ATTACHMENT B NPF - 38 - 88 PROPOSED

8809290215 380921 PDR ADOCK 05000382 P PDC

- 8 -

INSTRUMENTATION

CHEMICAL DETECTION SYSTEMS

AMMONIA DETECTION SYSTEM

LIMITING CONDITION FOR OPERATION

3.3.3.7.2 Two independent ammonia detection systems, with their alarm/trip setpoints adjusted to actuate at an ammonia concentration of less than or equal to 50 ppm, shall be OPERABLE.

PROPOSED

APPLICABILIITY: All MODES.

ACTION:

a. With one ammonia detection system inoperable, restore the inoperable detection system to OPERABLE status within 7 days or within the next 6 hours initiate and maintain operation of the control room ventilation system in the recirculation mode of operation.

DELETE

- b. With no ammonia detection system OPERABLE, within 1 hour initiate and maintain operation of the control room ventilation system in the recirculation mode of operation.
- c. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.7.2 Each ammonia detection system shall be demonstrated OPERABLE by performance of a CHANNEL CHECK at least once per 12 hours, a CHANNEL FUNCTIONAL TEST at least once per 31 days and a CHANNEL CALIBRATION at least once per 18 months.

DELETE

[THIS PAGE INTENTIONALLY BLANK]

WATERFORD - UNIT 3

3/4 3-48

PROPOSED

INSTRUMENTATION

PROPOSED

BASES

3/4.3.3.6 ACCIDENT MONITORING INSTRUMENTATION

The OPERABILITY of the accident monitoring instrumentation ensures that sufficient information is available on selected plant parameters to monitor and assess these variables following an accident. This capability is consistent with the recommendations of Regulatory Guide 1.97, "Instrumentation for Light-Water-Cooled Nuclear Plants to Assess Plant Conditions During and Following an Accident," December 1980 and NUREG-0578, "TMI-2 Lessons Learned Task Force Status Report and Short-Term Recommendations." Table 3.3-10 includes Regulatory Guide 1.97 Category I key variables. The remaining Category I variables are included in their respective specifications.

The Subcooled Margin Monitor (SMM), the Heated Junction Thermocouple (HJTC), and the Core Exit Thermocouples (CET) comprise the Inadequate Core Cooling (ICC) instrumentation required by Item II.F.2 NUREG-0737, the Post TMI-2 Action Plan. The function of the ICC instrumentation is to enhance the ability of the plant operator to diagnose the approach to existence of, and recovery from ICC. Additionally, they aid in tracking reactor coolant inventory. These instruments are included in the Technical Specifications at the request of NRC Generic Letter 83-37. These are not required by the accident analysis, nor to bring the plant to Cold Shutdown.

In the event more than four sensors in a Reactor Vessel Level channel are inoperable, repairs may only be possible during the next refueling outage. This is because the sensors are accessible only after the missile shield and reactor vessel head are removed. It is not feasible to repair a channel except during a refueling outage when the missile shield and reactor vessel head are removed to refuel the core. If only one channel is inoperable, it should be restored to OPERABLE status in a refueling outage as soon as reasonably possible. If both channels are inoperable, at least one channel shall be restored to OPERABLE status in the nearest refueling outage.

3/4.3.3.7 CHEMICAL DETECTION SYSTEMS

The chemical detection systems are the ammonia, chlorine, and broad range toxic gas detection systems.

DELETE

The OPERABILITY of the chemical detection systems ensures that sufficient capability is available to promptly detect and initiate protective action in the event of an accidental chemical release.

The chemical detection systems provide prompt detection of toxic gas releases which could pose an actual threat to safety of the nuclear power plant or significantly hamper site personnel in performance of duties necessary for the safe operation of the plant.

The broad range toxic gas detection system operates on the principle of gas photoionization, and therefore, the system is sensitive to a broad range of gases. The system is therefore sensitive to both atmospheric and chemical composition normal fluctuations affecting the Waterford 3 site. The setpoint

WATERFORD - UNIT 3

B 3,'4 3-3

AMENDMENT NO. 14. 20

PROPOSED