

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

DUKE POWER COMPANY

DOCKET NO. 50-369

MCGUIRE NUCLEAR STATION, UNIT 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 84 License No. NPF-9

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment to the McGuire Nuclear Station, Unit 1 (the facility) Facility Operating License No. NPF-9 filed by the Duke Power Company (the licensee) dated October 29, 1985, as supplemented August 25, 1986, May 26, 1987, and January 19, 1988 complies with the standards and requirements of the Atomic Energy act of 1954, as amended (the Act) and the Commission's rules and regulations as set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, as amended, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations set forth in 10 CFR Chapter I;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

8806060071 880519 PDR ADDCK 05000369 PDR PDR

- Accordingly, the license is hereby amended by page changes to the Technical Specifications as indicated in the attachments to this license amendment, and Paragraph 2.C.(2) of Facility Operating License No. NPF-9 is hereby amended to read as follows:
 - (2) Technical Specifications

The Technical Specifications contained in Appendix A, as revised through Amendment No. 84 , are hereby incorporated into the license. The licensee shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. This license amendment is effective as of its date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Original signed by:

David B. Matthews, Director Project Directorate II-3 Division of Reactor Projects-I/II

Attachment: Technical Specification Changes

Date of Issuance: May 19, 1988

OFFICIAL RECO	RD COPY	m	Out
LA: PDII-3 MRood DSMM S /11 /88	PM: PDII-3 DHcod: sw 5 /11 /88	J. G. W.F. J. G. W.F. J. J. 19/887 Mologer allysitur	D:PDII-3 DMatthews / 0/88

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

DUKE POWER COMPANY

DOCKET NO. 50-370

MCGUIRE NUCLEAR STATION, UNIT 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 65 License No. NPF-17

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment to the McGuire Nuclear Station, Unit 2 (the facility) Facility Operating License No. NPF-17 filed by the Duke Power Company (the licensee) dated October 29, 1985, as supplemented August 25, 1986, May 26, 1987, and January 19, 1983, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's rules and regulations as set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, as amended, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations set forth in 10 CFR Chapter I;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

- Accordingly, the license is hereby amended by page changes to the Technical 2. Specifications as indicated in the attachments to this license amendment, and Paragraph 2.C.(2) of Facility Operating License No. NPF-17 is hereby amended to read as follows:
 - (2) Technical Specifications

The Technical Specifications contained in Appendix A, as revised through Amendment No. 65, are hereby incorporated into the license. The licensee shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. This license amendment is effective as of its date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Original signed by:

David B. Matthews, Director Project Directorate II-3 Division of Reactor Projects-I/II

Attachment: Technical Specification Changes

Date of Issuance: May 19, 1988

OFFICIAL RECORD COPY PM: PD LA: POTT-3 MRood DHood: 5/1/88 5/11/88

5 17/88 no legal abydition

thews 5/9/88

- 2 -

ATTACHMENT TO LICENSE AMENDMENT NO. 84

FACILITY OPERATING LICENSE NO. NPF-9

DOCKET NO. 50-369

AND

TO LICENSE AMENDMENT NO. 65

FACILITY OPERATING LICENSE NO. NPF-17

DOCKET NO. 50-370

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contain vertical lines indicating the areas of change. The corresponding overleaf page is also provided to maintain document completeness.

Amended Page	Overleaf Page
2-5	
2-8	
2-9	
2-11	
B 2-4a (new page)	
B 2-5	
3/4 3-1	3/4 3-2
3/4 3-9	

TABLE 2.2-1

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

FUN	CTIONAL UNIT	TRIP SETPOINT	ALLOWABLE VALUES
1.	Manual Reactor Trip	N. A.	N. A.
2.	Power Range, Neutron Flux	Low Setpoint -< 25% of RATED THERMAL POWER	Low Setpoint - \leq 26% of RATED THERMAL POWER
		High Setpoint - \leq 109% of RATED THERMAL POWER	High Setpoint - \leq 110% of RATED THERMAL POWER
3.	Power Range, Neutron Flux, High Positive Rate	\leq 5% of RATED THERMAL POWER with a time constant \geq 2 seconds	\leq 5.5% of RATED THERMAL POWER with a time constant \geq 2 seconds
4.	Power Range, Neutron Flux, High Negative Rate	\leq 5% of RATED THERMAL POWER with a time constant \geq 2 seconds	\leq 5.5% of RATED THERMAL POWER with a time constant \geq 2 seconds
5.	Intermediate Range, Neutron Flux	\leq 25% of RATED THERMAL POWER	\leq 30% of RATED THERMAL POWER
6.	Source Range, Neutron Flux	\leq 10^5 counts per second	\leq 1.3 x 10^5 counts per second
7.	Overtemperature ΔT	See Note 1	See Note 3**
8.	Overpower AT	See Note 2	See Note 4**
9.	Pressurizer PressureLow	≥ 1945 psig	≥ 1935 psig
0.	Pressurizer PressureHigh	≤ 2385 psig	<pre>< 2395 psig</pre>
1.	Pressurizer Water LevelHigh	≤ 92% of instrument span	<pre>< 93% of instrument span</pre>
2.	Low Reactor Coolant Flow	\geq 90% of design flow per loop*	\geq 88.8% of design flow per loop*

2)

*Design flow is 97,220 gpm per loop. **Prior to removal of each unit's RTD bypass manifold, note 3a is applicable.

McGUIRE - UNITS 1 and

N

2-5

M			TABLE 2.2-1 (Continued)
MCGUIRE			REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS
			NOTATION
UNITS	NOTE 1: OVERTEMPER	RATURE AT	
1 and	$\Delta T \left(\frac{1}{1}\right)^{+}$	$\frac{\tau_1 S}{\tau_2 S}$ ($\frac{1}{1 + \tau_2}$)	$\frac{1}{\tau_{3}S}) \leq \Delta T_{0} \{K_{1} - K_{2} (\frac{1 + \tau_{4}S}{1 + \tau_{5}S})[T(\frac{1}{1 + \tau_{6}S}) - T'] + K_{3}(P - P') - f_{1}(\Delta I)\}$
N	Where:	ΔT	= Measured ΔT by RTD Manifold Instrumentation,
		$\frac{1+\tau_1 S}{1+\tau_2 S}$	= Lead-lag compensator on measured ΔT ,
		τ ₁ , τ ₂	= Time constants utilized in the lead-lag controller for ΔT , $\tau_1 \ge 8$ sec., $\tau_2 \le 3$ sec.,
2-3		$\frac{1}{1+\tau_3}$	= Lag compensator on measured ΔT ,
		τ ₃	= Time constants utilized in the lag compensator for ΔT , $\tau_3 \leq$ 2 sec.*
		ΔT _o	= Indicated ΔT at RATED THERMAL POWER,
ÞÞ		К1	≤ 1.200,
mend		К2	= 0.0222
Amendment No.		$\frac{1 + \tau_4 S}{1 + \tau_5 S}$	= The function generated by the lead-lag controller for T_{avg} dynamic compensation,
. 84 (Unit 1)		τ ₄ , τ ₅	= Time constants utilized in the lead-lag controller for $T_{avg},$ $\tau_4 \geq 28$ sec, $\tau_5 \leq 4$ sec.,
Unit		T	= Average temperature, °F,
2)		$\frac{1}{1 + \tau_6 S}$	= Lag compensator on measured T _{avg} ,

	TABLE 2.2-1 (Continued)
	REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS
	NOTATION (Continued)
NOTE 1: (Continued)	
τ ₆	= Time constant utilized in the measured T_{avg} lag compensator, $r_6 \leq 2$ sec*
Τ'	= \leq 588.2°F Reference T _{avg} at RATED THERMAL POWER,
K ₃	= 0.001095,
Ρ	= Pressurizer pressure, psig,
p'	= 2235 psig (Nominal RCS operating pressure),
S	= Laplace transform operator, sec-1,
of t	$f_1(\Delta I)$ is a function of the indicated difference between top and bottom detectors the power-range nuclear ion chambers; with gains to be selected based on measured trument response during plant startup tests such that:
(i)	for $q_t - q_b$ between -29% and +9.0%; $f_1(\Delta I) = 0$, where q_t and q_b are percent RATED THERMAL POWER in the top and bottom halves of the core respectively, and $q_t + q_b$ is total THERMAL POWER in percent of RATED THERMAL POWER;
(ii)	for each percent that the magnitude of $q_t - q_b$ exceeds -29%, the ΔT Trip Setpoint shall be automatically reduced by 3.151% of its value at RATED THERMAL POWER; and
(iii)	for each percent that the magnitude of $q_t - q_b$ exceeds +9.0%, the ΔT Trip Setpoint shall be automatically reduced by 1.50% of its value at RATED THERMAL POWER.

McGUIRE - UNITS 1 and 2

2-9

MCGUIRE			TABLE 2.2-1 (Continued) REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS			
	NOTATION (Continued)					
UNITS		T	= As defined in Note 1,			
1 and		Τ ⁿ	= \leq 588.2°F Reference T _{avg} at RATED THERMAL POWER,			
nd 2		S	= As defined in Note 1, and			
		$f_2(\Delta I)$	= 0 for all ΔI .			
	Note 3:	The channel's maxim 3.6% of Rated Therm	um Trip Setpoint shall not exceed its computed Trip Setpoint by more than al Power.			

Note 3a: The channel's maximum Trip Setpoint shall not exceed its computed Trip Setpoint by more than 2%.

Note 4: The channel's maximum Trip Setpoint shall not exceed its computed Trip Setpoint by more than 4.2% of Rated Thermal Power.

LIMITING SAFETY SYSTEM SETTINGS

BASES (With RTD Bypass System Installed)

Overtemperature ΔT

The Overtemperature Delta T trip provides core protection to prevent DNB for all combinations of pressure, power, coolant temperature, and axial power distribution, provided that the transient is slow with respect to piping transit delays from the core to the temperature detectors (about 4 seconds), and pressure is within the range between the Pressurizer High and Low Pressure trips. The Setpoint is automatically varied with: (1) coolant temperature to correct for temperature induced changes in density and heat capacity of water and includes dynamic compensation for piping delays from the core to the loop temperature detectors, (2) pressurizer pressure, and (3) axial power distribution. With normal axial power distribution, this Reactor trip limit is always below the core Safety Limit as shown in Figure 2.1-1. If axial peaks are greater than design, as indicated by the difference between top and bottom power range nuclear detectors, the Reactor trip is automatically reduced according to the notations in Table 2.2-1.

Overpower AT

The Overpower Delta T trip provides assurance of fuel integrity (e.g., no fuel pellet melting and less than 1% cladding strain) under all possible overpower conditions, limits the required range for overtemperature delta T protection, and provides a backup to the High Neutron Flux trip. The Setpoint is automatically varied with: (1) coolant temperature to correct for temperature induced changes in density and heat capacity of water, (2) rate of change of temperature for dynamic compensation for piping delays from the core to the loop temperature detectors, and (3) axial power distribution, to ensure that the allowable heat generation rate (kW/ft) is not exceeded. The Overpower ΔT trip provides protection to mitigate the consequences of various size steam breaks as reported in WCAP 9226, "Reactor Core Response to Excessive Secondary Steam Break."

LIMITING SAFETY SYSTEM SETTINGS

BASES (With Bypass System Removed; RTDs in Thermowells)

Overtemperature AT

The Overtemperature Delta T trip provides core protection to prevent DNB for all combinations of pressure, power, coolant temperature, and axial power distribution, provided that the transient is slow with respect to thermal delays associated with the RTDs mounted in thermowells (about 5 seconds), and pressure is within the range between the Pressurizer High and Low Pressure trips. The Setpoint is automatically varied with: (1) coolant temperature to correct for temperature induced changes in density and heat capacity of water and includes dynamic compensation for piping delays from the core to the loop temperature detectors, (2) pressurizer pressure, and (3) axial power distribution. With normal axial power distribution, this Reactor trip limit is always below the core Safety Limit as shown in Figure 2.1-1. If axial peaks are greater than design, as indicated by the difference between top and bottom power range nuclear detectors, the Reactor trip is automatically reduced according to the notations in Table 2.2-1.

Overpower AT

The Overpower Delta T trip provides assurance of fuel integrity (e.g., no fuel pellet melting and less than 1% cladding strain) under all possible overpower conditions, limits the required range for overtemperature delta T protection, and provides a backup to the High Neutron Flux trip. The Setpoint is automatically varied with: (1) coolant temperature to correct for temperature induced changes in density and heat capacity of water, (2) rate of change of temperature for dynamic compensation for instrumentation delays associated with the loop temperature detectors, and (3) axial power distribution, to ensure that the allowable heat generation rate (kW/ft) is not exceeded. The Overpower Δ Ttrip provides protection to mitigate the consequences of various size steam breaks as reported in WCAP 9226, "Reactor Core Response to Excessive Secondary Steam Break."

3/4.3 INSTRUMENTATION

3/4.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.1 As a minimum, the Reactor Trip System Instrumentation channels and interlocks of Table 3.3-1 shall be OPERABLE with RESPONSE TIMES as shown in Table 3.3-2.

APPLICABILITY: As shown in Table 3.3-1.

ACTION:

As shown in Table 3.3-1.

SURVEILLANCE REQUIREMENTS

4.3.1.1 Each Reactor Trip System Instrumentation channel and interlock shall be demonstrated OPERABLE by the performance of the Reactor Trip System Instrumentation Surveillance Requirements specified in Table 4.3-1.

4.3.1.2 The REACTOR TRIP SYSTEM RESPONSE TIME of each Reactor trip function shall be demonstrated to be within its limit at least once per 18 months. Each test shall include at least one train such that both trains are tested at least once per 36 months and one channe, per function such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific Reactor trip function as shown in the "Total No. of Channels" column of Table 3.3-1.

4.3.1.3 The response time of RTDs associated with the Reactor Trip System shall be demonstrated to be within their limits (see note 2 to Table 3.3-2) at least once per 18 months.

McGUIRE - UNITS 1 and 2

TABLE 3.3-1

REACTOR TRIP SYSTEM INSTRUMENTATION

FUN	CTIONAL UNIT	0	TOTAL NO. F CHANNELS	CHANNELS TO_TRIP	MINIMUM CHANNELS OPERABLE	APPLICABLE MODES	ACTION
1.	Manual Reactor Trip		2	1	2	1, 2	1
			2	1	2	1, 2 3*, 4*, 5*	10
2.		igh etpoint	4	2	3	1, 2	2#
		ow	4	2	3	1###, 2	2#
	S	etpoint					
3.	Power Range, Neutron Flux		4	2	3	1, 2	2#
	High Positive Rate						
4.	Power Range, Neutron Flux,		4	2	3	1, 2	2#
	High Negative Rate						
5.	Intermediate Range, Neutron F	lux	2	1	2	1###, 2	3
	incerneurace nange, neueron i	- un	-			. , .	
6.	Source Range, Neutron Flux						
	a. Startup		2	1	2 2	2##	4
	b. Shutdown		2 2	1	2	3*, 4*, 5*	10
	c. Shutdown		2	0	1	3, 4, and 5	5
7.	Overtemperature ΔT						
	Four Loop Operation		4	2	3	1, 2	6#
	Three Loop Operation		(**)	(**)	(**)	(**)	(**)

3/4 3-2

TADA		 3	12
TABL	•	 	- /
INDL	- AL-	 ~~	- C.

Mo		TABLE 3.3-2				
MCGUIRE		REACTOR TRIP SYS	TEM INSTRUMENTATION RESPONSE TIMES			
	FUN	CTIONAL UNIT	RESPONSE TIME			
UNITS	1.	Manual Reactor Trip	N. A.			
1 and 2	2.	Power Range, Neutron Flux	≤ 0.5 second (1)			
	3.	Power Range, Neutron Flux, High Positive Rate	N. A.			
	4.	Power Range, Neutron Flux, High Negative Rate	≤ 0.5 second (1)			
3/4	5.	Intermediate Range, Neutron Flux	N. A.			
	6.	Source Range, Neutron Flux	N. A.			
3-9	7.	Overtemperature ∆T	<10.0 seconds (1)(2)(3)			
	8.	Overpower ∆T	<pre><10.0 seconds (1)(2)(3)</pre>			
	9.	Pressurizer PressureLow	≤ 2.0 seconds			
Am	10.	Pressurizer PressureHigh	≤ 2.0 seconds			
Amendme	·11.	Pressurizer Water LevelHigh	N. A.			

Amendment No. 84 (Unit 1) Amendment No. 65 (Unit 2)

Neutron detectors are exempt from response time testing. Response time of the neutron flux signal portion of the channel shall be measured from detector output or input of first electronic component in channel.
The < 10.0 second response time includes a 5.5 second delay for the RTDs mounted in thermowells.

(3) The < 10.0 second response time is applicable to each unit only after the RTD bypass manifold is removed; until then the value < 8.0 sec.</p>