

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

DUKE POWER COMPANY

NORTH CAROLINA ELECTRIC MEMBERSHIP CORPORATION

SALUDA RIVER ELECTRIC COOPERATIVE, INC.

DOCKET NO. 50-413

CATAWBA NUCLEAR STATION, UNIT 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 52 License No. NPF-35

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment to the Catawba Nuclear Station, Unit 1 (the facility) Facility Operating License No. NPF-35 filed by the Duke Power Company acting for itself, North Carolina Electric Membership Corporation and Saluda River Electric Cooperative, Inc., (licensees) dated December 15, 1987, as supplemented April 15, 1988, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations as set forth in 10 CFR Chapter I:
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission:
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations set forth in 10 CFR Chapter I;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

 Accordingly, the license is hereby amended by page changes to the Technical Specifications as indicated in the attachments to this license amendment, and Paragraph 2.C.(2) of Facility Operating License No. NPF-35 is hereby amended to read as follows:

(2) Technical Specifications

The Technical Specifications contained in Appendix A, as revised through Amendment No. 52, are hereby incorporated into the license. The licensee shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. This license amendment is effective as of its date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Original Signed By:

David B. Matthews, Director Project Directorate II-3 Division of Reactor Projects-I/II

Attachment: Technical Specification Changes

Date of Issuance: september 26, 1988

OFFICIAL RECORD COPY

LA: P611-3 MR666 08/II /88 PM:PDII-3 KJabbour: 08/||/88 EMEB:NRR TMarsh

08/23/88

NRR: PRAB RBarrett AFF 08/ -5/88

060

0: RS41-3 DMatthews 08/14/88 AD" : DRPR GCLainas 08/ /88

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

DUKE POWER COMPANY

NORTH CAROLINA MUNICIPAL POWER AGENCY NO. 1

PIEDMONT MUNICIPAL POWER AGENCY

DOCKET NO. 50-414

CATAMBA NUCLEAR STATION, UNIT 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 45 License No. NPF-52

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment to the Catawba Nuclear Station, Unit 2 (the facility) Facility Operating License No. NPF-52 filed by the Duke Power Company acting for itself, North Carolina Municipal Power Agency No. 1 and Piedmont Municipal Power Agency, (licensees) dated December 15, 1987, as supplemented April 15, 1988, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations as set forth in 10 CFR Chapter I:
 - 8. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission:
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations set forth in 10 CFR Chapter I;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

 Accordingly, the license is hereby amended by page changes to the Technical Specifications as indicated in the attachments to this license amendment, and Paragraph 2.C.(2) of Facility Operating License No. NPF-52 is hereby amended to read as follows:

(2) Technical Specifications

The Technical Specifications contained in Appendix A, as revised through Amendment No. 45, are hereby incorporated into the license. The licensee shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. This license amendment is effective as of its date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION Original Signed By:

David B. Matthews, Director Project Directorate II-3 Division of Reactor Projects-I/II

Attachment: Technical Specification Changes

Date of Issuance: September 26, 1988

OFFICIAL RECORD COPY

LA:P011-3 MR660 08//1/88 PM:PUTI-3 KJabbour: 08/11/88 ALL LINES

EMEB:NRR TMarsh 08/23/88

PRAB: DEST FRBarrett AFA 08/25/88

09/9/88 09/14/88

ADR2:DRPR GCLainas U8/ /88

ATTACHMENT TO LICENSE AMENDMENT NO. 52

FACILITY OPERATING LICENSE NO. NPF-35

DOCKET NO. 50-413

AND

TO LICENSE AMENDMENT NO. 45

FACILITY OPERATING LICENSE NO. NPF-52

DOCKET NO. 50-414

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contain vertical lines indicating the areas of change. The corresponding overleaf pages are also provided to maintain document completeness.

Amended Page	Overleaf Page
3/4 7-20	3/4 7-19
3/4 7-21	3/4 7-22
3/4 7-24	3/4 7-23
B3/4 7-5	B3/4 7-6

PLANT SYSTEMS

3/4.7.8 SNUBBERS

LIMITING CONDITION FOR OPERATION

3.7.8 All snubbers shall be OPERABLE. The only snubbers excluded from the requirements are those installed on nonsafety-related systems and then only if their failure or failure of the system on which they are installed would have no adverse effect on any safety-related system.

APPLICABILITY: MODES 1, 2, 3, and 4. MODES 5 and 6 for snubbers located on systems required OPERABLE in those MODES.

ACTION:

With one or more snubbers inoperable, within 72 hours replace or restore the inoperable snubber(s) to OPERABLE status and perform an engineering evaluation per Specification 4.7.8g. on the attached component or declare the attached system inoperable and follow the appropriate ACTION statement for that system.

SURVEILLANCE REQUIREMENTS

4.7.8 Each snubber shall be demonstrated OPERABLE by performance of the following augmented inservice inspection program in lieu of the requirements of Specification 4.0.5.

a. Inspection Types

As used in this specification, type of snubber shall mean snubbers of the same design and manufacturer, irrespective of capacity.

Visual Inspections

Snubbers are categorized as inaccessible or accessible during reactor operation. The first inservice visual inspection of each type of snubber shall be performed after 4 months but within 10 months of commencing POWER OPERATION and shall include all hydraulic and mechanical snubbers. If less than two snubbers of each type are found inoperable during the first inservice visual inspection, the second inservice visual inspection shall be performed 12 months ± 25% from the date of the first inspection. Otherwise, subsequent visual inspections shall be performed in accordance with the following schedule:

No. of Inoperable Snubbers of Each Type Found During Inspection	Subsequent Visual Inspection Period*#
0 1 2	18 months ± 25% 12 months ± 25% 6 months ± 25%
3,4 5,6,7 8 or more	124 days ± 25% 62 days ± 25% 31 days ± 25%

^{*}The inspection interval for each type of snubber shall not be lengthened more than one step at a time unless a generic problem has been identified and corrected; in that event the inspection interval may be lengthened one step the first time and two steps thereafter if no inoperable snubbers of that type are found.

#The provisions of Specification 4.0.2 are not applicable.

c. <u>Visual Inspection Acceptance Criteria</u>

Visual inspections shall verify that: (1) there are no visible indications of damage or impaired OPERABILITY, and (2) attachments to the foundation or supporting structure are functional. Snubbers which appear inoperable as a result of visual inspections may be determined OPERABLE for the purpose of establishing the next visual inspection interval, provided that: (1) the cause of the rejection is clearly established and remedied for that particular snubber and for other snubbers (regardless of type) that may be generically susceptible; and (2) the affected snubber is functionally tested in the as-found condition and determined OPERABLE per Specification 4.7.8f. When a fluid port of a hydraulic snubber is found to be uncovered, the snubber shall be declared inoperable and may be determined OPERABLE via functional testing only if the test is started with the piston in the as-found setting extending the piston rod in the tension mode direction. All snubbers connected to an inoperable common hydraulic fluid reservoir shall be counted as inoperable snubbers.

d. Refueling Outage Inspections

At each refueling, the systems which have the potential for a severe dynamic event, specifically, the Main Steam System (upstream of the main steam isolation valves) the main steam safety and power-operated relief valves and piping, Auxiliary Feedwater System, main steam supply to the auxiliary feedwater pump turbine, and the letdown and charging portion of the CVCS System shall be inspected to determine if there has been a severe dynamic event. In the case of a severe dynamic event, mechanical snubbers in that system which experienced the event shall be inspected during the refueling outage to assure that the mechanical snubbers have freedom of movement and are not frozen up. The inspection shall consist of verifying freedom-of-motion using one of the following: (1) manually induced snubber movement; or (2) evaluation of in-place snubber piston setting; or (3) stroking the mechanical snubber through its full range of travel. If one or more mechanical snubbers are found to be frozen up during this inspection, those snubbers shall be replaced or repaired before returning to power. The requirements of Specification 4.7.8b. are independent of the requirements of this specification.

e. Functional Tests

During the first refueling shutdown and at least once per 18 months thereafter during shutdown, a representative sample of snubbers of each type shall be tested using one of the following sample plans. The large-bore steam generator hydraulic snubbers shall be treated as

e. Functional Tests (Continued)

a separate type (population) for functional test purposes. A 10% random sample shall be tested at least once per 18 months during refueling with continued testing based on a failure evaluation. The sample plan shall be selected prior to the test period and cannot be changed during the test period. The NRC Regional Administrator shall be notified in writing of the sample plan selected for each snubber type prior to the test period or the sample plan used in the prior test period shall be implemented:

- 1) At least 10% of all snubbers shall be functionally tested either in-place or in a bench test. For each snubber of a type that does not meet the functional test acceptance criteria of Specification 4.7.8f., an additional 10% of all snubbers shall be functionally tested until no more failures are found or until all snubbers have been functionally tested; or
- A representative sample of all snubbers shall be functionally tested in accordance with Figure 4.7-1. "C" is the total number of snubbers of a type found not meeting the acceptance requirements of Specification 4.7.8f. The cumulative number of snubbers tested is denoted by "N". At the end of each day's testing, the new values of "N" and "C" (previous day's total plus current day's increments) shall be plotted on Figure 4.7-1. If at any time the point plotted falls in the "Accept" region, testing of snubbers of that type may be terminated. When the point plotted lies in the "Continue Testing" region, additional snubbers of that type shall be tested until the point falls in the "Accept" region or all the snubbers of that type have been tested; or
- An initial representative sample of 55 snubbers shall be functionally tested. For each snubber type which does not meet the functional test acceptance criteria, another sample of at least one-half the size of the initial sample shall be tested until the total number tested is equal to the initial sample size multiplied by the factor, 1 + C/2, where "C" is the number of snubbers found which do not meet the functional test acceptance criteria. The results from this sample plan shall be plotted using an "Accept" line which follows the equation N = 55(1 + C/2). Each snubber point should be plotted as soon as the snubber is tested. If the point plotted falls on or below the "Accept" line, testing may be terminated. If the point plotted falls above the "Accept" line, testing must continue until the point falls in the "Accept" region or all the snubbers of that type have been tested.

e. Functional Tests (Continued)

Testing equipment failure during functional testing may invalidate that day's testing and allow that day's testing to resume anew at a later time provided all snubbers tested with the failed equipment during the day of equipment failure are retested. The representative sample selected for the functional test sample plans shall be randomly selected from all snubbers and reviewed before beginning the testing. The review shall ensure, as far as practicable, that they are representative of the various configurations, operating environments, range of size, and capacity of snubbers. Snubbers placed in the same location as snubbers which failed the previous functional test shal? be retested at the time of the next functional test but shall not be included in the sample plan. If during the functional testing, additional sampling is required due to failure of only one type of snubber, the functional test results shall be reviewed at that time to determine if additional samples should be limited to the type of snubber which has failed the functional testing.

f. Functional Test Acceptance Criteria

The snubber functional test shall verify that:

- Activation (restraining action) is achieved within the specified range in both tension and compression, except that inertia dependent, acceleration limiting mechanical snubbers may be tested to verify only that activation takes place in both directions of travel;
- 2) Snubber bleed, or release rate where required, is present in both tension and compression, within the specified range;
- For mechanical snubbers, the force required to initiate or maintain motion of the snubber is within the specified range in both directions of travel; and
- 4) For snubbers specifically required not to displace under continuous load, the ability of the snubber to withstand load without displacement.

Testing methods may be used to measure parameters indirectly or parameters other than those specified if those results can be correlated to the specified parameters through established methods.

g. Functional Test Failure Analysis

An engineering evaluation shall be made of each failure to meet the functional test acceptance criteria to determine the cause of the failure. The results of this evaluation shall be used, if applicable, in selecting snubbers to be tested in an effort to determine the OPERABILITY of other snubbers irrespective of type which may be subject to the same failure mode.

g. <u>Functional Test Failure Analysis</u> (Continued)

For the snubbers found inoperable, an engineering evaluation shall be performed on the components to which the inoperable snubbers are attached. The purpose of this engineering evaluation shall be to determine if the components to which the inoperable snubbers are attached were adversely affected by the inoperability of the snubbers in order to ensure that the component remains capable of meeting the designed service.

If any snubber selected for functional testing either fails to lock up or fails to move, i.e., frozen-in-place, the cause will be evaluated and, if caused by manufacturer or design deficiency, all snubbers of the same type subject to the same defect shall be functionally tested. This testing requirement shall be independent of the requirements stated in Specification 4.7.8e. for snubbers not meeting the functional test acceptance criteria.

h. Functional Testing of Repaired and Replaced Snubbers

Snubbers which fail the visual inspection or the functional test acceptance criteria shall be repaired or replaced. Replacement snubbers and snubbers which have repairs which might affect the functional test results shall be tested to meet the functional test criteria before installation in the unit. Mechanical snubbers shall have met the acceptance criteria subsequent to their most recent service, and the freedom-of-motion test must have been performed within 12 months before being installed in the unit.

i. Snubber Service Life Program

The service performance of all snubbers shall be monitored. If a service lifetime limit is associated (established) with any snubber (or critical part) based on manufacturer's information, qualification tests, or historical service results, then the service life shall be monitored to ensure that the service life is not exceeded between surveillance inspections. Established snubber service life shall be extended or shortened based on monitored test results and failure history. The replacements (snubbers or critical parts) shall be documented and the documentation shall be retained in accordance with Specification 6.10.2.

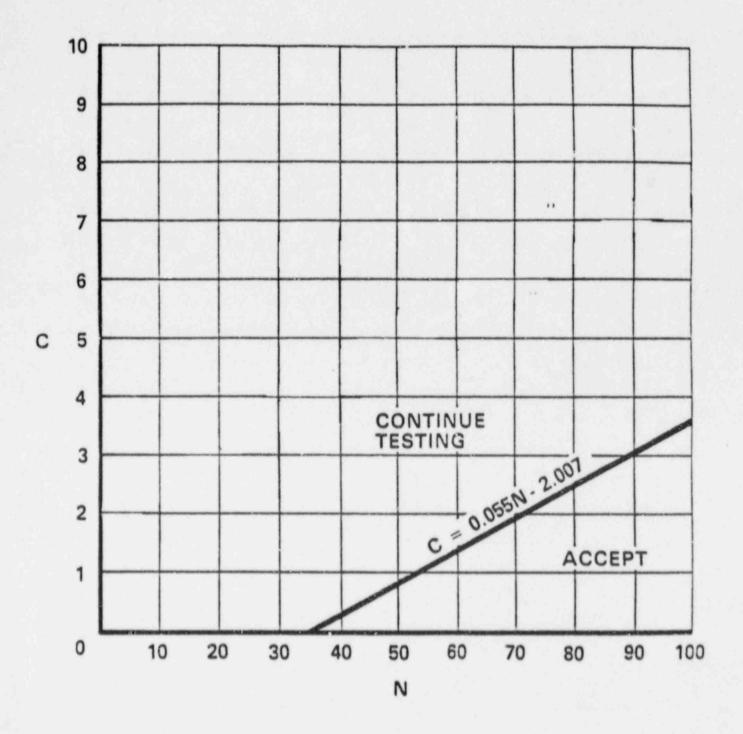


FIGURE 4.7-1
SAMPLE PLAN 2) FOR SNUBBER FUNCTIONAL TEST

SNUBBERS (Continued)

The visual inspection frequency is based upon maintaining a constant level of snubber protection during an earthquake or severe transient. Therefore, the required inspection interval varies inversely with the observed snubber failures and is determined by the number of inoperable snubbers found during an inspection. In order to establish the inspection frequency for each type of snubber, it was assumed that the frequency of snubber failures and initiating events are constant with time and that the failure of any snubber on that system could cause the system to be unprotected and to result in failure during an assumed initiating event. Inspections performed before that interval has elapsed may be used as a new reference point to determine the next inspection. However, the results of such early inspections performed before the original required time interval has elapsed (nominal time less 25%) may not be used to lengthen the required inspection interval. Any inspection whose results require a shorter inspection interval will override the previous schedule. The acceptance criteria are to be used in the visual inspection to determine OPERABILITY of the snubbers.

To provide assurance of snubber functional reliability, one of three functional testing methods are used with the stated acceptance criteria:

- Functionally test 10% of a type of snubber with an additional 10% tested for each functional testing failure, or
- Functionally test a sample size and determine sample acceptance using Figure 4.7-1, or
- Functionally test a representative sample size and determine sample acceptance or rejection using the stated equation.

Figure 4.7-1 was developed using "Wald's Sequential Probability Ratio Plan" as described in "Quality Control and Industrial Statistics" by Acheson J. Duncan.

Permanent or other exemptions from the surveillance program for individual snubbers may be granted by the Commission if a justifiable basis for exemption is presented and, if applicable, snubber life testing was performed to qualify the snubber for the applicable design conditions. Snubbers so exempted shall be listed in the list of individual snubbers indicating the extent of the exemptions.

BASES

SNUBBERS (Continued)

The service life of a snubber is established via manufacturer input and information through consideration of the snubber service conditions and associated installation and maintenance records (newly installed snubbers, seal replaced, spring replaced, in high radiation area, in high temperature area, etc.). The requirement to monitor the snubber service life is included to ensure that the snubbers periodically undergo a performance evaluation in view of their age and operating conditions. These records will provide statistical bases for future consideration of snubber service life.

3/4.7.9 SEALED SOURCE CONTAMINATION

The limitations on removable contamination for sources requiring leak testing, including alpha emitters, is based on 10 CFR 70.39(a)(3) limits for plutonium. This limitation will ensure that leakage from Byproduct, Source, and Special Nuclear Material sources will not exceed allowable intake values.

Sealed sources are classified into three groups according to their use, with Surveillance Requirements commensurate with the probability of damage to a source in that group. Those sources which are frequently handled are required to be tested more often than those which are not. Sealed sources which are continuously enclosed within a shielded mechanism (i.e., sealed sources within radiation monitoring or boron measuring devices) are considered to be stored and need not be tested unless they are removed from the shielded mechanism.

3/4.7.10 FIRE SUPPRESSION SYSTEMS

The OPERABILITY of the Fire Suppression Systems ensures that adequate fire suppression capability is available to confine and extinguish fires occurring in any portion of the facility where safety-related equipment is located. The Fire Suppression System consists of the water system, spray, and/or sprinklers, CO_2 , and fire hose stations. The collective capability of the Fire Suppression Systems is adequate to minimize potential damage to safety-related equipment and is a major element in the facility Fire Protection Program.

In the event that portions of the Fire Suppression Systems are inoperable, alternate backup fire-fighting equipment is required to be made available in the affected areas until the inoperable equipment is restored to service. When the inoperable fire-fighting equipment is intended for use as a backup means of fire suppression, a longer period of time is allowed to provide an alternate means of fire fighting than if the inoperable equipment is the primary means of fire suppression.