular measurement.

3/4 11-3

100.0

2

TABLE 4.11.1.1.1-1 (Continued)

TABLE NOTATIONS

^bA batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed to assure representative sampling.

^CThe principal gamma emitters for which the LLD specification applies include the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Semiannual Radioactive Effluent Release Report pursuant to Specification 6.9.1.8.

^dA composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released.

^eA continuous release is the discharge of liquid wastes of a nondiscrete volume, e.g., from a volume of a system that has an input flow during the continuous release.

f Whenever effluent releases are in excess of the monitor's setpoint.

DOSE

LIMITING CONDITION FOR OPERATION

3.11.1.2 The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released from each reactor unit to UNRESTRICTED AREAS (See Figure 5.1.3-1) shall be limited:

- a. During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
- b. During any calendar year to less than or equal to 3 mrens to the total body and to less than or equal to 10 mrems to any organ.

APPLICABILITY: At all times.

ACTION:

- a. With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits. This Special Report shall also include the radiological impact on finished drinking water supplies at the nearest downstream drinking water source.
- b. The provisions of specification 3.0.3 and 3.0.4 are not applicable.

SURVEILLANC & REQUIREMENTS

4.11.1.2 Cumulative dose contributions from liquid effluents for the current calendar quarter and the current calendar year shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.

LIMERICK - UNIT 1

3/4 11-5

LIQUID RADWASTE TREATMENT SYSTEM

LIMITING CONDITION FOR OPERATION

3.11.1.3 The liquid radwaste treatment system shall be DPERABLE and appropriate portions of the system shall be used to reduce the radioactive materials in liquid waste prior to their discharge when the projected doses due to the liquid effluent, from each reactor unit, to UNRESTRICTED AREAS (see Figure 5.1.3-1) would exceed 0.06 grem to the total body or 0.2 grem to any organ in a 31-day

APPLICABILITY: At all times.

ACTION:

- a. With radioactive liquid waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days pursuant to Specification 5.9.2 a Special Report which includes the following information:
 - Explanation of why liquid redwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for the inoperability.
 - Action(s) taken to restore the inoperable equipment to OPERABLE status, and
 - 3. Summary description of action(s) taken to prevent a recurrence.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.1.3.1 Doses due to liquid releases from each reactor unit to UNRESTRICTED AREAS shall be projected at least once per 31 days in accordance with the methodology and parameters in the ODCM.

4.11.1.3.2 The liquid radwaste treatment system shall be demonstrated OPERABLE by meeting Specifications 3.11.1.1 and 3.11.1.2.

LIMERICK - UNIT 1

3/4 11-6

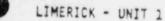
AUS 8 1005

LIQUID HOLDUP TANKS

LIMITING CONDITION FOR OPERATION

3.11.1.4 The quantity of radioactive material contained in any outside temporary tanks shall be limited to less than or equal to 10 curies, excluding tritium and dissolved or entrained noble gases.

APPLICABILITY: At all times.


ACTION:

a. With the quantity of radioactive material in any of the above tanks exceeding the above limit, immediately suspend all additions of radioactive material to the tank and within 48 hours reduce the tank contents to within the limit and describe the events loading to this condition in the next Semiannual Radioactive Effluent Release Report.

b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.1.4 The quantity of radioactive material contained in each of the above tanks shall be determined to be within the above limit by analyzing a representative sample of the tank's contents at least once per 7 days when radio-active materials are being added to the tank.

3/4.11.2 GASEOUS EFFLUENTS

DOSE RATE

LIMITING CONDITION FOR OPERATION

3.11.2.1 The dose rate due to radioactive materials released in gaseous effluents from the site to areas at or beyond the SITE BOUNDARY (see Figure 5.1.3-1) shall be limited to the following:

- a. For noble gases: Less than or equal to 500 mrems/yr to the total body and less than or equal to 3000 mrems/yr to the skin, and
- b. For iodine-131, for iodine-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days; Less than or equal to 1500 mrems/yr to any organ. (Inhalation pathways only.)

APPLICABILITY: At all times.

ACTION:

- a. With the dose rate(s) exceeding the above limits, immediately restore the release rate to within the above limits.
- b. The provisions of Specification 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.1.1 The dose rate due to noble gases in gaseous effluents shall be determined to be within the above limits i. accordance with the methodology and parameters of the ODCM.

4.11.2.1.2 The dose rate due to iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents shall be determined to be within the above limits in accordance with the methodology and parameters of the ODCM by obtaining representative samples and performing analyses in accordance with the simpling and analysis program specified in Table 4.11.2.1.2-1.

LIMERICK - UNIT 1

3/4 11-8

TABLE 4.11.2.1.2-1

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

GAS	EOUS RELEASE TYPE	SAMPLING FREQUENCY	MINIMUM ANALYSIS FREQUENCY	TYPE OF ACTIVITY ANALYSIS	LOWER LIMIT OF DETECTION (LLD) (µCi/mL)
Α.	Containment Purge (Pretreatment)	P Each Purge Grab Sample	P Each Purge	Principal Gamma Emitters ^{e,f}	1×10-*
8.	North Stack and South Stack	M ^b Grab	Mp	Principal Gamma Emitters ^e	1×10-4
		Sample		11-3	1×10-6
¢.	Hot Maintenance Shop Ventilation Exhaust ^h and All	Cont Inuous ^d	W ^C Charcoal Sample	I-131 I-133	1×10-12 1×10-10
	Release Types Listed in B above	Cont Invous ^d	W ^C Particulate Sample	Principa Gamma Emitters ^e (I-131, Others)	1×10-11
		Continuous ^d	Q Composite Par- ticulate Sample	Gross Alpha	1x10-11
		Continuous ^d	Q Composite Par- ticulate Sample	Sy-89, Sr-90	1×10-11
D.	All Release Types Listed in B above and the Main Condenser Off Gas Pretreatment Radio- activity Monitor	Continuous ^d	Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1×10- ⁸ (Based on Xe-133)

LIMERICK - UNIT 1

3/4 11-9

٢.

1.1

TABLE 4.11.2.1.2-1 (Continued)

TABLE NOTATIONS

^aThe LLD is defined, for purposes of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system, (which may include radiochemical separation):

$$LLD = \frac{4.66s_{b}}{E \cdot V \cdot 2.22 \times 10^{6} \cdot Y \cdot exp(-\lambda\Delta t)}$$

Where:

LLD is the a priori lower limit of detection as defined above (as microcuries per unit mass or volume),

s_b is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency (as counts per disintegration),

V is the sample size (in units of mass or volume),

2.22 x 10⁶ is the number of disintegrations per minute per microcurie,

Y is the fractional radiochemical yield (when applicable),

 λ is the radioactive decay constant for the particular radionuclide, and

At is the elapsed time between midpoint of sample collection and time of counting (for plant effluents, not environmental samples)

The value of s, used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance.

Typical values of E, V, Y, and At shall be used in the calculation.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit presenting the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

LIMERICK - UNIT 1

3/4 11-10

TABLE 4.11.2.1.2-1 (Continued)

TABLE NOTATIONS

- b Sampling and analyses shall also be performed following shutdown, startup, or a THERMAL POWER change exceeding 15% of the RATED THERMAL POWER within a 1-hour period. This requirement does not apply if (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the primary coolant has not increased more than a factor of 3; and (2) the main condenser offgas pre-treatment radioactivity monitor shows that effluent activity has not increased more than a factor of 3.
- -c Samples shall be changed at least once per 7 days and analyses shall be completed within 48 hours after changing, or after removal from sampler. Sampling shall also be performed at least once per 24 hours for at least 7 days following each shutdown, startup, or THERMAL POWER change exceeding 15% of RATED THERMAL POWER in 1 hour and analyses completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10. This requirement does not apply if (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the primary coolant has not increased more than a factor of 3; and (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3.
 - d The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with Specifications 3.11.2.1, 3.11.2.2, and 3.11.2.3.
 - The principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, Xe-35m and Xe-138 for gaseous emissions and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, I-131, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be considered. Other gamma peaks which are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Semiannual Radioactive Effluent Release Report, pursuant to Specification 6.9.1.8.
 - f Under the provisions of footnote e. above, only noble gases need to be considered.
 - g Required only when handling or storing irradiated fuel in the secondary containment. Deleted
 - h. Required for the hot maintenance shop ventilation exhaust only during operation of the hot maintenance shop ventilation exhaust system.

LIMERICK - UNIT 1

3/4 11-11

DOSE - NOBLE GASES

LIMITING CONDITION FOR OPERATION

3.11.2.2 The air dose due to noble gases released in gaseous effluents, from each reactor unit, to areas at and beyond the SITE BOUNDARY (see Figure 5.1.3-1) shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation, and
- b. During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

APPLICABILITY: At all times.

ACTION:

- a. With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure than subsequent releases will be in compliance with the above limits.
- b. The provisions of Specification 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.2 Cumulative dose contributions for the current calendar quarter and current calendar year for noble gases shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.

LIMERICK - UNIT 1

3/4 11-12

۴

DOSE - IODINE-131, IODINE-133, TRITIUM, AND RADIONUCLIDES IN PARTICULATE FORM

LIMITING CONDITION FOR OPERATION

3.11.2.3 The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY (see Figure 5.1.3-1) shall be limited to the

- a. During any calendar quarter: Less than or equal to 7.5 mrems to any organ and,
- b. During any calendar year: Less than or equal to 15 mrems to any organ.

APPLICABILITY: At all times.

ACTION:

a. With the calculated dose from the release of iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents exceeding any of the above immits, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report which identifies the cause(s) for exceeding the limit and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure than subsequent releases will be in compliance with the above limits.

b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.3 Cumulative dose contributions for the current calendar quarter and current calendar year for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.

VENTILATION EXHAUST TREATMENT SYSTEM

LIMITING CONDITION FOR OPERATION

3.11.2.4 The VENTILATION EXHAUST TREATMENT SYSTEM shall be OPERABLE and appropriate portions of the system shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases from each reactor unit to areas at and beyond the SITE BOUNDARY (see Figure 5.1.3-1) when averaged over 31 days would exceed 0.3 mrem

APPLICABILITY: At all times.

ACTION:

- a. With gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days, pursuant to Specification 5.9.2, a Special Report which includes the following information:
 - Explanation of why gaseous radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for the inoperability.
 - Action(s) taken to restore the inoperable equipment to OPERABLE status, and
 - 3. Summary description of action(s) taken to prevent a recurrence.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.4.1 Doses due to gaseous releases from each reactor unit to areas at and beyond the SITE BOUNDARY shall be projected at least once per 31 days in accordance with the methodology and parameters in the ODCM.

4.11.2.4.2 The VENTILATION EXHAUST TREATMENT SYSTEM shall be demonstrated OPERABLE by meeting Specifications 3.11.2.1, 3.11.2.2, and 3.11.2.3.

LIMERICK - UNIT 1

3/4 11-14

0

RADIOACTIVE EFFLUENTS

territoria di Con

EXPLOSIVE GAS MIXTURE

LIMITING CONDITION FOR OPERATION

3.11.2.5 The concentration of hydrogen in the main condenser offgas treatment system shall be limited to less than or equal to 4% by volume.

APPLICABILITY: Whenever the main condenser air ejector system is in operation.

- ACTION:

- a. With the concentration of hydrogen in the main condenser offgas treatment system exceeding the limit, restore the concentration to within the limit within 48 hours.
- b. The provisions of Specification 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.5 The concentration of hydrogen in the main condenser offgas treatment system shall be determined to be within the above limits by continuously monitoring the waste gases in the main condenser offgas treatment system with the hydrogen monitors required OPERABLE by Table 3.3.7.12-1 of Specifica-

MAIN CONDENSER

LIMITING CONDITION FOR OPERATION

3.11.2.6 The rate of the sum of the activities of the noble gases Kr-85m, Kr-87, Kr-88, Xe-133, Xe-135, and Xe-138 measured at the recombiner after-condenser discharge shall be limited to less than or equal to 330 millicuries/second.

- APPLICABILITY: OPERATIONAL CONDITIONS 1, 2*, and 3*.

ACTION:

With the rate of the sum of the activities of the specified noble gases at the recombiner after-condenser discharge exceeding 330 millicuries/second, restore the gross radioactivity rate to within its limit within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours.

SURVEILLANCE REQUIREMENTS

4.11.2 6.1 The rate of the sum of the activities of noble gases at the recombiner after-condenser discharge shall be continously monitored in accordance with Specification 3.3.7.12.

4.11.2.6.2 The rate of the sum of the activities of the specified noble gases from the recombiner after-condenser discharge shall be determined to be within the limits of Specification 3.11.2.6 at the following frequencies by performing an isotopic analysis of a representative sample of gases taken at the recombiner after condenser discharge:

- a. At least once per 31 days.
- b. Within 4 hours following an increase, as indicated by the Main Condenser Off-Gas Pretreatment Radioactivity Monitor, of greater than 50%, after factoring out increases due to changes in THERMAL POWER level or air in-leakage, in the nominal steady-state fission gas release from the primary coolant.
- c. The provisons of Specification 4.0.4 are not applicable.

*When the main condenser air ejector is in operation.

LIMERICK - UNIT 1

3/4 11-16

AUS 8 1915

VENTING OR PURGING

LIMITING CONDITION FOR OPERATION

3.11.2.7 VENTING or PURGING of the Mark II containment shall be through the standby gas treatment system.

_APPLICABILITY: Whenever the containment is vented or purged.*

ACTION:

- a. With the requirements of the above specification not satisfied, suspend all VENTING and PURGING of the containment.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.2.7.1 The containment shall be determined to be aligned for VENTING or PURGING through the standby gas treatment system within 4 hours prior to start of and at least once per 12 hours during VENTING or PURGING of the containment.

4.11.2.7.2 Prior to use of the purge system through the standby gas treatment system assure that:

- a. Both standby gas treatment system trains are OPERABLE whenever the purge system is in use, and
- b. Whenever the purge system is in use during OPERATIONAL CONDITION 1 or 2 or 3, only one of the standby gas treatment system trains may be used.

*Except for the one inch/two inch vent valves to the Reactor Enclosure Equipment Compartment Exhaust Filters when used for containment pressure control and nitrogen make-up operations.

LIMERICK - UNIT 1

3/4 11-17

6 1985

3/4.12.3 SOLID RADWASTE TREATMENT

LIMITING CONDITION FOR OPERATION

3.11.3 Radioactive wastes shall be SOLIDIFIED or dewatered in accordance with the PROCESS CONTROL PROGRAM to meet shipping and transportation requirements during transit, and disposal site requirements when received at the disposal site.

APPLICABILITY: At all times.

ACTION:

- a. With SOLIDIFICATION or dewatering not meeting disposal site and shipping and transportation requirements, suspend shipment of the inadequately processed wastes and correct the PROCESS CONTROL PROGRAM, the procedures and/or the solid waste system as necessary to prevent recurrence.
- b. With the SOLIDIFICATION or dewatering not performed in accordance with the PROCESS CONTROL PROGRAM, (1) test the improperly processed waste in each container to ensure that it meets burial ground and shipping requirements and (2) take appropriate administrative action to prevent recurrence.
- c. The provisions of Specification 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.3.1 The PROCESS CONTROL PROGRAM shall be used to verify that the properties of the packaged waste meet the minimum stability requirements of 10 CFR Part 61 and other requirements for transportation to the disposal site and receipt at

LIMERICK - UNIT 1

1 84

SURVEILLANCE REQUIREMENTS (Continued)

4.11.3.2 If the SOLIDIFICATION method is used, the PROCESS CONTROL PROGRAM shall be used to verify the SOLIDIFICATION of at least one representative test specimen from at least every tenth batch of each type of wet radioactive waste (e.g., filter sludges, spent resins, evaporator bottoms, and sodium sulfate

- a. If any test specimen fails to verify SOLIDIFICATION, the SOLIDIFICA-TION of the batch under test shall be suspended until such time as additonal test specimens can be obtained, alternative SOLIDIFICATION parameters can be determined in accordance with the PROCESS CONTROL PROGRAM, and a subsequent test verifies SOLIDIFICATION. SOLIDIFICATION of the batch may then be resumed using the alternative SOLIDIFICATION parameters determined by the PROCESS CONTROL PROGRAM.
- b. If the initial test specimen from a batch of waste fails to verify SOLIDIFICATION, the PROCESS CONTROL PROGRAM shall provide for the collection and testing of representative test specimens from each consecutive batch of the same type of wet waste until at least three consecutive initial test specimens demonstrate SOLIDIFICATION. The PROCESS CONTROL PROGRAM shall be modified as required, as provided in Specification 6.13, to assure SOLIDIFICATION of subsequent batches of waste.

RADIOACTIVE LEFLUENTS 3/4.11.4 TOTAL DOSE LIMITING CONDITION FOR OPERATION

3.11.4 The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC, due to releases of radioactivity and radiation, from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or

APPLICABILITY: At all times.

ACTION:

With the calculated doses from the release of radioactive materials а. in liquid or gaseous effluents exceeding twice the limits of Specification 3.11.1.2a., 3.11.1.2b., 3.11.2.2a., 3.11.2.2b., 3.11.2.3a., or 3.11.2.3b., calculations shall be made including direct radiation contributions from the reactor units and from outside storage tanks to determine whether the above limits of Specification 3.11.4 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in 10 CFR 20.405c, shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits, and if the release condition resulting in violation of 40 CFR Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete.

b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.11.4.1 Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with Specifications 4.11.1.2, 4.11.2.2, and 4.11.2.3, and in accordance with the methodology and parameters in the ODCM.

4.11.4.2 If the cumulative dose contributions exceed the limits defined in 3.11.4, ACTION a, Cumulative dose contributions from direct radiation from unit operation shall be determined in accordance with the methodology and parameters in the ODCM.

LIMERICK - UNIT 1

3/4 11-20

1 5 1355

3/4.12 RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.1 MONITORING PROGRAM

LIMITING CONDITION FOR OPERATION

3.12.1 The radiological environmental monitoring program shall be conducted as specified in Table 3.12.1-1.

APPLICABILITY: At all times.

ACTION:

- a. With the radiological environmental monitoring program not being conducted as specified in Table 3.12.1-1, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report per Specification 6.9.1.7, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- b. With the level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeding the reporting levels of Table 3.12.1-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to a MEMBER OF THE PUBLIC is less than the calendar year limits of Specifications 3.11.1.2, 3.11.2.2 and 3.11.2.3. When more than one of the radionuclides in Table 3.12.1-2 are detected in the sampling medium, this report shall be submitted if:

 $\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + \dots \ge 1.0$

When radionuclides other than those in Table 3.12.1-2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose to a MEMBER OF THE PUBLIC is equal to or greater than the calendar year limits of Specifications 3.11.1.2, 3.11.2.2, and 3.11.2.3. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report.

÷

LIMERICK - UNIT 1

RADIOLOGICAL ENVIRONMENTAL MONITORING

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

- c. With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by Table 3.12.1-1, identify locations for obtaining replacement samples and add them to the radiological environmental monitoring program within 30 days. The specific locations from which samples were unavailable may then be deleted from the monitoring program. Pursuant to Specification 6.9.1.8, identify the cause of the unavailability of samples and identify the new location(s) for obtaining replacement samples in the next Semiannual Radioactive Effluent Release Report and also include in the report a revised figure(s) and table for the ODCM reflecting the new location(s).
- d. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.12.1.1 The radiological environmental monitoring samples shall be collected pursuant to Table 3.12.1-1 from the specific locations given in the table and figure in the ODCM and shall be analyzed pursuant to the requirements of Tables 3.12.1-1, the detection capabilities required by Table 4.12.1-1.

TABLE 3.12.1-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

EXPOSURE PATHWAY AND/OR SAMPLE 1. DIRECT RADIATION^(b) NUMBE: OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS(a)

40 routine monitoring stations either with two or more dosimeters or with one instrument for measuring and recording dose rate continuously placed as follows: (1) An inner ring of stations, one in each meteorological sector, in the general area of the SITE BOUNDARY: (2) An outer ring of stations, one in each meteorological sector, in the 3-to 9-mile range from the site; (3) The balance of the stations placed in special interest areas such as population centers, nearby restdences, schools, and in 1 or 2 areas to serve as control stations.

SAMPLING AND COLLECTION FREQUENCY

At least Quarterly.

OF ANALYSIS

Gamma dose at least quarterly.

2. AIRBORNE

Radiolodine and Particulates

Samples from 5 locations:

- a. 3 samples from close to the 3 SITE BOUNDARY locations (in different sectors) of the highest calculated annual average groundlevel x/Q.
- b. 1 sample from the vicinity community having one of the highest calculated annual highest groundlevel x/Q.

Continuous sampler operation with sample collection weekly, or more frequently if required by dust loading.^C

Radioiodine Cannister: I-131 analysis weekly.

Particulate Sampler: Gross beta radio activity analysis following filter change; Gamma isotopic analysis of composite (by location) at least quarterly.

4 12-

w

LIMERICK

.

UNIT

-

TABLE 3.12.1-1 (Continued) LIMERICK -RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM NUMBER OF REPRESENTATIVE UNIT EXPOSURE PATHWAY SAMPLES AND SAMPLE LOCATIONS(a) SAMPLING AND TYPE AND FREQUENCY AND/OR SAMPLE COLLECTION FREQUENCY OF ANALYSIS 2. AIRBORNE (Continued) -1 sample from a control loca tion, as for example 15-30 km distant and in the least pre valent wind direction. **3. WATERBORNE** a. Surface 1 sample upstream. Composite sample over Gamma isotopic analysis 1 sample downstream. 1-month period. monthly. Composite for tritium analysis quarterly. b. Ground Samples from 1 or 2 sources Gamma isotopic^e and tritium Quarterly. only if likely to be affected." analysis quarterly. c. Drinking 1 sample of each of 1 to 3 Monthly. (Composite) I-131 analysis on each of the nearest water supplies composite when the dose that could be affected by its calculated for the con discharge. sumption of the water is greater than I mrem per year. Composite 1 sample from a control for gross beta and gamma location. isotopic analyses monthly. Composite for tritium analysis quarterly. d. Sediment 1 sample from downstream area Semiannually. Gamma isotopic analysis^e from with existing or potential semiannually. shoreline recreational value.

3/4 12-4

TABLE 3.12.1-1 (Continued)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

EXPOSURE PATHWAY AND/OR SAMPLE	NUMBER OF REPRESENTATIVE SAMVLES AND SAMPLE LOCATIONS(a)	SAMPLING AND	TYPE AND FREQUENCY
4. INGESTION		COLLECTION FREQUENCY	OF ANALYSIS
a. Milk	a. Samples from milking animals in 3 locations within 5 km distance having the highest dose potential. If there are none, then, 1 sample from milk- ing animals in each of 3 areas between 5- to 8-km distance where doses are calculated to be greater than 1 mrem per yr. ¹	Semimonthly when ani mals are on pasture, monthly at other times.	Gamma isotopic and I-131 analysis semimonthly when animals are on pasture; monthly at other times.
	1 sample from wilking animals at a control location (15-30 km km distant and in the least prevalent wind direction).		
b. Fish and Invertebrates	a. 1 sample of two recreationally important species in vicinity of plant discharge area.	Sample in season, or semiannually if they are not seasonal.	Gamma isotopic analysis on edible portions.
	1 sample of same species in areas not influenced by plant discharge.		

3/4 12-5

LIMERICK - UNIT 1

-

TABLE 3.12.1-1 (Continued)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

EXPOSURE PATHWAY AND/UR SAMPLE

NUMBER OF REPRESENTATIVE SAMPLES AND SAMPLE LOCATIONS(a)

4. INGESTION (Continued)

c. Food Products

Samples of 3 different kinds of broad leaf vegetation grown nearest each of two different offsite locations of highest predicted annual average ground level D/Q if milk sampling is not performed.

1 sample of each of the similar broad leaf vegetation grown 15-30 km distant in the least prevalent wind direction if milk sampling is not performed.

SAMPLING AND COLLECTION FREQUENCY

TYPE AND FREQUENCY OF ANALYSIS

Monthly when available, Gamma isotopic and if milk sampling is not performed.

1-131 analysis.

Monthly when available. Gamma isotopic and if milk sampling is not performed.

1-131 analysis.

1

LIMERICK - UNIT

-

RADIOLOGICAL ENVIRONMENTAL MONITORING

TABLE 3.12.1-1 (Continued)

TABLE NOTATIONS

Specific parameters of distance and direction sector from the centerline of the two reactors and additional description where pertinent, shall be provided for each and every sample location in Table 3.12.1-1 in a table and figure(s) in the ODCM. Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons. If specimens are unobtainable due to sampling equipment malfunction, every effort - shall be made to complete corrective action prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.7. It is recognized that, at times, it may not be possible or practicable to continue to obtain samples of the media of choice at the most desired location or time: In these instances suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the radiological environmental monitoring program. Pursuant to Specification 6.9.1.8, identify the cause of the unavailability of samples for that pathway and identify the new location(s) for obtaining replacement samples in the next Semiannual Radioactive Effluent Release Report and also include in the report a revised figure(s) and table for the ODCM reflecting the new location(s).

^bOne or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purposes of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor; two or more phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation.

"Methodology for recovery of radioiodine shall be described in the ODCM.

d Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than 10 times the yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.

^eGamma isotopic analysis means the identification and quantification of gammaemitting radionuclides that may be attributable to the effluents from the facility.

^fThe "upstream sample" shall be taken at a distance beyond significant influence of the discharge. The "downstream" sample shall be taken in an area beyond but near the mixing zone.

LIMERICK - UNIT 1

3/4 12-7

ALL KINT .

÷

RACIDLOGICAL ENVIRONMENTAL MONITORING

TABLE 3.12.1-1 (Continued)

TABLE NOTATIONS

⁹A composite sample is one in which the quantity (aliquot) of liquid sampled is proportional to the quantity of flowing liquid and in which the method of sampling employed results in a specimen that is representative of the liquid flow. In this program composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) in order to assure obtaining a representative sample.

^hGroundwater samples shall be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.

ⁱThe dose shall be calculated for the maximum organ and age group, using the methodology and parameters in the ODCM.

TABLE 3. 12. 1-2

REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

Reporting Levels

ANAL YSIS	WATER (pC1/L)	AIRBORNE PARTICULATE or GASES (pC1/m ³)	FISH (pC1/kg, wet)	MILK (pc1/L)	FOOD PRODUCTS (pCi/kg, wet)
H-3	20,000*				
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300	•	20,000		
Zr-Mb-95	400**				
IEI-I	2	0.9		e	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200**			300	

*For drinking water samples. This is 40 CFR Part 141 value. If no drinking water pathway exists, a value of 30,000 pCi/L may be used.

**Total for parent and daughter.

1.5

5 3105

LIMERICK - UNIT 1

3

3/4 12-9

ANALYSIS	WATER (pC1/L)	AIRBORNE PARTICULATE OR GASES ($pC1/m^3$)	FISH (pCi/kg, wet)	MILK (pCi/L)	FOOD PRODUCTS (pC1/kg, wet)	SEDIMENIS (pCi/kg, dry
Gross Beta	4	0.01				
H-3	2000					
Mn-54	15		130			
Fe-59	30		260			
Co-58, 60	15		130			
Zn-65	30		260			
Zr-95	30					
Nb-95	15					
I-131	1 ^(d)	0.07		1	60	
Cs-134	15	0.05	130	15	60	
Cs-137	18	0.06	150	13	60	150
Ba-140	60	0.00	150		80	180
La-140	15			60 15		

TABLE 4.12.1-1

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS(a)

LIMERICK - UNIT 1

3/4 12-10

his

1.1

TABLE 4.12.1-1 (Continued)

TABLE NOTATIONS

- (a) This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable at 95% confidence level, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating report pursuant to Specification 6.9.1.7.
- (b) Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13.
- (c) The LLD is defined, for purpose of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \text{ s}_{b}}{\text{E} \cdot \text{V} \cdot 2.22 \cdot \text{Y} \cdot \text{exp}(-\lambda \Delta t)}$$

where

LLD is the "a priori" lower limit of detection as defined above (as picocuries per unit mass or volume),

s, is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency (as counts per disintegration),

V is the sample size (in units of mass or volume),

2.22 is the number of disintegrations per minute per picocurie,

Y is the fractional radiochemical yield (when applicable).

 λ is the radioactive decay constant for the particular radionuclide, and

At for environmental samples is the elapsed time between sample collection (or end of the sample collection period) and time of counting.

1.07 1 8 102

Typical values of E, V, Y, and Δt should be used in the calculation.

LIMERICK - UNIT 1 _____ 3/4 12-11

Table 4, 12. 1-1 (Continued)

TABLE NOTATIONS

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidably small sizes, the presence of interfering nuclices, or other uncontrollable tircumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.7.

(d) LLD for drinking water samples.

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.2 LAND USE CENSUS

LIMITING CONDITION FOR OPERATION

3.12.2 A land use census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence and the nearest garden^{*} of greater than 50 m² (500 ft²) producing broad leaf vegetation.

APPLICABILITY: At all times.

ACTION:

- a. With a land use census identifying a location(s) which yields a calculated dose or dose commitment greater than the values currently being calculated in Specification 4.11.2.3, identify the new location(s) in the next Semiannual Radioactive Effluent Release Report, pursuant to Specification 6.9.1.8.
- b. With a land use census identifying a location(s) that yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with Specification 3.12.1, add the new location(s) to the radiological environmental monitoring program within 30 days. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment(s) (via the same exposure pathway) may be deleted from this monitoring program after October 31 of the year in which this land use census was conducted. Pursuant to Specification 6.9.1.8, identify the new location(s) in the next Semiannual Radioactive Effluent Release Report and also include in the report a revised figure(s) and table for the ODCM reflecting the new location(s).

c. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.12.2 The land use census shall be conducted during the growing season at least once per 12 months using that information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities. The results of the land use census shall be included in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.7.

"Broad le:" we etation sampling of at least three different kinds of vegetation may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Specifications for broad leaf vegetation sampling in Table 3.12.1-1 item 4.c. shall be followed, including analysis of control samples.

LIMERICK - UNIT 1

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

LIMITING CONDITION FOR OPERATION

3.12.3 Analyses shall be performed on radioactive materials supplied as part of an Interlaboratory Comparison Program, which has been approved by the Commission.

- APPLICABILITY: At all times.

ACTION:

- a. With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.7.
- b. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REDUIREMENTS

4.12.3 The Interlaboratory Comparison Program shall be described in the ODCM. A summary of the results obtained as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.7.

BASES FOR

SECTIONS 3.0 AND 4.0

LIMITING CONDITIONS FOR OPERATION

AND

SURVEILLANCE REQUIREMENTS

AUG 8 1055

INTENTIONALLY LEFT BLANK

. 4.

NOTE

The BASES contained in succeeding pages summarize the reasons for the Specifications in Sections 3.0 and 4.0, but in accordance with 10 CFR 50.36 are not part of these Technical Specifications.

177 F 1981

1

INTENTIONALLY LEFT BLANK

3.4.0 APPLICABILITY

BASES

The specifications of this section provide the general requirements applicable to each of the Limiting Conditions for Operation and Surveillance Requirements within Section 3/4.

3.0.1 This specification states the applicability of each specification in terms of defined OPERATIONAL CONDITION or other specified applicability condition and is provided to delineate specifically when each specification is applicable.

3.0.2 This specification defines those conditions necessary to constitute compliance with the terms of an individual Limiting Condition for Operation and associated ACTION requirement.

3.0.3 This specification delineates the measures to be taken for those circumstances not directly provided for in the ACTION statements and whose occurrence would violate the intent of the specification. For example, Specification 3.7.2 requires two control room emergency filtration subsystems to be OPERABLE and provides explicit ACTION requirements if one subsystem is inoperable. Under the requirements of Specification 3.0.3, if both of the required subsystems are inoperable, within one hour measures must be initiated to place the unit in at least STARTUP within the next 6 hours, in at least HOT SHUTDOWN within the following 6 hours and in COLD SHUTDOWN within the subsequent 24 hours. As a further example, Specification 3.6.6.1 requires two primary containment hydrogen recombiner systems to be OPERABLE and provides explicit ACTION requirements if one recombiner system is inoperable. Under the requirements of Specification 3.0.3, if both of the required systems are inoperable, within 1 hour measures must be initiated to place the unit in at least STARTUP within the next 6 hours and in at least HOT SHUTDOWN within the following 6 hours.

3.0.4 This specification provides that entry into an OPERATIONAL CONDITION must be made with (a) the full complement of required systems, equipment or components OPERABLE and (b) all other parameters as specified in the Limiting Conditions for Operation being met without regard for allowable deviations and out of service provisions contained in the ACTION statements.

The intent of this provision is to ensure that unit operation is not initiated with either required equipment or systems inoperable or other limits being exceeded.

Exceptions to this provision have been provided for a limited number of specifications when startup with inoperable equipment would not affect plant safety. These exceptions are stated in the ALTION statements of the appropriate specifications.

LIMERICK - UNIT 1

B 3/4 0-1

AUG 8 1985

APPLICABILITY

BASES

4.0.1 This specification provides that surveillance activities necessary to ensure the Limiting Conditions for Operation are met and will be performed during the OPERATIONAL CONDITIONS or other conditions for which the Limiting Conditions for Operation are applicable. Provisions for additional surveillance activities to be performed without regard to the applicable OPERATIONAL CONDITIONS or other conditions are provided in the individual Surveillance Requirements. Surveillance Requirements for Special Test Exceptions need only be performed when the Special Test Exception is being utilized as an exception to an individual specification.

4.0.2 The provisions of this specification provide allowable tolerances for performing surveillance activities beyond those specified in the nominal surveillance interval. These tolerances are necessary to provide operational flexibility because of scheduling and performance considerations. The phrase "at least" associated with a surveillance frequency does not negate this allowable tolerance; instead, it permits the more frequent performance of surveillance

The tolerance values, taken either individually or consecutively over three test intervals, are sufficiently restrictive to ensure that the reliability associated with the surveillance activity is not significantly degraded beyond that obtained from the nominal specified interval.

4.0.3 The provisions of this specification set forth the criteria for determination of compliance with the OPERABILITY requirements of the Limiting Conditions for Operation. Under this criteria, equipment, systems, or components are assumed to be OPERABLE if the associated surveillance activities have been satisfactorily performed within the specified time interval. Nothing in this provision is to be construed as defining equipment, systems, or components OPERABLE, when such items are found or known to be inoperable although still meeting the Surveillance Requirements.

4.0.4 This specification ensures that surveillance activities associated with a Limiting Conditions for Operation have been performed within the specified time interval prior to entry into an applicable OPERATIONAL CONDITION or other specified applicability condition. The intent of this provision is to ensure that surveillance activities have been satisfactorily demonstrated on a current basis as required to meet the OPERABILITY requirements of the Limiting Condition for Operation.

Under the terms of this specification, for example, during initial plant startup or following extended plant outage, the applicable surveillance activities must be performed within the stated surveillance interval prior to placing or returning the system or equipment into OPERABLE status.

LIMERICK - UNIT 1

B 3/4 0-2

AUG 8 1985

in Reality

ł

APPLICABILITY

BASES

4.0.5 This specification ensures that inservice inspection of ASME Code Class 1, 2, and 3 components and inservice testing of ASME Code Class 1, 2 and 3 pumps and valves will be performed in accordance with a periodically updated version of Section XI of the ASME Boiler and Pressure Vessel Code and Addenda as required by 10 CFR Part 50, Section 50.55a. Relief from any of the above requirements has been provided in writing by the Commission and is not a part of these Technical Specifications.

This specification includes a clarification of the frequencies of performing the inservice inspection and testing activities required by Section XI of the ASME Botler and Pressure Vessel Code and applicable Addenda. This clarification is provided to ensure consistency in surveillance intervals throughout these Technical Specifications and to remove any ambiguities relative to the frequencies for performing the required inservice inspection and testing activities.

Under the terms of this specification, the more restrictive requirements of the Technical Specifications take precedence over the ASME Boiler and Pressure Vessel Code and applicable Addenda. For example, the requirements of Specification 4.0.4 to perform surveillance activities prior to entry into an OPERATIONAL CONDITION or other specified applicability condition takes precedence over the ASME Boiler and Pressure Vessel Code provision which allows pumps to be tested up to one week after return to normal operation. And for example, the Technical Specification definition of OPERABLE does not grant a grace period before a device that is not capable of performing its specified function is declared inoperable and takes precedence over the ASME Boiler and Pressure Vessel provision which allows a valve to be incapable of performing its specified function for up to 24 hours before being declared inoperable.

INTENTIONALLY LEFT BLANK

. 15

• 17 17

ř.

3/4.1 REACTIVITY CONTROL SYSTEMS

BASES

3/4.1.1 SHUTDOWN MARGIN

A sufficient SHUTDOWN MARGIN ensures that (1) the reactor can be made subcritical from all operating conditions, (2) the reactivity transients associated with postulated accident conditions are controllable within acceptable limits, and (3) the reactor will be maintained sufficiently subcritical to preclude in ivertent criticality in the shutdown condition.

Since core reactivity values will vary through core life as a function of fuel depletion and poison burnup, the demonstration of SHUTDOWN MARGIN will be performed in the cold, xenun-free condition and shall show the core to be subcritical by at least $R + 0.38\% \Delta k/k$ or $R + 0.28\% \Delta k/k$, as appropriate. The 0.38\% \Delta k/k includes uncertainties and calculation biases. The value of R in units of $\% \Delta k/k$ is the difference between the calculated value of minimum shutdown margin during the operating cycle and the calculated shutdown margin at the time of the shutdown margin test at the beginning of cycle. The value of R must be positive or zero and must be determined for each fuel loading cycle.

Two different values are supplied in the Limiting Condition for Operation to provide for the different methods of demonstration of the SHUTDOWN MARGIN. The highest worth rod may be determined analytically or by test. The SHUTDOWN MARGIN is demonstrated by (an insequence) control rod withdrawal at the beginning of life fuel cycle conditions, and, if necessary, at any future time in the cycle if the first demonstration indicates that the required margin could be reduced as a function of exposure. Observation of subcriticality in this condition assures subcriticality with the most reactive control rod fully withdrawn.

This reactivity characteristic has been a basic assumption in the analysis of plant performance and can be best demonstrated at the time of fuel loading, but the margin must also be determined anytime a control rod is incapable of insertion.

1.1

1.11 8 1362

3/4.1.2 REACTIVITY ANOMALIES

Since the SHUTDOWN MARGIN requirement for the reactor is small, a careful check on actual conditions to the predicted conditions is necessary, and the changes in reactivity can be inferred from these comparisons of rod patterns. Since the comparisons are easily done, frequent checks are not an imposition on normal operations. A 1% change is larger than is expected for normal operation so a change of this magnitude should be thoroughly evaluated. A change as large as 1% would not exceed the design conditions of the reactor and is on the safe side of the postulated transients.

LIMERICK - UNIT 1

B 3/4 1-1

REACTIVITY CONTROL SYSTEMS

BASES

3/4.1.3 CONTROL RODS

The specification of this section ensure that (1) the minimum SHUTDOWN MARGIN is maintained, (2) the control rod insertion times are consistent with those used in the accident analysis, and (3) the potential effects of the rod drop accident are limited. The ACTION statements permit variations from the basic requirements but at the same time impose more restrictive criteria for continued operation. A limitation on inoperable rods is set such that the resultant effect on total rod worth and scram shape will be kept to a minimum. The requirements for the various scram time measurements ensure that any indication of systematic problems with rod drives will be investigated on a timely basis.

Damage within the control rod drive mechanism could be a generic problem, therefore with a control rod immovable because of excessive friction or mechanical interference, operation of the reactor is limited to a time period which is reasonable to determine the cause of the inoperability and at the same time prevent operation with a large number of inoperable control rods.

Control rods that are inoperable for other reasons are permitted to be taken out of service provided that those in the nonfully-inserted position are consistent with the SHUTDOWN MARGIN requirements.

The number of control rods permitted to be inoperable could be more than the eight allowed by the specification, but the occurrence of eight inoperable rods could be indicative of a generic problem and the reactor must be shutdown for investigation and resolution of the problem.

The control rod system is designed to bring the reactor subcritical at a rate fast enough to prevent the MCPR from becoming less than 1.06 during the limiting power transient analyzed in Section 15.2 of the FSAR. This analysis shows that the negative reactivity rates resulting from the scram with the average response of all the drives as given in the specifications, provide the required protection and MCPR remains greater than 1.06. The occurrence of scram times longer then those specified should be viewed as an indication of a systemic problem with the rod drives and therefore the surveillance interval is reduced in order to prevent operation of the reactor for long periods of time with a potentially serious problem.

The scram discharge volume is required to be OPERABLE so that it will be available when needed to accept discharge water from the control rods during a reactor scram and will isolate the reactor coolant system from the containment when required.

Control rods with inoperable accumulators are declared inoperable and Specification 3.1.3.1 then applies. This prevents a pattern of inoperable accumulators that would result in less reactivity insertion on a scram than has been analyzed even though control rods with inoperable accumulators may still be inserted with normal drive water pressure. Operability of the accumulator ensures that there is a means available to insert the control rods even under the most unfavorable depressurization of the reactor.

LIMERICK - UNIT 1

B 3/4 1-2

1.12 8 1935

2

1.2. 1.2.

d.

ŵ,

REACTIVITY GONTROL SYSTEMS

BASES

CONTROL RODS (Continued)

Control rod coupling integrity is required to ensure compliance with the analysis of the rod drop accident in the FSAR. The overtravel position feature provides the only positive means of determining that a rod is properly coupled and therefore this check must be performed prior to achieving criticality after completing CORE ALTERATIONS that could have affected the control rod coupling integrity. The subsequent check is performed as a backup to the initial demonstration.

In order to ensure that the control rod patterns can be followed and therefore that other parameters are within their limits, the control rod position indication system must be OPERABLE.

The control rod housing support restricts the outward movement of a control rod to less than 3 inches in the event of a housing failure. The amount of rod reactivity which could be added by this small amount of rod withdrawal is less than a normal withdrawal increment and will not contribute to any damage to the primary coolant system. The support is not required when there is no pressure to act as a driving force to rapidly eject a drive housing.

The required surveillance intervals are adequate to determine that the rods are OPERABLE and not so frequent as to cause excessive wear on the system components.

3/4.1.4 CONTROL ROD PROGRAM CONTROLS

Control rod withdrawal and insertion sequences are established to assure that the maximum insequence individual control rod or control rod segments which are withdrawn at any time during the fuel cycle could not be worth enough to result in a peak fuel enthalpy greater than 280 cal/gm in the event of a control rod drop accident. The specified sequences are characterized by homogeneous, scattered patterns of control rod withdrawal. When THERMAL POWER is greater than 20% of RATED THERMAL POWER, there is no possible rod worth which, if dropped at the design rate of the velocity limiter, could result in a peak enthalpy of 280 cal/gm. Thus requiring the RSCS and RWM to be OPERABLE when THERMAL POWER is less than or equal to 20% of RATED THERMAL POWER provides

The RSCS and RWM provide automatic supervision to assure that out-ofsequence rods will not be withdrawn or inserted.

The analysis of the rod drop accident is presented in Section 15.4.9 of the FSAR and the techniques of the analysis are presented in a topical report, Reference 1, and two supplements, References 2 and 3.

The RBM is designed to automatically prevent fuel damage in the event of erroneous rod withdrawal from locations of high power density during high power operation. Two channels are provided. Tripping one of the channels will block erroneous rod withdrawal to prevent fuel damage. This system backs up the written sequence used by the operator for withdrawal of control rods.

LIMERICK - UNIT 1

B 3/4 1-3

REACTIVITY CONTROL SYSTEMS

BASES

3/4.1.5 STANDBY LIQUID CONTROL SYSTEM

The standby liquid control system provides a backup capability for bringing the reactor from full power to a cold, Xenon-free shutdown, assuming that the withdrawn control rods remain fixed in the rated power pattern. To meet this objective it is necessary to inject a quantity of boron which produces a concentration of 660 ppm in the reactor core and other piping systems connected to the reactor vessel. To allow for potential leakage and improper mixing, this concentration is increased by 25%. The required concentration is achie/ed by having available a minimum quantity of 4,620 gallons of sodium pentaborate solution containing a minimum of 5,500 lbs of sodium pentaborate. This quantity of solution is a net amount which is above the pump suction shutoff level setpoint thus allowing for the portion which cannot be injected. The pumping rate of 41.2 gpm provides a negative reactivity insertion rate over the permissible solution volume range, which adequately compensates for the positive reactivity effects due to elimination of steam voids, increased water density from hot to cold, reduced doppler effect in uranium, reduced neutron leakage from boiling to cold, decreased control rod worth as the moderator cools, and xenon decay. The temperature requirement ensures that the sodium pentaborate always remains in solution.

With redundant pumps and explosive injection valves and with a highly reliable control rod scram system, operation of the reactor is permitted to continue for short periods of time with the system inoperable or for longer periods of time with one of the redundant components inoperable.

The SLCS system consists of three separate and independent 100% capacity pumps and explosive valves. Only two of the separate and independent pumps and explosive valves are required to meet the minimum requirements of this technical specification and satisfy the single failure criterion.

Surveillance requirements are established on a frequency that assures a high reliability of the system. Once the solution is established, boron concentration will not vary unless more boron or water is added, thus a check on the temperature and volume once each 24 hours assures that the solution is available for use.

Replacement of the explosive charges in the valves at regular intervals will assure that these valves will not fail because of deterioration of the charges.

16

- F." 1 111

- C. J. Paone, R. C. Stirn and J. A. Woolley, "Rod Drop Accident Analysis for Large BWR's," G. E. Topical Report NEDO-10527, March 1972.
- C. J. Paune, R. C. Stirn, and R. M. Young, Supplement 1 to NEDO-10527, July 1972.
- J. M. Haun, C. J. Paone, and R. C. Stirn, Addendum 2, "Exposed Cores," Supplement 2 to NEDO-10527, January 1973.

LIMERICK - UNIT 1

B 3/4 1-4

3/4.2 POWER DISTRIBUTION LIMITS

BASES

The specifications of this section assure that the peak cladding temperature following the postulated design basis loss-of-coolant accident will not exceed the 2200°F limit specified in 10 CFR 50.46.

3/4.2.1 AVERAGE PLANAR LINEAR HEAT GENERATION RATE

The peak cladding temperature (PCT) following postulated loss-of-coolant accident is primarily a function of the average heat generation rate of all the rods of a fuel assembly at any axial location and is dependent only secondarily on the rod to rod power distribution within an assembly. The peak clad temperature is calculated assuming a LHGR for the highest powered rod which is equal to or less than the design LHGR corrected for densification. This LHGR times 1.02 is used in the heatup code along with the exposure dependent steady state gap conductance and rod-to-rod local peaking factor. The Technical Specification AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) is this LHGR of the highest powered rod divided by its local peaking factor. The limiting value for APLHGR is shown in Figures 3.2.1-1, 3.2.1-2, 3.2.1-3, 3.2.1-4, and 3.2.1-5.

The calculational procedure used to establish the APLHGR shown on Figures 3.2.1-1, 3.2.1-2, 3.2.1-3, 3.2.1-4, and 3.2.1-5 is based on a loss-of-coolant accident analysis. The analysis was performed using General Electric (GE) calculational models which are consistent with the requirements of Appendix K to 10 CFR Part 50. A complete discussion of each code employed in the analysis is presented in Reference 1. Differences in this analysis compared to previous analyses can be broken down as follows.

Input Changes

- Corrected Vaporization Calculation Coefficients in the vaporization correlation used in the REFLOOD code were corrected.
- Incorporated more accurate bypass areas The bypass areas in the top guide were recalculated using a more accurate technique.
- Corrected guide tube thermal resistance.
- Correct heat capacity of reactor internals heat nodes.

LIMERICK - UNIT 1

B 3/4 2-1

Abendment No. AUS 1 4 1987

7

3875101020

POWER DISTRIBUTION LIMITS

BASES

AVERAGE PLANAR LINEAR HEAT GENERATION RATE (Continued)

- b. Model Change
 - Core CCFL pressure differential 1 psi Incorporate the assumption that flow from the bypass to lower plenum must overcome a 1 psi pressure drop in core.
 - Incoporate NRC pressure transfer assumption The assumption used in the SAFE-REFLOOD pressure transfer when the pressure is increasing was changed.

A few of the changes affect the accident calculation irrespective of CCFL. These changes are listed below.

a. Input Change

1. Break Areas - The DBA break area was calculated more accurately.

- b. Model Change
 - Improved Radiation and Conduction Calculation Incorporation of CHASTE 05 for heatup calculation.

A list of the significant plant input parameters to the loss-of-coolant accident analysis is presented in Bases Table B 3/4.2.1-1.

3/4.2.2 APRM SETPOINTS

The fuel cladding integrity Safety Limits of Specification 2.1 were based on a power distribution which would yield the design LMGR at RATED THERMAL POWER. The flow biased neutron flux-upscale scram trip setpoint and flow biased neutron flux-upscale control rod block functions of the APRM instruments must be adjusted to ensure that the MCPR does not become less than the Safety Limit MCPR specified in Reference 2 or that > 1% plastic strain does not occur i the degraded situation. The icram and rod block setpoints are adjusted in accordance with the formula in this specification when the combination of THERMAL POWER and CMFLPD indicates a higher peaked power distribution to ensure that an LMGR transient would not be increased in the degraded condition.

3875101020

POWER DISTRIBUTION LIMITS

BASES TABLE 8 3/4.2.1-1

SIGNIFICANT INPUT PARAMETERS TO THE

LOSS-OF-CODLANT ACCIDENT ANALYSIS

Plant Parameters:

b. Small Breaks 1.0 ft2, 0.07 ft2, 0.09 ft2, 0.02 ft2

Fuel Parameters:

Initial Core	8 x 8	13.4	1.4	1.20	
FUEL TYPE	FUEL BUNDLE GEOMETRY	PEAK TECHNICAL SPECIFICATION LINEAR HEAT GENERATION RATE (kW/ft)	DESIGN AXIAL PEAKING FACTOR	INITIAL MINIHUH CRITICAL POWER RATIO	*

A more detailed listing of input of each model and its source is presented in Section 11 of Reference 1 and subsectior 15.0.2 of the FSAR.

"This power level meets the Appendix K requirement of 102%. The core heatup calculation assumes a bundle power consistant with operation of the highest powered rod at 102% of its Technical Spacification LINEAR HEAT GENERATION RATE limit.

LIMERICK - UNIT 1

3875101020

POWER DISTRIBUTION LIMITS

BASES

3/4.2.3 MINIMUM CRITICAL POWER RATIO

The required operating limit MCPRs at steady-state operating conditions as specified in Specification 3.2.3 are derived from the established fuel cladding integrity Safety Limit MCPR specified in Reference 2, and an analysis of abnormal operational transients. For any abnormal operating transient analysis evaluation with the initial condition of the reactor being at the steady-state operating limit, it is required that the resulting MCPR does not decrease below the Safety Limit MCPR at any time during the transient assuming instrument trip setting given in Specification 2.2.

To assure that the fuel cladding integrity Safety Limit is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which result in the largest reduction in CRITICAL POWER RATIO (CPR). The type of transients evaluated were loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease. The limiting transient yields the largest delta MCPR. When added to the Safety Limit MCPR, the required minimum operating limit MCPR of Specification 3.2.3 is obtained and presented in Figure 3.2.3-12

The evaluation of a given transient begins with the system initial parameters shown in FSAR Table 15.0-2 that are input to a GE-core dynamic behavior transient computer program. The codes used to evaluate transients are discussed in Reference 2.

The purpose of the K, factor of Figure 3.2.3-2 is to define operating limits at other than rated core flow conditions. At less than 100% of rated flow the required MCPR is the product of the MCPR and the K, factor. The K, factors assure that the Safety Limit MCPR will not be violated during a flow increase transient resulting from a motor-generator speed control failure. The K, factors may be applied to both manual and automatic flow control modes.

The K, factors values shown in Figure 3.2.3-2 were developed generically and are applicable to all BWR/2, BWR/3, and BWR/4 reactors. The K, factors were derived using the flow control line corresponding to RATED THERMAL POWER at rated core flow.

For the manual flow control mode, the K, factors were calculated such that for the maximum flow rate, as limited by the pump scoop tube set point and the corresponding TF ... POWER along the rated flow control line, the limiting bundle's relat ... ower was adjusted until the MCPR changes with different core flows. The ratio of the MCPR calculated at a given point of core flow, divided by the operating limit MCPR, determines the K.

LIMERICK - UNIT 1

8 3/4 2-4

Amendment No. 7 AUE 1 4 1987

POWER DISTRIBUTION LIMITS

BASES

MINIMUM CRITICAL POWER RATIO (Continued)

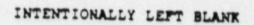
For operation in the automatic flow control mode, the same procedure was employed except the initial power distribution was established such that the MCPR was equal to the operating limit MCPR at RATED THERMAL POWER and rated thermal flow.

The K, factors shown in Figure 3.2.3-2 are conservative for the General Electric Boiling Water Reactor plant operation because the operating limit MCPRs of Specification 3.2.3 are greater than the original 1.20 operating limit MCPR used for the generic derivation of K.

At THERMAL POWER levels less than or equal to 25% of RATED THERMAL POWER, the reactor will be operating at minimum recirculation pump speed and the moderator void content will be very small. For all designated control rod patterns which may be employed at this point, operating plant experience indicates that the resulting MCPR value is in excess of requirements by a considerable margin. During initial start-up testing of the plant, a MCPR evaluation will be made at 25% of RATED THERMAL POWER level with minimum recirculation pump speed. The MCPR margin will thus be demonstrated such that future MCPR evaluation below this power level will be shown to be unnecessary. The daily requirement for calculating MCPR when THERMAL POWER is greater than or equal to 25% of RATED THERMAL POWER is greater than or equal to 25% of entities and the requirement for calculating MCPR when a limiting control rod changes. The requirement for calculating MCPR when a limiting control rod pattern is approached ensures that MCPR will be known following a change in THERMAL POWER or power shape, regardless of magnitude, that could place operation at a thermal limit.

3/4.2.4 LINEAR HEAT GENERATION RATE

This specification assures that the Linear Heat Generation Rate (LHGR) in any rod is less than the design linear heat generation even if fuel pellet densification is postulated.


References:

X. X

- General Electric Company Analytical Model for Loss-of-Cholant Analysis in Accordance with 10 CFR 50, Appendix K, NEDE-20566, November 1975.
- "General Electric Standard Application for Reactor Fuel," MEDE-24011-P-A (latest approved revision).
- 3. "Besis of MAPLHGR Technical Specifications for Liberick Unit 3," NEDO-31401, February 1987. Delated
- 4. Deleted.
- Increased Core Flow and Partial Feedwater Heating Analysis for Limerick Generating Station Unit I Cycle 1, NEDC-31323, October 1986 including Errete and Addenda Sheet No. 1 dated November 6, 1986. NEDC- 31578, Meg 1988.

LIMERICK - UNIT 1

3/4.3 INSTRUMENTATION

BASES

3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION

The reactor protection system automatically initiates a reactor scram to:

- a. Preserve the integrity of the fuel cladding.
- b. Preserve the integrity of the reactor coolant system.
- Minimize the energy which must be absorbed following a loss-of-coolant accident, and
- d. Prevent inadvertent criticality.

This specification provides the limiting conditions for operation necessary to preserve the ability of the system to perform its intended function even during periods when instrument channels may be out of service because of maintenance. When necessary, one channel may be made incommable for brief intervals to conduct required surveillance.

The reactor protection system is made up of two independent trip systems. There are usually four channels to monitor each parameter with two channels in each trip system. The outputs of the channels in a trip system are combined in a logic so that either channel will trip that trip system. The tripping of both trip systems will produce a reactor scram. The system meets the intent of IEEE-279 for nuclear power plant protection systems. The bases for the trip settings of the RPS are discussed in the bases for Specification 2.2.1.

The measurement of response time at the specified frequencies provides assurance that the protective functions associated with each channel are completed within the time limit assumed in the safety analyses. No credit was taken for those channels with response times indicated as not applicable. Response time may be demonstrated by any series of sequential, overlapping or total channel test measurement, provided such tests demonstrate the total channel response time as defined. Sensor response time verification may be demonstrated by either (1) inplace, onsite or offsite test measurements, or (2) utilizing replacement sensors with certified response times.

LIMERICK - UNIT 1

B 3/4 3-1

1. 1 1 215

INSTRUMENTATION

BASES

3/4.3.2 ISOLATION ACTUATION INSTRUMENTATION

This specification ensures the effectiveness of the instrumentation used to mitigate the consequences of accidents by prescribing the OPERABILITY trip setpoints and response times for isolation of the reactor systems. When necessary, one channel may be inoperable for brief intervals to conduct required surveillance. Some of the trip settings may have tolerances explicitly stated where both the high and low values are critical and may have a substantial effect on safety. The setpoints of other instrumentation, where only the high or low end of the setting have a direct bearing on safety, are established at a level away from the normal operating range to prevent inadvertent actuation of the systems involved.

Except for the MSIVs, the safety analysis does not address individual sensor response times or the response times of the logic systems to which the sensors are connected. For D.C. operated valves, a 3 second delay is assumed before the valve starts to move. For A.C. operated valves, it is assumed that the A.C. power supply is lost and is restored by startup of the emergency diesel generators. In this event, a time of 13 seconds is assumed before the valve starts to move. In addition to the pipe break, the failure of the D.C. operated valve is assumed; thus the signal delay (sensor response) is concurrent with the 10-second diese? startup and the 3 second load center loading delay. The safety analysis considers an allowable inventory loss in each case which in turn determines the valve speed in conjunction with the 13-second delay. It follows that checking the valve speeds and the 13-second time for emergency power establishment will establish the response time for the isolation functions.

Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is an allowance for instrument drift specifically allocated for each trip in the safety analyses.

3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

The emergency core cooling system actuation instrumentation is provided to initiate actions to mitigate the consequences of accidents that are beyond the ability of the operator to control. This specification provides the OPERABILITY requirements, trip setpoints and response times that will ensure effectiveness of the systems to provide the design protection. Although the instruments are listed by system, in some cases the same instrument may be used to send the actuation signal to more than one system at the same time.

Operation with a trip sot less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is an allowance for instrument drift specifically allocated for each trip in the safety analyses.

LIMERICK - UNIT 1

B 3/4 3-2

INSTRUMENTATION

BASES

3/4.3.4 RECIRCULATION PUMP TRIP ACTUATION INSTRUMENTATION

The anticipated transient without scram (ATWS) recirculation pump trip system provides a means of limiting the consequences of the unlikely occurrence of a failure to scram during an anticipated transient. The response of the plant to this postulated event falls within the envelope of study events in General Electric Company Topical Report NEDO-10349, dated March 1971, NEDO-24222, dated December 1979, and Section 15.8 of the FSAR.

The end-of-cycle recirculation pump trip (EOC-RPT) system is a supplement to the reactor trip. During turbine trip and generator load rejection events, the EOC-RPT will reduce the likelihood of reactor vessel level decreasing to level 2. Each EOC-RPT system trips both recirculation pumps, reducing coolant flow in order to reduce the void collapse in the core during two of the most limiting pressurization events. The two events for which the EOC-RPT protective feature will function are closure of the turbine stop valves and fast closure of the turbine control valves.

A fast closure sensor from each of two turbine control valves provides input to the EOC-RPT system; a fast closure sensor from each of the other two turbine control valves provides input to the second EOC-RPT system. Similarly, a position switch for each of two turbine stop valves provides input to one EOC-RPT system; a position switch from each of the other two stop valves provides input to the other EOC-RPT system. For each EOC-RPT system, the sensor relay contacts are arranged to form a 2-out-oi-2 logic for the fast closure of turbine control valves and a 2-out-of-2 logic for the turbine stop valves. The operation of either logic will actuate the EOC-RPT system and trip both recirculation pumps.

Each EOC-RPT system may be manually bypassed by use of a keyswitch which is administratively controlled. The manual bypassas and the automatic Operating Bypass at less than 30% of RATED THERMAL POWER are annunciated in the control room.

The EOC-RPT system response time is the time assumed in the analysis between initiation of valve motion and complete suppression of the electric arc, i.e., 175 ms. Included in this time are: the response time of the sensor, the time allotted for breaker arc suppression, and the response time of the system logic.

Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is an allowance for instrument drift specifically allocated for each trip in the safety analyses.

LIMERICK - UNIT 1

B 3/4 3-3

A. 5 1965

INSTRUMENTATION

BASES

3/4.3.5 REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION

The reactor core isolation cooling system actuation instrumentation is provided to initiate actions to assure adequate core cooling in the event of reactor isolation from its primary heat sink and the loss of feedwater flow to the reactor vessel. This instrumentation does not provide actuation of any of the emergency core cooling equipment.

Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is an allowance for instrument drift specifically allocated for each trip in the safety analyses.

3/4.3.6 CONTROL ROD BLOCK INSTRUMENTATION

The control rod block functions are provided consistent with the requirements of the specifications in Section 3/4.1.4, Control Rod Program Controls and Section 3/4.2 Power Distribution Limits and Section 3/4.3 Instrumentation. The trip logic is arranged so that a trip in any one of the inputs will result in a control rod block.

Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between each Trip Setpoint and the Allowable Value is an allowance for instrument drift specifically allocated for each trip in the safety analyses.

3/4.3.7 MONITORING INSTRUMENTATION

3/4.3.7.1 RADIATION MONITORING INSTRUMENTATION

The OPERABILITY of the radiation monitoring instrumentation ensures that; (1) the radiation levels are continually measured in the areas served by the individual channels, and (2) the alarm or automatic action is initiated when the radiation level trip setpoint is exceeded; and (3) sufficient information is available on selected plant parameters to monitor and assess these variables following an accident. This capability is consistent with 16 CFR Part 50, Appendix A, General Design Criteria 19, 41, 60, 61, 63, and 64.

3.4.3.7.2 SEISMIC MONITORING INSTRUMENTATION

The OPERABILITY of the seismic monitoring instrumentation ensures that sufficient capability is available to promptly determine the magnitude of a seismic event and evaluate the response of those features important to safety. This capability is required to permit comperison of the measured response to that used in the design basis for the unit.

3/4.3.7.3 METEOROLOGICAL MONITORING INSTRUMENTATION

The OPERABILITY of the meteorological monitoring instrumentation ensures that sufficient meteorological data is available for estimating potential radiation doses to the public as a result of routine or accidental release of radioactive materials to the atmosphere. This capability is required to evaluate the need for initiating protective measures to protect the health and safety of the public. This instrumentation is consistent with the recommendations of Regulatory Guide 1.23 "Onsite Meteorological Programs," February, 1972.

LIMERICK - UNIT 1

B 3/4 3-4

11 1 14

٩

INSTRUMENTATION

BASES

METEOROLOGICAL MONITORING INSTRUMENTATION (Continued)

Site data compiled since January 1972 provide correlation between Elevation 1 (Tower 1) and Elevation 1 (Tower 2), and between Elevation 2 (Tower 1) and Elevation 2 (Tower 2). This correlation serves as justification for the use of the appropriate Tower 2 instrument as a back-up to the Tower 1 instrument as shown in Table 3.3.7.3-1.

3/4.3.7.4 REMOTE SHUTDOWN SYSTEM INSTRUMENTATION AND CONTROLS

The OFERABILITY of the remote shutdown system instrumentation and controls ensures that sufficient capability is available to permit shutdown and maintenance of HOT SHUTDOWN of the unit from locations outside of the control room. This capatility is required in the event control room habitability is lost and is consistent with General Design Criterion 19 of 10 CFR Part 50, Appendix A.

3/4.3.7.5 ACCIDENT MONITORING INSTRUMENTATION

The OPERABILITY of the accident monitoring instrumentation ensures that sufficient information is available on selected plant parameters to monitor and assess important variables following an accident. This capability is consistent with the recommendations of Regulatory Guide 1.97, "Instrumentation for Light Water Cooled Nuclear Power Plants to Assess Plant Conditions During and Following an Accident," December 1975 and NUREG-0737, "Clarification of TMI Action Plan Requirements," November 1980.

3/4.3.7.6 SOURCE RANGE MONITORS

The source range monitors provide the operator with information of the status of the neutron level in the core at very low power levels during startup and shutdown. At these power levels, reactivity additions shall not be made without this flux level information available to the operator. When the intermediate range monitors are on scale, adequate information is available without the SRMs and they can be retracted.

3/4.3.7.7 TRAVERSING IN-CORE PROBE SYSTEM

The DPERABILITY of the traversing in-core probe system with the specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core.

The TIP system @PERABILITY is demonstrated by normalizing all probes (i.e., detectors) prior to performing an LPRM calibration function. Monitoring core thermal limits may involve utilizing individual detectors to monitor selected areas of the reactor core, thus all detectors may not be required to be OPERABLE. The OPERABILITY of individual detectors to be used for monitoring is demonstrated by comparing the detector(s) output in the resultant heat balance calculation (P-1) with data obtained during a previous heat balance calculation (P-1).

LIMERICK - UNIT 1

E Text

INSTRUMENTATION

BASES

3/4.3.7.8 CHLORINE AND TOXIC GAS DETECTION SYSTEMS

The OPERABILITY of the chlorine and toxic gas detection systems ensures that an accidental chlorine and/or toxic gas release will be detected promptly and the necessary protective actions will be automatically initiated for chlorine and manually initiated for toxic gas to provide protection for control room personnel. Upon detection of a high concentration of chlorine, the control room emergency ventilation system will automatically be placed in the chlorine isolation mode of operation to provide the required protection. Upon detection of a high concentration of toxic gas, the control room emergency ventilation system will manually be placed in the chlorine isolation mode of operation to provide the required protection. The detection systems required by this specification are consistent with the recommendations of Regulatory Guide 1.95 "Protection of Nuclear Power Plant Control Room Operators against an Accidental Chlorine Release," february 1975.

3/4.3.7.9 FIRE DETECTION INSTRUMENTATION

OPERABILITY of the detection instrumentation ensures that both adequate warning capability is available for prompt detection of fires and that fire suppression systems, that are actuated by fire detectors, will discharge extinguishing agent in a timely manner. Prompt detection and suppression of fires will reduce the potential for damage to safety-related equipment and is an integral element in the overall facility fire protection program.

Fire detectors that are used to actuate fire suppression systems represent a more critically important component of a plant's fire protection program than detectors that are installed solely for early fire warning and notification. Consequently, the minimum number of OPERABLE fire detectors must be greater.

The loss of detection capability for fire suppression systems, actuated by fire detectors, represents a significant degradation of fire protection for any area. As a result, the establishment of a fire watch patrol must be initiated at an earlier stage than would be warranted for the loss of detectors that provide only early fire warning. The establishment of frequent fire patrols in the affected areas is required to provide detection capability until the inoperable instrumentation is restored to OPERABILITY.

3/4.3.7.10 LOOSE-PART DETECTION SYSTEM

The OPERABILITY of the loose-part detection system ensures that sufficient capability is available to detect loose metallic parts in the primary system and avoid or mitigate damage to primary system components. The allowable outof-service times and surveillance requirements are consistent with the recommendations of Regulatory Guide 1.133, "Loose-Part Detection Program for the Primary System of Light-Water-Cooled Reactors," May 1981.

3/4.3.7.11 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases of liquid effluents. The alarm/ trip setpoints for these instruments shall be calculated in accordance with the procedures in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 53, and 64 of Appendix A to 10 CFR Part 50. LIMERICK - UNIT-1

B 3/4 3-6

INSTRUMENTATION

BASES

MONITORING INSTRUMENTATION (Continued)

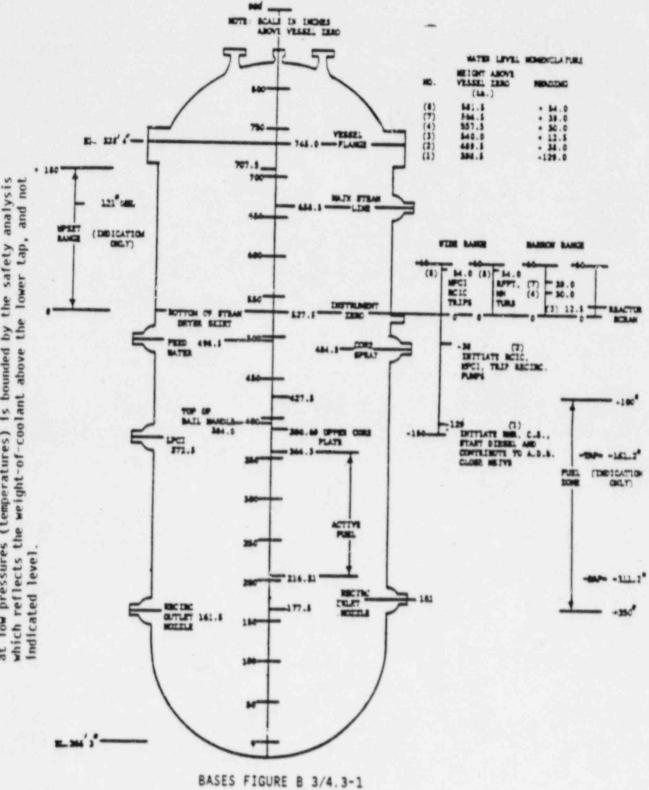
3/4.3.7.12 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/ trip setpoints for these instruments shall be calculated in accordance with the procedures in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. This instrumentation also includes provisions for monitoring the concentrations of potentially explosive gas mixtures in the off-gas system. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64

3/4.3.8 . TURBINE OVERSPEED PROTECTION SYSTEM

This specification is provided to ensure that the turbine overspeed protection system instrumentation and the turbine speed control valves are OPERABLE and will protect the turbine from excessive overspeed. Protection from turbine excessive overspeed is required since excessive overspeed of the turbine could generate potentially damaging missiles which could impact and damage safety related components, equipment or structures.

3/4.3.9 FEEDWATER/MAIN TURBINE TRIP SYSTEM ACTUATION INSTRUMENTATION


The feedwater/main turbine trip system actuation instrumentation is provided to initiate action of the feedwater system/main turbine trip system in the event of failure of feedwater controller under maximum demand.

11. 11th

This indication is reactor coolant temperature sensitive. The calibration is thus made at rated conditions. The level error at low pressures (temperatures) is bounded by the safety analysis which reflects the weight-of-coolant above the lower tap, and not indicated level.

Wide Range Level

REACTOR VESSEL WATER LEVEL

LIMERICK - UNIT 1

B 3/4 3-8

ALL THEY

3/4.4 REACTOR COOLANT SYSTEM

BASES

3/4.4.1 RECIRCULATION SYSTEM

Operation with one reactor core coolant recirculation loop inoperable is prohibited until an evaluation of the performance of the ECCS during one loop operation has been performed, evaluated and determined to be acceptable.

An inoperable jet pump is not, in itself, a sufficient reason to declare a recirculation loop inoperable, but it does, in case of a design-basis-accident, increase the blowdown area and reduce the capability of reflooding the core; thus, the requirement for shutdown of the facility with a jet pump inoperable. Jet pump failure can be detected by monitoring jet pump performance on a prescribed schedule for significant degradation.

Recirculation pump speed mismatch limits are in compliance with the ECCS LOCA analysis design criteria. The limits will ensure an adequate core flow coastdown from wither recirculation loop following a LOCA.

In order to prevent undue stress on the vessel nozzles and bottom head region, the recirculation loop temperatures shall be within 50°F of each other prior to startup of an idle loop. The loop temperature must also be within 50°F of the reactor pressure vessel coolant temperature to prevent thermal shock to the recirculation pump and recirculation nozzles. Since the coolant in the bottom of the vessel is at a lower temperature than the coolant in the upper regions of the core, undue stress on the vessel would result if the temperature difference was greater than 145°F.

The objective of GE BWR plant and fuel design is to provide stable operation with margin over the normal operating domain. However, at the high power/low flow corner of the operating domain, a small probability of limit cycle neutron flux oscillations exists depending on combinations of operating conditions (e.g., rod pattern, power shape). To provide assurance that neutron flux limit cycle oscillations are detected and suppressed, APRM and LPRM neutron flux noise levels should be monitored while operating in this region.

Stability tests at operating BWRs were reviewed to determine a generic region of the power/flow map in which surveillance of neutron flux noise levels should be performed. A conservative decay ratio of 0.6 was chosen as the bases for determining the generic region for surveillance to account for the plant to plant variability of decay ratio with core and fuel designs. This generic region has been determined to correspond to a core flow of less than or equal to 45% of rated core flow and a THERMAL POWER greater than that specified in Figure 3.4.1.1-1.

Plant specific calculations can be performed to determine an applicable region for monitoring neutron flux noise levels. In this case the degree of conservatism can be reduced since plant to plant variability would be eliminated. In this case, adequate margin will be assured by monitoring the region which has a decay ratio greater than or equal to 0.8.

LIMERICK - UNIT 1

B 3/4 4-1

٠

BASES

RECIRCULATION SYSTEM (Continued)

Neutron flux noise limits are also established to ensure early detection of limit cycle neutron flux oscillations. BwR cores typically operate with neutron flow se caused by random boiling and flow noise. Typical neutron flux noise levels of 1-12% of rated power (peak-to-peak) have been reported for the range of low to high recirculation loop flow during both single and dual recirculation loop operation. Neutron flux noise levels which significantly bound these values are considered in the thermal/mechanical design of GE BwR fuel and are found to be of negligible consequence. In addition, stability tests at operating BwRs have demonstrated that when stability related neutron flux limit cycle oscillations occur they result in peak-to-peak neutron flux limit cycles of 5-10 times the typical values. Therefore, actions taken to reduce neutron flux noise levels exceeding three (3) times the typical value are sufficient to usure early detection of limit cycle neutron flux oscillations.

Typically, neutron flux noise levels show a gradual increase in absolute magnitude as core flow is increased (constant control rod pattern) with two reactor recirculation loops in operation. Therefore, the baseline neutron flux noise level obtained at a specific core flow can be applied over a range of core flows. To maintain a reasonable variation between the low flow and high flow end of the flow range, the range over which a specific baseline is applied should not exceed 20% of rated core flow with two recirculation loops in operation. Data from tests and operating plants indicate that a range of 20% of rated core flow will result in approximately a 50% increase in neutron flux noise level during operation with two recirculation loops. Baseline data should be taken near the maximum rod line at which the majority of operation will occur. However, baseline data taken at lower rod lines (i.e. lower power) will result in a conservative value since the neutron flux noise level is proportional to the power level at a given core flow.

3/4.4.2 SAFETY/RELIEF VALVES

The safety valve function of the safety/relief valves operates to prevent the reactor coolant system from being pressurized above the Safety Limit of 1325 psig in accordance with the ASME Code. A total of 11 OPERABLE safety/ relief valves is required to limit reactor pressure to within ASME III allowable values for the worst case upset transient.

Demonstration of the safety/relief valve lift settings will occur only during shutdown. The safety/relief valves will be removed and either set pressure tested or replaced with spares which have been previously set pressure tested and stored in accordance with manufacturers recommendations in the specified frequency.

LIMERICK - UNIT 1

PASTS

REACTOR COOLANT SYSTEM LEAKAGE

LEAKAGE DETECTION SYSTEMS

RCS leakage detection systems required by this specification are j to monitor and detect leakage from the reactor coolant pressure ry. These detection systems are consistent with the recommendations of Regulatory Guide 1.45, "Reactor Coolant Pressure Boundary Leakage Detection Systems," May 1973. In conformance with Regulatory Guide 1.45, the channel calibration tests will verify the ability to detect a 1 gpm leak in less than 1 hour and an atmospheric gaseous radioactivity system sensitivity of

3/4.4.3.2 OPERATIONAL LEAKAGE

The allowable leakage rates from the reactor coolant system have been based on the predicted and experimentally observed behavior of cracks in pipes. The normally expected background leakage due to equipment design and the detection capability of the instrumentation for determining system leakage was also considered. The evidence obtained from experiments suggests that for leakage is small that the imperfection or crack associated with such leakage would grow rapidly. However, in all cases, if the leakage rates exceed the values specified or the leakage is located and known to be PRESSURE BOUNDARY LEAKAGE, the reactor will be shutdown to allow further investigation and corrective action.

The Surveillance Requirements for RCS pressure isolation valves provide added assurance of valve integrity thereby reducing the probability of gross valve failure and consequent intersystem LOCA. Leakage from the RCS pressure isolation valves is IDENTIFIED LEAKAGE and will be considered as a portion of the allowed limit.

3/4.4.4 CHEMISTRY

The water chemistry limits of the reactor coolant system are established to prevent damage to the reactor materials in contact with the coolant. Chloride limits are specified to prevent stress corrosion cracking of the stainless steel. The effect of chloride is not as great when the oxygen concentration in the coolant is low, thus the 0.2 ppm limit on chlorides is permitted during POWER OPERATION. During shutdown and refueling operations, the temperature necessary for stress corrosion to occur is not present so a 0.5 ppm concentration of chlorides is not considered harmful during these periods.

Conductivity measurements are required on a continuous basis since changes in this parameter are an indication of abnormal conditions. When the conductivity is within limits, the pH, chlorides and other impurities affecting conductivity must also be within their acceptable limits. With the conductivity meter inoperable, additional samples must be analyzed to ensure that the chlorides are not exceeding the limits.

The surveillance requirements provide adequate assurance that concentrations in excess of the limits will be detected in sufficient time to take corrective action.

LIMERICK - UNIT 1

B 3/4 4-3

1 × 50* -+

BASES

3/4.4.5 SPECIFIC ACTIVITY

The limitations on the specific activity of the primary colant ensure that the 2-hour thyroid and whole booy doses resulting from a main steam line failure outside the containment during steady state operation will not exceed small fractions of the dose guidelines of 10 CFR Part 100. The values for the limits on specific activity represent interim limits based upon a parametric evaluation by the NRC of typical site locations. These values are conservative in that specific site parameters, such as SITE BOUNDARY location and meteorological conditions, were not considered in this evaluation.

The ACTION statemint permitting POWER OPERATION to continue for limited time periods with the primary coolant's specific activity greater than 0.2 microcurie per gram DOSE EQUIVALENT I-131, but less than or equal to 4 microcuries per gram DOSE EQUIVALENT I-131, accommodates possible iodine spiking phenomenon which may occur following changes in THERMAL POWER. Operation with specific activity levels exceeding 0.2 microcurie per gram DOSE EQUIVALENT I-131 but less than or equal to 4 microcuries per gram DOSE EQUIVALENT I-131 but less than or equal to 4 microcuries per gram DOSE EQUIVALENT I-131 must be restricted to no more than 800 hours per year, approximately 10% of the unit's yearly operating time, since these activity levels increase the 2-hour thyroid dose at the SITE BOUNDARY by a factor of up to 20 following a postulated steam line rupture. The reporting of cumulative operating time over 500 hours in any 6-month consecutive period with greater than 0.2 microcurie per gram DOSE EQUIVALENT I-131 will allow sufficient time for Commission evaluation of the circumstances prior to reaching the 800-hour limit.

Information obtained on iodine spiking will be used to assess the parameters associated with spiking phenomena. A reduction in frequency of isotopic analysis following power changes may be permissible if justified by the data obtained.

Closing the main steam line isolation values prevents the release of activity to the environs should a steam line rupture occur outside containment. The surveillance requirements provide adequate assurance that excessive specific activity levels in the reactor coolant will be detected in sufficient time to take corrective action.

3/4.4.6 PRESSURE/TEMPERATURE LIMITS

All components in the reactor coolant system are designed to withstand the effects of cyclic loads due to system temperature and pressure changes. These cyclic loads are introduced by normal load transients, reactor trips, and startup and shutdown operations. The various categories of load cycles used for design purposes are provided in Section 3.9 of the FSAR. During startup and shutdown, the rates of temperature and pressure changes are limited so that the maximum specified heatup and cooldown rates are consistent with the design assumptions and satisfy the stress limits for cyclic operation.

LIMERICK - UNIT 1

B 3/4 4-4

.......

BASES

PRESSURE/TEMPERATURE LIMITS (Continued)

The operating limit curves of Figure 3.4.6.1-1 are derived from the fracture toughness requirements of 10 CFR 50 Appendix G and ASME Code Section III, Appendix G. The curves are based on the RT_{NDT} and stress intensity factor

information for the reactor vessel components. Fracture toughness limits and the basis for compliance are more fully discussed in FSAR Chapter 5, Paragraph 5.3.1.5, "Fracture Toughness."

The reactor vessel materials have been tested to determine their initial RT_{NDT} . The results of these tests are shown in Table B 3/4.4.6-1. Reactor operation and resultant fast neutron, E greater than 1 MeV, irradiation will cause an increase in the RT_{NDT} . Therefore, an adjusted reference temperature, based upon the fluence, phosphorus content and copper content of the material in question, can be predicted using Bases Figure B 3/4.4.6-1 and the recommendations of Regulatory Guide 1.99, "Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessel Materials." The pressure/ temperature limit curve, Figure 3.4.6.I-1, curves A', B' and C', includes an assumed shift in RT_{NDT} for the end of life fluence.

The actual shift in RT_{NDT} of the vessel material will be established periodically during operation by removing and evaluating, in accordance with 10 CFR Part 50, Appendix H, irradiated reactor vessel flux wire specimens installed near the inside wall of the reactor vessel in the core area. Since the neutron spectra at the flux wires and vessel inside radius are essentially identical, the irradiated flux wires can be used with confidence in predicting reactor vessel material transition temperature shift. The operating limit curves of Figure 3.4.6.1-1 shall be adjusted, as required, on the basis of the flux wire data and recommendations of Regulatory Guide 1.99, Revision 1.

The pressure-temperature limit lines shown in Figures 3.4.6.1-1, curves C, and C', and A and A', for reactor criticality and for inservice leak and hydrostatic testing have been provided to assure compliance with the minimum temperature requirements of Appendix G to 10 CFR Part 50 for reactor criticality and for inservice leak and hydrostatic testing.

The number of reactor vessel irradiation surveillance capsules and the frequencies for removing and testing the specimens in these capsules are provided in Table 4.4.6.1.3-1 to assure compliance with the requirement; of Appendix H to 10 CFR Part 50.

LIMERICK - UNIT 1

B 3/4 4-5

BASES

3/4.4.7 MAIN STEAM LINE ISOLATION VALVES

Double isolation valves are provided on each of the main steam lines to minimize the potential leakage paths from the containment in case of a line break. Only one valve in each line is required to maintain the integrity of the containment, however, single failure considerations require that two valves be OPERABLE. The surveillance requirements are based on the operating history of this type valve. The maximum closure time has been selected to contain fission products and to ensure the core is not uncovered following line breaks. The minimum closure time is consistent with the assumptions in the safety analyses to prevent pressure surges.

3/4.4.8 STRUCTURAL INTEGRITY

The inspection programs for ASME Code Class 1, 2, and 3 components ensure that the structural integrity of these components will be maintained at an acceptable level throughout the life of the plant.

Components of the reactor coolant system were designed to provide access to permit inservice inspections in accordance with Section XI of the ASME Boiler and Pressure Vessel Code 1971 Edition and Addenda through Winter 1972.

The inservice inspection program for ASME Code Class 1, 2, and 3 components will be performed in accordance with Section XI of the ASME Boiler and Pressure Vessel Code and applicable addenda as required by 10 CFR 50.55a(g) except where specific written relief has been granted by the NRC pursuant to 10 CFR 50.55a(g)(5)(i).

3/4.4.9 RESIDUAL HEAT REMOVAL

A single shutdown cooling mode loop provides sufficient heat removal capability for removing core decay heat and mixing to assure accurate temperature indication, however, single failure considerations require that two loops be OPERABLE or that alternate methods capable of decay heat removal be demonstrated and that an alternate method of coolant mixing be in operation.

BASES TABLE B 3/4.4.6-1

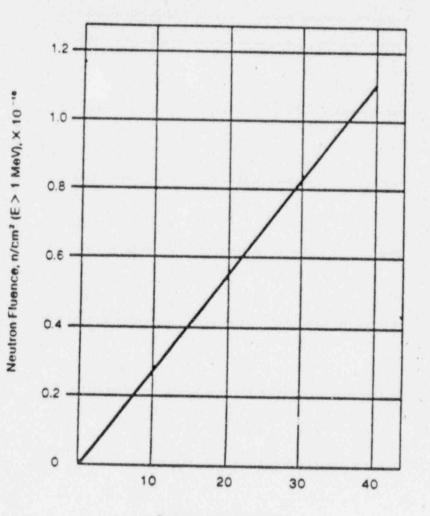
REACTOR VESSEL TOUGHNESS

BELTLINE	WELD SEAM I.D. OR MAT'L TYPE	HEAT/SLAB OR HEAT/LOT	CU (%)	P (%)	HIGHEST RISTARTING NDT_(°F)	LRTMAX. *	MIN. UPPER SHELF	- MAX
Plate	SA-533 Gr B CL.1	83416-1 E 7677-1	.14	.009	+20	+35	(LFT-LBS) NA	
Weld SFA 5.5, (E 8018-G)	662A746/ HO13A27A 432A267	:04 :03	.019	-20 -12	+32	NA	+15 +20	

NOTE:* These values are given only for the benefit of calculating the end-of-life (EOL) RT NOT

NON-BELTLINE	MT'L TYPE OR	HEAT/SLAB OR	HIGHEST STARTING	
COMPONENT	WELD STEAM I.D.	HEAT/LOT	RTNDT (°F)	
Top Shell Ring Bottom Head Dome Bottom Head Torus Top Head Torus Top Head Torus Top Head Flange Vessel Flange Feedwater Nozzle Weld LPCI Nozzle * Closure Studs Wald	SA 533, Gr. B, CL. 1 "" SA-508, CL. 2 "" Non-Beltline SA-598, CL. 2 Seen KA SA-540, Gr. B-24	$\begin{array}{c} \textbf{C7711-1} & C & 9800-2 \\ \textbf{C7973-1} & C & 9306-2 \\ \textbf{C7973-1} & C & 9362-2 \\ \textbf{A6034-1} \\ \textbf{B1993-1} & C & 9646-2 \\ \textbf{1238195-289} & /238300 \\ \textbf{241924-302} & 262058 \\ \textbf{Q2022W-412} & Q & 2 & Q & 25 & W \\ \textbf{A11} \\ \textbf{Q2025W} & 432 & A & 2671 \\ \textbf{Meet} \\ \textbf{and} \end{array}$	+20 - 16 $+12 + 26$ $+12 + 28$ $+10$ $+10 - 20$ $+10$ $-30 - 20$ $-10 0$ $+ -12$	p2

* The design of the LPCI nozzles results in their experiencing an EOL fluence in excess of 10^{17} N/Cm² which predicts an EOL RT_{NDT} of +14°F.


8.1

+200F

LIMERICK . UNIT

-

7-

FAST NEUTRON FLUENCE (E>1 MeV) AT & T AS A FUNCTION OF SERVICE LIFE*

BASES FIGURE B 3/4.4.6-1

* At 90% of RATED THERMAL POWER and 90% availability.

LIMERICK - UNIT 1

B 3/4 4-8

Į.

8 1045

4

3/4.5 EMERGENCY CORE COOLING SYSTEM

BASES

3/4.5.1 and 3/4.5.2 ECCS - OPERATING and SHUTDOWN

The core spray system (CSS), together with the LPCI mode of the RHR system, is provided to assure that the core is adequately cooled following a loss-ofcoolant accident and provides adequate core cooling capacity for all break sizes up to and including the double-ended reactor recirculation line break, and for smaller breaks following depressurization by the ADS.

The CSS is a primary source of emergency core cooling after the reactor vessel is depressurized and a source for flooding of the core in case of accidental draining.

The surveillance requirements provide adequate assurance that the CSS will be OPERABLE when required. Although all active components are testable and full flow can be demonstrated by recirculation through a test loop during reactor operation, a complete functional test requires reactor shutdown. The pump discharge piping is maintained full to prevent water hammer damage to piping and to start cooling at the earliest moment.

The low pressure coolant injection (LPCI) mode of the RHR system is provided to assure that the core is adequately cooled following a loss-ofcoolant accident. Four subsystems, each with one pump, provide adequate core flooding for all break sizes up to and including the double-ended reactor recirculation line break, and for small breaks following depressurization by the ADS.

The surveillance requirements provide adequate assurance that the LPCI system will be OPERABLE when required. Although all active components are testable and full flow can be demonstrated by recirculation through a test loop during reactor operation, a complete functional test requires reactor shutdown. The pump discharge piping is maintained full to prevent water hammer damage to piping and to start cooling at the earliest moment.

The high pressure coolant injection (HPCI) system is provided to assure that the reactor core is adequately cooled to limit fuel clad temperature in the event of a small break in the reactor coolant system and loss of coolant which does not result in rapid depressurization of the reactor vessel. The HPCI system permits the reactor to be shut down while maintaining sufficient reactor vessel water level inventory until the vessel is depressurized. The HCPI system continues to operate until reactor vessel pressure is below the pressure at which CSS operation or LPCI mode of the RHR system operation maintains core cooling.

The capacity of the system is selected to provide the required core cooling. The HPCI pump is designed to deliver greater than or equal to 5600 gpm at reactor pressures between 1141 and 200 psig. Initially, water from the condensate storage tank is used instead of injecting water from the suppression pool into the reactor, but no credit is taken in the safety analyses for the condensate storage tank water.

LIMERICK - UNIT 1

B 3/4 5-1

410 1 100

EMERGENCY CORE COOLING SYSTEM

BASES

ECCS - OPERATING and SHUTDOWN (Continued)

With the HPCI system inoperable, adequate core cooling is assured by the OPERABILITY of the redundant and diversified automatic depressurization system and both the CS and LPCI systems. In addition, the reactor core isolation cooling (RCIC) system, a system for which no credit is taken in the safety analysis, will automatically provide makeup at reactor operating pressures on a reactor low water level condition. The HPCI out-of-service period of 14 days pressure core cooling systems and the RCIC system.

The surveillance requirements provide adequate assurance that the HPCI system will be OPERABLE when required. Although all active components are testable and full flow can be demonstrated by recirculation through a test loop during reactor operation, a complete functional test with reactor vessel injection requires reactor shutdown. The pump discharge piping is maintained full to prevent water hammer damage and to provide cooling at the earliest

Upon failure of the HPCI system to function properly after a small break loss-of-coolant accident, the automatic depressurization system (ADS) automatically causes selected safety/relief valves to open, depressurizing the reactor so that flow from the low pressure core cooling systems can enter the core in time to limit fuel cladding temperature to less than 2200°F. ADS is conservatively required to be OPERABLE whenever reactor vessel pressure exceeds 100 psig. This pressure is substantially below that for which the low pressure core cooling systems can provide adequate core cooling for events requiring ADS.

ADS automatically controls five selected safety-relief valves although the safety analysis only takes credit for four valves. It is therefore appropriate to permit one valve to be out-of-service for up to 14 days without materially reducing system reliability.

3/4.5.3 SUPPRESSION CHAMBER

The suppression chamber is required to be OPERABLE as part of the ECCS to ensure that a sufficient supply of water is available to the HPCI, CS and LPCI systems in the event of a LOCA. This limit on suppression chamber minimum water volume ensures that sufficient water is available to permit recirculation cooling flow to the core. The OPERABILITY of the suppression chamber in OPERATIONAL CONDITION 1, 2, or 3 is also required by Specification 3.6.2.1.

Repair work might require making the suppression chamber inoperable. This specification will permit those repairs to be made and at the same time give assurance that the irradiated fuel has an adequate cooling water supply when the suppression chamber must be made inoperable, including draining, in OPERATIONAL CONDITION 4 or 5.

In OPERATIONAL CONDITION 4 and 5 the suppression chamber minimum required water volume is reduced because the reactor coolant is maintained at or below 200°F. Since pressure suppression is not required below 212°F, the minimum water volume is based on NPSH, recirculation volume and vortex prevention plus a safety margin for conservatism.

LIMERICK - UNIT 1

B 3/4 5-2

Pr 8 1142 "

3/4.6 CONTAINMENT SYSTEMS

BASES

3/4.6.1 PRIMARY CONTAINMENT

3/4.6.1.1 PRIMARY CONTAINMENT INTEGRITY

PRIMARY CONTAINMENT INTEGRITY ensures that the release of radioactive materials from the containment atmosphere will be restricted to those leakage paths and associated leak rates assumed in the safety analyses. This restriction, in conjunction with the leakage rate limitation, will limit the SITE BOUNDARY radiation doses to within the limits of 10 CFR Part 100 during accident conditions.

3/4.6.1.2 PRIMARY CONTAINMENT LEAKAGE

The limitations on primary containment leakage rates ensure that the total containment leakage volume will not exceed the value assumed in the safety analyses at the peak accident pressure of 44.02 psig, P. As an added conservatism, the measured overall integrated leakage rate is further limited to less than or equal to 0.75 L during performance of the periodic tests to account for possible degradation of the containment leakage barriers between leakage tests.

Operating experience with the main steam line isolation valves has indicated that degradation has occasionally occurred in the leak tightness of the valves; therefore the special requirement for testing these valves.

The surveillance testing for measuring leakage rates is consistent with the requirements of Appendix J of 10 CFR Part 50 with the exception of exemptions granted for leak testing of the main steam isolation valves, the airlock TIP shear valves, and RHR relief valves,

3/4.6.1.3 PRIMARY CONTAINMENT AIR LOCKS

The limitations on closure and leak rate for the primary containment air locks are required to meet the restrictions on PRIMARY CONTAINMENT INTEGRITY and the primary containment leakage rate given in Specifications 3.6.1.1 and 3.6.1.2. The specification makes allowances for the fact that there may be long periods of time when the air locks will be in a closed and secured position during reactor operation. Only one closed door in each air lock is required to maintain the integrity of the containment.

3/4.6.1.4 MSIV LEAKAGE CONTROL SYSTEM

Calculated doses resulting from the maximum leakage allowance for the main steamline isolation valves in the postulated LOCA situations would be a small fraction of the 10 CFR Part 100 guidelines, provided the main steam line system from the isolation valves up to and including the turbine condenser remains intact. Operating experience has indicated that degradation has occasionally occurred in the leak tightness of the MSIVs such that the specified leakage requirements have not always been maintained continuously. The requirement for the leakage control system will reduce the untreated leakage from the MSIVs when isolation of the primary system and containment is required.

LIMERICK - UNIT 1

B 3/4 6-1

AL 8 12 . . .

CONTAINMENT SYSTEMS

BASES

3/4.6.1.5 PRIMARY CONTAINMENT STRUCTURAL INTEGRITY

This limitation ensures that the structural integrity of the containment will be maintained comparable to the original design standards for the life of the unit. Structural integrity is required to ensure that the containment will withstand the maximum pressure of 44.02 psig in the event of a LOCA. A visual inspection in conjunction with Type A leakage tests is sufficient to demonstrate this capability.

3/4.6.1.6 DRYWELL AND SUPPRESSION CHAMBER INTERNAL PRESSURE

The limitations on drywell and suppression chamber internal pressure ensure that the containment peak pressure of 44.02 psig does not exceed the design pressure of 55 psig during LOCA conditions or that the external pressure differential does not exceed the design maximum external pressure differential of 5.0 psid. The limit of -1.0 to +2.0 psig for initial positive containment pressure will limit the total pressure to 44.02 psig which is less than the design pressure and is consistent with the safety analysis.

3/4.6.1.7 DRYWELL AVERAGE AIR TEMPERATURE

The limitation on drywell average air temperature ensures that the containment peak air temperature does not exceed the design temperature of 340°F during steam line break conditions and is consistent with the safety analysis.

3/4.6.1.8 DRYWELL AND SUPPRESSION CHAMBER PURGE SYSTEM

The drywell and suppression chamber purge supply and exhaust isolation valves are required to be closed during plant operation except as required for inerting, deinerting and pressure control. The 90 hours per 365 day limit on purge valve operation is imposed to protect the integrity of the SGTS filters. Analysis indicates that should a LOCA occur while this pathway is being utilized, the associated pressure surge through the (18 or 24") purge lines will adversely affect the integrity of SGTS. This limit is not imposed, however, on the subject valves when pressure control is being performed through the 2-inch bypass line, since a pressure surge through this line does not threaten the OPERABILITY of SGTS.

LIMERICK - UNIT 1

8 3/4 6-2

CONTAINMENT SYSTEMS

BASES

3/4 6.2. DEPRESSURIZATION SYSTEMS

The specifications of this section ensure that the primary containment pressure will not exceed the design pressure of 55 psig during primary system blowdown from full operating pressure.

The suppression chamber water provides the heat sink for the reactor coolant system energy release following a postulated rupture of the system. The suppression chamber water volume must absorb the associated decay and structural sensible heat released during reactor coolant system blowdown from 1040 psig. Since all of the gases in the drywell are purged into the suppression chamber air space during a loss-of-coolant accident, the pressure of the suppression chamber air space must not exceed 55 psig. The design volume of the suppression chamber, water and air, was obtained by considering that the total volume of reactor coolant and to be considered is discharged to the suppression chamber and that the drywell volume is purged to the suppression

Using the minimum or maximum water volumer given in this specification, suppression pool pressure during the design basis accident is approximately 30 psig which is below the design pressure of 55 psig. Maximum water volume of 134,600 ft³ results in a downcomer submergence of 12'3" and the minimum volume of 122,120 ft³ results in a submergence approximately 2'3" less. The majority of the Bodega tests were run with a submerged length of 4 feet and with complete condensation. Thus, with respect to the downcomer submergence, this specification is adequate. The maximum temperature at the end of the blowdown tested during the Humboldt Bay and Bodega Bay tests was 170°F and this is conservatively taken to be the limit for complete condensation of the reactor coolant, although condensation would occur for temperatures above 170°F.

Should it be necessary to make the suppression chamber inoperable, this shall only be done as specified in Specification 3.5.3.

Under full power operating conditions, blowdown through safety/relief valves assuming an initial suppression chamber water temperature of 95°F results in a bulk water temperature of approximately 136°F immediately following blowdown which is below the 190°F bulk temperature limit used for complete condensation via T-quencher devices. At this temperature and atmospheric pressure, the available NPSH exceeds that required by both the RHR and core spray pumps, thus there is no dependency on containment overpressure during the accident injection phase. If both RHR loops are used for containment cooling, there is no dependency on containment overpressure for post-LOCA operations.

Experimental data indicate that excessive steam condensing loads can be avoided if the peak local temperature of the suppression pool is maintained below 200°F during any period of relief valve operation for T-quencher devices. Specifications have been placed on the envelope of reactor operating conditions so that the reactor can be depressurized in a timely manner to avoid the regime of potentially high suppression chamber loadings.

LIMERICK - UNIT 1

B 3/4 6-3

2 E 1883

CONTAINMENT SYSTEMS

BASES

DEPRESSURIZATION SYSTEMS (Continued)

Because of the large volume and thermal capacity of the suppression pool, the volume and temperature normally changes very slowly and monitoring these parameters daily is sufficient to establish any temperature trends. By requiring the suppression pool temperature to be frequently recorded during periods of significant heat addition, the temperature trends will be closely followed so that appropriate action can be taken.

In addition to the limits on temperature of the suppression chamber pool water, operating procedures define the action to be taken in the event a safetyrelief valve inadvertently opens or sticks open. As a minimum this action shall include: (1) use of all available means to close the valve, (2) initiate suppression pool water cooling, (3) initiate reactor shutdown, and (4) if other safetyrelief valves are used to depressurize the reactor, their discharge shall be separated from that of the stuck-open safety/relief valve to assure mixing and uniformity of energy insertion to the pool.

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

The OPERABILITY of the primary containment isolation valves ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment and is consistent with the requirements of GDC 54 through 57 of Appendix A of 10 CFR Part 50. Containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA.

3/4.6.4 VACUUM RELIEF

Vacuum relief valves are provided to equalize the pressure between the suppression chamber and drywell. This system will maintain the structural integrity of the primary containment under conditions of large differential pressures.

The vacuum breakers between the suppression chamber and the drywell must not be inoperable in the open position since this would allow bypassing of the suppression pool in case of an accident. There are four pairs of values to provide redundancy so that operation may continue for up to 72 hours with no more than one pair of vacuum breakers inoperable in the closed position.

Each vacuum breaker valve's position indication system is of great enough sensitivity to ensure that the maximum steam bypass leakage coefficient of

 $\sqrt{k} = 0.05 \ \text{ft}^2$

for the vacuum relief system (assuming one valve fully open) will not be exceeded. LIMERICK - UNIT 1 B 3/4 6-4

tites a

3874083670

CONTAINMENT SYSTEMS

BASES

3/4.6.5 SECONDARY CONTAINMENT

Secondary containment is designed to minimize any ground level release of radioactive material which may result from an accident. The Reactor Enclosure and associated structures provide secondary containment during normal operation when the drywell is sealed and in service. At other times the drywell may be open and, when required, secondary containment integrity is specified.

. The second second

Establishing and maintaining a vacuum in the reactor enclosure secondary containment with the standby gas treatment system once per 18 months, along with the surveillance of the doors, hatches, dampers and valves, is adequate to ensure that there are no violations of the integrity of the secondary containment.

The OPERABILITY of the reactor enclosure recirculation system and the standby gas treatment systems ensures that sufficient iodine removal capability will be available in the event of a LOCA or refueling accident (SGTS only). The reduction in containment iodine inventory reduces the resulting SITE BOUNDARY radiation doses associated with containment leakage. The operation of this system and resultant iodine removal capacity are consistent with the assumptions used in the LOCA and refueling accident analyses. Provisions have been made to continuously purge the filter plenums with instrument air when the filters are not in use to prevent buildup of moisture or the adsorbers and the HEPA filters.

Although the safety analyses assumes that the reactor enclosure secondary containment draw down time will take 135 seconds, these surveillance requirements specify a draw down time of 121 seconds. This 14 second difference is due to the diesel generator starting and sequence loading delays which is not part of this surveillance requirement.

The reactor enclosure secondary containment draw down time analyses assumes a starting point of 0.25 inch of vacuum water gauge and worst case SGTS dirty filter flow rate of 2800 cfm. The surveillance requirements satisfy this assumption by starting the drawdown from ambient conditions and connecting the adjacent reactor enclosure and refueling area to the SGTS to split the exhaust flow between the three zones and verifying a minimum flow rate of 2800 cfm from the test zone. This simulates the worst case flow alignment and verifies adequate flow is available to drawdown the test zone within the required time. The Technical Specification Surveillance Requirement 4.6.5.3.b.3 is intended to be a multi-zone air balance verification without isoleting any test zone.

The SGTS fans are sized for three zones and therefore, when aligned to a single zone or two zones, will have access capacity to more quickly drawdown the affected zones. There is no maximum flow limit to individual zones or pairs of zones and the zir balance and drawdown time are verified when all three zones are connected to the SGTS.

The three zone air balance verification and drawdown test will be done prior to initial criticality of Unit 2 or after any major system alteration, which is any modification which will have an effect on the SGTS flowrate such that the ability of the SGTS to drawdown the reactor enclosure to greater than or equal to 0.25 inch of vacuum water gage in less than or equal to 121 seconds could be affected.

JUL 8 1967

LIMERICK - UNIT 1

Amandment No. 6

3874036670

CONTAINMENT SYSTEMS

BASES

3/4.6.5 SECONDARY CONTAINMENT (Continued)

a second a second a substantial and a second second and a second a second a second a second a second a second a

The field tests for bypass leakage across the SGTS charcoal adsorber and HEPA filter banks are performed at a flow rate of $3000 \pm 10\%$ cfm. This flow rate corresponds to the maximum overall three zone inleakage rate of 3264 cfm.

The SGTS filter train pressure drop is a function of air flow rate and filter conditions. Surveillance testing is performed using either the SGTS or drywell purge fans to provide operating convenience.

Each reactor enclosure secondary containment zone and refueling area secondary containment zone is tested independently to verify the design leak tightness. A design leak tightness of 1250 cfm or less for each reactor enclosure and 764 cfm or less for the refueling area at a 0.25 inch of vacuum water gage will ensure that containment integrity is maintained at an acceptable level if all zones are connected to the SGTS at the same time.

3/4.6.6 PRIMARY CONTAINMENT ATMOSPHERE CONTROL

The OPERABILITY of the systems required for the detection and control of hydrogen combustible mixtures of hydrogen and oxygen ensures that these systems will be available to maintain the hydrogen concentration within the primary containment below the lower flammability limit during post-LOCA conditions. The primary containment hydrogen recombiner is provided to maintain the oxygen concentration below the lower flammability limit. The combustible gas analyzer is provided to continuously monitor, both during normal operations and post-LOCA, the hydrogen and oxygen concentrations in the primary containment. The primary containment atmospheric mixing system is provided to ensure adequate mixing of the containment atmosphere to prevent localized accumulations of hydrogen and oxygen from exceeding the lower flammability limit. The hydrogen control system is consistent with the recommendations of Regulatory Guide 1.7, "Control of Combustible Gas Concentrations in Containment Following a LOCA," March 1971.

The post-LCCA offsite dose analysis assumes a reactor enclosure secondary containment post-draw down leakage rate of 1250 cfm and certain post-accident X/Q values. While the post-accident X/Q values represent a statistical interpretation of historical meteorological data, the highest ground leval wind speed which can be associated with these values is 7 mph (Pasquill-Gifford stability Class G for a ground level release). Therefore, the surveillance requirement assures that the reactor onclosure secondary containment is verified under meteorological conditions consistent with the assumptions utilized in the that are successfully performed at wind speeds in excess of 7 mph would also satisfy the leak rate surveillance requirements, since it shows compliance

LIMERICK - UNIT 1

3/4.7 PLANT SYSTEMS

BASES

3/4.7.1 SERVICE WATER SYSTEMS

The OPERABILITY of the service water systems ensures that sufficient cooling capacity is available for continued operation of safety-related equipment during normal and accident conditions. The redundant cooling capacity of these systems, assuming a single failure, is consistent with the assumptions used in the accident conditions within acceptable limits.

- 3/4.7.2 CONTROL ROOM EMERGENCY FRESH AIR SUPPLY SYSTEM

The OPERABILITY of the control room emergency fresh air supply system ensures that the control room will remain habitable for operations personnel during and following all design basis accident conditions. Constant purge of the system at 1 cfm is sufficient to reduce the buildup of moisture on the adsorbers and HEPA filters. The OPERABILITY of this system in conjunction with control room design provisions is based on limiting the radiation exposure to personnel occupying the control room to 5 rem or less whole body, or its equivalent. This limitation is consistent with the requirements of General Design Criterion 19 of Appendix A, 10 CFR Part 50.

3/4.7.3 REACTOR CORE ISOLATION COOLING SYSTEM

The reactor core isolation cooling (RCIC) system is provided to assure adequate core cooling in the event of reactor isolation from its primary heat sink and the loss of feedwater flow to the reactor vessel without requiring actuation of any of the emergency core cooling system equipment. The RCIC system is conservatively required to be OPERABLE whenever reactor pressure exceeds 150 psig. This pressure is substantially below that for which low pressure core cooling systems can provide adequate core cooling.

The RCIC system specifications are applicable during OPERATIONAL CONDITIONS 1, 2, and 3 when reactor vessel pressure exceeds 150 psig because RCIC is the primary non-ECCS source of emergency core cooling when the reactor is pressurized.

With the RCIC system inoperable, adequate core cooling is assured by the OPERABILITY of the HPCI system and justifies the specified 14 day out-of-service period.

The surveillance requirements provide adequate assurance that RCIC will be OPERABLE when required. Although all active components are testable and full flow can be demonstrated by recirculation during reactor operation, a complete functional test requires reactor shutdown. The pump discharge piping is maintained full to prevent water hammer damage and to start cooling at the earliest possible moment.

LIMERICK - UNIT 1

PLANT SYSTEMS

BASES

3/4.7.4 SNUBBERS

All snubbers are required OPERABLE to ensure that the structural integrity of the reactor coolant system and all other safety related systems is maintained during and following a seismic or other event initiating dynamic loads. Snubbers excluded from this inspection program are those installed on nonsafetyrelated systems and then only if their failure or failure of the system on which they are installed would have no adverse effect on any safety related system.

Snubbers are classified and grouped by design and manufacturer but not by size. For example, mechanical snubbers utilizing the same design features of the 2-kip, 10-kip, and 100-kip capacity manufactured by Company "A" are of the same type. The same design mechanical snubbers manufactured by Company "B" for the purposes of this Technical Specification would be of a different type, as would hydraulic snubbers from either manufacturer.

A list of individual snubbers with detailed information of snubber location and size and of system affected shall be available at the plant in accordance with Section 50.71(c) of 10 CFR Part 50. The accessibility of each snubber shall be determined and approved by the Plant Operations Review Committee. The determination shall be based upon the existing radiation levels and the expected time to perform a visual inspection in each snubber location as well as other factors associated with accessibility during plant operations (e.g., temperature, atmosphere, location, etc.), and the recommendations of Regulatory Guides 8.8 and 8.10. The addition or deletion of any snubber shall be made in accordance with Section 50.59 of 10 CFR Part 50.

The visual inspection frequency is based upon maintaining a constant level of snubber protection to each safety-related system. Therefore, the required inspection interval varies inversely with the observed snubber failures on a given system and is determined by the number of inoperable snubbers found during an inspection of each system. In order to establish the inspection frequency for each type of snubber on a safety-related system, it was assumed that the frequency of snubber failures and initiating events is constant with time and that the failure of any snubber on that system could cause the system to be unprotected and to result in failure during an assumed initiating event. Inspections performed before that interval has elapsed may be used as a new reference point to determine the next inspection. However, the results of such early inspections performed before the original required time interval has elapsed (nominal time less 25%) may not be used to lengthen the required inspection interval. Any inspection whose results required a shorter inspection interval will override the previous schedule.

The acceptance criteria are to be used in the visual inspection to determine OPERABILITY of the snubbers.

LIMERICK - UNIT 1

B 3/4 7-2

The testing frequency for start-up sources and fission detectors is based upon physical limitations in leak testing. For example, The Californium 252 start-up neutron source must be leak tested by the manufacturer remotely in a hot cell facility. Due to the physical design of this source, a six month frequency for contamination testing provides reasonable assurance that the radioactive material is properly contained.

PLANT SYSTEMS

BASES

SNUBBERS (Continued)

To provide assurance of snubber functional reliability one of three functional testing methods is used with the stated acceptance criteria:

- Functionally test 10% of a type of snubber with an additional 10% tested for each functional testing failure, or
- Functionally test a sample size and determine sample acceptance or rejection using Figure 4.7.4-1, or
- 3. Functionally test a representative sample size and determine sample acceptance or rejection using the stated equation.

Figure 4.7.4-1 was developed using "Wald's Sequential Probability Ratio Plan" as described in Quality Control and Industrial Statistics" by Acheson J. Duncan.

Permanent or other exemptions from the surveillance program for individual snubbers may be granted by the Commission if a justifiable basis for exemption is presented and, if applicable, snubber life destructive testing was performed to qualify the snubbers for the applicable design conditions at either the completion of their fabrication or at a subsequent date. Snubbers so exempted shall be listed in the list of individual snubbers indicating the extent of the exemptions.

The service life of a snubber is evaluated via manufacturer input and information through consideration of the snubber service conditions and associated installation and maintenance records (i.e., newly installed snubber, seal replaced, spring replaced, in high radiation area, in high temperature area, etc.). The requirement to monitor the snubber service life is included to ensure that the snubbers periodically undergo a performance evaluation in view of their age and operating conditions. These records will provide statistical bases for future consideration of snubber service life.

3/4.7.5 SEALED SOURCE CONTAMINATION

The limitations on removable contamination for sources requiring leak testing, including alpha emitters, is based on 10 CFR 70.39(c) limits for plutonium. This limitation will ensure that leakage from byproduct, source, and special nuclear material sources will not exceed allowable intake values. Sealed sources are classified into three groups according to their use, with surveillance requirements commensurate with the probability of damage to a source in that group. Those sources which are frequently handled are required to be tested more often than those which are not. Sealed sources which are continuously enclosed within a shielded mechanism, i.e., sealed sources within radiation monitoring devices, are considered to be stored and need not be tested unless they are removed from the shielded mechanism.

LIMERICK - UNIT 1

B 3/4 7-3

AUR 8 1125. . .

PLANT SYSTEMS

BASES

3/4 7.6 FIRE SUPPRESSION SYSTEMS

In the event that portions of the fire suppression systems are inoperable, alternate backup fire fighting equipment is required to be made available in the affected areas until the inoperable equipment is restored to service. When the inoperable fire fighting equipment is intended for use as a backup means of fire suppression, a longer period of time is allowed to provide an alternate means of fire fighting than if the inoperable equipment is the primary means of fire suppression.

The surveillance requirements provide assurances that the minimum OPERABILITY requirements of the fire suppression systems are met. An allowance is made for ensuring a sufficient volume of Halon in the Halon storage tanks by verifying the weight and pressure of the tanks.

The source of water for the fire protection system is two cooling tower basins that have a capacity of 7,200,000 gallons each, for a total capacity of 14,400,000 gallons. For a system pumping capacity of 5000 gpm, this allows continuous operation of both fire pumps for 48 hours. If one cooling tower basin or supply line is not available, the remaining water source provides both fire pumps with a 24-hour supply of water. Water for the fire pumps is taken from either Unit 1 or Unit 2 cooling tower water basins through connections to the circulating water lines. One cooling tower will be out of service for up to 30 days each refueling outage on each unit, to remove the accumulated mud deposits.

The minimum contained volume of 311,000 gallons is based on the CMEB BTP 9.5-1 requirement of 500 gpm for manual hose streams plus the largest design demand of any sprinkler or deluge system for a period of 2 hours. The largest plant sprinkler system flow is 2000 gpm for the surbine condenser compartment. 1997 enclosure's generator equipment area.

The minimum fuel supply of 330 gallons for the diesel driven fire pump is based on providing fuel for 24 hours of full load operation.

In the event the fire suppression water system becomes inoperable, immediate corrective measures must be taken since this system provides the major fire suppression capability of the plant.

3/4.7.7 FIRE RATED ASSEMBLIES

The OPERABILITY of the fire barriers and barrier penetrations ensure that fire damage will be limited. These design features minimize the possibility of a single fire involving more than one fire area prior to detection and extinguishment. The fire barriers, fire barrier penetrations for conduits, cable trays and piping, fire windows, fire dampers, and fire doors are periodically inspected to verify their OPERABILITY.

LIMERICK - UNIT 1

B 3/4 7-4

AUG 5 Huns ---

3/4.8 ELECTRICAL POWER SYSTEMS

BASES

3/4.8.1, 3/4.8.2, and 3/4.8.3 A.C. SOURCES, D.C. SOURCES, and ONSITE POWER DISTRIBUTION SYSTEMS

The OPERABILITY of the A.C. and D.C. ower sources and associated distribution systems during operation ensures that sufficient power will be available to supply the safety-related equipment required for (1) the safe shutdown of the facility and (2) the mitigation and control of accident conditions within the facility. The minimum specified independent and redundant A.C. and D.C. power sources and distribution systems satisfy the requirements of General Design Criterion 17 of Appendix A to 10 CFR Part 50.

The ACTION requirements specified for the levels of degradation of the power sources provide restriction upon continued facility operation commensurate with the level of degradation. The OPERABILITY of the power sources are conbased upon maintaining at least two of the onsite A.C. and the corresponding D.C. power sources and associated distribution systems OPERABLE during accident conditions coincident with an assumed loss-of-offsite power and single failure

The A.C. and D.C. source allowable out-of-service times are based on Regulatory Guide 1.93, "Availability of Electrical Power Sources," December 1974. When two diesel generators are inoperable, there is an additional ACTION requirement to verify that all required systems, susbsystems, trains, components, and devices, that depend on the remaining OPERABLE diesel generators as a source of emergency power, are also OPERABLE. This requirement is intended to provide assurance that a loss-of-offsite power event will not result in a complete loss of safety function of critical systems during the period one of the diesel generators is inoperable. The term verify as used in this context means to administratively check by examining logs or other "information to determine if does not mean to perform the surveillance requirements needed to demonstrate the OPERABILITY of the component.

The OPERABILITY of the minimum specified A.C. and D.C. power sources and associated distribution systems during shutdown and refueling ensures that (1) the facility can be maintained in the shutdown or refueling condition for extended time periods and (2) sufficient instrumentation and control capability is available for monitoring and maintaining the unit status.

The surveillance requirements for demonstrating the OPERABILITY of the diesel generators are in accordance with the recommendations of Regulatory Guide 1.9, "Selection of Diesel Generator Set Capacity for Standby Power Supplies," March 10, 1971, Regulatory Guide 1.108, "Periodic Testing of Diesel Generator Units Used as Onsite Electric Power Systems at Nuclear Power Plants," Revision 1, August 1977 and Regulatory Guide 1.137 "Fuel-Oil Systems for Standby Diesel Generators," Revision 1, October 1979.

LIMERICK - UNIT 1

B 3/4 8-1

ELECTRICAL POWER SYSTEMS

BASES

A.C. SOURCES, D.C. SOURCES, and ONSITE POWER DISTRIBUTION SYSTEMS (Continued)

The surveillance requirements for demonstrating the OPERABILITY of the unit batteries are in accordance with the recommendations of Regulatory Guide 1.129 "Maintenance Testing and Replacement of Large Lead Storage Batteries for Nuclear Power Plants," February 1978 and IEEE Std 450-1980, "IEEE Recommended Practice for Maintenance, Testing, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations."

Verifying average electrolyte temperature above the minimum for which the battery was sized, total battery terminal voltage on float charge, connection resistance values and the performance of battery service and discharge tests ensures the effectiveness of the charging system, the ability to handle high discharge rates and compares the battery capacity at that time with the rated

Table 4.8.2.1-1 specifies the normal limits for each designated pilot cell and each connected cell for electrolyte level, float voltage and specific gravity. The limits for the designated pilot cells float voltage and specific gravity, greater than 2.13 volts and 0.015 below the manufacturer's full charge specific gravity or a battery charger current that had stabilized at a low value, is characteristic of a charged cell with adequate capacity. The normal limits for each connected cell for float voltage and specific gravity, greater than 2.13 volts and not more than 0.020 below the manufacturer's full charge specific gravity with an average specific gravity of all the connected cells not nore than 0.010 below the manufacturer's full charge specific gravity,

Operation with a battery cell's parameter outside the normal limit but within the allowable value specified in Table 4.8.2.1-1 is permitted for up to 7 days. During this 7-day period: (1) the allowable value for electrolyte level ensures no physical damage to the plates with an adequate electron transfer capability; (2) the allowable value for the average specific gravity of all the cells, not more than 0.020 below the manufacturer's recommended full the safety margin provided in sizing; (3) the allowable value for an individual cell's specific gravity, ensures that an individual cell's specific gravity will not be more than 0.040 below the manufacturer's full charge specific gravity and that the overall capability of the battery will be maintained within an acceptable limit; and (4) the allowable value for an individual cell's float voltage, greater than 2.07 volts, ensures the battery's capability to perform its design function.

LIMERICK - UNIT 1

B 3/4 8-2

ELECTRICAL POWER SYSTEMS

BASES

3/4.8.4 ELECTRICAL EQUIPMENT PROTECTIVE DEVICES

Primary containment electrical penetrations and penetration conductors are protected by either de-energizing circuits not required during reactor operation or demonstrating the OPERABILITY of primary and backup overcurrent protection circuit breakers by periodic surveillance.

The surveillance requirements applicable to lower voltage circuit breakers provides assurance of breaker reliability by testing at least one representative sample of each manufacturers brand of circuit breaker. Each manufacturer's molded case circuit breakers are grouped into representative samples which are than tested on a rotating basis to ensure that all breakers are tested.

The bypassing of the motor operated valves thermal overload protection continuously by integral bypass devices ensures that the thermal overload protection will not prevent safety related valves from performing their function. The Surveillance Requirements for demonstrating the bypassing of the thermal overload protection continuously are met by functionally testing the automatic operation of the motor operated valve and ensuring that the motor thermal overload protection design does not change and is in accordance with Regulatory Valves", Revision 1, March 1977.

LIMERICK - UNIT 1

INTENTIONALLY LEFT BLANK

5

3/4.9 REFUELING OPERATIONS

BASES

3/4.9.1 REACTOR MODE SWITCH

Locking the OPERABLE reactor mode switch in the Shutdown or Refuel position, as specified, ensures that the restrictions on control rod withdrawal and refueling platform movement during the refueling operations are properly activated. These conditions reinforce the refueling procedures and reduce the probability of inadvertent criticality, damage to reactor internals or fuel assemblies, and exposure of personnel to excessive radioactivity.

3/4.9.2 INSTRUMENTATION

The OPERABILITY of at least two source range monitors ensures that redundant monitoring capability is available to detect changes in the reactivity condition of the core. The minimum count rate is not required when sixteen or fewer fuel assemblies are in the core. During a typical core reloading, two, three or four irradiated fuel assemblies will be loaded adjacent to each SRM to produce greater than the minimum required count rate. Loading sequences are selected to provide for a continuous multiplying medium to be established between the required operable SRMs and the location of the core alteration. This enhances the ability of the SRMs to respond to the loading of each fuel assembly. During a core unloading, the last fuel to be removed is that fuel adjacent to the SRMs.

3/4.9.3 CONTROL ROD POSITION

The requirement that all control rods be inserted during other CORE ALTERATIONS ensures that fuel will not be loaded into a cell without a control rod.

3/4.9.4 DECAY TIME

The minimum requirement for reactor subcriticality prior to fuel movement ensures that sufficient time has elapsed to allow the radioactive decay of the short lived fission products. This decay time is consistent with the assumptions used in the accident analyses.

3/4.9.5 COMMUNICATIONS

The requirement for communications capability ensures that refueling station personnel can be promptly informed of significant changes in the facility status or core reactivity condition during movement of fuel within the reactor pressure vessel.

LIMERICK - UNIT 1

B 3/4 9-1

MAY 1 1 1987

Amendment No. 4

REFUELING OPERATIONS

BASES

3/4.9.6 REFUELING PLATFORM

The OPERABILITY requirements ensure that (1) the refueling platform will be used for handling control rods and fuel assemblies within the reactor pressure vessel, (2) each hoist has sufficient load capacity for handling fuel assemblies and control rods, (3) the core internals and pressure vessel are protected from excessive lifting force in the event they are inadvertently engaged during lifting operations, and (4) inadvertent criticality will not occur due to fuel being loaded into a unrodded cell.

3/4.9.7 CRANE TRAVEL - SPENT FUEL STORAGE POOL

The restriction on movement of loads in excess of the nominal weight of a fuel assembly and associated lifting device over other fuel assemblies in the storage pool ensures that in the event this load is dropped 1) the activity release will be limited to that contained in a single fuel assembly, and 2) any possible distortion of fuel in the storage racks will not result in a critical array. This assumption is consistent with the activity release assumed in the safety analyses.

3/4.9.8 and 3/4.9.9 WATER LEVEL - REACTOR VESSEL and WATER LEVEL -SPENT FUEL

The restrictions on minimum water level ensure that sufficient water depth is available to remove 99% of the assumed 10% iodine gap activity released from the rupture of an irradiated fuel assembly. This minimum water depth is consistent with the assumptions of the accident analysis.

3/4.9.10 CONTROL ROD REMOVAL

These specifications ensure that maintenance or repair of control rods or control rod drives will be performed under conditions that limit the probability of inadvertent criticality. The requirements for simultaneous removal of more than one control rod are more stringent since the SHUTDOWN MARGIN specification provides for the core to remain subcritical with only one control rod fully withdrawn.

3/4.9.11 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION

The requirement that at least one residual heat removal loop be OPERABLE or that an alternate method capable of decay heat removal be demonstrated and that an alternate method of coolant mixing be in operation ensures that 1) sufficient cooling capacity is available to remove decay heat and maintain the water in the reactor pressure vessel below 140°F as required during REFUELING, and 2) sufficient coolant circulation would be available through the reactor core to assure accurate temperature indication and to distribute and prevent stratification of the poison in the event it becomes necessary to actuate the standby liquid control system.

The requirement to have two shutdown cooling mode loops OPERABLE when there is less than 22 feet of water above the reactor vessel flange ensures that a single failure of the operating loop will not result in a complete loss of residual heat removal capability. With the reactor vessel head removed and 22 feet of water above the reactor vessel flange, a large heat sink is available for core cooling. Thus, in the event a failure of the operating RHR loop, adequate time is provided to initiate alternate methods capable of decay heat removal or emergency procedures to cool the core.

LIMERICK - UNIT 1

B 3/4 9-2

3/4.10 SPECIAL TEST EXCEPTIONS

BASES

3/4.10.1 PRIMARY CONTAINMENT INTEGRITY

The requirement for PRIMARY CONTAINMENT INTEGRITY is not applicable during the period when open vessel tests are being performed during the low power PHYSICS TESTS.

3/4.10.2 ROD SEQUENCE CONTROL SYSTEM

In order to perform the tests required in the technical specifications it is necessary to bypass the sequence restraints on control rod movement. The additional surveillance requirments ensure that the specifications on heat generation rates and shutdown margin requirements are not exceeded during the period when these tests are being performed and that individual rod worths do not exceed the values assumed in the safety analysis.

3/4.10.3 SHUTDOWN MARGIN DEMONSTRATIONS

Performance of shutdown margin demonstrations with the vessel head removed requires additional restrictions in order to ensure that criticality does not occur. These additional restrictions are specified in this LCO.

3/4.10.4 RECIRCULATION LOOPS

This special test exception permits reactor criticality under no flow conditions and is required to perform certain startup and PHYSICS TESTS while at low THERMAL POWER levels.

3/4.10.5 OXYGEN CONCENTRATION

Relief from the oxygen concentration specifications is necessary in order to provide access to the primary containment during the initial startup and testing phase of operation. Without this access the startup and test program could be restricted and delayed.

3/4.10.6 TRAINING STARTUPS

This special test exception permits training startups to be performed with the reactor vessel depressurized at low THERMAL POWER and temperature while controlling RCS temperature with one RHR subsystem aligned in the shutdown cooling mode in order to minimize contaminated water discharge to the radioactive waste disposal system.

3/4.10.7 SPECIAL INSTRUMENTATION - INITIAL CORE LOADING

This special test exception permits relief from the requirements for a minimum count rate while loading the first 16 fuel bundles to allow sufficient sourceto-detector coupling such that minimum count rate can be achieved on an SRM. This is acceptable because of the significant margin to criticality while loading the initial 16 fuel bundles.

LIMERICK - UNIT 1

B 3/4 10-1

F. 8 1945

INTENTIONALLY LEFT BLANK

3/4.11 RADIOACTIVE EFFLUENTS

BASES

3/4.11.1 LIQUID EFFLUENTS

3/4.11.1.1 CONCENTRATION

This specification is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to UNRESTRICTED AREAS will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table II, Column 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water in UNRESTRICTED AREAS will result in exposures within (1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC, and (2) the limits of 10 CFR 20.106(e) to the population. The concentration limits for dissolved or entrained noble gases are based upon the assumption that Xe-135 is the controlling radioisotope and its MPC in air was converted to an equivalent concentration in water using the methods described in the International Commission on Radiological Protection (ICRP) Publication 2.

The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD, and other detection limits can be found in HASL Procedures Manual, <u>HASL-300</u> (revised annually), Currie, L. A., "Limits for Qualitative Detection and Quantitative Determination - Application to Radiochemistry," <u>Anal. Chem. 40</u>, 586-93 (1968), and Hartwell, J. K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report <u>ARH-SA-215</u> (June 1975).

3/4.11.1.2 DOSE

This specification is provided to implement the requirements of Sections II.A, III.A, and IV.A of Appendix I, 10 CFR Part 50. The Limiting Condition for Operation implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV. A of Appendix I to assure that the releases of radioactive material in liquid effluents will be kept "as low as is reasonably achievable." Also, for fresh water sites with drinking water supplies which can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual r lease rates of radioactive materials in liquid effluents are consistent with the chodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.

This specification applies to the release of radioactive materials in liquid effluents from each reactor at the site. For units with shared radwaste treatment systems, the liquid effluents from the shared system are proportioned among the units sharing that system.

LIMERICK - UNIT 1

B 3/4 11-1

A.L. 8 1565

RADIOACTIVE EFFLUENTS

BASES

3/4.11.1.3 LIQUID RADWASTE TREATMENT SYSTEM

The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as is reasonably achievable". This specification implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective fiven in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the liquid radwaste treatment system were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50, for liquid effluents.

3/4/11.1.4 LIQUID HOLDUP TANKS

The tanks listed in this specification include all those outdoor radwaste tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and that do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system.

Restricting the quantity of radioactive material contained in the specified tanks provides assurance that in the event of an uncontrolled release of the tanks' contents, the resulting concentrations would be less than the limits of 10 CFR Part 20, Appendix 8, Table II, Column 2, at the nearest potable water supply and the nearest surface water supply in an UNRESTRICTED AREA.

3/4.11.2 GASEOUS EFFLUENTS

3/4 11.2.1 DOSE RATE

This specification is provided to ensure that the dose at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20 to UNRESTRICTED AREAS. The annual dose limits are the dose associated with the concentrations of 10 CFR Part 20, Appendix B, Table II, Column 1. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRICTED AREA, either within or outside the SITE BOUNDARY, to annual average concentrations exceeding the limits specified in Appendix B, Table II of 10 CFR Part 20 (10 CFR 20.106(b)(1)). For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. Examples of calculations for such MEMBERS OF THE PUBLIC, with the appropriate occupancy factors, shall be given in the ODCM. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrems/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/year.

This specification applies to the release of radioactive materials in gaseous effluents from all reactors at the site.

LIMERICK - UNIT 1

B 3/4 11-2

RADIOACTIVE EFFLUENTS

BASES

DOSE RATE (Continues)

The required detection capability for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD, and other detection limits can be found in HASL Procedures Manual, <u>HASL-300</u> (revised annually), Currie, L. A., "Limits for Qualitative Detection and Quantitative Determination - Application to -Radiochemistry," <u>Anal. Chem. 40</u>, 586-93 (1968), and Hartwell, J. K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report <u>ARH-SA-215</u> (June 1975).

3/4.11.2.2 DOSE - NOBLE GASES

This specification is provided to implement the requirements of Sections II.B, III.A, and IV.A of Appendix I, 10 CFR Part 50. The Limiting Condition for Operation implements the guides set forth in Section II.8 of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV. A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable". The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calcuration of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977 with site specific dispersion curves and deposition methodology. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM, AND RADIONUCLIDES IN PARTICULATE FORM

This specification is provided to implement the requirements of Sections II.C, III.A, and IV.A of Appendix I, 10 CFR Part 50. The Limiting Conditions for Operation are the guides set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." The ODCM calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be show by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is

LIMERICK - UNIT 1

B 3/4 11-3

 \mathbf{x}_{i}^{i}

11 4 197

ŝ.

1.1

RADIOACTIVE EFFLUENTS

BASES

DOSE-IODINE-131, IODINE-133, TRITIUM, AND RADIONUCLIDES IN PARTICULATE FORM (Continued)

unlikely to be substantially underestimated. The ODCM calculational methods for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents - for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix 1," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Revision 1, July 1977 with site specific dispersion curves and deposition methodology. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days are dependent on the existing radionuclide pathways to man in areas at and beyond the SITE BOUNDARY. The pathways which were examined in the development of these calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat-producing animals graze with consumption of the milk and meat by man, and (4) deposition on the ground with subsequent exposure of man.

3/4.11.2.4 VENTILATION EXHAUST TREATMENT SYSTEM

The requirement that the appropriate portions of this system be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." This specification implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

3/4.11.2.5 EXPLOSIVE GAS MIXTURE

This specification is provided to ensure that the concentration of potentially explosive has mixtures contained in the main condenser offgas treatment system is maintained below the flammability limits of hydrogen and oxygen. Maintaining the concentration of hydrogen below its flammability limit provides assurance that the releases of radioactive materials will be controlled in conformance with the requirements of General Design Criterion 60 of Appendix A to 10 CFR Part 50.

LIMERICK - UNIT 1

B 3/4 11-4

A. E 1995

٩

 $\frac{1}{2}$

RADIOACTIVE EFFLUENTS

BASES

3/4.11.2.6 MAIN CONDENSER

Restricting the gross radioactivity rate of noble gases from the main condenser provides reasonable assurance that the total body exposure to an individual at the exclusion area boundary will not exceed a small fraction of the limits of 10 CFR Part 100 in the event this effluent is inadvertently discharged directly to the environment without treatment. This specification implements the requirements of General Design Criteria 60 and 64 of Appendix A to 10 CFR Part 50.

3/4.11.2.7 VENTING OR PURGING

This specification provides reasonable assurance that releases from drywell purging operations will not exceed the annual dose limits of 10 CFR Part 20 for UNRESTRICTED AREAS.

3/4.11.3 SOLID RADWASTE TREATMENT

The OPERABILITY of the solid radwaste system ensures that the system will be available for use whenever solid radwastes require processing and packaging prior to being shipped offsite. This specification implements the requirements of 10 CFR 50.36a and General Design Criterion 60 of Appendix A to 10 CFR Part 50. The process parameters included in establishing the PROCESS CONTROL PROGRAM may include, but are not limited to waste type, waste pH, waste/liquid/solidification agent/catalyst ratios, waste oil content, waste principal chemical constituents, mixing and curing times.

3/4.11.4 TOTAL DOSE

This specification is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 CFR 18525. The specification requires the preparation and submittal of a Special Report whenever the calculated doses from plant radioactive effluents exceed twice the design objective doses of Appendix I. For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within the reporting requirement level. The Special Report will describe a course of action that should result in the limitation of the annual dose to a member of the public to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 5 miles must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR 190.11 and 10 CFR 20.405c, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle.

LIMERICK - UNIT 1

I. R. M. S. S. M. Market and S.

AUG 8 1985

4

۴

INTENTIONALLY LEFT BLANK

3/4.12 RADIOLOGICAL ENVIRONMENTAL MONITORING

BASES

3/4.12.1 MONITORING PROGRAM

The radiological environmental monitoring program required by this specification provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of MEMBERS OF THE PUBLIC resulting Trom the station operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and modeling of the environmental exposure pathways. The initially specified monitoring program will be effective for at least the first 3 years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by Table 4.12.1-1 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as an a posteriori (after the fact) limit for a particular measurement.

Detailed discussion of the LLD, and other detection limits. can be found in HASL Procedures Manual, <u>HASL-300</u> (revised annually); Currie, L. A., "Limits for Qualitative Detection and Quantitative Determination - Application to Radiochemistry" <u>Anal. Chem. 40</u>, 586-93 (1968); and Hartwell, J. K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report ARH-SA-215 (June 1975).

3/4.12.2 LAND USE CENSUS

This specification is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the monitoring program are made if required by the results of this census. The best information from the door-to-door survey, aerial survey or consulting with local agricultural authorities or any combination of these methods shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 500 square feet provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were used: (1) that 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and (2) a vegetation yield of 2 kg/square meter.

LIMERICK - UNIT 1

B 3/4 12-1

RADIOLOGICAL ENVIRONMENTAL MONITORING

BASES

3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

The requirement for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are reasonably valid for the purpose of Section IV.B.2 of Appendix I to 10 CFR Part 50. SECTION 5.0 DESIGN FEATURES

4 i 8 1985

INTENTIONALLY LEFT BLANK

5.0 DESIGN FEATURES

5.1 SITE

EXCLUSION AREA

5.1.1 The exclusion area shall be as shown in Figure 5.1.1-1.

LOW POPULATION ZONE

5.1.2 The low population zone shall be as shown in Figure 5.1.2-1.

MAPS DEFINING UNRESTRICTED AREAS AND SITE BOUNDARY FOR RADIOACTIVE GASEDUS AND

KING OF

4.8 4.99

5.1.3 Information regarding radioactive gaseous and liquid effluents, which will allow identification of structures and release points as well as definition of UNRESTRICTED AREAS within the SITE BOUNDARY that are accessible to MEMBER OF THE PUBLIC, shall be as shown in Figures 5.1.3-1a and 5.1.3-1b.

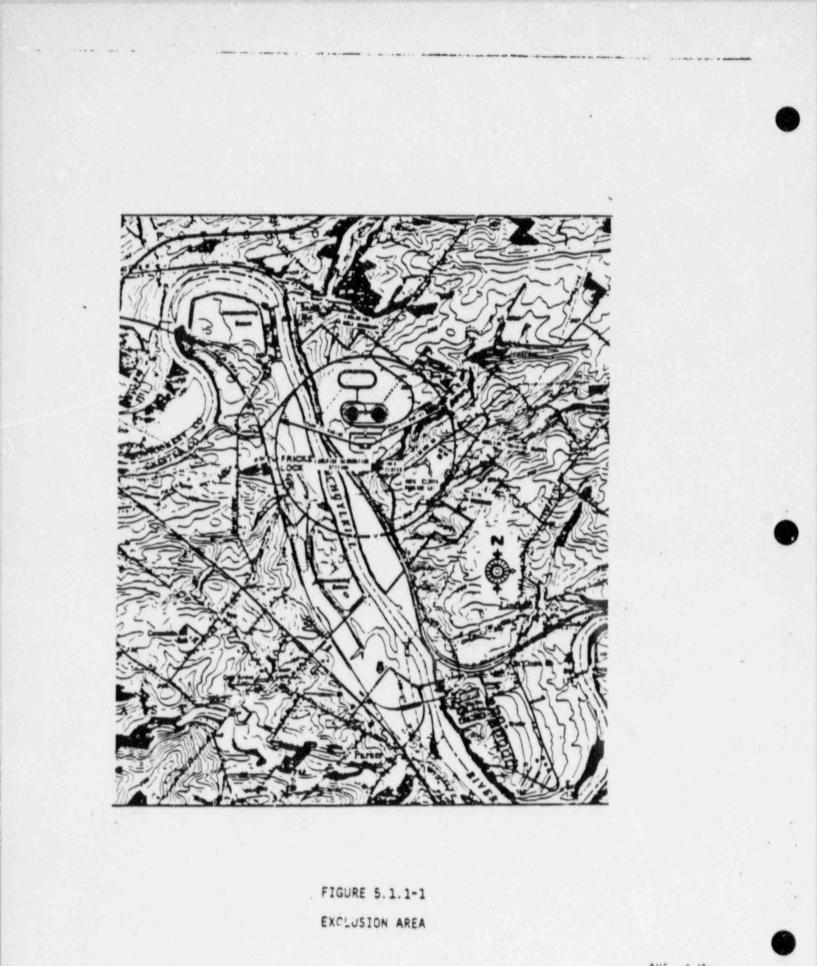
METEOROLOGICAL OWER LOCATION

5.1.4 The meteorological towers shall be located as shown on Figure 5.1.4-1.

5.2 CONTAINMENT

CONFIGURATION

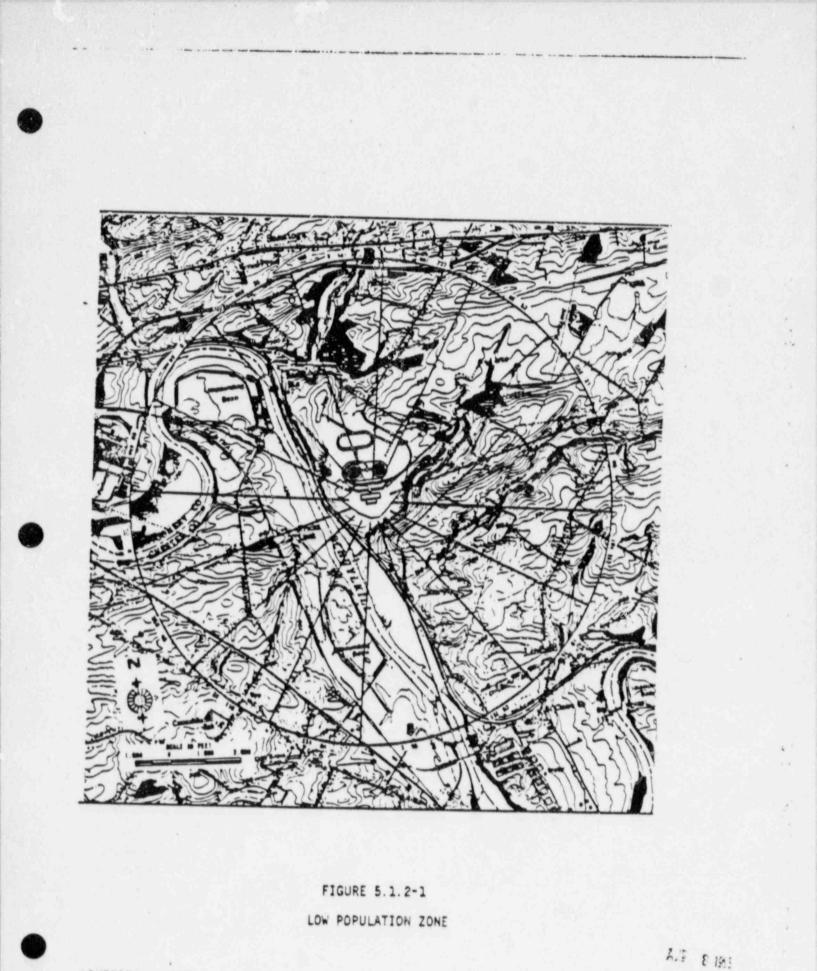
5.2.1 The primary containment is a steel lined reinforced concrete structure consisting of a drywell and suppression chamber. The drywell is a steel-lined reinforced concrete vessel in the shape of a truncated cone on top of a water filled suppression chamber and is separated by a diaphragm slab and connected to the suppression chamber through a series of downcomer vents. The drywell has a maximum free air volume of 243,580 cubic feet at a minimum suppression pool level of 22 feet. The suppression chamber has a maximum air region of 159,540 cubic feet and a minimum water region of 122,120 cubic feet.


DESIGN TEMPERATURE AND PRESSURE

5.2.2 The primary containment is designed and shall be maintained for:

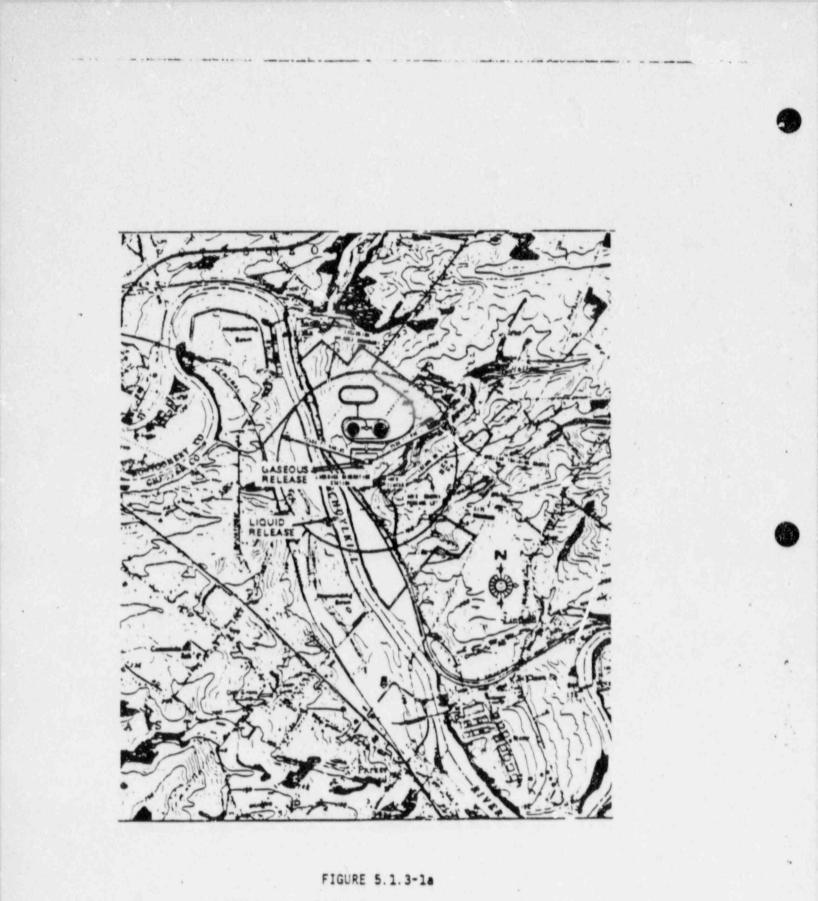
- . Maximum internal pressure 55 psig.
- Maximum internal temperature: drywell 340°F. suppression pool 220°F.
- c. Maximum external pressure 5 psig.
- Maximum floor differential pressure: 30 psid, downward.
 20 psid, upward.

LIMERICK - UNIT 1


5-1

LIMERICK - UNIT 1

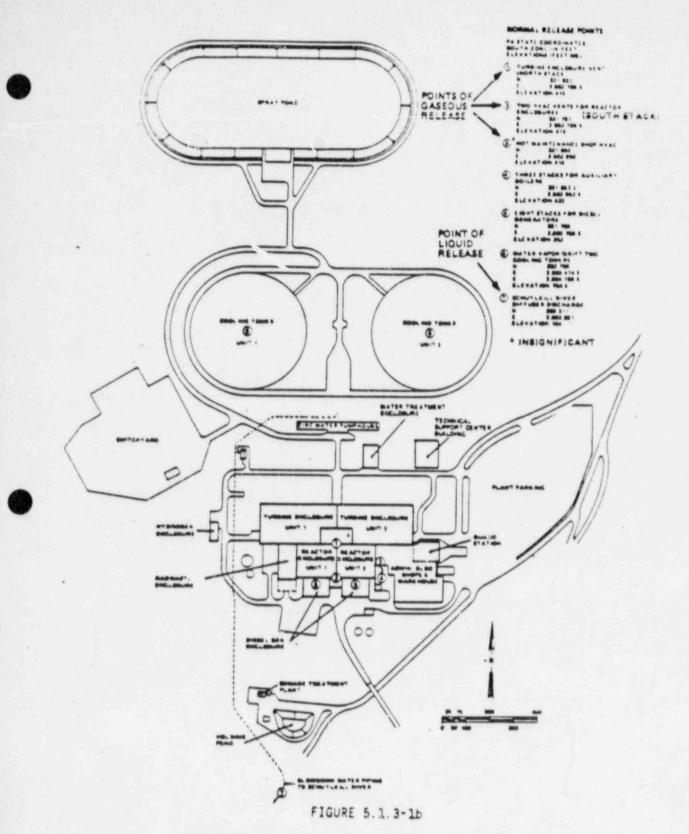
5-2

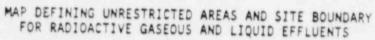

LUS 8 19::

KLU F 1- 1

LIMERICK - UNIT 1

5-3

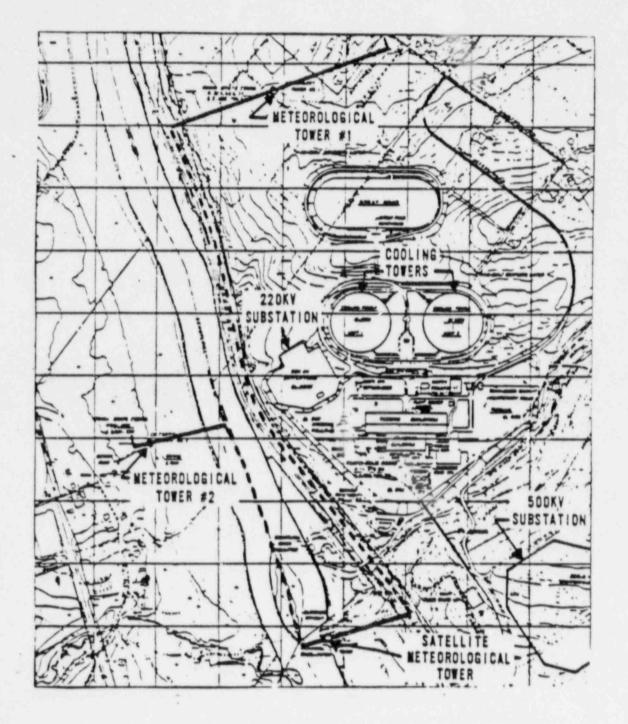


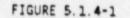

MAP DEFINING UNRESTRICTED AREAS AND SITE BOUNDARY FOR RADIOACTIVE GASEOUS AND LIQUID EFFLUENTS

STREET, RESIDE

LIMERICK - UNIT 1

AUS 8 1935


LIMERICK - UNIT 1


5-5

1. 80.

٩

METEOROLOGICAL TOWER LOCATION

LIMERICK - UNIT 1

5-6

A. C

e +++ ---

DESIGN FEATURES

SECONDARY CONTAINMENT

5.2.3 The secondary containment consists of three distinct isolatable zones. Zones I and II are the Unit 1 and Unit 2 reactor enclosures respectively. Zone III is the common refueling area. Each zone has an independent normal ventilation system which is capable of providing secondary containment zone isolation as required.

Each reactor enclosure (Zone I or II) completely encloses and provides secondary containment for its corresponding primary containment and reactor auxiliary or service equipment, and has a minimum free volume of 1,800,000 cubic feet.

The common refueling area (Zone III) completely encloses and provides secondary containment for the refueling servicing equipment and spent fuel storage facilities for Units 1 and 2, and has a minimum free volume of 2,200,000 cubic feet.

5.3 REACTOR CORE

FUEL ASSEMBLIES

5.3.1 The reactor core shall contain 764 fuel assemblies with each fuel assembly containing 62 fuel rods and two water rods clad with Zircaloy-2. Each fuel rod shall have a nominal active fuel length of 150 inches. The initial core loading shall have a maximum average enrichment of 1.90 weight percent U-235. Reload fuel shall be similar in physical design to the initial core loading.

CONTROL ROD ASSEMBLIES

5.3.2 The reactor core shall contain 185 control rod assemblies, each consisting of a cruciform array of stainless steel tubes containing 143 inches of boron carbide, B_4C , powder surrounded by a cruciform shaped stainless steel sheath.

5.4 REACTOR COOLANT SYSTEM

DESIGN PRESSURE AND TEMPERATURE

5.4.1 The reactor coolant system is designed and shall be maintained:

a. In accordance with the code requirements specified in Section 5.2 of the FSAR, with allowance for normal degradation pursuant to the applicable Surveillance Requirements.

LIMERICK - UNIT 1

DESIGN FEATURES

DESIGN PRESSURE AND TEMPERATURE (Continued)

- b. For a pressure of:
 - 1. 1250 psig on the suction side of the recirculation pump.

100

- 2. J500 psig from the recirculation pump discharge to the outlet side of the discharge shutoff valve.
- 3. 1500 psig from the discharge shutoff valve to the jet pumps.
- c. For a temperature of 575°F.

VOLUME

5.4.2 The total water and steam volume of the reactor vessel and recirculation system is approximately 22,400 cubic feet at a nominal steam dome saturation temperature of 547°F.

5.5 FUEL STORAGE

CRITICALITY

5.5.1.1 The spent fuel storage racks are designed and shall be maintained with:

- a. A k_{eff} equivalent to less than or equal to 0.95 when flooded with unborated water, including all calculational uncertainties and biases as described in Section 9.1.2 of the FSAR.
- b. A nominal 6.625 inch center-to-center distance between fuel assemblies placed in the storage racks.

5.5.1.2 The k_{eff} for new fuel for the first.core loading stored dry in the spent fuel storage racks shall not exceed 0.98 when aqueous foam moderation is assumed.

DRAINAGE

5.5.2 The spent fuel storage pool is designed and shall be maintained to prevent inadvertent draining of the pool below elevation 346'0".

CAPACITY

5.5.3 The spent fuel storage pool is designed and shall be maintained with a storage capacity limited to no more than 2040 fuel assemblies.

5.6 COMPONENT CYCLIC OR TRANSIENT LIMIT

5.6.1 The components identified in Table 5.6.1-1 are designed and shall be maintained within the cyclic or transient limits of Table 5.6.1-1.

LIMEPICK - UNIT 1

5-8

TABLE 5.6.1-1

COMPONENT CYCLIC OR TRANSIENT LIMITS

COMPONENT

CYCLIC OR TRANSIENT LIMIT

DESIGN CYCLE OR TRANSIENT

Reactor

120 heatup and cooldown cycles

80 step change cycles

180 reactor trip cycles

130 hydrostatic pressure and leak tests

70°F to 560°F to 70°F

Loss of feedwater heaters

100% to 0% of RATED THERMAL POWER

Pressurized to \geq 930 and \leq 1250 psig

. 5

LIMERICK

- UNIT

-

INTENTIONALLY LEFT BLANK

SECTION 6.0

ADMINISTRATIVE CONTROLS

211 8 1985

INTENTIONALLY LEFT BLANK

0

6.0 ADMINISTRATIVE CONTROLS

6.1 RESPONSIBILITY

6.1.1 The Station Superintendent shall be responsible for overall unit operation and shall delegate in writing the succession to this responsibility during his absence.

10.00

6.1.2 The Shift Supervisor, or during his absence from the control room, a designated individual shall be responsible for the control room command function. A management directive to this effect, signed by the Vice President-Electric Production shall be reissued to all station personnel on an annual basis.

6.2 ORGANIZATION

OFFSITE

6.2.1 The offsite organization for unit management and technical support shall be as shown on Figure 6.2.1-1.

UNIT STAFF

6.2.2 The unit organization shall be as shown on Figure 6.2.2-1 and:

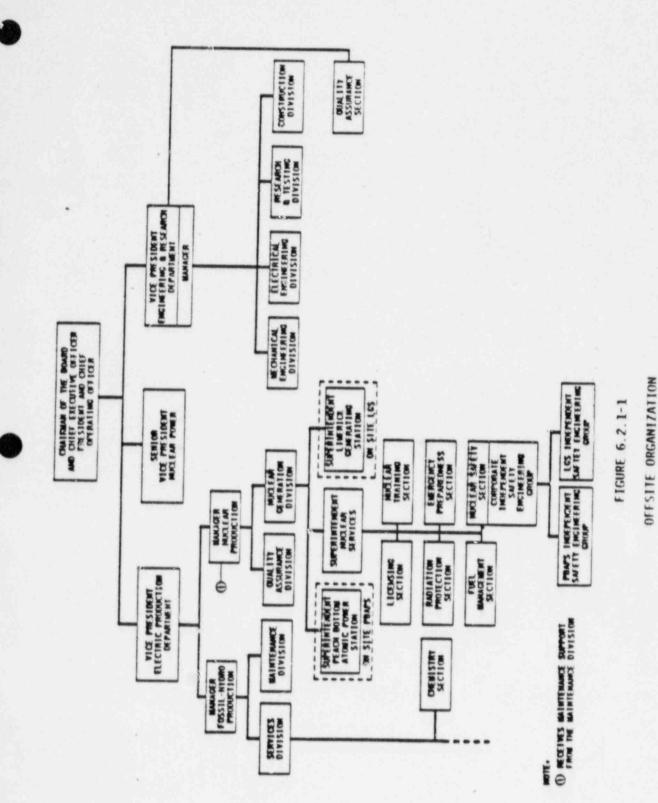
- Each on duty shift shall be composed of at least the minimum shift crew composition shown in Table 6.2.2-1;
- b. At least one licensed Operator shall be in the control room when fuel is in the reactor. In addition, while the unit is in OPERATIONAL CONDITION 1, 2, or 3, at least one licensed Senior Operator shall be in the control room;
- c. A Health Physics Technician* shall be on site when fuel is in the reactor;
- d. ALL CORE ALTERATIONS shall be observed and directly supervised by either a licensed Senior Operator or licensed Senior Operator Limited to Fuel Handling who has no other concurrent responsibilities during this operation;
- e. A site fire brigade of at least five members shall be maintained on site at all times*. The fire brigade shall not include the Shift Superintendent, the Shift Technical Advisor, nor the two other members of the minimum shift crew necessary for safe shutdown of the unit and any personnel required for other essential functions during a fire emergency; and

LIMERICK - UNIT 1

6-1

[&]quot;The Health Physics Technician and fire brigade composition may be less than the minimum requirements for a period of time not to exceed 2 hours, in order to accommodate unexpected absence, provided immediate action is taken to fill the required positions.

UNIT STAFF (continued)


f. Administrative procedures shall be developed and implemented to limit the working hours of unit staff who perform safety-related functions (e.g., licensed Senior Operators, licensed Operators, health physicists, auxiliary operators, and key maintenance personnel).

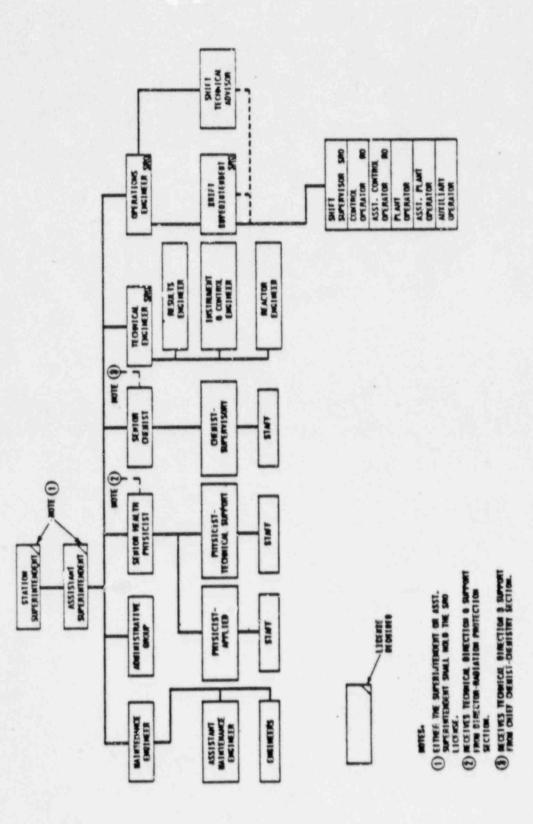
Adequate shift coverage shall be maintained without routine heavy use of overtime. The objective shall be to have operating personnel work a normal 8-hour day, 40-hour week while the unit is operating. However, in the event that unforeseen problems require substantial amounts of overtime to be used, or during extended periods of shutdown for refueling, major maintenance, or major unit modifications, on a temporary basis the following guidelines shall be followed:

- An individual should not be permitted to work more than 16 hours straight, excluding shift turnover time.
- An individual should not be permitted to work more than 16 hours in any 24-hour period, nor more than 24 hours in any 48-hour period, nor more than 72 hours in any 7-day period, all excluding shift turnover time.
- A break of at least 8 hours should be allowed between work periods, including shift torreper time.
- Except during extended shutdown periods, the use of overtime should be considered on an individual basis and not for the entire staff on a shift.

Any deviation from the above guidelines shall be authorized by the Station Superintendent or his deputy, (for operating personnel) or the Superintendent - Maintanance Division or the Engineer-In-Charge, Station Testing Section or their designees (for key maintenance personnel), or higher levels of management, in accordance with established procedures and with documentation of the basis for granting the deviation. Controls shall be included in the procedures such that individual overtime shall be reviewed monthly by the Station Superintendent, or the Superintendent - Maintenance Division or Engineer In-Charge, Station Testing Section or their designees to assure that excessive hours have not been assigned. Routine deviation from the above guidelines is not authorized.

L. 8 1385

÷.


LIMERICK - UNIT 1

6-3

AJI 8 1465

URGANIZATION FOR CONDUCT OF PLANT OPERATIONS

FIGURE 6.2.2-1

LIMERICK - UNIT 1

6-4

405 E 1960 .

t

	TABLE 6.2.2-1	
	MINIMUM SHIFT CREW COMPOSITION	
	TWO UNITS WITH A COMMON CONTROL R	DOM
	1	22.142.1
	WITH UNIT (2) IN CONDITION 4 OR 5 (DR DEFUELED
POSITION	NUMBER OF INDIVIDUALS REQUIRED	TO FILL POSITION
	CONDITION 1, 2, or 3	CONDITION 4 or 5
SS SRO RO NLO STA	1* 1* 2** 2** 1*	1* 1* 1 2** None
	1	
	WITH UNIT 427 IN CONDITION 1, 2,	OR 3
POSITION	NUMBER OF INDIVIDUALS REQUIRED	TO FILL POSITION
	CONDITION 1, 2, or 3	CONDITION 4 or 5
SS SRO RO NLO STA	1* 1* 2** 2** 1*	1* 1* 1 None

TABLE NOTATIONS

"Individual may fill the same position on Unit 1.

- **One of the two required individuals may fill the same position on Unit 2.
- SS Shift Superintendent or Shift Supervisor with a Senior Operator license on Unit Z.Z
- SRO Individual with a Senior Operator license on Unit 1.2

RO - Individual with an Operator license on Unit \mathbf{Z}, \mathbf{Z}

NLO - Non-licensed operator properly qualified to support the unit to which assigned.

STA - Shift Technical Advisor

Except for Shift Supervision (SS), the shift crew composition may be one less than the minimum requirements of Table 5.2.2-1 for a period of time not to exceed 2 hours in order to accommodate unexpected absence of on-duty shift crew members provided immediate action is taken to restore the shift crew composition to within the minimum requirements of Table 5.2.2-1. This provision does not permit any shift crew position to be unmanned upon shift change due to an oncoming shift crewman being late or absent.

During any absence of Shift Supervision (SS) from the control room while the unit is in OPERATIONAL CONDITION 1, 2, or 3, an individual (other than the Shift Technical Advisor) with a wild Senior Operator license shall be designated to assume the control room command function. During any absence of Shift Supervision from the control room while the unit is in OPERATIONAL CONDITION 4 or 5, an individual with a valid Senior Operator license or Operator license shall be designated to assume the control room command function.

LIMERICK - UNIT 1

6-5

1

6.2.3 INDEPENDENT SAFETY ENGINEERING GROUP (ISEG)

FUNCTION

6.2.3.1 The ISEG shall function to examine unit operating characteristics, NRC issuances, industry advisories, Licensee Event Reports, and other sources of unit design and operating experience information, including units of similar design, which may indicate areas for improving unit safety. The ISEG shall make detailed recommendations for revised procedures, equipment modifications, maintenance activities, operations activities, or other means of improving unit safety to the Engineer-In-Charge, Nuclear Safety Section.

COMPOSITION

6.2.3.2 The Limerick ISEG shall be composed of at least three, dedicated, fulltime engineers, including the ISEG Supervisor, located onsite. Each shall have a bachelor's degree in engineering or related science and at least two years professional level experience in his or her field. The Limerick ISEG Supervisor shall have at least six years of experience in the nuclear field. The corporate degree in engineering or related science and at least 2 years professional level experience in his or her field, at least 1 year of which experience shall be in the nuclear field. The Corporate ISEG Supervisor is the Engineer-In-Charge,

RESPONSIBILITIES

5.2.3.3 The ISEG shall be responsible for maintaining surveillance of unit activities to provide independent verification* that these activities are performed correctly and that human errors are reduced as much as practical.

RECORDS

6.2.3.4 Records of activities performed by the ISEG shall be prepared, maintained, and forwarded each calendar month to the Engineer-In-Charge, Nuclear Safety Section.

6.2.4 SHIFT TECHNICAL ADVISOR

6.2.4.1 The Shift Technical Advisor shall provide advisory technical support to Shift Supervision in the areas of thermal hydraulics, reactor engineering, and plant analysis with regard to safe operation of the unit. The Shift Technical Advisor shall have a bachelor's degree or equivalent in a scientific or engineering discipline and shall have received specific training in the response and analysis of the unit for transients and accidents, and in unit design and layout, including the capabilities of instrumentation and controls in the control room.

6.3 UNIT STAFF QUALIFICATIONS

6.3.1 Each member of the unit staff shall meet or exceed the minimum qualifications of ANSI/ANS 3.1-1978 for comparable positions, except for the Senior Health Physicist who shall meet or exceed the qualifications of Regulatory Guide 1.8, September 1975. The licensed Operators and Senior Operators shall also meet or exceed the minimum qualifications of the supplemental requirements specified in Sections A and C of Enclosure 1 of the March 28, 1980 NRC letter to all licensees.

"Not responsible for sign-off function.

LIMERICK - UNIT 1

6.4 TRAINING

6.4.1 A retraining and replacement training program for the unit staff shall be maintained under the direction of the Superintendent, Nuclear Training Section, shall meet or exceed the requirements of ANSI/ANS 3.1-1978 and Appendix A of 10 CFR Part 55 and the supplemental requirements specified in Sections A and C of Enclosure 1 of the March 28, 1980 NRC letter to all licensees, and shall include familiarization with relevant industry operational experience.

6.5 REVIEW AND AUDIT

6.5.1 PLANT OPERATIONS REVIEW COMMITTEE (PORC)

FUNCTION

6.5.1.1 The PORC shall function to advise the Station Superintendent on all matters related to nuclear safety.

icist

COMPOSITION

5.5.1.2 The PORC shall be composed of the:

Chairman:	Station Superintendent
Member:	Engineer - Technical
Member:	Engineer - Operations
Member:	Engineer - Maintenance
Member:	Senior Health Physicist
Member:	I & C Engineer
Member:	Reactor Engineer
Member: Shift Superintendent	
Member: Regulatory Engine	

ALTERNATES

6.5.1.3 All alternate members shall be appointed in writing by the PORC Chairman to serve on a temporary basis; however, no more than two alternates shall participate as voting members in PORC activities at any one time.

MEETING FREQUENCY

6.5.1.4 The PORC shall meet at least once per calendar month and as convened by the PORC Chairman or his designated alternate.

QUORUM

6.5.1.5 The quorum of the PORC necessary for the performance of the PORC responsibility and authority provisions of these Technical Specifications shall consist of the Chairman or his designated alternate and four members including alternates.

or some lake

* n é

RESPONSIBILITIES

- 6.5.1.6 The PORC shall be responsible for:
 - a. Review of (1) all procedures required by Specification 6.8 and changes thereto, (2) all programs required by Specification 6.8 and changes thereto, and (3) any other procedures or changes thereto as determined by the Station Superintendent to affect nuclear safety;
 - Review of all proposed tests and experiments that affect nuclear safety;
 - c. Review of all proposed changes to Appendix A Technical Specifications;
 - Review of all proposed changes or modifications to unit systems or equipment that affect nuclear safety;
 - e. Review of the safety evaluations for procedures and changes thereto completed under the provisions of 10 CFR 50.59.
 - f. Investigation of all violations of the Technical Specifications, including the preparation and forwarding of reports covering evaluation and recommendations to prevent recurrence, to the Superintendent -Nuclear Generation Division and to the Nuclear Review Board;
 - g. Review of all REPORTABLE EVENTS:
 - h. Review of unit operations to detect potential hazards to nuclear safety;
 - Performance of special reviews, investigations, or analyses and reports thereon as requested by the Station Superintendent or the Nuclear Review Board;
 - Review of the Security Plan and implementing procedures and submittal of recommended changes to the Nuclear Review Board; and
 - Review of the Emergency Plan and implementing procedures and submittal of the recommended changes to the Nuclear Review Board.
 - Review of every unplanned onsite release of radioactive material to the environs including the preparation and forwarding of reports covering evaluation, recommendations and disposition of the corrective action to prevent recurrence to the Superintendent - Nuclear Generation Division and to the Chairman of the Nuclear Review Board.
 - m. Review of changes to the PROCESS CONTROL PROGRAM, OFFSITE DOSE CALCULATION MANUAL, and radwaste treatment systems.

6.5.1.7 The PORC shall:

- a. Recommend in writing to the Station Superintendent approval or disapproval of items considered under Specification 6.5.1.6a. through d. prior to their implementation.
- b. Render determinations in writing with regard to whether or not each item considered under Specification 6.5.1.6a. through f. constitutes an unreviewed safety question.

i i i man

RESPONSIBILITIES (Continued)

c. Provide written notification within 24 hours to the Superintendent -Nuclear Generation Division and the Nuclear Review Board of disagreement between the PORC and the Station Superintendent; however, the Station Superintendent shall have responsibility for resolution of such disagreements pursuant to Specification 6.1.1.

RECORDS

. 6.5.1.8 The PORC shall maintain written minutes of each PORC meeting that, at a minimum, document the results of all PORC activities performed under the responsibility provisions of these Technical Specifications. Copies shall be provided to the Superintendent - Nuclear Generation Division and the Nuclear Review Board.

6.5.2 NUCLEAR REVIEW BOARD (NRB)

FUNCTION

6.5.2.1 The NRB shall function to provide independent review and audit of designated activities in the areas of:

- a. Nuclear power plant operations.
- b. Nuclear engineering,
- c. Chemistry and radiochemistry,
- d. Metallurgy,
- e. Instrumentation and control,
- f. Radiological safety,
- g. Mechanical and electrical engineering, and
- h. Quality assurance practices.

The NRB shall report to and advise the Vice President - Electric Production on those areas of responsibility in Specifications 6.5.2.7 and 6.5.2.8.

COMPOSITION

6.5.2.2 The Chairman, members, and alternates of the NRB shall be appointed in writing by the Vice President - Electric Production, and shall have an academic degree in an engineering or physical science field; and in addition, shall have a minimum of 5 years technical experience, of which a minimum of 3 years shall be in one or more areas given in Specification 6.5.2.1. The NRB shall be composed of no less than eight and no more than 12 members.

The members and alternates of the NRB will be competent in the area of Quality Assurance practice and cognizant of the Quality Assurance requirements of 10 CFR Part 50, Appendix B. Additionally, they will be cognizant of the corporate Quality Assurance Program and will have the corporate Quality Assurance organization available to them.

LIMERICK - UNIT 1

212 . 8. 1915

ALTERNATES

6.5.2.3 All alternates shall be appointed in writing by the NRB Chairman to serve on a continuing basis. They shall receive correspondence sent to NRB members with regard to NRB activities and shall be invited to attend all NRB meetings. Alternates shall vote only in the absence of those members for whom they are the alternate.

CONSULTANTS

. 6.5.2.4 Consultants shall be utilized as determined by the NRB Chairman to provide expert advice to the NRS.

MEETING FREQUENCY

6.5.2.5 The MRB shall meet at least once per calendar quarter during the initial year of unit operation following fuel loading and at least once per 6 months thereafter.

QUORUM

6.5.2.6 The quorum of the NRB necessary for the performance of the NRB review and audit functions of these Technical Specifications shall consist of the Chairman or a designated alternate and at least four but not less than one half of the voting NRB members. No more than a minority of the quorum shall have line responsibility for operation of the facility.

REVIEW

6.5.2.7 The NRB shall review:

- a. The safety evaluations for (1) changes to procedures, equipment, facilities or systems; and (2) tests or experiments completed under the provision of 10 CFR 50.59 to verify that such actions did not constitute an unreviewed safety question:
- Proposed changes to procedures, equipment, or systems which involve an unreviewed safety question as defined in 10 CFR 50.59;
- c. Proposed tests or experiments which involve an unreviewed safety question as defined in 10 CFR 50.59;
- Proposed changes to Technical Specifications or this Operating License;
- e. Violations of codes, regulations, orders, Technical Specifications, license requirements, or of internal procedures or instructions having nuclear safety significance:
- Significant operating abnormalities or deviations from normal and expected performance of unit equipment that affect nuclear safety;

g. All REPORTABLE EVENTS;

LIMERICK - UNIT 1

6-10

Now Eller

REVIEW (Continued)

- All recognized indications of an unanticipated deficiency in some aspect of design or operation of structures, systems, or components that could affect nuclear safety; and
- i. Reports and meeting minutes of the PORC.

AUDITS

6.5.2.8 Audits of unit activities shall be performed under the cognizance of the NRB. These audits shall encompass:

- The conformance of unit operation to provisions contained within the Technical Specifications and applicable license conditions at least once per 12 months;
- The performance, training and qualifications of the entire unit staff at least once per 12 months;
- c. The results of actions taken to correct deficiencies occurring in unit equipment, structures, systems, or method of operation that affect nuclear safety, at least once per 6 months;
- d. The performance of activities required by the Operational Quality Assurance Program to meet the criteria of Appendix B, 10 CFR Part 50, at least once per 24 months;
- e. The Emergency Plan and implementing procedures at least once per 12 months.
- The Security Plan and implementing procedures at least once per 12 months.
- 9. Any other area of unit operation considered appropriate by the NRB or the Vice President - Electric Production.
- h. The Fire Protection Program and implementing procedures at least once per 24 months.
- An independent fire protection and loss prevention inspection and audit shall be performed at least once per 12 months utiliting either qualified offsite licensee personnel or an outside fire protection firm.
- j. An inspection and audit of the fire protection and loss prevention program shall be performed by an outside qualified fire consultant at intervals no greater than 36 months.

LIMERICK - UNIT 1

6-11

AUDITS (Continued)

- k. The radiological environmental monitoring program and the results thereof at least once per 12 months.
- The OFFSITE DOSE CALCULATION MANUAL and implementing procedures at least once per 24 months.
- m. The PROCESS CONTROL PROGRAM and implementing procedures at least once per 24 months.
- n. The performance of activities required by the Quality Assurance Program to meet the criteria of Regulatory Guide 4.15, December, 1977, at least once per 12 months.

RECORDS

6.5.2.9 Records of NRB activities shall be prepared, approved, and distributed as indicated below:

- a. Minutes of each NRB meeting shall be prepared, approved, and forwarded to the Vice President Electric Production within 14 days following each meeting.
- b. Reports of reviews encompassed by Specification 6.5.2.7 shall be prepared, approved, and forwarded to the Vice President - Electric Production within 14 days following completion of the review.
- c. Audit reports encompassed by Specification 6.5.2.8 shall be forwarded to the Vice President - Electric Production and to the management positions responsible for the areas audited within 30 days after completion of the audit by the auditing organization.

6.6 REPORTABLE EVENT ACTION

6.6.1 The following actions shall be taken for REPORTABLE EVENTS:

- a. The Commission shall be notified and a report submitted pursuant to the requirements of Section 50.73 to 10 CFR Part 50, and
- b. Each REPORTABLE EVENT shall be reviewed by the PCRC and submitted to the NKB and the Superintendent - Nuclear Generation Division.

5.7 SAFETY LIMIT VIOLATION

6.7.1 The vollowing actions shall be taken in the event a Safety Limit is violated.

a. The NRC Operations Center shall be notified by telephone as soon as possible and in all cases within 1 hour. The Vice President - Electric Production and the WRB shall be notified within 24 hours.

LIMERICK - UNIT 1

6-12

AUG 8 HS:

.

and a second s

SAFETY LIMIT VIOLATION (Continued)

- b. A Safety Limit Violation Report shall be prepared. The report shall be reviewed by the NRB. This report shall describe (1) applicable circumstances preceding the violation, (2) effects of the violation upon unit components, systems, or structures, and (3) corrective action taken to prevent recurrence.
- c. The Safety Limit Violation Report shall be submitted to the Commission, the NRB, and the Vice President - Electric Production within 14 days of the violation.
- d. Critical operation of the unit shall not be resumed until authorized by the Commission.

6.8 PROCEDURES AND PROGRAMS

6.8.1 Written procedures shall be established, implemented, and maintained covering the activities referenced below:

- a. The applicable procedures recommended in Appendix A of Regulatory Guide 1.33, Revision 2, February 1978.
- b. The applicable procedures required to implement the requirements of NUREG-0737 and Supplement 1 to NUREG-0737.
- c. Refueling operations.
- d. Surveillance and test activities of safety-related equipment.
- e. Security Plan implementation.
- f. Emergency Plan implementation.
- g. Fire Protection Program implementation.
- h. PROCESS CONTROL PROGRAM implementation.
- i. OFFSITE DOSE CALCULATION MANUAL implementation.
- j. Quality Assurance Program for effluent and environmental monitoring, using the guidance of Regulatory Guide 4.15, February 1979.

6.8.2 Each procedure of Specification 6.8.1, and changes thereto, shall be reviewed in accordance with Specification 6.5.1.6 and shall be approved by the Station Superintendent prior to implementation and reviewed periodically as set forth in administrative procedures.

6.8.3 Temporary changes to procedures of Specification 6.8.1 may be made provided:

- a. The intent of the original procedure is not altered;
- b. The change is approved by two members of the unit management staff, at least one of whom holds a Senior Operator license on the unit affected; and
- c. The change is documented, reviewed by the PORC, and approved by the Station Superintendent within 14 days of implementation.

LIMERICK - UNIT 1

6-13

Kal 8 15 1

4

and the second sec

PROCEDURES AND PROGRAMS (Continued)

6.8.4 The following programs shall be established, implemented, and maintained:

a. Primary Coolent Sources Outside Containment

A program to reduce leakage from those portions of systems outside containment that could contain highly radioactive fluids during a serious transient or accident to as low as practical levels. The systems include the core spray, high pressure coolant injection, reactor core isolation cooling, residual heat removel, post-accident sampling system, safeguard piping fill system, control rod drive scram discharge system, and containment air monitor systems. The program

- Preventive maintenance and periodic visual inspection requirements, and
- Integrated leak test requirements for each system at refueling cycle intervals or less.
- b. In-Plant Radiation Monitoring

A program which will ensure the capability to accurately determine the airborne iodine concentration in vital areas under accident conditions. This program shall include the following:

- 1. Training of personnel,
- 2. Procedures for monitoring, and
- 3. Provisions for maintenance of sampling and analysis equipment.
- c. Post-accident Sampling

A program which will ensure the capability to obtain and analyze reactor coolant, radioactive indines and particulates in plant gaseous effluents, and containment atmosphere samples under accident conditions. The program shall include the following:

L'. 1 3 1085

- 1. Training of personnel,
- 2. Procedures for sampling and analysis, and
- 3. Provisions for maintenance of sampling and analysis equipment.

"Not required until prior to exceeding 5% of RATED THERMAL POWER.

LIMERICK - UNIT 1

6-14

6.9 REPORTING REOUIREMENTS

ROUTINE REPORTS

6.9.1 In addition to the applicable reporting requirements of Title 10, Code of Federal Regulations, the following reports shall be submitted to the Regional Administrator of the Regional Office of the NRC unless otherwise noted.

STARTUP REPORT

-6.9.1.1 A summary report of plant startup and power escalation testing shall be submitted following (1) receipt of an Operating License, (2) amendment to the license involving a planned increase in power level, (3) installation of fuel that has a different design or has been manufactured by a different fuel supplier, and (4) modifications that may have significantly altered the nuclear,

6.9.1.2 The startup report shall address each of the tests identified in Subsection 14.2.12 of the Final Safety Analysis Report and shall include a description of the measured values of the operating conditions or characteristics obtained during the test program and a comparison of these values with design predictions and specifications. Any corrective actions that were required to obtain satisfactory operation shall also be described. Any additional specific included in this report.

6.9.1.3 Startup reports shall be submitted within (1) 90 days following completion of the startup test program, (2) 90 days following resumption or commencement of commercial power operation, or (3) 9 months following initial criticality, whichever is earliest. If the startup report does not cover all three events (i.e., initial criticality, completion of startup test program, and resumption or commencement of commercial operation) supplementary reports shall be submitted at least every 3 months until all three events have been completed.

ANNUAL REPORTS*

6.9.1.4 Annual reports covering the activities of the unit as described below for the previous calendar year shall be submitted prior to March 1 of each year. The initial report shall be submitted prior to March 1 of the year following initial criticality.

6.9.1.5 Reports required on an annual basis shall include:

a. A tabulation on an annual basis of the number of station, utility, and other personnel (including contractors) receiving exposures greater than 100 mrem/yr and their associated man-rem exposure according to work and job functions** (e.g., reactor operations and surveillance, inservice inspection, routine maintenance, special maintenance [describe maintenance], waste processing, and refueling). The dose assignments to various duty functions may be estimated based on pocket

*A single submittal may be made for a multiple unit station. **This tabulation supplements the requirements of §20.407 of 10 CFR Part 20.

LIMERICK - UNIT 1

6-15

ANNUAL REPORTS (Continued)

dosimeter, thermoluminescent dosimeter (TLD), or film badge measurements. Small exposures totalling less than 20% of the individual total dose need not be accounted for. In the aggregate, at least 80% of the total whole-body dose received from external sources should be assigned to specific major work functions;

- b. Documentation of all challenges to safety/relief valves; and
- . c. Any other unit unique reports required on an annual basis.

MONTHLY OPERATING REPORTS *

6.9.1.6 Routine reports of operating statistics and shutdown experience, including documentation of all challenges to the the main steam system safety/relief valves, shall be submitted on a monthly basis to the Director, Office of Resource Management, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, with a copy to the Regional Administrator of the Regional Office of the NRC no later than the 15th of each month following the calendar month covered by the report.

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT*

6.9.1.7 Routine Annual Radiological Environmental Operating Reports covering the operation of the unit during the previous calendar year shall be submitted prior to May 1 of each year. The initial report shall be submitted prior to May 1 of the year following initial criticality.

The Annual Radiological Environmental Operating Reports shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental surveillance activities for the report period, including a comparison (as appropriate), with preoperational studies, operational controls and previous environmental surveillance reports and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use censuses required by Specification 3.12.2.

The Annual Radiological Environmental Operating Reports shall include the results of all radiological environmental samples and of all environmental radiation measurements taken during the report period pursuant to the locations specified in the tables and figures in the OFFSITE DOSE CALCULATION MANUAL, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

The reports shall also include the following: a summary description of the radiological environmental monitoring program; at least two legible maps**

- *A single submittal may be made for a multiple unit station.
- **One map shall cover stations near the SITE BOUNDARY; a second shall include the more distant stations.

LIMERICK - UNIT 1

Administration

de-

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

covering all sampling locations keyed to a table giving distances and directions from the centerline of the reactor plant; the results of licensee participation in the Interlaboratory Comparison Program, required by Specification 3.12.3; discussion of all deviations from the Sampling Schedule of Table 4.12.1-1; and discussion of all analyses in which the LLD required by Table 4.12.1-1 was not achievable.

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT*

6.9.1.8 Routine Semiannual Radioactive Effluent Release Reports covering the operation of the unit during the previous 6 months of operation shall be submitted within 60 days after January 1 and July 1 of each year. The period of the first report shall begin with the date of initial criticality.

The Semiannual Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the facility as outlined in Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof.

The Semiannual Radioactive Effluent Release Report to be submitted 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction and atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, atmospheric stability.** This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. This same report shall also include an assessment of the radiation doses from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY (Figures 5.1.3-1a and 5.1.3-1b) during the report period. All assumptions used in making these assessments (i.e., specific activity, exposure time and location) shall be included in these reports. The assessment of radiation doses shall be performed in accordance with the methodology and parameters of the OFFSITE DOSE CALCULATION MANUAL (ODCM).

"*In lieu of submission with the first half year Semiannual Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

LIMERICK - UNIT 1

6-17

^{*}A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit.

SEMIANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT (Continued)

The Semiannual Radioactive E fluent Release Report to be submitted 60 days after January 1 of each year shall also include an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources (including doses from primary effluent pathways and direct radiation) for the previous calendar year to show conformance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. Acceptable methods for calculating the dose contribution from liquid and gaseous effluents are given in Regulatory Guide 1.109, Rev. 1, -October 1977.

The Semiannual Radioactive Effluent Release Reports shall include the following information for each type of solid waste (as defined in 10 CFR Part 61) shipped offsite during the report period:

- a. Container volume,
- Total curie quantity (specify whether determined by measurement or estimate,
- Principal radionuclides (specify whether determined by measurement or estimate),
- Source of waste and processing employed (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms),
- e. Type of container (e.g., LSA, Type A, Type B, Large Quantity), and
- f. SOLIDIFICATION agent or absorbent (e.g., cement; urea formaldehyde).

The Semiannual Radioactive Effluent Release Reports shall include a list and description of unplanned releases from the site to UNRESTRICTED AREAS of radioactive materials in gaseous and liquid effluents made during the reporting period.

The Semiannual Radioactive Effluent Release Reports shall include any changes made during the reporting period to the PROCESS CONTROL PROGRAM (PCP) and to the ODCM, as well as a listing of new locations for dose calculations and/or environmental monitoring identified by the land use census pursuant to Specification 3.12.2.

SPECIAL REPORTS

6.9.2 Special reports shall be submitted to the Regional Administrator of the Regional Office of the NRC within the time period specified for each report.

LIMERICK - UNIT 1

AD VISTRATIVE CONTROLS

6.10 RECORD RETENTION

6.10.1 In addition to the applicable record retention requirements of Title 10, Code of Federal Regulations, the following records shall be retained for at least the minimum period indicated.

- 5.10.2 The following records shall be retained for at least 5 years:
 - a. Records and logs of unit operation covering time interval at each power level.
 - Records and logs of principal maintenance activities, inspections, repair, and replacement of principal items of equipment related to nuclear safety.
 - C. All REPORTABLE EVENTS.
 - d. Records of surveillance activities, inspections, and calibrations required by these Technical Specifications.
 - e. Records of changes made to the procedures required by Specification 6.8.1.
 - f. Records of radioactive shipments.
 - g. Records of sealed source and fission detector leak tests and results.
 - Records of annual physical inventory of all sealed source material of record.

5.10.3 The following records shall be retained for the duration of the unit Operating License:

- a. Records and drawing changes reflecting unit design modifications made to systems and equipment described in the Final Safety Analysis Report.
- Records of new and irradiated fuel inventory, fuel transfers, and assembly burnup histories.
- Records of radiation exposure for all individuals entering radiation control areas.

LIMERICK - UNIT 1

101 8 1904

RECORD RETENTION (Continued)

- Records of gaseous and liquid radioactive material released to the environs.
- e. Records of transient or operational cycles for those unit components identified in Table 5.6.1-1.
- f. Records of reactor tests and experiments.
- g. Records of training and qualification for current members of the unit staff.
- Records of inservice inspections performed pursuant to these Technical Specifications.
- i. Records of quality assurance activities required by the Operational Quality Assurance Manual not listed in Section 6.10.2.
- j. Records of reviews performed for changes made to procedures or equipment or reviews of tests and experiments pursuant to 10 CFR 50.59.
- k. Records of meetings of the PORC and the NRB.
- Records of the service lives of all snubbers including the date at which the service life commences and associated installation and maintenance records.
- m. Records of analysis required by the Radiological Environmental Monitoring Program that would permit evaluation of the accuracy of the analysis at a later date.

5.11 RADIATION PROTECTION PROGRAM

6.11.1 Procedures for personnel radiation protection shall be prepared consistent with the requirements of 10 CFR Part 20 and shall be approved, maintained, and adhered to for all operations involving personnel radiation

6.12 HIGH RADIATION AREA

6.12.1 In lieu of the "control device" or "alarm signal" required by paragraph 20.203(c)(2) of 10 CFR Part 20, each high radiation area in which the intensity of radiation is greater than 100 mrem/h but less than 1000 mrem/h shall be barricaded and conspicuously posted as a high radiation area and entrance thereto shall be controlled by requiring issuance of a Radiation Work Permit (RWP)*. Any individual or group of individuals permitted to enter such areas shall be provided with or accompanied by one or more of the following:

 A radiation monitoring device which continuously indicates the radiation dose rate in the area.

*Health physics personnel or personnel escorted by health physics personnel shall be exempt from the RWP issuance requirement during the performance of their assigned radiation protection duties, provided they are otherwise following plant radiation protection procedures for entry into high radiation areas.

LIMERICK - UNIT 1

Se .

14

HIGH RADIATION AREA (Continued)

- b. A radiation monitoring device which continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel have been made knowledgeable of them.
- c. A health physics qualified individual (i.e., qualified in radiation protection procedures) with a radiation dose rate monitoring device who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the Health Physicist in the RWP.

6.12.2 In addition to the requirements of Specification 6.12.1, areas accessible to personnel with radiation levels such that a major portion of the body could receive in 1 hour a dose greater than 1000 mrems shall be provided with locked doors to prevent unauthorized entry, and the keys shall be maintained under the administrative control of Shift Supervision on duty and/or the health physics supervision. Doors shall remain locked except during periods of access by personnel under an approved RWP which shall specify the dose rate levels in the immediate work area and the maximum allowable stay time for individuals in that area. For individual areas accessible to personnel with radiation levels such that a major portion of the body could receive in 1 hour a dose in excess of 1000 mrems* that are located within large areas, such as the containment, where no enclosure exists for purposes of locking, and no enclosure can be reasonably constructed around the individual areas, then that area shall be roped off, conspicuously posted, and a flashing light shall be activated as a warning device. In lieu of the stay time specification of the RWP, continuous surveillance direct or remote (such as use of closed circuit TV cameras), may be made by personnel qualified in radiation protection procedures to provide positive exposure control over the activities within the area.

5.13 PROCESS CONTROL PROGRAM (PCP)

- 6.13.1 The PCP shall be approved by the Commission prior to implementation.
- 6.13.2 Licensee-initiated changes to the PCP:
 - a. Shall be submitted to the Commission in the Semiannual Radioactive Effluent Release Report for the period in which the change(s) was made effective. This submittal shall contain:
 - Sufficiently detailed information to totally support the rationale for the change without benefit of additional or supplemental information.

*Measurement made at 18 inches from source of radioactivity.

LIMERICK - UNIT 1

PROCESS CONTROL PROGRAM (Continued)

- A determination that the change did not reduce the overall conformance of the solidified waste product to existing criteria for solid wastes; and
- Documentation of the fact that the change has been reviewed and found acceptable by the PORC.
- b. Shall become effective upon review and acceptance by the PORC.

6.14 OFFSITE DOSE CALCULATION MANUAL (ODCM)

- 6.14.1 The ODCM shall be approved by the Commission prior to implementation.
- 6.14.2 Licensee-initiated changes to the ODCM:
 - a. Shall be submitted to the Commission in the Semiannual Radioactive Effluent Release Report for the period in which the change(s) was made effective. This submittal shall contain:
 - Sufficiently detailed information to totally support the rationale for the change without benefit of additionl or supplemental information. Information submitted should consist of a package of those pages of the ODCM to be changed with each page numbered and provided with an approval and date box, tegether with appropriate analyses or evaluations justifying the change(s);
 - A determination that the change will not reduce the accuracy or reliability of dose calculations or setpoint determinations; and
 - Documentation of the fact that the change has been reviewed and found acceptable by the Engineer-In-Charge, Nuclear and Environmental Section and the PORC.
 - b. Shall become effective upon review and acceptance by the Engineer-In-Charge, Nuclear and Environmental Section and the PORC.

6.15 MAJOR CHANGES TO RADIOACTIVE WASTE TREATHENT SYSTEMS

6.15.1 Licensee-initiated major changes to the radioactive waste systems (liquid, gaseous, and solid):

- a. Shall be reported to the Commission in the Semiannual Radioactive Effluent Release Report for the period in which the change was made effective. The discussion of each change shall contain:
 - A summary of the evaluation that led to the determination that the change could be made in accordance with 10 CFR 50.59;

MAJOR CHANGES TO RADIOACTIVE WASTE TREATMENT SYSTEMS (Continued)

- Sufficient detailed information to totally support the reason for the change without benefit of additional or supplemental information;
- A detailed description of the equipment, components, and processes involved and the interfaces with other plant systems;
- 4. An evaluation of the change which shows the predicted releases of radioactive materials in liquid and gaseous effluents and/or quantity of solid waste that differ from those previously predicted in the license application and amendments thereto;
- 5. An evaluation of the change which shows the expected maximum exposures to individual in the UNRESTRICTED AREA and to the general population that differ from those previously estimated in the license application and amendments thereto;
- A comparison of the predicted releases of radioactive materials, in liquid and gaseous effluents and in solid waste, to the actual releases for the period prior to when the changes are to be made;
- 7. An estimate of the exposure to plant operating personnel as a result of the change; and
- Documentation of the fact that the change was reviewed and found acceptable by the PORC.
- b. Shall be reviewed and accepted by the PORC prior to implementation.

INTENTIONALLY LEFT BLANK

....