PINGP 158, Rev. 6 Page 1 of 8 Retention: Lifetime

EFFLUENT SEMI-ANNUAL REPORT

July THROUGH December, 1985

SUPPLEMENTAL INFORMATION

Facility - Prairie Island Nuclear Generating Plant

Licensee - Northern States Power Company License Nos. - DPR-42 & DPR-60

- Regulatory Limits Α.
 - 1. Liquid Effluents:
 - The dose or dose commitment to an individual from radioa. active materials in liquid effluents released from the site shall be limited:

for the	Quarter		Total Body Any Organ
for the	Year		Total Body Any Organ

- Gaseous Effluents: 2.
 - The dose rate due to radioactive materials released in a. gaseous effluents from the site shall be limited to:

Noble Gases	<	500 mrem/Year Total Body	
	<	3000 mrem/Year Skin	
-131, H-3, LLP	<	1500 mrem/Year Any Organ	

The dose due to radioactive gaseous effluents shall be b. limited to:

Noble Gases	< 10 mrad/Qtr Gamma
	< 20 mrad/Qtr Beta
	< 20 mrad/Year Gamma
	40 mrad/Year Beta
-131, H-3, LLP	< 15 mrem/Qtr
	< 30 mrem/Year

8603100682 860301 PDR ADOCK 05000282 PDR

I

PINGP 158, Rev. 6 Page 2 of 8

B. Maximum Permissible Concentrations

1. Fission and activation gases in gaseous releases:

10 CFR 20, Appendix B, Table 2, Column 1

 Iodine and particulates with half-lives greater than 8 days in gaseous releases:

10 CFR 20, Appendix B, Table 2, Column 1

 Liquid Effluents for radionuclides other than dissolved or entrained gases:

10 CFR 20, Appendix B, Table 2, Column 2

4. Liquid Effluent dissolved and entrained gases:

2.0E-04 µci/ml Total Activity

C. Average Energy

Not applicable to Prairie Island Regulatory Limits.

D. Measurements and Approximations of Total Radioactivity

1.	Fission and activation gases in gaseous releases:	Total Nuclide	Geli Geli
2.	Iodines in gaseous releases	Total Nuclide	Geli Geli
3.	Particulates in gaseous releases:	Total Nuclide	Geli Geli
4.	Liquid Effluents:	Total Nuclide	Geli Geli

1.0 BATCH RELEASES (Liquid)

1.1	Number of Batch Releases	QTR #3 6.90E+01	QTR #4 4.80E+01
1.2	Total Time Period for a Batch Release		1
	(hr.)	1.09E+02	7.95E+01
1.3	Maximum Time for a Batch Release (hr)	1.90E+00	2.37E+00
1.4	Average Time for a Batch Release (hr)	1.58E+00	1.66E+00
1.5	Minimum Time for a Batch Release (hr)	8.30E-01	1.00E+00
	Ave Mississippi flow during Quarter (CFS)	2.44E04	2.57E04

PINGP 158, Rev. 6 Page 3 of 8

2.0. BATCH RELEASES (Gaseous)

		QTR #3	QTR #4
2.1 Num	ber of Batch Releases	4.00E+00	6.00E+00
2.2 Tot	al Time Period for a Batch Release (hr)	1.44E+01	2.08E+01
2.3 Max	timum Time for a Batch Release (hr)	8.00E+00	9.60E+00
2.4 Ave	rage Time for a Batch Release (hr)	3.59E+00	3.47E+00
2.5 Min	imum Time for a Batch Release (hr)	1.47E-01	1.41E-01

3.0 ABNORMAL RELEASES (Liquid)

		QTR #3	QTR #4
3.1	Number of Batch Releases	0.00E+00	0.00E+00
3.2	Total Activity Release (Ci)	0.00E+00	0.00E+00
3.3	Total Tritium Release (Ci)	0.00E+00	0.00E+00

4.0. ABNORMAL RELEASES (Gaseous)

		QTR #3	QTR #4
4.1	Number of Batch Releases	0.00E+00	0.00E+00
4.2	Total Activity Release (Ci)	0.00E+00	0.00E+00

PINGP 158, Rev. 6 Page 4 of 8

TABLE 1A

EFFLUENT SEMIANNUAL REPORT

GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES

	UNIT	QTR #3	QTR_#4	EST TOTAL ERROR %
--	------	--------	--------	----------------------

5.0 FISSION AND ACTIVATION GASES

5.1	Total Release (Ci)	1.94E+01	9.36E+00	2.50E+01
5.2	Average Release Rate (µCi/sec)	2.46E+00	1.19E+00	
	Gamma Dose (mrad)	8.29E-03	5.56E-03	1
	Beta Dose (mrad)	2.77E-02	1.57E-02	
5.5	% of Gamma T.S. Limit (%)	8.29E-02	5.56E-02	1
	% of Beta T.S. Limit (%)	1.39E-01	7.85E-02	1

6.0 IODINES

6.1	Total I-131	(Ci)	3.46E-03	4.30E-04	2.50E+01
6.2	Average Release Rate	e(µCi/sec)	4.40E-04	5.47E-05	

7.0 PARTICULATES

7.1 Total Release (Ci)	1.17E-05	8.89E-07 2.50E+01
7.2 Average Release Rate (µCi/sec)	1.49E-06	1.13E-07

8.0 TRITIUM

9

	0.1 Tetal Dalars	(Ci)	100	2.19E+01	1	2.46E+01	2.50E+01
	8.1 Total Release 8.2 Average Release			2.79E+00	L.	3.13E+00	_1
.0	TOTAL IODINE PARTICU	LATES AND (µCi/sec)	1	2.79E+00	1	3.13E+00	 2.50E+01
10.0	DOSE	(mrem)	i	2.43E-01	I.	6.67E-02	5
11.0	% OF T.S. LIMIT	(%)	i:	1.62E+00	1	4.45E-01	

12.0 GROSS ALPHA

12.1 Total Release (Ci) | 5.80E-07 | 7.93E-08 |2.50E+01 |

PINGP 158, Rev. 6 Page 5 of 8

TABLE 1C

EFFLUENT SEMIANNUAL REPORT GASEOUS EFFLUENTS GROUND LEVEL RELEASES

CONTINUOUS MODE

BATCH MODE

NUCLIDE	UNIT	QTR #3	QTR_#4	QTR_#3_	QTR_#4
A second second second second second		and the second			

13.0 INDIVIDUAL FISSION AND ACTIVATION GASES

Total	Ci	1.84E+01	8.41E+00	9.63E-01	9.45E-01
Xe133m	Ci	I		1.01E-04	3.70E-03
Ar41	Ci			1.015.0/	0 70F 00
Xel31m	Ci			1.27E-02	8.54E-03
xe138				1 075 00	0.5/7.00
Xe135m	Ci				
Xe135	Ci	3.60E-01	a management of the second	2.08E-02	3.39E-04
Xe133	Ci	1.80E+01	8.41E+00	3.51E-01	3.90E-01
Kr88	Ci				
Kr87	Ci				
Kr85m	Ci				
Kr85	Ci			5.78E-01	5.42E-01

14.0 IODINES (Ci)

I131	Ci	3.46E-03	4.30E-04	1.34E-07	
I133	Ci	1.24E-04	1.17E-05		1
I135	Ci				1
Total	Ci	3.58E-03	4.42E-04	1.34E-07	0.00E+00

CONTINUOUS MODE

BATCH MODE

 NUCLIDE	UNIT	QTR_#3_	 QTR_#4	 QTR_#3_	QTR #4
1 million and the	1	In the second second		1	1

15.0 PARTICULATES (Ci)

Sr89	Cí		*		*
Sr90	Ci	1	*	1	
Cs134	Ci				I
Cs137	Ci				9.23E-09
Ba-La140	Ci				
Co58	Ci	1.11E-05	1.60E-07		
Co60	Ci	5.95E-07	7.20E-07		
Total	Ci	1.17E-05	8.80E-07	0.00E+00	9.23E-09

*Furnished later

PINGP 158, Rev. 6 Page 6 of 8

TABLE 2A

EFFLUENT SEMIANNUAL REPORT

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

		UNIT	QTR_#3	QTR #4	TOTAL ERROR %
16.0	VOLUME OF WASTE				
	(Prior to Dilution)	Liters	3.63E+07	4.35E+07	2.50E+01
17.0	VOLUME OF DILUTION				
	Water (liters)	Liters	2.26E+11	1.65E+11	2.50E+01
18.0	FISSION AND ACTIVATION P				
	18.1 Total Release W/O H Rad Gas, Alpha	1.1.1.1.1.1.1	1.23E-02	4.73E-03	2.50E+01
	18.2 Average Diluted (µC Concentration	i/ml)	5.44E-11	2.87E-11	
19.0	TRITIUM				
	19.1 Total Release (Ci)		2.41E+02	1.28E+02	2.50E+01
	19.2 Average Diluted (µC Concentration	1/ml)	1.07E-06	7.76E-07	1.000
20.0	DISSOLVED AND ENTRAINED	GASES			
	20.1 Total Release (Ci)		2.24E-02	1.93E-02	2.50E+01
	20.2 Average Diluted (µC Concentration	1/m1)	9.91E-11	1.17E-10	
21.0	GROSS ALPHA				
	21.1 Total Release (Ci)		0.00E+00	0.00E+00	2.50E+01
22.0	TOTAL TRITIUM, FISSION A	ND	1.075-04	7.76E-07	2.50E+01
	ACTIVATION PRODUCTS (µC	i/ml)	1.07E-06	1 7.705-07	12.306.01

PINGP 158, Rev. 6 Page 7 of 8

TABLE 2A

EFFLUENT SEMIANNUAL REPORT

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

	UNIT	QTR_#3_	QTR_#4_	TOTAL
23.0 TOTAL BODY DOSE	(mrem)	5.32E-04	4.74E-04	=
24.0 CRITICAL ORGAN DOSE	(mrem) (organ)	5.62E-04 GI	5.46E-04 LIVER	=
25.0 % TOTAL BODY T.S. LIMI	(%)	1.77E-02	1.58E-02	=
26.0 % OF CRITICAL ORGAN T.S. Limit	(%)	5.62E-03	 5.46E-03]

PINGP 158, Rev. 6 Page 8 of 8

TABLE 2A

EFFLUENT SEMIANNUAL RPEORT

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

CONTINUOUS MODE BATCH MODE

NUCLIDE	UNIT	QTR_ <u>#3</u>	QTR_#4_	QTR_#3_	QTR_#4_	1
and the second						1

27.0 INDIVIDUAL LIQUID EFFLUENT

Sr89	Ci	1			
Sr90	Ci	1			
Cs134	Ci	1	1.47E-05		
Cs137	Ci	1	2.82E-05	5.93E-06	
I131	Ci	1	2.33E-05	5.19E-04	
Co58	Ci	1		4.49E-04	3.26E-04
Co60	Ci	1	7.50E-06	1.80E-04	3.43E-05
Fe59	Ci	1		5.25E-05	4.05E-05
Zn65	Ci	1			
Mn54	Ci	1			
Cr51	Ci	1			
Zr-Nb95	Ci	1			
Mo99	Ci	1			
Ba-La140	Ci	1		1	
Fe-55	Ci	1		7.24E-03	
*		1		3.80E-03	4.26E-03
Total	Ci	0.00E+00	7.37E-05	1.23E-02	4.66E-03

* SUM OF NUCLIDE ACTIVITIES FROM ATTACHMENT #1

CONTINUOUS MODE

BATCH MODE

NUCLIDE	UNIT	QTR_#3_	QTR #4	QTR #3	QTR_#4_	1
1				1	1	I.

28.0 DISSOLVED AND ENTRAINED GASES

Xe133	Ci	3.42E-05		2.00E-02	1.88E-02
Xe133m	Ci	1	the life A		3.12E-05
Xe131m	Ci	T		4.67E-04	4.65E-04
Xe135	Ci			2.79E-05	4.83E-05
Kr85m	Ci				
Kr85	Ci	1		1.87E-03	
Kr88	Ci				
		1	1		
Total	Cí	3.42E-05	0.00E+00	2.24E-02	1.93E-02

ATTACHMENT #1 ADDITIONAL RADIONUCLIDES

LIQUID BATCH Quarter #3,			LIQUID BATCH Quarter #4,	
AG-110M CS-138 I-133 NA-24 NB-97 SB-122 SB-124 SB-125 SC-47 SN-113 SR-85 SR-92 TC-99M TE-132 TC-132	1.59E-04 1.03E-05 3.18E-06 5.48E-06 3.62E-06 1.84E-04 2.34E-03 9.71E-04 8.31E-05 3.52E-06 8.09E-06 2.19E-05 7.70E-06 3.08E-06 3.80E-03	C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	AG-110M CS-136 CS-138 NA-24 N9-97 SB-124 SF-125 SC-47 SN-113 SR-92 ZR-97 TOTAL	2.40E-04 C1 1.24E-05 C1 7.27E-06 C1 1.95E-06 C1 6.99E-06 C1 2.94E-03 C1 8.61E-04 C1 1.24E-04 C1 4.61E-05 C1 1.02E-05 C1 9.00E-06 C1

PINGP 753, Rev. 1 Retention: Lifetime Page 1 of 5

PRAIRIE ISLAND NUCLEAR GENERATING PLANT NORTHERN STATES POWER Period: 7/1/85 to 1/1/86 License No. DPR-42

Container

SOLID RADIOACTIVE WASTE DISPOSAL SEMI-ANNUAL REPORT Table I: Solid Waste and Irradiated Fuel Shipments

A. Solid Waste Total Volumes and Measured Curie Quantities:

1. Type of Waste:

		Units	Total	Volumes
Α.	Resin	Ft 3 Ci	<u>340</u> <u>3</u> 008	170
В.	Dry Compacted	Ft 3 Ci	0	
с.	Non-Compacted	Ft 3 Ci	0	
D.	Wst. Concentrates	Ft 3 Ci	0	
s.	Spent Fuel	Ft 3 Ci	0	

PINGP 753, Rev. 1 Retention: Lifetime Page 2 of 5

PRAIRIE ISLAND NUCLEAR GENERATING PLANT NORTHERN STATES POWER Period: 7/1/85 to 1/1/86 License No. DPR-42

SOLID RADIOACTIVE WASTE DISPOSAL SEMI-ANNUAL REPORT

Table I: Solid Waste and Irradiated Fuel Shipments (Continued)

2. Measured Major Nuclide Composition by Type of Waste:

TYPE (From Page 1)	Nuclide	Percent
A	* H3 CS137 * FE55 CO58 CS134 CO60 SB125 SB124 * N163	$ \begin{array}{r} 27.8\\ 20.8\\ 14.7\\ 13.2\\ 10.6\\ 5.9\\ 3.3\\ 1.3\\ 1.2\\ \end{array} $

* = Inferred - Not Measured on Site

PINGP 753, Rev. 1 Retention: Lifetime Page 3 of 5

PRAIRIE ISLAND NUCLEAR GENERATING PLANT NORTHERN STATES POWER Period: 7/1/85 to 1/1/86 License No. DPR-42

SOLID RADIOACTIVE WASTE DISPOSAL SEMI-ANNUAL REPORT

Table I: Solid Waste and Irradiated Fuel Shipments (Continued)

 Measured Major Nuclide Composition by Type of Waste (Continuation):

TYPE (From Page 1)

Nuclide

_

and the second second

Percent

* = Inferred - Not Measured on Site

PINGP 753, Rev. 1 Retention: Lifetime Page 4 of 5

PRAIRIE ISLAND NUCLEAR GENERATING PLANT NORTHERN STATES POWER Period: 7/1/85 to 1/1/86 License No. DPR-42

SOLID RADIOACTIVE WASTE DISPOSAL SEMI-ANNUAL REPORT

Table I: Solid Waste and Irradiated Fue. Shipments (Continued)

3. Solid Waste Disposition:

	Number of Shipments	Mode	Destination
	2	Truck_	Richland, WA
Irra	adiated Fuel Shipmerts:		
	the state of the state is the state of the s		

PINGP 753, Rev. 1 Retention: Lifetime Page 5 of 5

PRAIRIE ISLAND NUCLEAR GENERATING PLANT NORTHERN STATES POWER Period: 7-1-85 to 1-1-86 License No. DPR-42

SOLID RADIOACTIVE WASTE DISPOSAL SEMI-ANNUAL REPORT

Table I: Solid Waste and Irradiated Fuel Shipments (Continued)

C. Shipping Container and Solidification Method:

No.	Volume (Ft3)	Activity (Ci)	Type of Waste	Container Code	Solidify Code
<u>85-40</u> <u>85-41</u>	<u> 170 </u> <u> 170 </u>	0.618	A	L	

And in the local distances of the second		And and the second in the second	and the second second second second second second	state to be a second of the second	and some the second sec

CONTAINER	CODES:	L	=	LSA
		Α	=	Type A
		В	=	Туре В
		Q	=	Large Quantity

SOLIDIFICATION CODES: C = Cement TYPES OF WASTE: A = Pesins B = Dry Compacted C = Non-Compacted

D = Wst. Conc. S = Spent Fuel

NORTHERN STATES POWER COMPANY PRAIRIE ISLAND NUCLEAR GENERATING PLANT OFFSITE RADIATION DOSE ASSESSMENT FOR January 1 - December 31, 1985

An assessment of radiation dose due to releases from the Prairie Island Nuclear Generating Plant during 1985 was performed in accordance with the Technical Specifications. Computed doses were well below the 40 CFR Part 190 and 10 CFR Part 50, Appendix I standards and guidelines.

Offsite dose calculation formulas and meteorological data were used from the Offsite Dose Calculation Manual in making this assessment. Source terms were obtained from the two Effluent and Waste Disposal Semi-Annual reports prepared for NRC review during the year.

Offsite Doses from Gaseous Release

Computed doses due to gaseous releases are reported in Table 1. Critical receptor location and pathways for organ doses are reported in Table 2. Doses, both whole body and organ, are a small percentage of Appendix I guidelines.

Offsite Doses from Liquid Release

Computed doses due to liquid releases are reported in Table 1. Receptor information is reported in Table 2. Doses, both whole body and organ, are a small percentage of Appendix I guidelines.

Doses to Individuals Due to Activities Inside the Site Boundary

Occasional sportsmen will enter the Prairie Island site for recreational activities. These individuals are not expected to spend more than a few hours per year within the site boundary. Commercial and recreational river traffic exists through this area.

For purposes of estimating dose due to recreational and river transportation activities within the site boundary, it is assumed that the limiting dose within the site boundary would be received by an individual who spends a total of seven days per year on the river just off shore from the main plant buildings (ESE at 0.2 miles). Whole body and inhalation organ doses were calculated for this location and occupancy time. These doses were reported in Table 1.

Doses to Most Exposed Member of the General Public from Reactor Releases and Other Nearby Uranium Fuel Cycle Sources

There are no uranium fuel cycle facilities in the vicinity of the Prairie Island site.

The only other source of exposure to the general public in addition to the plant gaseous and liquid effluents is from direct radiation. Pressurized water reactor direct radiation has been shown to be negligible. An array of TLD monitoring locations at the site boundary has consistently indicated that plant operation in recent years has had no effect on ambient gamma radiation.

Therefore, the most exposed member of the general public will not receive a radiation dose from reactor releases and all other fuel cycle activities in excess of the sum of the liquid and gaseous whole body and organ doses reported in Table 1 for the site boundary and critical receptor, respectively. These doses are well within the 40 CFR Part 190 standards of 25 mrem to the whole body or any organ (except the thyroid) and 75 mrem to the thyroid every 12 months.

TABLE 1

OFFSITE RADIATION DOSE ASSESSMENT - PRAIRIE ISLAND

PERIOD: JANUARY 1 THROUGH DECEMBER 31, 1985

Gaseous Releases		10 CFR Part 50 Appendix I Guideline Per Unit Per Year
Maximum Site Boundary Gamma Air Dose (mrad)	.023	20
Maximum Site Boundary Beta Air Dose (mrad)*	.072	40
Maximum Offsite Dose to Any Organ (mrem) Total	0.56	30
Offshore Location (mrem, 7 days/year) Whole Body Organ	0.0002	10 30
Liquid Releases		
Maximum Offsite Whole Body Dose (mrem) Total	.003	6
Maximum Offsite Organ Dose (mrem)* Total	.036	20

*Long lived particulates, I-131 & tritium.

PI OFFSITE DOSE ASSESS LTR

TABLE 2

OFFSITE RADIATION DOSE ASSESSMENT SUPPLEMENTAL INFORAMTION - PRAIRIE ISLAND

PERIOD: JANUAR	Y 1 THROUGH DECEMBER 31, 1985
Gaseous Effluents	
Maximum Site Boundary Dose Location (from building vents)	
Sector Distance (mi)	WNW 0.36
Offshore Location Within Site Boundary	
Sector Distance	ESE 0.2
Maximum Offsite Dose Location	
Sector Distance (mi) Pathways	SSE 0.6 Ground, Inhalation, Vegetables
Age Group Organ	Child Thyroid
Liquid Releases	
Maximum Offsite Dose Location Downstream	
Pathways Age Group	Fish Adult

Thyroid

Organ

TRANSMITTAL MANIFEST

NORTHERN STATES POWER COMPANY

NUCLEAR GENERATION DEPARTMENT

PRAIRIE ISLAND NUCLEAR GENERATING PLANT

Effluent and Waste Disposal Semi-Annual Report for July 1, 1985 through December 31, 1985

Manifest Date: March 1, 1986

USNRC

Regional Admin-III
NRR Project Manager, NRC
DCD
Resident Inspector
R J Jensen
L R Eliason
G T Goering/G H Neils
G Charnoff
M B Sellman
B W Clark
ERAD Dept.
Attn: Records Clerk
MDH
Attn: Commissioner of Health
MPCA
Attn: J W Ferman
Prairie Island Plant Manager
Monticello Plant
(W A Shamla)
Media Services Dept.
NSS File
NG File

ANI Library	1
Westinghouse Electric W J Johnson R T Meyer	2
J N Sorensen (NUS)	1
C E Agan (FPSI)	1 3
(C E Agan, Al Garrow	
and Corporate Library)	
PI SAC Secretary	1
D C Lowens	1 1 8
Safety Audit Committee D M Musolf K J Albrecht C W Giesler F W Hartley H S Isbin J A Thie F P Tierney	8
E L Watzl	
SAC File (Manifest Only)	

BWC022186GDW04