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ABSTRACT

The objective of this work was to take an in depth look at the process of
ductile tearing instability and especially to evaluate experimentally the con-
ditions for arrest of a ductile tearing instability. A secondary objective was
to evaluate the sensitivity of a ductile turin? instability arrest to rate at
which it occurred and to the material rate sensitivity. Major conclusions are
that the ductile tearing instability initiates slowly but in a mechanical :pring
apparatus it approaches drop tower crack growth rate conditions and hence the
phenomena is effected by the material rate sensitivity, The conditions
necessary for arrest are completely stated and demonstrated by experimental data
on a 3 percent Ni structural steel,
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lngroductlon

This project follows a series of work in the area of ductile tearing instability
reported earlier (1-3). In the previous work it was demonstrated that the point
of onset of ductile tearing instability could be accurately predicted for com-
pact and circumferentially cracked pipes using the Paris(l{ tearing criterion,
It was also demonstrated that a compliant test machine could be developed either
by adding mechanical springs or by programming a computer controlled servo-
hydraulic test machine to produce equivalent flexible loading conditions. Two
differences were observed between the computer controlled test and the mechani-
cal spring system, The first difference was that the time duration of the
instability was much shorter for the mechanical spring test than for the com-
puter controlled test because of the slow response of the minicomputer that was
used, Also, in crack opening terms, the instability arrest occurred much sooner
in the computer controlled test than in the mechanical spring test,

The second difference was ascribed to the fact that in the mechanical system
energ. could be dissipated only by being ahsorbed b{ the specimen (with some
minor friction losses) while in the computer controlled system, energy can pass
into the servohydraulic system, The result was that the computer controlled
system produced ductile crack arrest when load and tearing modulus condit ons
were satisfied while the mechanical sprtn? system required that tearing stabi-
1ity be reestablished, but also that a balance of energy released by the spring
apparatus and absorbed by the specimen be reestablished,

The objective of this project was to clarify the process of ductile crack arrest
by measuring the required quantities during the crack arrest phenomena, to check
more accurately this energy balance, to look for rate effects on the crack
arrest and to establish a complete statement of the conditions required for the
arrest of a ductile tearing crack,

1.0 Description of The Experimental Tests

1.1 Apparatus

Al tests were carried out on 1T compact specimens as shown in Fig 1. These spe-
cimens were essentially standard J-R curve test specimens as recommended by
reference(5). The apparatus used 1s shown schematically in Fig 2 and has some
important modifications when compared to apparatus used previously for tearing
instability tests(1-3,6). First a load link was used to measure the load
transmitted to the specimen which was directly coupled to the specimen in
contrast to previous experiments where the load cell was usually on the opposite
side of the spring system from the specimen, Second. a capability is present in
this apparatus to apply additional mass to vary the rate of instability after
fnstability initiation, Third, a high speed digital oscilliscope is present to
record the load versus load line disulacement record during the instability and
instability arrest., Aside from these changes the apparatus is essentially just
a rather standard computer aided J-R curve test apparatus as outlined in pre-
vious work utilizing a mechanical spring of variable stiffness to produce duc-
tile tearing instabilities,
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1.2 Material

The material used for the investigation was provided in the form of a 38mm (1.5
inch) thick plate, The chemical composition for the plate is shown in Table 1.
All tests were conducted with the notches in the T-L orientation., Tensile test
data obtained on standard 0.505 inch-2 inch gage length tensile specimens loaded

in the transverse direction using a slow test speed gave the following proper-
ties:

oyts = 731 MPa (106 ksi),
oy = 614 MPa (89 xsi),
% elongation = 23

% reduction of area = 63

2.0 Analysis
2.1 Tearing Instability Theory

will tear stably when it has a Japplied greater than Jic, an applied load at its
limit load and a Typp)jeq greater ghan the material capacity, Tmaterial. The
Tmaterial can be obgained from the formula:

£
Tmaterial = 92 da (1)
where
E = material elastic modulus

% = material flow stress
dJ/da = slope of material J-R curve at the Jypplied value

The Tapplied quantity is a function of the specimen geometry, type of loading,
and tesg machine or structural stiffness.

Calculations of T, pl1$d have been accomplished for several important cases and
are available in tRe terature(4,7-10). For this project the analysis of Ernst

et.al.(10) is used which assumes that the family of load displacement curves for
a compact specimen can be written in the form:

P = kg(a/W) h(COD/W) (2)

and develops an expression for Tapplied of the foym

-—E—-- -yi’ip ——.l.....
Tapplied = 42 b b2 (h K (3)

— e —
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TABLE 1 - CHEMICAL COMPOSITION OF STEEL USED FOR J-R CURVE TESTING

Identification Chemical Composition (wt%)
C | Mn P S Cu Si | Ni CR Mo v Ti
Less
than
3 Ni Steel .153] .33] .012| .013| .033| .18 | 2.55|1.66| .37 | .033| .00l

(FYB)




where

Y 1+ .76 b/W

n =2+ .5220b/W

KM = machine stiffness
h' = dh/d(COD/W)

b = W-a

W = specimen width,

The actual form of the load displacement curve used in this work was:

P = kab (COD/W)" (4)
where
a2 a . a
a = ‘\/; (;ﬁ + 4 (;7 *2+2% - 1 (5)

from the Green and Hundy(ll) limit load solution applied to the
CT specimen,

k, n = fitting coefficients chosen here to fit the experimental data,

]

To obtain J-R curves directly from specimen load displacement surves a "key
curve® analysis is used as first presented by Joyce et. al,(12/.

2.2 Key Curve Theory

In this analysis a key curve is defined by a function F1 containing only
units of stress of the form

PW a4 a H B
—y = Fl (= , ~, -, -, material properties 6
Bb? e w e : o

where H and B are specimen dimensions, 4 = COD, and the other quantities are as
defined above.

In terms of the F1 or key curve function J can be expressed as

A

J.-f(b.:. Fl 2D gy ga (7)
0 W< ala/W) “




Taking the differential of J assuming only a and COD change and reintegrating
gives:

A
o
2 gy B _ ) s -flma
We a(a/w) W
0
[ f%i %a (8)
a(a/H) (a/wW)?
0 0

Using a similar procedure an equation for crack growth increments can be
obtained in the form:

2
e TR 6
a = W 3(a/W) 3
20 ¢y b2 _aF
2 3
" w? a2
(“)

Substituting the assumed form of the load versus COD curves from equation (4)
and substituting it into the key curve form of equation (6) gives

: n
Fl = .P_".2= akW (£00, (10)
80 8o ~

and from this the derivatives required to evaluate equations (8) and (9) can be
obtained as follows:

=
aF1 _ _ nkaW ,COD,"
3(C00/) - B W (11)
4a/W__, 2
a/u a/wW : 12
i (l a/H (l- /H) *F 3
(l-a/u)



b’ 3a°F)
—_—— 0 in comparison with other terms. (13)

W ala/w)’

with

Application of these equations to obtain J-R curves is described in the
following sections.

It is also shown by Ernst et, a1.(10) that Tmaterial Can be expressed as:

T E 2.0y : ) (14)
material > Ay T
% b b ‘gr-ram’

for a compact specimen for which COD is also the load line displacement,
It should then be apparent that Tpateria) exceeds T, plied 3 long as Kym exceeds
a@gul and that instability should occur when the seope of the specimen load
displacement curve falls below the stiffness of the test system being used.

This is a very convenient way to look at tearing instability when complete load
displacement records are available.

2.3 Validation of the Key Curve Furmula

Various types of key curves have been used by various authors (3,10,11,12). Some
have been purely experimental and others have used different measures of fit

to experimental data. Verification of the applicability of the form chosen

here to the compact specimen is demonstrated in Fig 3 where a series of load
versus COD records are first shown in a standard way and then replotted in a
dimensionless fashion in which the a/W dependence is removed so that all curves
fall on a single line up to the point of crack initiation. This result clearly
demonstrates that the a/W dependence assumed in equation (4) is accurate for the
present specimen and material combination,

To demonstrate that a power law fit is accurate for the COD dependence for this
specimen and material combination the result shown in Fig. 4 was generated from
the two unloading compliance baseline specimen run as a part of this test

program. The ordinate quantity, P/(Bka) was updated as far as crack length
dependence after each unloading and this results in a sawtooth shape for the
curves shown, The uﬁper envelope of this plot corresponds well with a function
of the form k(COD/W)N and a fit with k = 1558.MPa and n = 0.18 is shown on Fig. 4.

3.0 Presentation of the Results

3.1 Static Results

Static J-R curves were run as baseline data using the single specimen unloading
compliance technique presented by Joyce and Gudas(13). The resulting J-R
curves are shown in Fig 5 for two of these samples. These tests were run far

beyond the present limits given by the recommended procedure of Albrecht et.
2l.(5) but nonetheless straight J-R curves resulted beyond Jy¢ and there is every
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reason to believe the J-R curves are accurate for tearing instability
verification throughout their full extent,

3.2 Instability Tests

The apparatus was then changed to include the spring fixtures described
previously and tests were run which were interrupted by tearing instabilities

as shown in Fig 6. For these tests data was obtained by the digital voltmeter/
scanner system both before and after the instability and by the Nicolet
oscilliscope during the instability and combined data files were assembled after
the test completion.

Fig 7 shows a comparison of a i1oad displacement curve obtained statically with
one resulting from the instability interrupted tests. The instability tests
match the static tests until the point of instability, but then they run
higher through to the completion of the test, This is a real effect and was
further verified by post test optical measurements of specimen crack lengths
(see Table 2) which shows that rapid (instability) tests produced less crack
extension than static tests at the COD value of 0.30 inches at which all tests
were stopped.

3.3 Application of the Key Curve Method

Application of the key curve analysis of equations (8) and (9) to the rapid

load displacement curves results in the calculation of J-R curves which are
shown in Fig 8 along with the baseline static J-R curves. Final measured

crack lengths on these specimens were from 0.494 to 0.506 as shown in Table 3
and the key curve function exponent n was chosen as 0.25 to give these results
using the key curve analysis and an iterative process. Clearly the elevation of
these J-R curves above the static baseline data is expected because of the
elevated load displacement records like that of Fig 7, but also because of the
smaller crack lengths present in these specimens at a given applied COD.

Fig 9 shows a typical J-T plot for one of the instability tests. Because data
is in hand through the full instability process complete Tapplied and Tmaterial

curves can be plotted on this figure. The J-Tmaterial Curves were obtained
here by fitting a power law curve of the form

J = A(aa)" (15)

to the J-R curve data of Figure 8 beyond Jic and differentiating to obtain dJ/da.
Clearly the initiation point is accurately predicted using this analysis (four
cases were run) and the static J-Tpateria) curve. It is also important to
notice that Typn1jed falls below Tpaterial at a J value of about 2700 in- 1b/in?
on the raﬂid 3 ?materia] curve or 3250 in- ]b/inz on the static J- Tmateria] curve
but stability was not_again achieved until much later at a J of approximately
3800 to 4000 in-1b/in?.

An alternative way to look at the instability and arrest process is shown
in Fig 10. This figure shows the rapid load displacement data for an instabi-
lity specimen and it also shows an experimentally obtained machine unloading

12
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TABLE 2 - SUMMARY OF EXPERIMENTAL RESULTS

J Predicted J Observed
Specimen | Test Method to Aa Predicted | aa Measured at lnitwility at Ins!abﬂity
1.0 Type Predict Aa mm mm Apparatus kJ/mm kJ/mm

FYBAl Static Unloading Complianc 13.8 13.4 Stiff Machine - -
FYBA2 Static Unloading Complianc 14.0 13.8 Stiff Machine -
FYBT12 Static Key Curve

k = 1558 n = 0.18 12.9 13.6 Stiff Machine - -
FYBT14 Static Key Curve

k = 1558 n = 0.18 13.5 14,7 Stiff Machine - -
FY8T11 Instability| Key Curve

k = 1866 = 0.25 12.6 12.9 KM = 6700 Nt/mm 231.0 208.5
FYBT13 Instapility| Key Curve

k = 1866 n = 0.25 12.5 12.8 KM = 6700 Nt/mm 224.1 215.0

218 Kg added mass

FYBT16 Instability| Key Curve

k = 1866 n = 0.25 12.6 12.9 KM = 6700 Nt/ma 252.5 240.1
FYBT18 Instability| Key Curve

kK = 1866 = 0.25 12.4 12.2 KM = 6700 Nt/mm 245.2 240.0

80 Kg added mass
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compliance curve shown as a dashed line., The Nicolet data obtained during the
instability was collected at fixed time intervals and it is clear that the
instability in fact develops rather slowly with the specimen load displacement
trace initially following the machine load displacement response line, The spe-
cimen load then falls distinctly below the machine response line and a rapid
acceleration occurs which continues until the specimen load displacement
recrosses the machine response curve after which a deceleration occurs until
arrest occurs.

Three points are labeled A, B and C on Fig 10. Point A at COD = dme corresponds

to & < Ky at wnich the Ernst equations (3) (14) predict that Tpaterial > Tapplied.

da
Clearly arrest cannot occur here since the specimen load capacity is less than
the load in the spring. Point B at COD = 5mm brings the specimen load capacity
even with the load in the spring but arrest does not occur though d(COD)/dt

starts to decrease, The arrest point is at C because it is at this point that a
complete energy balance is reestablished with the energy released by the spring

but not absorbed by the specimen before point B is matched by the enerqgy
absorbed by the specimen in excess of what is released by the spring between

points B and C.
4.0 Discussion

4.1 Conditions for Tearing Instability Arrest

-

The conditions for ductile tearing arrest can be stated as follows:

1) Tmaterial > Tapplied

2) Pcapacity > Papplied

3) Energy re'eased by spring = Energy absorbed by specimen +
frictional or other absorbed eneray,

4.2 Effects of Rate

Clearly rate effects play an important part in defining the point of ductile
tearing arrest. [f the material tested here had behaved during the
instabilities as it did during static tests no crack arrest would have occurred,
In this way the elevation in toughness with rate could be a very effective
stabilizing effect on rapidly moving ductile cracks.

4.3 Application of Additional Mass

Application of mass to reduce the test rate was not very successful because of
the large magnitude of the mass required, Application of 480 lbs (218 Kq) of
mass to the system produced only the small change in COD versus time shown in
Fig 11. It is important to note, however, in reference to Fig 11, that the
maximum test velocity, 4(COD)/dt, achieved corresponds to a crack velocity of
approximately 20 inches per second (0.5 m/s) which is roughly equivalent to that
obtained by drop tower tests and corresponds to the observed importance of
material rate effects on these tests,

19
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4.4 Applicability of “Computer Compliant" Tests

Previous work(3) has demonstrated that a computer controlled test machine can be
programned to simulate the compliant conditions necessary to generate a ductile
tearing instability in specimen or pipe geometries. These results verify that
since static properties control the initiation of ductile tearing the computer
system is a valuable tool for those cases where the point of instability is the
major test objective., For these cases the ability of the test engineer to
change the effective machine compliance by a simple keyboard command makes the
test method powerful and flexible.

If the instability arrest condition is of interest, however, the computerized
system is of no use whatsoever., This is so because the arrest point is strongly
influenced by the rate effects of the material and the computerized system is
generally very slow and controlled by the computer processor speed. Also the

energ{ balance condition cannot be simulated on the computerized system and
arrest occurs when only the first two conditions of Section 4.1 are satisfied.

4.5 Prediction of a Crack Arrest

To predict a crack arrest, i.e., the crack length at crack arrest, it is

clearly necessary to accurately define the toughness properties of the material
at loading rates in the vicinity of 0.5 m/s. Also necessary would be an
accurate cescription of the elastic unloading compliance of the structure. In
theory, then, it would be possible to reverse the key curve analysis to predict
the structure load displacement record which if compared with the elastic struc-
tural unloading would allow prediction of the final arrest crack length., The
accuracy of such an analysis would not be high but the order of magnitude of the
result would give valuable insight into the likelihood of a complete separation
of a critical component,

5.0 Conclusions

An analytical key curve form fit to the load Jisplacement curve and
final measured crack length data gives accurte J-R curves directly
from digital load displacement records.

» Tearing instability arrest occurs only after criterion on T, load, and
energy are satisfied and rate effects are very important in setting the
conditions for arrest,

+ Crack velocities during tearing instabilities approach that generated
in impact tests and this corresponds to the observed rate dependence
of tearing instahility arrest,

» It was clearly demonstrated in these results that rapid ductile crack
rowth produces higher loads and shorter crack lengths at a given COD
?load point displacement) than occurs during the corresponding static
test. In short more energy input produces a shorter crack extension
during the rapid ductile crack growth spurt than occurs during a slow
stable tear subjected to a smaller energy input.
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