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ABSTRACT

To assist in the resolution of differences between the
NRC and IDCC.) on the hydrogen combustion insue, a standard
problem has been defined to compare the results cf HECTR and MAAP
analyses of hydrogen transport and combustion in a nuclear
reactor containment. The ;ir.t part of this standard problem,
which addresses incomplete barﬂinf of hydrogen in the lower and
upper compartments, has been completed. In this report, a
critical review and comparison of the combustion modele in HECTR
and in MAAP will be presented, and HECTR analyses of this
standard problem and its comp.rison with MAAP predictions vill be
discussed. Review of these two combustion models shows that
HECTR and MAAP yield very different pictures of the buriing
process. MAAP calculations, which inglicitly -nplog a 5%
hydrogen ignition criterion, yinld a burn time on the order of
two hours, i.e., the burning process resembles a standing
diffusion flame, rather than a flame propagating through a
homogeneous mixture. Such predictions are not unreasonakle for
some accidents in ice-condenser plants. However, there are
accident scenarios in which high concentrations of steam exist in
the lower compartment (e.g., about 27% as in this standard
problem). Ignition occurs at a higher oncentration of hydrogen
(about 7%). This will produce a propagating flame rather than a
diffusion flame. Hence MAAP-cal.ulated combustion pressures and
temperatures appear to be much lower than one would expect.
HECTR, on the other hand, predicts that ignition occurs at
hydrogen concentration of 7% and the burning takes only a few
seconds. This leads to a sharp, short but higher pressure
increase.
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EXECUTIVE SUMMAR |

Sandia National Laboratories, with the support of the
U. 8. Nuclear Regulatory Commision, developed the HECTR code to
analyze the transport and combustion of hydrogen during reactor
accidents. IDCOR devcloped the MAAP code to perform similar
analyses. Both of these codes are lumped-parameter codes, but
they differ in the way that various phenomena are modeled,
especially in the areas of (1) ignition criteria, (2) flame
propagation criteria, (3) burn time, (4) ccmbustion completeness,
(8) continuous in-cavity oxidation of combustible gases from
core-concrete interactions, and (€) natural circulation. In
order to assist in the resolution of diffeirences between the NRC
and IDCOR on the hydrogen combustion issue, a standard problem
has been defined to compare the results of HECTR and MAAP
analyses of hydrogen transport and combustion in a nuclear
reactor containment. This standard jroblem is an S2HF accident
sequence in a PWR ice-cordenser containmert. The objective of
this comparison is to determine the impact of the modeling
differences for risk assessment.

There are two parts to this standard problem. The
first part, which addresses the question of dcff.gration in the
upper and lower compartments, will be presented in this report.
The second part, which concentrates on the questions of natural
circulation between the reuctor cavity and lower compartment and
continuous oxidation of combustible gases in the reactor cavity,
will appear in a separate report,

For the fi st part of the standard problem - incomplete
burning in the lower and upper comvartasents - a coaprehensive
review of the two combustion muodels has been performed, and it
shows that HECTR and MAAP yield very different pictures of thn
burning process. In HECTR, the reaction ratu and combustion
completeness of the incoaplete buraén, process is determined by
two empirical correlations generated from the VGES and FITS
experiments. On the other hand, MAAP priiictions ¢! the
combustion process rely heavily on the fo ce balance between the
buoyancy force of the burnt gases and the drss force against the
upward motion. When these two models sre used to analyze the
VGES, FITS, and NTS premixed hydrogen combuntiecn experiments,
HECTR predictions are better and compare reas - nubly well against
the test data, while the model used in MAAP nas difficulty
predicting the combustion pro.ess accurately. It predicts that
ignition always occurs at a low hyirogen concentration (about &%)
even though steam inerting would require higher hydrogen
concentration or prevent any burning. No matter at what hydrogen
concentration ignition ~ccurs, the model in MAAP substantially
overpredicts the burn time, which leads to much slower pressure
and temperature rises.




When comparing HECTR and MAAP analyses of the stancard
problem, HECTR predicts that if ignition occurs at 7% hydrogen
concentration, there will be three global deflagrations. A very
sharp, but brief pressurs peak will be associated with each burn.
However MAAP predicts that ignition occurs at a lower hydrogea
conceutration (about 4.6%); this leads to a much more gradual
increase in pressure and long Lurn time, which has the
characteristice of a standing diffusion flame, rather than a
flame propagating through a homogeneous mixture. OQbviously
HECTR—cslc:?utod comoustion pressures and temperatures are much
higher than MAAP predictions. HECTR has the capability to wmodel
the standing flame. However in this S£2HF drain-close accident,
the combustion process is likely to be a propagating flame rather
than a standing flame because of the high steam-to-hydrogen
mixture ratio at the break. Such a high ratio will make the
standing flame very unstable or even extinguished.

In conclusion, the most irportant differences between
HECTR and MAAP calculations involve the assessment of the threat
to containment integrity. MAAP does not distinguish between the
clearly separate processes of flame ignition and flame
propagation - ignition is defined to occur innedintol; upon the
achievement of a particular hydrogen concentration. or
incomplete burns, MAAP calculations, which implicitly employ a 5%
hydrogan ignition criterion, yield a burn tise on the order of
two hours and relatively low pressure increase, i.e., the burning
process resenbles a standing diffusion flame, rather than a flame
pronagating through a homogeneous mixture. Such predictions are
not unreasonable for some accidents in ice-condenser plants.
However, there are accident scenarios in which high stean
conceniration exists in the lower compartment (e.g., about 7% as
in this standard problem) and ignition occurs at a higher
concentratior of hydrogen (about 7%). Thiwe will produce a sharp,
short but very high pressure increase.

For global burns, as in the case of loss of offsite
power accident, MAAP can never yield pressures in excess of that
corresponding to 7.3% hydrogen in dry air because a "flase
temperature criterion" is used instead of experimentally
determined flammability limits and ignition thresholds. Since
essentially all containments can survive combustion under these
conditions, MAAP never predicts any threat. However, since
ignition can be random due to loss of power, burns at
concentrations muc! higher than 7 3% are possible. PFurthermore
in some accident scerarios, a plant may be steam inerted, which
would prevent combustinn after high concentretioans of hydrogen
have developed. When the steam condensed (by natural
condensation or by spray initiation), deflagrations could take
place at high hydrogen concentrations. MAAP does not account for
the bOllibi?it’ of stean nerting.
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1. INTRODUCTION

Sandia National Laboratories developed the HECTR
(Hydrogen Event: Containment Transient Responses) code primarily
to unufyso the transport and c.mbustion of hydro:on during
reactor accidents [1, 2). IDCOR (Industry Degraded Core
Rulemaking Program) uses the MAAP (Modular Accident Analysis
Program) code 3] to perform similar analyses. Both of these
codes are lumped-parameter codes, but they differ in the vay that
various phenomena are modeled, especially in the areas of (1)
ignition criteria, (2) flame propagation criteria, (3) burn time,
(4) combustion completeness, (5) continuous in-cavity oxidation
of combustible gases from core-concrete interactions, and (8)
natural circulation. These differences will give different
predictions of pressure and temperature loadings imposed on the
containment and equipment by the accumulation and combustion of
hydrogen during a severe a~cident. We are trying to determine
ti. impact of these differences and to assist the NRC in
determining the acceptability of the models for performing risk
assessments.

The listed modeling differences are particularly
pronounced in multicompartment systems such as the Ice-Condenser
(IC) and Mark III containments. HECTR calculations tend to allow
higher concentrations of hydrogen to develop, which leads to the
prediction of higher containment pressures and tewmperatures.
HECTR also permits flames to propagate into the IC upper plenum
region, where pc s:ntially detonable mixture: can develop for some

eccident sconarios (e.g., TMLB'). Flame propagation into the IC
u§por compartment is alno possible in the HE model, and the
global burns, which ensue, generate much higher pressures than

burns restricted to the lower compartment. MAAP code
calculations generally do not predict these effects [4].

In order to assist in resolution of differences between
the NRC and IDCOR on the hydrogen combustion issue, a standard
problem has been defined t> compare HECTR and MAAP analyses of
hydrogen transport and combustion in a nuclear reactor
containment. The important phenomena to be addressed include:
(1) incomplete burning in the lower and upper compartuments, (2)
continyous in-cavity cxidation of combustible gases from core-
concrete interactions, and (3) natural circulation between the
reactor cavity and lower compartment. The problem selected is an
S2HF accident sequence in a ice-condenser containment (Figure
1). The selection of the S2HF accident sequence is for code
comparison only.

In this report, the first part of the standard problea
that addresses the phenomenon of incomplete burning in the upper
and lower compartments of hydrogen generated by in-vessel metal-
water reaction will be diocu.nog. *ho other two phenomena
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2. DESCRIPTION OF THE HECTR-MAAP STANDARD FROBLEM

The S2HF accident scenario involves a small break (0.5~
to 2-inch in diameter) loss-of-coolant accident with failure of
ezergency coolant and contsinnont-oprug recirculation. All of
the water inventory from the sprays, which are only operated in
the injection mode, is trapped in the upper compartment due to
the failure to remove upper-to-lower-compartment drain plugs.
Thi « failure causes the reactor cavity to remain dry throughout
the transient. Incomplete hydrogen burns initiated by the
deliberate ignition system are expected in the lower and upper
compartments. When the reactor vessel fails, the molten fuel
slumps onto the floor of the cavity and results in a core-
concrete interaction. This interaction generates a substantial
amount of combustihle gases, which may oxidize continuously in
the reactor r=..ty. The stability of this continuous in-cavity
oxidatior. strongly depends on the amount of oxygen present in the
reactor cavity and the concentrations of steam, CN, and other
diluents. A complete in-cavity oxidation will prevent any
accumulation of combustible gases in the lower and upper
compartments and minimize the threat to containment integrity
from combustion.

Because our main objective is to assess the importance
of modeling Jifferences of hydrogen transport and combustion in
the HECTR and MAAP .odes, the sources (either steam or any
noncondensible gmases) and initial conditions predicted by the
MAAP code will be put into HECTR to study the containment
response. Moreove:, for better comparison of both computer
codes, we redefined the standard prcblem into a two-part
transient problem in October 1985 (6], The first part of the
transient problem will study hydrogen behavior during the period
of in-vessel hydrogen production (from the metal-water reactior)
ard the second par® will cover hydrogen behavior during the
period of ex-vessel hydrogen production (from the core-concrete
irterac*ion). By setting up the standard problem this way, any
discrepancies of the results between HECTR and MAAP in the first
part of the problem will not affect the second part.

In the MAAP ana.ysis of the S2HF accident in an ice-
condenser containment (4], an average clad oxidation of 30% was
calculated. This corresponds to 248 kg (547 1b) of hydrogen
being generated. The hydrogen and steanm release rates predicted
by the MAAP code for the SZHF accident sequence are plotted in
Figures 2 and 3. Comparing these sources to those given in the
MARCH-HECTR analyses of an ice-condenser containment for the S2D,
81D, and SIHF accident scenarios 6 shows that MAAP predictions
of the hydrogen and steam release rates are very different. MAAP
predicts a lesser amount cf steam being released and estimates a
lower release rate of both sources into the reactor containment
compared to MARCH. It is very important te accurately predict
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8. MODELING DIFFERENCES BETWEEN HECTE AND MAAF

Before presenting HECTR analyses of the first part of
the standard problem, a .«.l2wv of the combustion models in HECTR
and in MAAP will be useful. Since mcst key parameters in
combustion modeling, such as ignition criteria, combustion
completeness, burn time, and propagation criteria, are oxfrooood
either as an slgebraic formula (as in HECTR) or as an analytical
expression (as in MAAP), it is not necessary to perform a large
amount of HECTR or MAAP calculations in order to cowpare the
combustion models in both codes. By comparing these key
combustion parameters, based on the predictions made by both
algebtraic and analytical formulas, with the measured data
obtained from experiments, a better undcrotanding of differences
between the combus*tion models in both codes can be achieved.
This approach works well when addressing the modeling of
inconpfoto burning in the lower and upper compartments.

Besides comparing these two models in term of those key
combustion parameters listed above, it is still necessary to
perform and compare HECTR and MAAP calculations to understand the
impact of modeling differences on the containment responses
(pressure and temperature rises) for a selected severe accident
involving hydrogen combustion. Theoretically, both codes are not
chartered to model the complex combustion phenomenon in detail
such as multistep chemical kinetics or flame acceleration induced
by turbulent effect, but rather to predict the global containment
responses with respect to hydrogen combustion for a nuclear
reactor saftey study. Hence at least one HECTR and one MAAP
calculation for the comparison of containment responses are
needed .

In the following sections, the combustion models in
both HECTR and MAAP are reviewed first. Next, predictions made
by both models are compared with the experimental results in
terms of the key parameters used in combustion modeling. Table 1
lists major differences of the combustion model between these two
codes .

3.1 cription of the Co L i Model in

Most combustion parameters in HECTR are determined
primarily by expericental correlations or are specified by the
user. Such a procedure allows the accident antfylt the option to
perform parametric or conservative calculations, and to address
phenomena which may be highly stochastic. Fer example, in the
absence of deliberate ignition systems, the timing and location
of ignition can be random. Concentrations of hydrogen in air
ranging from 4% to 74% are flammable. Flammability limits for
mixtures of hydrogen, oxygen, nitrogen, carbon monoxide and



Table 1.

Combustion Model

Ignition
Criterion

Combustion
Completeness

Bury Time

Flame
Propagation

Modeling Differences

HECTR

Depends on mixture
concentration (user
input; can be varied
parametrically).

Calculates based on
an empirical formula
(a function of
concentration).

Characteristic
length divided by
flame speed.

Upward, downward,
horizontal propag-
ations depend on
concentration

between HECTR and MAAP,

MAAP

For global bura, uses
flame speed criterion.
For incomplete burn,
checks if calculated
burning velocity is
greater than 1 cm/s.

Predicts a complete

burn if flame temperature
criterion is satisfied.
For incomplete burn,

uses an analytical
formula (function of
burning velocity, drag
coeff.  igniter location).

Regional radius

divided by burning
velocity for glotal burn.
For incomplete burn,

uses an analytical form-
ula ({unction of durn-
in: velocity, drag coef.,
an

density)
Upward propagation



dioxide, and steam have been determined empirically and are
employed in HECTR. However, any "flammable" concentration can
exist stably without burning in a containment until an adequate
ignition source is provided. In the TMl accident, ignition
occurred accidentally when the concentration reached about 8%
(7). In a TMLB' accident, ignition may not occur until power is
restured.

HECTR does not model the details of a propagating flame
front moving through a compartment; rather, it calculates the
rate at which the chemical reaction takes place. The duration of
a burn and the final mole fractions of combustible gases and
oxygen are calculated at the start of a burn. Burn time is
calculated as the ratio of a user-specified characteristic length
to an experimentally determined flame speed (8). Final mole
fractions depend on the combustion completeness correlation.

Once a flame has been ignited and after a delay equal to a
specified fraction of the burnout time, it will propagate
upwards, sideways, or downwards if the concentrations in the
neighboring compartments are greater than or equal to 4%, 6%, or
0% respectively (Table 2); these ?ropngntion concentrations have
been determined experimentally [9).

3.2 Descripvion of the Combustion Model in MAAP

MAAP distinguishes between two types of burns, "global"
and "incomplete." The "global burn"™ is the analog of the HECTR
deflagration model. A "flame temperature criterion” is used to
control these burns. An adiabatic, isobaric flame temperature of
683 K .s defined as a critical threshold for both ignition and
propagation. This flame temperature corresponds to a burn
involving a hydrogen conceuntration in dry sir of about 7.3%. For
global burns, combustion is always 100% complete. Burn time is
determined by dividing a characteristic length by the flame
speed. Flame speed is given by the density ratio of unburned to
burned gases times the ?uninnr burning velocity [10].

For plants equipped with deliberate ignition systens,
the "incomplete burning" model is employed if the igniters are
ussumed to be operating. A characteristic volume is assigned to
each igniter; ignition is assumed to take place at the bottom and
propagate up. %he duration of the burn, and the fraction of
combustible gases burned are determined by analytical
expressions. The flame will ignite and propagate upwards if the
calculated flame speed exceeds 1 cm/s, corresponding to a
hydrogen concentration in dry air of about 4.8%, or 5.5% for a
mixture containing about 55% steam. Propagation in directions
ot.her than upwards is not allowed.

-10




Table 2. Default Ignition and Propagation Limits in
HECTR (F is a factor based on the LaChatelier
formula to account for carbon meonoxide)

Faraseter NoTe Fraction
Combustible Gas Diluents
F (H,+F=CO) 9, (H,0+C0,)
Ignition Limits 0.541 2 0.07 2 0.06 £ 0.55
Upward Propagation 0.328 > 0.041 2 0.08 g 0.55
Horizontal Propagation 0.435 2 0.08 2 0.05 £ 0.556
Downward Propagation 0.600 2 0.00 2 0.05 £ 0.55

~11-



Neither the "global" nor the "incomplete" burning
models in MAAP roco,ni:o the well-known phenomenon of steam
inerting. Burning
concentration.

s calculated to occur regardless of steam

Important combustion parameters, such as ignition
criteria, combustion completenes=, burn time, and ropa:ntion
criteria predicted by algebraic formulas as in and by
;nslyticlr expression as in MAAP, are compared with existing
experimen‘al data. The calculated results that are presented in
this section are not generated from HECTR and MAAP. They are
the results of simple calculations based upon the combustion
models in HECTR and MAAP (Appendix A). This is the best approach
to compare both combustion models without performing a
substantial number of HECTR and MAAP calculations.

The experiments that are used in this comparison are
the VGES [11) and NTS [12] experiments. The required input data
for both models are listed in Table 3. A burning velocity
multiplier of 1.0 and drag coefficient of 100.0 are used in this
comparison because these are the values used in containment
analyses in Reference 4.

3.3.1 Ignition Criteria

The ignition criteria in both HECTR and MAAP codes
depend heavily on the mixture chemistry. Neither combustion
model considers the availability of ignition sources or
activation energy required to initiate combustion. For example,
air motion driven by sprays may substantially cool the igniters,
degrade their performance, and prevent any ignition; neither
model accounts for this effect. 1In HECTR and in MAA®, as long as
the built-in ignition criteria are satisfied, combustion will
oceur. The default ignition criteria in HECTR are: H‘ 2 7%, 0, >
5%, and steam ¢ 55%. The user can vary the criteria by changing
Lhchlluo of the mixture concentration and perform parame.ric
studies,

In MAAP, the flame temperature criterion is used to
determine the potential of a global burn; the critical
temperature is set at O83 K. Figure 4 illustrates the calculated
adiabatic flame temperature as a function of hydrogen
concentration for the VGES fans-off experiments. Applying the
flame temperature criterion, it predicts that a global burn will
occur at a hydrogen concentration of 7.3%. In MAAP, the specific
heat at constant pressure is used to calculate the adiabatic
flame temperature. However the specific heat used in this
calculation does not consider the effect of temperature. In
reality, the specific heat is temperature-dependent. In Figure

-12-



Table 3. Parameters Used for Case Study of the MAAP
Combustion Model

(1) VGES Fans-0ff and Fans-On Casus

Burning Velocity Multiplier = 1.0
Drag Coefficient = 100.0
Characteristic Length = 3.680 m
Height of the Vessel = 4,267 m
Radius of the Vessel = 0.610 m
(2) NTS Fans and Sprays Off Cases

Buining Velocity Multiplier = 1.0
Drag Coefficient = 100.0
Characteristic Length = 14.02 m
Use Cylindrical Geometry

Height of the Vessel = 15.85 m
Radius of the Vessel = 6.471 o

"l
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4, two more curves are also included to show how the flame
temperature criterion will change if the spcuific heut at
constant volume and specific heat at constant pressure are
calculated accounting for the actual temperature dependence [13).
If a temperature-dependent specific heat a‘ constant pressure is
used, it predicts that a global burn will occur at hydrogen
concentration of 8.7%; this is quite similar to the findings in
Reference 14.

To determine whether an incomplete burn will take
place, MAAP will check (1) if the calculated Lurning velocity is
greater than 1 em/s, &nd (2) if igniters are functioning. This 1
em/s burning velocity coadition implies that an incomplete burn
occurs at a hydrogen concentration of about 4.8 to 5.0%,
depending upon the steam mole fraction (Figure 5). Here, as
shown in Figure 5, the steam inerting effect on initiation of an
incomplete burn is rather small. Hydrogen will still combust at
a concentration of 5.5% even though there is substantial amount
of steam in an environment ( > 55% steam). However experiments
which studied flammability of hydrogen-air-steam mixtures (15,
16, 17] have shown that combustion will be precluded if the steam
mole fraction is greater than 55% or at even lower steanm
concentrations if the hydrogen concentracvion is 4-6%.

Juo Figure 6, the ignition criteria used in HECTR and in
MAAP for both gfobal and incomplete burns are compiled and
plotted against data obtained from FITS combustion experiments
'15] to study flammability of hydrogen-air-steam mixtures in a
quiescent environment. The ignition criteria in HECTR will
prevent any combustion if steam concentration is too high

( > 65%); on the contrary, the MAAP criteria do not consider any
steanm inerting effect. Neglecting the steam inerting effect may
give a very different result when analyzing containment responses
during a severe nuclear reactor accident., For example, in
Reference 6, during a S.D accident with 75% zirconium-water
reaction, HECTR predicted that a substantial amount of steam had
already built up in the lower compartment of an ice-condenser
containment when the hydrogen was released Even though igniters
were working, combustion in the lower compartment did not occur
because of the steam inerting environment. Eventually,
combustion took place in the dome and generated a peak pressure
of 343 kPa (50 psia). If combustion were allowed in the lower
compartment, neglecting the steam irerting effect, an earlier and
more moderate burn loagin; to a much lower peak pressure (less
than 200 kPa or 28 psia) would be predicted.

A newly generated flammability correlation [15] based
on the FITS experiments is also plotted in Figure 6. This
correlation is better than the existing criteria us«d in HECTR
and in MAAP to account for the steam inerting effect.
Incorporation of this flammability -orrelation is recommended for
any code to perform containment analysis.

-15-
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3.3.2 Combustion Completeness

At the beginning of a burn, HECTR will determine the
amount of hydrogen left when combustion is complete, based upon
an cnpiuics{ formula that dejends on the pre-burn hydrogen
concentration. The influenc: of steam concentration and vessel

eometry on combustion compieteness is minimal. The results of
GDES and NTS experiments (giguron 7 to 10{ show that the measured
combustion completeness data can be correlated in this way.
Combustion completeness of 100% occurs at a hydrogen X
concentration of about 8%, while minimum burn (less th.glé:ﬁ
occurs at a hydrogen concentration of about 3.7%. The
predictions of combustion nompleteness for VGES and NTS
experiments using this empirical formula are shown in Figures 7
to 10.

Unlike HECTR, MAAP relies on the flame temperature
criterion to determine whether a burn in a compartment is
complete or incomplete. The default critical flame temperature
is 983 K. For an incomplete burn, the burnt volume of the
mixture is calculated by an analytical expression, which depends
upon burning velocity, drag coefficient, ignition location, and
regional radius of the characteristic cylindrical volume [3].

Based upon this analytical expression, I first
calculated the burned volume then divided by the total volume of
the vessel to obtain the combustion completeness for VGES, NTS
experiments (Figures 7 to 10). Since the combustion chamber in
NTS experiments was spherical rather than cylindrical, as
suggested in Reference 3, analyses were performed by trancforming
the spherical vessel into an equivalent cylindricul geometry with
an equal height and an eqgual volume.

Overall, both the empirical formulas (as in HECTR) and
analytical expression (as in MAAP) predict the region of complete
burn reasonably well. For an incomplete burn, the aa.lyticu?
expression generally underpredicts the combustion completeness,
except in VGES fans-on and fans-off experiments when hydrogen
concentration is about 5% to 7%. Figures 7 to 10 sho+ that it
overpredicts the completeness if the propagating flame /(ront hits
the wall before reaching the top of the vessel; otherwise, it
underpredicts the completeness. In VGES experiments, where the
vessel is smaller, the burning radius will intersect the wall
before the flame reaches the top. Thus, the analytical
expression overpredicts the combustion completeness. However,
for a very lean hydrogen combustion case (f.uo than &%), the
burning velocity is so small that the flame hits the top of the
vessel before it reaches the wall. It underpredicts the
combustion completeness. Similarly, in NTS experiments, where
the vessel is bigger and the region radius of the characteristic
cylindrical volume is larger, the flame never hits the side wall

~18-
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as 1t is propagating upard to the top. Hence, it underpredicts
the completeness. Readjusting the values of drag coefficient and
burniag velocity multiplier may improve the grcdiction by the
incomplete burn model  However, resetting these values for every
containment analysis would be difficult, if not impractical.

3.3.3 Flame Speed and Burn Time

As discussel in Section 2.1, HECTR uses an "effective"
flame speed to calculate the burn time, which in turn determines
the turr rate at every time step. Flame speed is defined as the
velocity of the propagating flame front in the laboratory frame.
The default flame speed correlation is a function of hydrogen and
steam concentrations. The burn time is calculated as a user-
specified burn characteristic length divided by the flame speed.

The model in MAAP relies upon the burning velocity to
estimate the burn time. Burning velocity is defined as the
velocity of the propagating flame front relative to the gas
motion downstream from the flame front. For a global burn, burn
time is predicted by dividing the regional radius of a
characteristic cylindrical volume by the flame velocity. Burn
time for an incomplete burn is expressed as a function of burning
;eloc;ty, drag coefficient, mixture density, and a characteristic

enpth.

In order to compare the calculated flame speed with the
existing experimental data (VGES and NTS) for lean hydrogen
combustion (less than 15% concentration), I used the burn time
calculated by the MAAP model to generate the "effective" flame
speed for these experiments. (The "effetive" flame speed can be
obtained by dividing the characteristic length by the burn t me.
Burn time is the duration of time between ignition and
extinction. Pressure-rise time is the duration of time between
ignition and the compartment pressure at its maximum value.
Pressure-rise time is not necessary equal to the burn time
because pressure may start to fall before the flame wil!l be
extinguish if there is more heat lost to envirorment than h=at
generated from chemical reaction.) The results of the flame
speed comparison can be found in Figures 11 to 14, and the
results of the burn time comparison are shown in Figures 15 to
18. Since our inter st is the burn time, not the uressure-rise
time, its values can easily be calculated by either an enpiri~al
formula (as in HECTR) or an analytical expression (as in MAAP).

Because the default flame speed correlation in HECTR is
based upon the VGES fans-on experiments, HECTR overpredicts tae
flame speed when compared to the observed values in the VGES
fans-off and NTS fans/sprays-off experiments. Obviously, a
prediction of a larger flame speed will result in & shorter burn
time and a smaller flame speed will lead to a longer burn time

-28-
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(Figures 11 to 18). For those cases with high stean
concentration, HECTR underpredicts the flame speed (Figure 14),
which leads to a longer burn time. Hence, the influence of stean
on flame speed appears to not be well modeled in the present
correlation in . Moreover, from References 18 and 19, when
comparing the measured flame speed data from NTS experiments with
data from VGES experiments, it has been found that there may be a
scaling dependence on the flame speed. The existing flame speed
correlation in HECTR does not depend upon vessel geometry.

In general, the MAAP burn model underpredicts flame
speed and overpredicts burn time when compared with the NTS
experimental data; however, for the VGES fans-on and fans-off
experiments, the global burn mode] overpredicts the flame speed
when hydrogen concentration is more than 8%. The flame speed is
overpredicted in VGES experiments, but not in NTS experiments,
because the geometry of the two test vessels is different. The
rat‘o of vessel height to regional radius used in VGES
calculations is larger than in NTE, therefore, it gives a larger
value for the flame speed. (The effective flame speed predicted
by the MAAP global burn model depends directly on the ratio of
vessel height to regional radius.) This comparison shows that
even though the flame speed 2xpression derived from the MAAP
mode] has an implicit scaling dependence, it appears to be not
well correlated.

For those cases with fans or sprays on, the completed
caleculations neglect the effect of turbulence on combustion
gererated by fans and sprays because a burniu, velocity
multiplier of 1| is used. If a larger value of burning velocity
multiplier (» 10) is used, this would improve the comparison of
the analytical results with the the experimental data. The
combustion model in MAAP relies heavily on the laminar burning
velocity correlation developed in Reference 10; at present, the
experimental data-base to support this correlation in the lean
hydrogen combustion region (less than 15%) is not well
established. Substantial uncertainty exists when apply this
correlation to predict the burning velocity at hydrogen
concentration below 15%. This leads to more uncertainty in
predicting flame speed and burn time.

334 Flame Propagation

A flame is allowed to propagate into any adjacent
compartments in HECTR as long as the propagation criteria are
satisfied (Table 2). In MAAP, a flame is only allowed to
propagate upward into the adjacent compartment, as loug as the
calculated burning velocity is greater than 1 em/s, which is
about 5% concentration. Ne horizontal or downward propagation
is permitted. This restriction is contradictery to the test
results of the VGES and NTS experiments where downward
propagation of flames was observed.
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When burning occurs within a compartment, neither model
explicitly iracks the flame front. Hence, a mixture of both
burned and unburned gases will be convected out of the
compartment through Junctions, even though a junction may be
downstream from the flame front. Consider a case with gas
flowing from a larger burning compartment to a smaller
neighboring compartment with the connecting flow-junction
downstream from the flame; the present models will allow for both
burned and unburned gases instead of on%{ the unburned gases to
convect into the nastlor compartment . e burned gases convected
from the burning compartment may inert the smaller compartment
and prevent any flame propagation. This may alter the combustion
event and ro-u{t in a rowtr peak combustion pressure.

In both models, when combustion occurs in a specific
compartment, the final mole fraction of hydrogen at the
completion of burn is predetermined at the initiation of burn.
During the combustion process, if any combustible gases are
convected into the burning compartment, the burn rate will be
adjusted at every time step so that the final mole fraction of
the combustible gases will be consistent with the predicted
value. By setting the ignition criterion at a low hydrogen
concentration and with a long burn time (usually this is
predicted to be the case bz the MAAP incomplete burn model), the
combustion procest will behave like a standing flame rather than
a deflagration. This type of burning will not produce a very
high peak pressure and temperature,

3.4 Sussary of Modeling Differences

In terms of the prediction of the consequences of
hydrogen combustion during reactor accidents, the most important
differences between HECTR and MAAP are:

I. Steam Inerting: MAAP does not allow for the inerting of
hydrogen mixtures due to excess steam; HECTR uses
experimentally determined flammability limits which include
the steam inerting effect.

I11. Ignition Criteria:

(a) Global Burns: MAAP specifies that ignition will eoccur
when the hydrogen concentration exceeds a threshold
determined by a "flame tempsrature criterion;" this
corresponds to about 7.3% hydroger in air. HECTR can
wmodel ignition for any user-specified concentration or
time into the accident;

(b) "Incomplete” Burns: If igniters are available, MAAP
initiates burns at concentrations corresponding te about




4.8% hyd.ogen in dry air. HECTR allows continuous
burning as well as deliberate burning initiated at any
hydrogen concentration specified by the user.

Neither of the models currently is capable of
:ccur;tol{ calculating a standing flame, because flashback, and
flame stability for lto&l—h{dracon-sir mixtures are not
adequately modelled. Flashback and standi flames were ohserved
in all of the Nevada Test Site (NTS) tests invelving continuous
injection [18 and 20). In these tests, hydrogen release rates
are relatively high. above 1.8 kg/min. As a result of high
injection rate, the flames, regardless of where they were
initially ignited, tended to burn back to the hydrogen-steanm
sourcc and anchor there as standing flames.

In a sense, the MAAP "incomplete burn" model resembles
diffusion flames anchored on the 1gaibor- (rather than at the
hydrogen source), slowly burning the hydrogen and/or carboen
monoxide in bunsen-burner fashion. Such burns would be unable to
threaten containment integrity, nlthcu?h the survival of nearby
equipment might be threatened due to high thermal loads.

HECTR has been used in the ysot to model diffusion-
flame scenarios for BWR Mark IIls [21). The current -elease
version of the code coatains a simple model for continuous
burning (2] .

1f propagating flames occur, MAAP and HECTR will
approxinately agree if the burn is assumed to occur in HECTR at
about 7-8% hydrogen in dry air (or its equivalent with steam
present). For burns at lower or higher equivalent
concentrations, HECTR will predict thermal and mechanical loads
lower or higher, respectively, than the MAAP predictions.
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4. HECTR RESULTS OF THE STANDARD FROBLEM

Seventeen HECTR calcula“ions were pirformed to
understand the differences between these two codes and their
impact on risk ass:ssment. These calculations can be divided
into three different wets. 7The characteristics of each set ars:

1. HECTR default calculations.
2. Modified HECTR calculations for matching MAAP results.

3, Sensitivity studies,

In the first set of calculations, HECTR analyses of the
problem were performed using the default setup in the code. The
results of these calculations shev that there are differences
between HECTR and MAAP predictions. In order to match the
results predicted by the MAAP code, a modified HECTR calculation
was made using the B-compartment model with the MAAP geometrical
data. This calculation involved tuning the HECTR e by
changing certain parameters, for example, ignition criterion,
combustion completeness, and burn time. Sonoitivit{ studies were
also performed to evaluate the importance of sensitive parameters
to better understand HECTR predictions. The results of these
calculations are summarized in Table 4.

4.1 Modeling of the Reactor Containment

Three different nodin? systems were used to model the
reactor containment (see Appendix ‘). They are:

1. 6-compartment model with MAAP geometrical data.
2. 6-compartment mode]l with Sandia geometrical data.
3. 16 compartment model with Sandia geometrical data.

Both B-compartment models have the same noding as in
the MAAP code for the Sequoyah Ice-Condenser Containment {3 and
4. The differences between these two B-compartment models are
the geometrical data used in these calculatiung (Table 5). The
MAAP geometrical data are those used in the MAAP analysis [22).
The Sandia geometrical data are obrained either from the Fina
Safety Analysis Report of the Sequoyah Nuclea: ' Power Plant [23)
or from Reference 6. The major :illoroacol between these two
data sets arc the total free voiume in the lower compartment, the
total surface area, and the time delay for the air-return fans to
be activated after the set-point is satisfied.

The 16-compartment model is extracted from the 40-
compartment model used in Refurence 24. Since we are not
concerned with the recirculation loop in the ice bed region in
this problem, the 16-compartment model, which has a one-
dimensional ice-condenser wodel, is sufficient for this standard
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Table 4. Summary of HECTR Analyses of the Standard
Problem

P (kPa) T, (K)  T.°K) T.h(K)

Ay

MAAP Code 142.7 4231 - -
Default Calculations

HECTR /MAAP -6 162.2 820.4 348 .2 37F ¢
HECTR-8 150.6 788 .0 348 .5 366.0
HECTR-15 142.9 808 .5 351.7 370.5
Modifie. Calculations

HECTR,/MAAP - # 151.1 539.1 353.3 383 4
Sensitivity Studies

HECTR- 15} 1.3.1 682 4 351.5 370.1
HECTR-15* 1°2.5 962.7 348 8 352.9
HECTR-158* N7 1046 .3 348 8 352 .9

* Steel oquipnont in the lower compartment

Concrete in the lower compartment

Ignition Criterion = 6% hydrogen concentration

.‘nition Criterion = B% hydrogen concentration
hydrogen cumbustion in the dome region
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Table 5. Major Differences between HECTR and MAAP

Input Data
HECTR MAAP
. Reactor Cavity:
Total Volume 306.0 419.00 o'
. Lower Compartment: "
Total Volume 6334 = 8184 ..
Sump Area 50 .2 = 502.6 3
Steel Area 5940 =, 2780 .y
Concrete Area 3560 » 1766 o
. Annular Region: .
Sump Area 0 . 446 8 o
Steel Area 1834 = 0 .
Concrete Area 3267 » 1027 »
. Upper Plenum:
Biesl Ares 1000 o' 0
. Upper Compartment:
Concrete Area 4085 I: 3760 I:
Steel Area 2000 w 1065 »
Ice Condenser: .
Wall fOtructure - Wt 2 o-no '( -
~ Area -
Baskets - Wt 1. ¢7.‘ ’. a
~ Area 9920 = -
. Air-Return Fans:
Delay tiwe 600 = 0.167 =
LC to Annular Region "
Vol. flow rate 1.17 w' /s 0
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roblems. However, in the second part of this standard problem,
ecause we intend to study the natural circulation 1 between
the lower compartment and the reactor cavity, it will be
necessary to refine the noding in the lower compartment so that
more detailed information can be obtained.

In HECTR analyses, the first part of the standard
problem begins at the time when core uncover’ wre (1.3 hours
or 4705 seconds) and ends at the time when . - tor vessel
fails (2.34 hours or 8418 seconds). At 1. cur  the air-return
fans have been on for a period of time ant . stainment spray
system failr because switching over to the culation mode iw
unsuccessful. Hence, the discrepancy with sw.poct to the time
delay for fan activation does not affect the outcome of this
standard problem. However, since tie containment spray system is
working in the injection mode before it fails to ewitch over to
the recirculation ~ode, water will accumulate in various
locations including the reactor refilling area. The HECTR input
deck hns been .odt,tod to reflect the water accumulated in the
sumps, which, in turn, decreases the gas-free volume of those
compartments involved. In the 16-coapartment mudel, the
compartment that models the reactor refilli area will be
deleted because it is filled with water and bec.mes useless in
our calculations. Therefore, there are only 15 _ompartvents used
in the present calculations.

In the following discussion, the HECTR S-corpartment
podel using the MAAP gecmetrical data will be refer ‘ed to as the
HECTH MAAP 6-compartment model, while the HECTR S-compartment and
the AECTR 15-compartm nt model, respectively, vill represent the
S8-compartment and 15-compartiment models using the Sandia
geometrical data.

4.2 HECTR Default Calculations

Calculations using the default values in HECTR were
performed. In HECTR version 1.5 (2, the default criterion for
hydrogen ignition had been changed such tha* combustion would
oceur if the hydrogen mole fraction within & compartsent was
above 7 percent instead of 4%.

The HECTR )5-compartment model predicted that wix
sequential burns occurred in the reactor containment, with the
burns initiated in the lower compartment where hydrogen and steam
sources were located. Each burn propagated into the 'ower
plenus, the ice bed, and oventunlry into the upper plinum, excep*
one burn that stopped at the top of the ice bed.

The HECTR 6-compartment and HECTR/MAAP 6-compartment
wsodels predicted that four and three sequential burns would



occur, respectively, with the flame propagation similar to the
prediction of the ‘ECTR 15-compartaent el. All the burns were
initiated in the lower compartment and completed il the upper
plenum above the ice-condenser region. The total burn times (the
time between ignition in the lower eo-:stm.oat to extinguishi

in the upper plenum) calculated by each model for each sequential
burn a-e quite similar. They are 8.54, 7.70 and 4.15 s for the
HECTR 15-compartment, HECTR 8-compartment and HECTR/MAAP 6-
compartment wodels, respectively. In the HECTR 15-compartm:nt
model, the steam generator (SG) housing was modeled as a separate
compartment. This allowed the flame to propagate into the
housing compartment and resulted in an additional 17.14 s of
burning in the SG houniug compartment. In the HECTR/MAAP 6-
compartment model, the characteristic length for flame
propagation in the lower co.:srtsoat is relatively shorter than
the other two cases; hence the burn time is relatively shorter.
As a result, among these three calcu’ations, the /MAAP 6-
compartment model predicted the highest peak pressure and
temperature with respect to hydrogen combustion (Table 4 and
Figures 19 to 21).

The differences between these HECTR results can be
explained by the way these three compartment models were set up.
The lower compartment in the HECTR 8-compartment model has a
smaller free volume and more total surface area than in the
HECTR /MAAP 6 -compartment model (Table 5). Given that the same
amount of hydrogen and steam were injected into the lower
compartment, the HECTR 8-compartment model, as expected,
calculated a higher hydrogen concentration. Since the ignitiou
criterion depended on the hydrogen concentration, the HI!;I 6-
compartment model trodictod an earlier burn and an additional
sequentisl burn. Larger total surface ares would allow more heat
loss and coudense more steam, which, in turn, would increase the
hydrogen mole fraction. The result of an earlier, less severe
burn decreased the peak cosbustion pressure and temperature.

The argument discussed in the previous paragraph can
also be applied when comparing the results between the 16~
compartmsnt and HECTR 6-compartment nodel. The HECTR 15-
compartment model had a more rofined nodin: it the lower
compartment region. Thus it calculated a higher hydrogen
concentration in the source coapartment, which led to an earlier
burn and an additional sequential burn. This resulted in & lower
peak combustion pressure. However, the finer noding o{nton in
the lower compartment also produced higher gas and wal
temyeratures i.c.u.. it caleulated the temperature distribution
within the lowsr compartaent region and identified the local hot
spot. The coarse-noding system had only one control volume which
averaged oul the temperature distribution by assuming unifcre
pixing within a compartment.
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To summarize the HECTR default calculations, all three
compartment models predicted similar magnitudes of pressure and
temperature rises with respect to hydrogen combustion. They all
predicted a series of moderate burns.

4.3 Modified HECTR Calculations to Match MAAP Results

A set. of HECTR calculations using the HECTR/MAAP 6-
compartment model was performed in an attemp* to match MAAP
results given in Reference 26. A few changes were made in HECTR
before any calculations were completed. First, several FORTRAN
statements were added to the HECTR code so that the ignition
would occur at the exact times and locations as they were
specified in Reference 25. Burn time for each discrete burn
occurring in the corresponding compartment was also adjusted so
that it matched the value given in Reference 25. The value of
the combustion completeness for each burn was estimated by
assuming that only that portion of the hydrogen between igniters
and the top of the compartment would combust. As in MAAP, 1 did
not allow any flame propagation into the neighboring compartment.
The selected combustion parameters I used for this part of the
calculations are listed in Table 6.

The results of this modified HECTR calculation and its
comparison with MAAP predictions [24] are shown in Figure 22.
HECTR predicts a peak pressure and gas temperature of 151 kPA
(21.9 psia) and 539 K, respectively while MAAP predicts a value
of about 143 kPa (20.7 psia) and 423 K, respectively. The cause
of these differences is unknown. Several calculations with
different combustion completeness and convective heat transfer
coefficients were performed in an attempt to match the pressure
and gas temperature in the lower compartment predicted by the
MAAP code. The pressure and gas temperature in the lower
compartment calculated by HECTR did decrease as a result of less
complete burns or larger heat transfer coefficient, but the
changes were insignificant. Hence by adjusting the combustion
process to be less complete and last much longer, we can
qualitatively match the MAAP prediction of the containment
responses for this standard problem.

Next, I will compare the results of these modified
HECTR calculations with the results of the 15-compartment model.
The pressure rises with respect to hydrogen combustion for both
cases compare well. However, the calculated peak temperatures in
the lower compartment are far apart: the 15-compartment model
predicts a peak value of BO8 K while the new HECTR/MAAP 6-
compartment model and MAAP code show the pealh temperature to be
6530 K and 366 K, respectively. The substantial difference in the
lower compartment temperature may be important for studying the
survivability of equipment.
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Table 6. Combustion Parameters Used in the Modified
HECTR Calculations

Ignition Time Burn Time Combustion

(sec.) (hrs.) (seconds) Completeness
Lower Compartment 6070 1.69 842 42 .12%
Upper Plenum 6113 1.70 2051 19.18%
8180 2.27 20 10.18%
8220 2.28 20 19.18%
8260 2.20 20 19.18%
8§30C 2.31 20 19.18%
Upper Compartment 6647 1.85 626 84 .40%
7279 2.02 69 84 .40%
7368 2.05 65 84 .40%
7467 2.07 63 84 .40%
7588 2.11 60 84 .40%
7756 .15 63 84 .40%
Annular Region 6491 1.80 7209 53 72%
7004 1.95 28 53.72%
7042 1.96 26 53.72%
7000 1.97 35 53.72%
7179 1.990 35 53.72%
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For equipment survival, energy deposition (the integral
of total heat flux over time) is an important parameter to
calculate the thermal loading. Figures 23 to 26 plot the surface
temperature and total heat flux for two kinds of surfaces in the
lower compartment (steel and concrete) as predicted by HECTR
using two different compartment models. In the 15-compartment
model, as a result of a finer noding in the lower compartment,
HECTR predicted a higher peak surface temperature and larger heat
flux for each discrete burn. However, for the modified
calculation using the HECTR/MAAP 6-compartment model, the total
heat flux on the surface behaved like the response to a diffusion
flame rather than to a discrete burn. It seems that the 15-
compartment model predicts a much bigger energy deposition rate
thar the revised HECTR/MAA? 6-compartment model.

4.4 Sensitivity Studies

Several sensitivity studies were performed to evaluate
the importance of parameters to better understand the HECTR
predictions. Three such studies are discussed in this report.
Two involved changing the ignition criterion to either 6% or 8%
hydrogen mole fraction using the 15-compartment model. These two
ignition criteria were used because as shown in Fig. 6, the
uncertainity of the flammability limits for the
hydrogen:air:steam mixture is about 1%.

For ignition occurred at 6% hydrogen, HECTR predicted
an earlier, more moderate burn and more sequential burns in the
reactor containment. These burns were all initiated in the lower
compartment, then propagated into the ice bed and upper plenum.
The result of these burns gave a peak pressure of 133 kPa (190.3
psia) and peak temperature of 682 Kk (Figure 27).

When the ignition criterion was increased to 8%
hydrogen concentration, the flame propagation pattern was quite
different. In this case, the flame was initiated in the upper
plenum and propagated downward into the ice bed twice and upward
into the dome twice. Not a single burn sequence propagated back
into the iower compartment in this calculation. In HECTR, the
downward flame propagation limit is set at 9% hydrogen.
Throughout the transient, the hydrogen concentration in the lower
compartment never reached 8% because of the high steam content.
Hence ignition could not occur or flame could not propagate down
into the lower compartment. Besides two sequential burns, there
were also three iocal regional burns in the upper plenum
predicted by HECTR. Since the burning was at the higher hydrogen
mole fraction and at a later time, it was more severe. However,
even though the flame from the regional burn did propagate into
the dome, only a small fraction of hydrogen present in the dome
was combusted. Therefore, the calculated peak pressure and
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temperature were slightly highe:r than other cases: 172.5 kPa (25
psia) and ©62.7 K (Figure 28). For the study of 'quipment
survival, there was not much heating of the surfice in the upper
plenum and in the dome region because the burn time was short and
the degree of burning was minimal. For & different reason, the
surfaces in the lower compartment did not heat up substantially
either because no combustion took place in that region.

Another sensitivity study was performed to analyze 8%
hydrogen combustion in the dome. Suppose that igniters in the
upper plenum and in the lower compartment were not functioning or
igniters did not come on until 68C0 s; then 8% hydrogen would
accumulate in the dome. If ignition occurred in the dome at that
time, it would generate pressure and temperature spikes of 200.7
kPa (43.5 psia) and 1040.3 K, respectively (Figure 29). However,
this global burn happened only in the dome and there was no flame
propagation into either the lower region of the upper compartment
ur into the upper plenum because neither compar*nents nevar
reached 9% hydrogen concentration. (Using the generation rates
given by MAAP in a well-mixed environment without any combustion,
HECTR predicted a hydrogen concentration of 8.4% in a dry mixture
within the ice-condenser containment.)

More sensitivity studies are recommended because very
large differences between HECTR and MAAP predictions could occur
for other accident scenarios, especially whenever the following
conditions were involved: steam inerting of one or more
compartments in containment, ignition at concentraticns
corresponding to flame temperatures significantly higher or lower
than 983 K, and combustion in plants equipped with deliberate
ignition systems. Smaller differences would also result from the
different models for combustion completeness and flame speeds,
and for sideways and downward flame propagation. Another
sensitivity studies to investigate the effect of the noding
system (coarse versus fine and 1 versus 4 contreol volumes in the
ice bed) on the hydrogen transport in reactor containment, is
also important.

4.5 Summary of Findings

Overall the differences between HECTR and MAAP results
can be best illustrated by comparing the HECTR calculation using
a HECTR/MAAP 6-compartment model with the MAAP prediction. Both
the source release rate and georetrical data are identical. The
pressures predicted by the two codes are shown in Figure 30. The
character‘stics of the predicted combustion are very different.
HECTR predicts three global deflagratiors with very sharp, but
brief prussure peaks. MAAP predicts a much more gradual increase
in pressure, characteristics of diffusion flames rather than
propagating deflagrations. In spite of the different combustion
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characteristics, the calculsted peak pressures do not differ
greatly: 162 kPa (23.5 psia) for HECTR versus 141 kPa (20.5 psia)
for MAAP.

Temperature histories computed by the two codes are
shown in Figure 31. Again, the different combustion modes lead
to very different containment ‘emperatures. However, although
the differernces in predicted pressure are not great, the peak
temperatures computed by tne two codes are very different: 821 K
for HECTR versus 460 K for MAAP.

A comment cn the completed HECTR analyses is that the
probability of the flame at a point flashing back to the source
location and burning as a diffusion flame has not been studied
thoroughly. It is possible that this can happen [18 and 20],
even though my first analysis shows that the flame may be
unstable because of the high predicted steam-to-hydrogen mixture
ratio at the break (Figure 32). More work on diffusion flame
stability is recommended.
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6. CONCLUSION

The most important differences betweer the HECTR and
MAAP calculations involve the assessment of the threat to
containment integrity. MAAP does not distinguish between the
clearly separate processes of flame ignition and flame
propagation - ignition (e defined to occur immedirtely upon the
aciiievement of a4 particular hydrogen concentration. Global burns
in MAAP can never yield pressures in excess of that corresponding
to 7.3% hydrogen in dry air, because a "flame temperature
criterion" is used instead of expe imentally determined
flammability limits and ignition thresholds. Since essentially
all containments can survive combustion under these conditions,
MAAP never predicts any threat. However, since ignition may be
random if igniters are not operating, burns at concentrations
much higher than 7.3% are possible. Furthermore, a glnnc may be
steam inerted, which would prevent combustion as hig
concentrations of hydrogen developed. When the steam condensed
(by natural condensation or by spray initiation), deflagrations
could take place at high hydrogen concentrations. MAAP does not
account for the possibility of steam inerting.

"Incomplete burns" calculated by MAAP are always
inconsequential. The concentration of hydrogen is so low, and
the burning rate so slow, that containment integrity is never
threatened. Such predictions are not unreascnable for some
accidents in IC plants. However, there are accident scenarios in
which the lower compartment is steam inerted. High
concentrations of hydrogen could develop, and hi;g ressures
could result from burns taking place in the dome. he MAAP
predictions would be non-conservative for these scenarios.

Although HECTR relies on many empirical correlations,
it allows moare flexibility in examining different accident
scenarios. Where processes might be random, such as ignition,
HECTR permits the analyst to parametrically investigate different
assumptions.

Neither HECTR nor MAAP allows for the possibility of
flame acceleration or transition to detonation.
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APPENDIX A
COMPUTER PROGRAM TFLAME

A FORTRAN computer program TFLAME, which was written based
on the MAAP's combustion model, was usedi to preaict various
combustion parameters for better compaurison of modeling
differences between HECTR and MAAP. The listing of the program
is as follows:

PROGRAM TFLAME
c

C A FORTRAN PROGRAM TU CALCULATE FLAME TEMPERATURE
C AND EVALUATE STEAM INERTING EFFECT ACCORDING TC
C FLAME TEMPERATURE CRITERION.

C CALCULATE THE BURNING VELOCITY, FLAME SPEED,

C BURN TIME, COMBUSTION COMPLETENESS USING

C  MAAP COMBUSTION MODEL

C

C INPUT: FOROO5; OUTPUT: FOROOS6 & FORO10

C
PARAMETER (NH = 50, NS = 50)
COMMON /COMDAT/ QC, €S, CA, CH, CO, CN, XS, XH
COMMON /CONTRL/ ICPV, ITTL
DIMENSION XH2(NH), XST(NS)
REAL MWS, MWA, MWH, MWO, MWN

=

=

w
i

- 18.016E-3
28 G86E-3

MWH - 2 0158E-3

31 . Q988E-3

« 28 0134E-3

RRR - 8 31434

. 9.R0685

PI =« 3, 1415026¢

QC = 2.4181846E+5

TC « 983

:
-
n

3
Z0
5 N

8

i

C
C READ INPUT

¢
WRITE (6,1000)
1000 FORMAT(' ENTER 1 FOR FLAME TEMPERATURE CALCULATION'/
" ENTER 2 FOR STEAM CONCENTRATION CALCULAT.ON'/
" ENTER 3 FOR BURNING VELOCITY CALCULATION'/
" ENTER 4 FOR COMBUSTION COMPLETENESS, '/
‘ BURN TIME, AND FLAME SPEED'/
" ENTER 5 FOR BILLY FLAMMABILITY LIMIT')
READ(5,+) N

L I I



C

C

C

C

C

WRITE(10,1100)

1100 FORMAT(® '’/ ! RESULTS FROM PROGRAM TFLAME (4/24/1086)°/

1200

1201

1202

1300

1301

1302

1400

1401

1501

. ' 1)

IF (N .EQ. 1 .OR. N .EQ. 2 .OR. N .EQ. 4, THEN
WRITE (8,1200)
FORMAT (* ENTER O FOR SPECIFIC HEAT AT CONSTANT'
' ' PRESSURE'/’' ENTER 1 FOR SPECIFIC HEAT AT’
. ' CONSTANT VOLUME ')
READ (5,+) ICPV
IF (ICPV .EQ. 0) THEN
WRITE(10,1201)
. FORMAT (' USE SPECIFIC HEAT AT CONSTANT PRESSURE')
SE
WRITE (10, 1202)
Emrggur(' USE SPECIFIC HEAT AT CONSTANT VOLUME’)

WRITE (6, 1300)
FORMAT (' ENTER O FOR TEMPERATURE INDEPENDENT PROPERTY'/
. " ENTEKk 1 FOR TEMPERATURE DEPENDENT PROPERTY')
READ(5,+) ITTL
IF (ITTL .EQ. O) THEN
WRITE(10,1301)
- EORNAT(’ TEMPERATURE INDEPENDENT PROPERTY')
S
WRITE(10,1302)
FORMAT (* TEMPERATURE DEPENDENT PROPERTY')
END IF
END IF

WRITE (C,1400)

FORMAT (' WHAT IS THE INITIAL TEMPERATURE (K) 7')
READ(5,+) TI

WRITE(10,1401) TI

FORMAT(' THE INITIAL TEMPERATURE (K) - ',F8.3)

WRITE (8,1500)

1500 FORMAT(' HOW MANY INPUT DATA FOR INITIAL H2'

. ' CONCENTRATION?")
READ(5,+) 1H

WRITE (6,1501)

FORMAT (' WHAT ARE THE INITIAL H2 CONCENTRATIONS”')
READ(5,«) (XMH2(1),1-1,1W)

WRITE(6,1502) (XH2(1),1«1,1IH)

WRITE(10,1502) (XM2(1),1-1,1IH)

1502 FORMAT (' THE INITIAL N2 CONCENTRATIONS « '/10F8 . 3)

IF (N .NE. 2 .AND. N .NE. 5) THEN






BB = AAQ+TC + (BB1+AAl1)+«SCR~100
CC = AA1«TC + BB1-TC
CALL SUB1 (AAO,AA1,BB1,TI)
BB = BB - AAO-TI
CC = CC - AAl1=-TI - XH-QS
CALL SUB37AA ,BB,CC,6X1,X2)
WRITE (6,2207) XH,6X1,6X2
YRITE(10,2207) XH,6X1,X2

2207 FORMAT(3F10.4)

250 CONTINUE
STOP

C

g BURNING VELOCITY
300 CONTINUVE
WRITE (6,3100)
WRITE(10,3100)
3100 FORMAT(' H2 CONC. STEAM CONC. BURNING VELOCITY '/

. (M/8) ")
DO 350 I=1,IH
XH = XH2(I)
DG 350 J=1,JS
XS = XST(J)
CALL SUB2(BURNV,TI)
WRITE(6,3201) XH, XS, BURNV
WRITE(10,3201) XH, XS, BURNV
3201 FORMAT (2F10.3,F15.6)
350 CONTINUE
STOP
C
C CALCULATE THE COMBUSTION COMPLETENESS, BURN TIME,
¢ AND FLAME SPEED
C
400 CONTINUE
WRITE(6,4100)
4100 FORMAT(' ENTER INITIAL PR* “BE (Pa)')
READ(5,+) PO
WRITE(6,4101) PO
WRITE(10,4101) PO
4101 FORMAT(' INITIAL PRESSURE (Pa) = ',E10.4)

WRITE (6,4200)
4200 FORMAT(' ENTER FLAME DRAG COEFFICIENT')
READ(6,+) CD
WRITE (6,4201) CD
WRITE(10,4201) CD
4201 FORMAT(' FLAME DRAG COEFFICIENT «',F10.4)

WRITE(6,4210)
4210 FORMAT(' ENTER BURN VELOCITY MULTIPLIER')




READ(5,+) SCU
WRITE (6,4211) SCU
WRITE(10,47211) SCU

4211 FORMAT(' BURN VELO”ITY MULTIPLIER =',F10.4)

C

WRITE (6,4220)

4220 FORMAT(' ENTER THE CHARACTERISTIC LENGTH (M)')

READ (5,+«) CL
WRITE(10,4221) CL

4221 FORMAT(' CHARACTERISTIC LENGTH (M) =',F8.3)

C

WRITE (6,4300)

4300 FOR“AT(' VESSEL GEOMETRY: ENTER O FOR SPHERICAL’/

4401
4402

4403

4501
4502

4503

4504

4505

1 FOR CYLINDRICAL')
“READ (5, <) 16
IF (IG .EQ. O) THEN
WRITE (10,4401
FORMAT (* VESSEL GEOMETRY : SPHERICAL’)
WRITE (6, 4402)
FORMAT (' WHAT IS THE DIAMETER GF THE VESSEL (m) ')
READ (5,+) DD
WRITE(10,4403) DD
FORMAT (' THE DIAMETER OF THE VESSEL (M) = ',F8.3)
RR = DD/2
VOLT = 4/3«PI«RR++3
ELSE )
WRITE (10,4501)
FORMAT (° VESSEL GEOMETRY : CYLINDRICAL')
WRITE (8,4502)
FORMAT (' WHAT IS THE CX DIAMETER OF THE VESSEL (M) ?')
READ (5,+) DD
WRITE(10,4503) DD
FORMAT (' THE CX DIAMETER OF THE VESSEL (M) = ', F8.3)
RR = DD/2
WEITE (8, 4504)
FORMAT (' WHAT IS THE HEIGHT OF THE VESSEL (M) 7')
READ (5,«) HT
WRITE(10,4505) HT
FORMAT (' THE HEIGHT OF THE VESSEL (M) = ',F8.3)
VOLT = Pl<RR«RR«HT
FND IF
WRITE (6, 4600)
WRITE (10, 4600)

4600 FORMAT (3X,'XH' 6X,'XS"' ,6X,'P1' ,7X, 'TI"',5X, "TFLAME' , 3X,

'B-VEL.' ,3X,'B-TIME',3X, 'V-FLAME' ,2X, 'COMBUSTION",
4X, "MAAP FV' /17X, (Pa) ' ,8X,"(K)"', 58X, "'(K)"', 65X,
"(m/s)',6x,'(n)’,6X, (m/s) "', 3X, '"COMPLETENESS ',
4X, ' (m/8) ")

IFLAG = ICPV
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DO 460 1=1,IH
(1

XH = XH2(I)
DO 490 J=1,JS
XS = XST(J)
XA =1- X8 - X

CALL SUB2(BURNV,Ti)

IF (BURNV .LE. 0.0) GO TO 485
TMN = XS«MWS « XA«MWA « XH«MWH
RHOU = PO«TMW/(RRR-TI)

CALL SUDO(TI.T')

IF (TF .LT. ©83) THEN
GMW = “XS<XH)«MWS + XA«MWA - O, 5+XH+WWC

RHOB = PO-M/(MR-TF

FVEL = BURNV«RHOU/RHO

DUM1 = (1 - RHOB/RHOU)«FVEL+GG/CD
Al = 0.333333

A2 = 0.666667

A3 = 1 C58267«DUM]

DUM2 = Al««Al
BURNT = CL+=A2 / DUM2
VFLAM = DUM2 « CL==+Al
IF (IG .EQ. O) THEN
ANGL = ATAN(FVEL/VFLAM)
AA = 1
BB = -2« (CL-RR)~COS (ANGL)
CC = CL+CL -2+CL+RR
CALL SUBZ(AA,BB,CC,X1,X2)
XX = MAX(X1,X2)
RB = XX+SIN(ANGL)
TB = RB/FVEL
YY = CL - XX«COS (ANGL)
1F (Y\ LE. RR) THEN
VOLB1 = PI«YY«YY+(RR-YY/3)
ELSE
YZ = 2«RR - YY
VOLB1 = PIl«YZ«YZ-«(RK-Y2/3)
VOLB] = 4+«PI«RR«+3 /3 - VOLB1

END 1F
ELSE
T8 « RR/FVEL

If (TB .LT. BURNT) THEN
YY « 1.088662+SQRT (DUM1) «TBe«1.56
VOLB1 = Pl+RR<RR=(CL-YY)

ELSE
TH « BURNT
YOLB1 « 0.0
END IF
END IF
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VOLB2 = 0.46657+PI1-SQRT(DUM1)«FVEL«FVEL=«TB»+3.5
VOLB = VOLB1+VOLB2
¢C = VOLB/VOLT
ELSE
ICPY = 1
CALL SUBO(TI,TF)
ICPV = IFLAG
TMW = (XS+XH)«MWS + XA«MWA - O.5+XH«NMWO
RHOB = PO«TMW/(RRR-TF)
FVEL = BURNV=RHOU,RHOB
DUM! = {1 - RHOB/RHOU)«FVEL=GG/CD
BURNT = RR/FVEL
VFLAM = CL/BURNT
¢C = 1.0
END IF
WRITE(6,4601)
XH,XS,PO,TI,TF, BURNV BURNT, VFLAN CC,FVEL
WRITE(IO 4601)
XH,XS ,PO,TI,TF, BURNV, BURNT, VFLAN CC,FVEL
4601 FORNAT 2?7 3. E10 3E1, 6E9 . 3E1 ,E14.3E1)
GO TO 486
485 WRITE(6,4851) XH,6XS,PO,Ti,BURNV
4851 FORHAT(?F7 3,E10.2,E8.2/’ BURNING VELOCITY (M/S)’
- ''= ' EBO. 2)
BURNYV
BURNT
VFLAM
cC = 0.0
WRITE(1C,4601) XH,XS,PO,TI,TF,BURNV, BURNT, VFLAM, CC
486 CONTINUE
400 CONTINUE
STOP
C

500 CONTINUVE
WRITE(6,5100)
WRITE(10,5100)
5100 PDRIAT(' BILLY FLAMMABILITY LIMIT DAT. '/
XH XS')
DO 560 I=1,IH
XH = XH2(1)
XHH = XH+100
Al = -0.007«XHH
A2 = -0.488+XHH
XSS = 100 - XHH - 37 .3+EXP(Al1) - 518.0«EXP(A2)
XS = XS8§/100
WRITE(6,5101) XH, 6 XS
WRITE(i0,5101) XH, XS
5101 FORMAT (2F8 4)
560 CONTINUE
END

W ow
0«
D ¢
ko)
o]
+
L <)
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C SUBROUTINE SUBO

SUBROUTINE SUBO(TI,TF)
COMMON /COMDAT/ QC, CS, CA, CH, CO, CN, XS, XH
COMMON /CONTRL/ ICPV, ITTL

IMAX = ITTL=100
ICOUNT = O
™ =TI

10 ICOUNT = ICOUNT « 1
CALL SUB1 (AAO,AA1,BB1,TM™)
Al = AAO«XS + AAl
A2 = QC«XH + Al1-TI
A3 = BBl + Al
TF = A2/A3
CHECK = (TF-TM)/TF
IF (ABS(CHECK) .LE. 0.001 .OR. ICOUNT .GE. IMAX) RETURN
™ = 0.5«(TF+T™)
GO TO 10
END

C

C SUBROUTINE SUBI1
C

SUBROUTINE SUB1(AAO,AA1,BB1,T™)
COMMON /COMDAT,/ QC, CS, CA, CH, COD, CN, XS, XH
COMMON /CONTRL,/ I1CPY, ITTL

SRTM= SQRT (TM)

83.15 - 1863/SRTM + 17445/TM

24.12 + 4 .358E-3«TM + 62.41/SRTM

48,212 - 536.8/SRTY + 3550/TM

39.685 - 8071/TM + 1.5E+8/ (Ti=TM)

IF (ICPV .EQ. 1) THEN
Cs = C8/1,.33
CH = CH/1.41
CO = CO/1.40
CN = CN/1.40
END IF

Qa0
ZOoXxXw!m
(I

#uun

CA 0.79«CN + 0.21+C0

"

AAO
AAl
DUM
BB1
RETURN
END

CS - CA

CA « XH«(CH-CA)
CS - 0.5-C0 - CH
XH«DUM

"

L

"
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C
C

SUBROUTINE SUB2

SUBROUTINE SUB2(BURNV,TI)

COMMON /COMDAT/ QC, CS, CA, CH, CO, ON, XS, XH
COMMON /CONTRL/ ICPV, ITTL

All 4 .644E-4

A22 = -2.119E-3

A33 = 2 344E-3

Ad4a 1.571

A55 = 3.830E-1

ABB = -2.21

DDO = 0.42-XH

DD1 = A44 +« A55-DDO

BURNV = Al11 + A22.DDO + A33+DDO+DDO
BURNV = BURNV « TI««DD! « EXP(A86+XS)
RETURN

END

SUBROUTINE SUB3 : SOLVE LINEAR OR QUADRATIC EQUATION

SUBROUTIN® SUB3(AA,BB,CC,X1,X2)
COMMON /CUMDAT/ QC, CS, CA, CH, CO, CN, XS, XH
COMMON /CONTRL/ ICPV, ITTL

IF (AA .EQ. O.) THEN
IF (BB .NE. 0.) X1 = -CC/BB
X2 = X1
ELSE
D1 = 0.5+BB/AA
D2 = D1«D1 - CC/AA
IF (D2 .GE. O) THEN
D3 = 0.5«BB/AA
X1 -D3 - SQRT(D2)
X2 = -D3 + SQRT(D2)
ELSE
WRITE (6,1000)
WRITE (10,1000)
1009 FORMAT ('NO REAL ROOT')
END IF
END IF
RETURN
END

A

n s
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APPENT X B
HECTR INPUT FOR THE STANDARD PROBLEM

This appendix contains al) of the HECTR input information used in
the first part of the sta dard problem. Tihey are listed in the
following order: (1) HECTR 15-compartment model, (2) HECTR 6-
compartment model, and (3) HECTR/MAAP 6-compartment model.

(1) HECTR 15-Compartment Model

$8585388889888889858959585589535853933838998998885855988833898888¢

! ICE CONDENSER INPUT DECK
'$888898858588938555538958859835393333588385895988858838338888888

ICE CONDENSER CONTAINMENTS

THIS 1S THE INFUT DECK FOR ICE CONDENSER STANDARD PROBLEM.
DATA ARE REDUCED FROM THE 41 COMPARTMENT MODEL AND MARCH-HECTR

REPORT .

15 VOLUMES, 1-D ICE BED ARE TREATED IN THIS CASE.

REFUELING CANAL HAS BEEN DELETED BECAUSE IT IS FULL OF WATER
LOWER BOUND FAILURE PRESSURE (36 PSIG / 350000 Pa)

1 ! NUMBER OF COMPARTMENTS EXCLUDING ICE REGION

FOR EACH COMPARTMENT: THE VOLUME, ELEVATION, FLAME PROPAGATION
LENGTH, NUMBER OF SURFACES, AND INTEGERS SPECIFYING WHICH SUMP
TO DUMP EXCESS WATER (FROM SUPERSATURATION) TNTO AND WHICH SUMP
THE SPRAYS FALL INTO.

WHERE SIMILAR NUMBERED COMPARTMENTS OCCUR ,E.G. C2 - C5,

THEY ARE SPECIFIED BY COUNTING CLOCKWISE FROM THE RERUELING
CANAL .

'

C1 - REACTOR CAVITY

et S ——

306 . 0. 10. 1 1 1

C2 - REACTOR SPACE

43¢ 16.156 3.9 2 1 1

C3 - LOWER COMPARTMENT 1 (CONNECT TO CAVITY & PRESSURIZER)
1158. 12.333. 7.71 3 2 2

C4 - PRESSURIZER DOGHOUSE

135. 26.985 13.6 2 2 2

C5 - LOWER COMPARTMENT 2 (STEAM GENERATORS)

2711. 12,338 7.7M1 3 2 2
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C6 - SG DOGHOUSE

1450.0 26.956 13.58 2 2 2
C7 - ANNULUS

2662. 10.66 13.30 2 2 2
C8 - LOWER PLENUM

676.3 18,75 3.6 3 3 3
06 - UPPER PLENUM

1330, 37.60 0.0 1 3 3
C10 - UPPFR COMPARTMENT - DOME

12764.78 44.20 17.53 3 4 4
Cl11 - LOWER DOME

4583 .07 27.71 13.80 2 4 4

FOR EACH SUMP, SUMP NUMBER, MAXIMUM VOLUME, SUMP NUMBER THAT
THIS SUMP OVERFLOWS TO

306. 2 | SUMP IN REACTOR CAVITY

1450. 1 ! LOWER COMPARTMENT SUMP

16.50 2 ! LOWER PLENUM SUMP (2 INCH DEPTH)

1300. O ! REFUELING CANAL SUMP (2 INCH DEPTH - NO SPRAYS)

FOR EACH SURFACE: TYPE OF SURFACE, MASS OF SURFACE, AREA OF
SURFACE, CHARACTERISTIC LENGTH, SPECIFIC HEAT, BIISSIVITY
INTE'ER INDICATING WHICH SUMP THE CONDENSATE GOES INTO. FOR

EACH, THE TEICKNESS, THERMAL DIFFUSIVITY, AND THERMAL
CONDUCTIVITY. FINALLY, THE NODING INFORMATION AND BOUNDARY

THE VALUES INTERNALLY). NITE THAT SOME OF THE NUMBERS SE. TO 1
ARE NOT USED FOR THAT SULFACE TYPE.

REACTOR CAVITY - C1 - SURFACE 1

SUMP 1
? 550 82 56.20 518 1.0 0.94 1

: REACTOR SPACE - C2 - SURFACES 2 - 4

e Y T Y I I reu——

RS STEEL

1 1, 207 .93 1.83 1. 0.9 1
1

0.066 1.28E-5 47.25

0 0. 0. 0.

!

RS CONCRETE

1 1. 247.36 90.14 1. 0.9 1
1

1. 5.8E-7 1.454

0 0. 0. 0.

'

-B.2-
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! LOWER COMPARTMENT- C3 - SURFACES 4 - 6
!

LC1 STEEL

1 1 611. - ® Ea 0.9 2
1

0.066 1.28E-6 47.25

? 0. 0. 0.

LC1 CONCRETE

Wy 726 .87 ~ PERENE P 0.9 2
1

0.1 5. 8BE-7 1.454

? 0. 0. 0.

LCi SUMP

3 1.32BE5 105 ¢ 11. i 0.94 2
!

! PRESSURIZER - C4 - SURFACES 7 - 8

!

PR STEEL

] 1. 63.64 1. 1. 0.9 2
1

0.068 1.28B8E-5 47.256

0 0. 0. 0.

)

PR CONCRETE

1 1. 7€.07 1. ¥ 0.9 2
1

0.1 5.8E-7 1.454

0 0. 0. 0.

!

' LOWER COMPARTMENT- C5 - SURFACES ©® - 11
)

L.C2 STEEL

>4, 1430 .37 2. - 0.9 2
1

0.069 1.28E-5 47 .25

0 0. 0. 0.

!

LC2 CONCRETE

1 1. 170" . 2. 1. 0.9 2
1

0.1 5.8E-7 1.454

0 0. 0. 0.

\

LC2 SUMP

3 3.09E5 247. 10.67 1. 0.94 2
!
! STEAM GENERATOR ENCLOSURES (INSIDE) - C8 - SURFACES 12 - 13
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SG STEEL

2 1 686 .77 N i 0.9 2
1

068 1.28E-5 47 .25

0 9, 0. 0.

|

SG CONCRETE

2 1 B17.03 1. 0.9 2
1

0.1 5.8E-7 1.454

0 0. 0. 0.

!

! ANNULUS AROUND LOWER COMPARTMENT - C7 - SURFACES 14 - 15
!

A STEEL

3 K, 1834 . 4. 5 0.9 2
1

0.031 1.28E-5 47.25

0 0. 0. 0.

!

A CONCRETE

5 3 3257 . 4. P 0.9 2
1

0. 448 5.8E-7 1.454

0 0. 0. 0.

!

! LOWER PLENUM COMPARTMENTS - C8 - SURFACES - 18 - 18
!

LP SUMP

3 5719.0 310.0 4. 3 0.94 3
!

LP WALL

T 1. 280, 3. e 0. 3
1

0.013 1.28E-5 47.25

0 0. 0. 0.

|

LP IC SUPPORT

32 1 2660 . 0.2 1. 0.6 3
1

0.0081 1. 2BE-5 47 .28

0 0. 0. 0.

!

: UPPER PLENUM COMPARTMENTS - C® - SURFACES 19
UP STEEL

o P 1000. S. 5 0.9 3
1

Vv.013 1.28E-5 47.25

0 0. 0. 0.
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!
! UPPER COMPARTMENTS - C10 - SURFACES 20 - 22

!
UC DOME

1 1. 1762. 8. 1, 0.9 N
1

0.0127 1.28E-5 47.25

? 0. 5. 300.

UC CONCRETE

i1 1. 648.73 & 1 0.9 4
1

0.91 5 8E-7 1.454

0 0. 0. 0.

!

UC STEEL

1 1. 2000. 1 1 0.9 4
1

0.013 1.28E-5 47.25

0 0. 0. 0.

!

! LOWER DOME REGION - C11 - SURFACE 23
'

LDR CONCRETE

1 1. 1822.14 14. 1. 0@ 4
1

0.91 5. 8E-7 1.454

0 0. 0. 0.

!

! REFUELING CANAL SPACE - Cl11 - SURFACES 24
!

RC SUMP

3 1.280E8 0O7.75 6. 1. 0.94 4

!
§ NO CONTAINMENT LEAKS
|

! FLOW JUNCTION DATA: COMPARTMENT ID'S, TYPE OF CONNECTION, FLOW
! AREA, LOSS COEFFICIENT, L/A RATI1O, RELATIVE POSITION OF

! COMPARTMENTS , AND JUNCTION ELEVATION. COMPARTMENT ID OF O

! INDICATES THE ICE CONDENSER. JUNCTIONS WITHIN Th . ICE

! CONDENSER ARE SET UP INTERNALLY. ADDITIONAL INFORVATION IS !
PROVIDED FOR JUNCTION TYPES 3 AND 4.

L]

1 3 1 3 34 3. 2.56 1 4.50

1 . 1 0.920 10. 13.12 1 6.00

e 3 1 7.45 4. 0.94 0 16 .47
2 b5 1 15.04 4. 0 47 0 19 .47
3 7 1 8 80 4.2 0.68 v 10.60
3 8 3 20.84 1. 0.20 1 16 .00
0. 0. 142.07 0.96



3 4 1 4.30 1.0 3.42 1 20.00
3 4 1 4.3 1.0 3.42 1 20.32

3 5 1 ©3.50 5. 0.17 0 12.30

5§ 7 1 1880 4.2 0.32 0 10.80

5 8 3 60.16 1. 0.087 1 19.00

0. 0. 142.07 0.08

5 6 1 3172 1.1 0.46 1 20.00

& 6 1 3..71 1.1 0.46 1 20.32

8 -1 1 91.88 1. 0.038 1 20.42

-1 9 1 1.8 10, 2.30 1 35.08

-1 & 3 91.30 1. 0.047 1 35.08

0. 263.4 37910. 1.58

© 10 1 186.00 1 0.035 1 40.18

10 11 1 383.12 1. 0.045 -1 34 €5

11 5 4 0.204 1.6 1000 1 7.86

2 750.

107 1 00022 10 2277.0 -1 10.60

'

| ICE CONDENSER INPUT

'

! NUMBER OF LOWEK PLENUM AND UPPER PLENUM COMPARTMENTS
11

! UPPER PLENUM COMPARTMENTS

9

! LOWER PLENUM COMPARTMENTS AND THE SUMPS THEY DRAIN INTO
8 3

! LOWZR PLENUM COMPARTMENT THAT EACH STACK DRAINS INTO

-

! ICE DESCRIPTION: TOTAL MASS, AREA, TEMFERATURE, LENGTH,
! EMISSIVITY, VOLUME .

5.449E5 1.5433E4 263.56 14.63 .04 504.23

! WALL AND STRUCTURES IN ICE CONDENSER (EXCLUDING BASKETS): MASS,
| AREA, SPECIFIC HEAT, EMISSIVITY

2.0Bb 2058 485.7 © :

MASS OF BASKETS, AREA OF BASKETS, DRAIN TEMPERATURE.

!
1.47E5 © .92E3 310,

! ELEVATION OF BOTTOM OF ICE, TOTAL FREE GAS VOLUME, INITI'L

' VERTICAL FLOW AREA, VERTICAL FLOW AREA WITH ICE GONE, LOSS

' COEFFICIENTS FOR VERTICAL FLOW WITH AND WITHOUT ICE, FLOW AREA
' WITH AND WITHOUT ICE FOR CROSS FLOW, LOSS COEFFICIENTS FOR

! CROSS FLUW WITH ,ND WITHOUT ICE, L/A FOR CROSS FLOW

16. 3060.2

167. 167. 1.0 1.0

79 79 30 30 0.4

|

§ NO SUPPRESSION POOL
|

| FAN DATA
! TEMP. AND PRESS. SETPOINTS, DELAY TIME, AND TIME TO TURN OFF.

-B. 8-



; ngg VALUE FOR TEMP. SETPOINT INDICATES THAT VALUE WON'T BE
USED.

10000 .

! SHUTOFF

! HEAD (PA), EFFICIENCY,
7 -35.54 1327 3575
7 0.9430 1327 3576

Y - Y Y TN, Y

O

! VIEW FACTORS

|

121600, 600. 1.
! COMPARTMENT ID'S, FLOW

7 0.1775 1527 .35876

1
1.
7 0.7079 1327 35756 1.
1.

7 0.2832 1327 3576

SHUTOFF

HEAD (PA), EFTICIENCY,

END OUF FANS TABLE
END OF FANS INPUT

NO FAN COOLERS

E10
RATE (- INDICATES USE OF HEAD CURVE),

RELATIVE POSITION OF COMPARTMENTS.

—

-1
-1
-1
-1
-1

RELATIVE POSITION OF COMPARTMENTS.

RADIATIVE BEAM LENGTHS - UPPER RIGHT HALF OF MATRIX IS INPUT.

ICE SURFACES ARE NOT INCLUDED HERE.
BEAM LENGTHS

24 .O8108
4.471164
471194
218579
. 21657¢
216579
471181
471181
218120
.218120
218120
. 4712086
. 471206
-B8238]
.B82381

SO0 O - WRWWWLWWWWWWWWK

. 788000
10.41850
10.41850
10.41850
¢ . 484000
0. 484000

1. 000000

.TERT662
7587602
7587662

23-0.0
3.471104
21-0.0
3.216579
3.21€579
18«0.0
3.471181
16«<0.0
3.218120
3.218120
13-0.0
3.471208
11-0.0
1. 8823R]
0.0
0.7587602
0.7587662
8§+0.0C
5«0.0

10 41850
10. 41850
2+-0.0

¢ . 484000

23+0.0

21+«0.0

3.216570
18.0.0

16+0.0

3.218120
13+0.0

11-0.0
6«0.0
0.7587602
5=0.0

10.41850
2+0.

+ 3.7T=-

(THEY ARE DONE INTERNALLY)

18«0.0

13-0.0

6+0.0

2-0.0



P P

. 45660790
5433021
4231076
5034528
.3340714E-02
4568817
5433183
. 42330086
5034072
.3112240E-02
4566807
5433103
. 3602436
6307564
.5384613E-02
.6153850E-02
.B184615
. 000000
. 3004804
. 1470800
. 4534307
6641514
5848618E-02

SPRAY INPUT

WOOOO=O0OXOVOO0OO0OOI0OO0OO0OONO0OO00O

0.5433021
21+«0.0
0.5034528

7 .3349632E-02
18+0.0

0 5433183
16«0.0
0.5034072
7.3112175E-02
13-0.0
0.5433103
11+0.0
0.6387564
9+0.0

8 .B8153843E-02
0.8184815
6+0.0

5«0.0
0.1470800
0.4534307
2+0.0

3 . 5848647E-02

21+0.0

7 .3349632E-02
18-0.0

16«0.0

7.3)112182E-02
13-0.0

11-0.0
§+0.0
0.8184615
6+0.0

0.4534307
2+0.0

18-0.0

13«0.0

6+0.0

2+0.0

NUMBER OF COMPARTMENTS WITH SPRAYS, AND 1D OF THOSE
COMPARTMENTS . SPRAY TEMP DURING INJECTION PHASE, FLOW RATE
(M=+3/8), NUMBER OF DROP SIZES, FREQUENCY AND DIAMETER

(MICRONS) FOR EACH DROP SIZE.

10 313.56 0.583 2
0.85 309.
0.05 B810.
! SPRAY CARRYOVER

10
11
$

11 1.
12 0.13

! COMPARTMENT ID AND SPRAY FALL HEIGHT FOR THAT COMPARTMENT.

10
11
12
$

14.72
13 88
12 .87

! TEMPERATURE AND PRESSURE SETPOINTS, DELAY TIME FOR SPRAYS,
! TIME THAT SPRAYS REMAIN OPERATIVE AFTER INITIATION.
! HIGH TEMPERATURE INDICATES THAT NUMBER WON'T BE USED.

10000.

121500,

30. 1.E10

! INJECTION TIME, RATED SPRAY FLOW RATE (KG/S), HEAT EXCHANGER
! RATED EFFECTIVENESS (W/K), SECONDARY SIDE INLET TEMP, RATED
! SECONDARY SIDE FLOW RATE (KG/S), SUMP THAT WATER IS DRAWN FROM.

!

(FROM MARCH-HECTR REPORT) 2000.

7 .58E2 2

587

3.74E6

301.5



NO SPRAY RECIRCULATION (S2HF ACCIDENT SCENERIO)

LA A A R A R R AR AR R AR R AR R ARl R R AR R Rl R R Rl ERER R R D]

ENTER INITIAL CONDITIONS AND ACCIDENT SCENARIO INFORMATION
LA R R R R R R R R R R R R L R R R R R R L R R R R R R
SIMULATION TIME

?OOO.

! COMPARTMENT INITIAL CONDITIONS: TEMP; PARTIAL PRESSURES OF
! STEAM, NITROGEN, OXYGEN, HYDRCGEN, CARBON MONOXIDE,

; CARBON DIOXIDE ; CONVECTIVE VELOCITY.

' C1 - CAVITY

]
]
!
!
!
!

348 B3 4C183. 60218. 17304. O. O0. 0. 0.3
! C2 - REACTOR SPACE

340 08 42160. 67413, 16854. O. 0. 0. 0.3
! C3 - LOWER COMP 1 (PRESSURIZER)

340 68 42160. 67413, 18854. O. 0. 0. 0.3
! C4 - PRESSURIZER SPACE

3490 .08 42160. 67413. 16854. 0. O. 0. 03
! C6 - LOWER COMP 2 (STEAM GENERATOR)

340 .08 42160. 67413, 186854, . 0. 0. L3
! C6 - STEAM GEN DOGHOUSES

340 .08 42160. 67413, 10854. 0. 0. 0. 0.3
! C7 - ANNULUS

310.62 6617. ©O6087. 24022. 0. 0. 0. 0.3
! C8 - LOWER PLENUM

340 98 42160. 67413. 16854 0. 0. 0. 0.3
! C8 - UPPER PLE~UM

310.94 6628. 0O6078. 24020. 0. 0. 0. 0.3
! C10 - UPPER COMPARTMENT

310.97 5631, 0O6080. 24021. 0. 0. 0. 0.3
! C11 - LOWER DOME REGION

310.67 6631, O6080. 24021, O0. 0. 0. 0.3
! ICE CONDENSER INITIAL CONDITIONS

310.84 6578, 05538, 23885. 0. 0. 0.

SOURCE TERMS

STEAM SOURCE FROM EXTERNAL TABLE

NO NITROGEN SOURCES

NO OXYGEN SOURCES

HYDROGEN SOURCE FROM EXTERNAL TABLE
NO CO SOURCES

NO CO2 SOURCES

NO SUMP WATER REMIVAL

NO ENERGY SOURC.S

NO CONTINUOUS “_ANING

—BBBBDD DD~ -



! INITIAL SURFACE TEMPERATURES
!

! C1 RC
350.3¢

! C2 RS
342 .65
345 .01

! C3 LC1
342 .65
345 .01
342 .38

! C4 PR
342 .65
345.01

! C6 LC2
342 .65
340.97
342 38

! C6 8G
342 .65
345 .01

! C7 AN
310.51
310.51

! C8 LP
330.37
345 .01
342 .65
'8 UP
312.56

! C10 UC
312 .58
312 .58
312.560

! C11
312 .58
?15.1!

3 NAMELIST INPUT

XHMNIG (8) =1 .
XHMNIG(12) =1,
XHMNIG(13) =1,
XHMNIG (14) =1,
XHMNIG(18)=1.
DTHTMX = 1.0
DTFLMX = 1.0
SPRAYS = OFF
FANS = ON
MRCHSC=5

-B.10-



TIMZER=4706 .6
SOOOQ-PALSS

(2) HECTR 6-Comartment Model

'8889855598585555999853555989555895335955953358398889883598888888
! ICE CONDENSER INPUT DECK
'$$8988889989898985859888955885338855533558888393953598888885983838
ICE CONDENSER CONTAINMENTS

THIS IS THE INPUT DECK FOR ICE CONDENSER STANDARD PROBLEN.
DATA ARE REDUCED FROM THE MAAP 8 COMPARTMENT MODEL .

& VOLUMES, 1-D ICE BED ARE TREATED IN THIS CASE.

LOWEn &2°ND FAILURE PRESSURE (85 PSIG / 448200 Pa)

? ! NUMBER OF COMPARTMENTS EXCLUDING ICE REGION

! FOR EACH COMPARTMENT: THE VUL oE, ELEVATION, FLAME PROPAGATION
! LENGTH, NUMBER OF SURFACES, AND INTEGERS SPECIFYING WHICH SUMP
| TO DUMP EXCESS WATER (FROM SUPERSATURATION) INTO AND WHICH SUMP
: THE SPRAYS FALL INTO.

| WHERE SIMILAR NUMBERED COMPARTMENTS OCCUR ,E.G. €2 - CS,

! THEY ARE SPECIFIED BY COUNTING CLOCKWISE FROM THE REFUELING
! CANAL.

!

C1 - REACTOR CAVITY

416 .09 0. 7.04 2 1 1
C2 - LOWER COMPARTMENT

7742.75 20.16 6 .86 5 2 2
C3 - ANNULUS

2661 .78 12.88 3.20 2 3 3
C4 - UPPER PLENWM

1530 .89 37 .58 1.37 0 2 2

C5 - UPPER COMPARTMENT
17175.67 36.22 16.12 4 4
! FOR EACH SUMP, SUMP NUMBER, MAXINUM VOLUHE SUMP NUMBER THAT

THIS SUMP OVERFLOWS TO

|
!

1 410.090 2 ! SUMP IN REACTOR CAVITY
2 1500.13 3 ! LOWER COMPARTMENT SUWP

-B.11~



R PP —————

1797 .62 2 ! ANNULUS SUMP (13.2 FT. DEPTH)
1300.0 O ! REFUELING CANAL SUMP

FOR EACH SURFACE: TYPE OF SURFACE, MASS OF SURFACE, AREA OF
SURFACE, CHARACTERISTIC LENGTH, SPECIFIC HEAT, EMISSIVITY,
INTEGER INDICATING WHICH SUMP THE CONDENSATE GOES INTO. FOR
SLABS (STYPE = 1), THE NUMBER OF LAYERS IN THE SURFACE, AND FOR
EACH, THE THI S, THERMAL DIFFUSIVITY, AND THERMAL
CONDUCTIVITY. FINALLY, THE NODING INF'ORMATION AND BOUNDARY
CONDITIONS ARE SPECIFIED (O'S INDICATE THE CODE WILL DETERMINE
THE VALUES INTERNALLY). NOTE THAT SOME OF THE NUMBERS SET TO 1.
ARE NOT USED FOR THAT SURFACE TYPE.

REACTOR CAVITY - C1 - SURFACE 1 - 2

SUMP 1
3 550.82 60.20 518 1.0 0.64 1
RC CONCRETE
1. 234.88 5.18 B854.15 0.9 1
524 7 .1BE-7 1.453
0. 0. 0.

e ™ =

LOWER COMPARTMENT- C2 - SURFACES 3 - 8

LC STEEL

!

1. 60E6 2780.12 2. 460.5 0.¢ 2

LC OUTER ¥ALL - CONCRETE

1
1
0
0

1. 062.20 4. 854.15 0.9 2

9144 7 . 1BE-7 1 .453
0. 0.0 0.0

|
LC INTERIOR WALL - CONCRETE

1

™

WO W

O

1. 330.00 4. 854.15 0.9 2

8166 7 .18E-7 1.453
. 0.0 0.0

1
0

C FLOOR - CONCRETE
1.

502.66 4. 854.15 0.9 2

65786 7.1BE-7 1.453
0. 0.0 0.0
S
4

41E5 502.66 4. 3. 0.94

"~

—B- 12-



| ANNULUS AROUND LOWER COMPARTMENT - C3 - SURFACES 8 - ©

A LINER CONCRETE

0.04 3

0.

4

0.9 4

64 4

COMPARTMENT ID'S, TYPE OF CONNECTION, FLOW

AREA, LOSS COEFFICIENT, L/A RATIO, FELATIVE POSITION OF
COMPARTMENTS, AND JUNCTION ELEVATION COMPARTMENT ID OF ©
INDICATES THE ICE CONDENSER. JUNCTIONS WITHIN THE ICE

13-

it ®

ADDITIONAL INFORMATION IS

2.984
0.8675
10.60
20.50
35.0862
35.052

40.12

1 1. 1027.14 4. B54.15 0.9

2

0.0208 1.280-5 47.25

0.9144 7.18E-7 1.453

? 0. 3.5033 310.78

A SUNP

? m.“ ‘“l77 ‘l 1'

| UPPER COMPARTMENTS - C5 - SURFACES 10 - 13

UC OUTER WALL - LINER CONCREATE

1 1. 1920.87 5. 854.15 0.9

2

0.0124 1.28E-5 47.26

0.9144 7.18E-7 1.453

o 0. 3.5033 310.78

UC DECK - CONCRETE

1 1. 1830.19 5 854.15 0

1

0.7620 7.18E-7 1.453

?a 0. 0.0 0.0

UC EQUIPMENT - STEEL

2 108285 1084.13 5. 460,

uc SUMP

3 1.250E6 51 8863 5. 1.0

\

§ NO CONTAINMENT LEAKS

!

| FLOW JUNCTION DATA:

!

)

|

| CONDENSER ARE SET UP INTERNALLY.

! PROVIDED FOR JUNCTION TYPES 3 AND 4.

|

1 2 1 4.852 3. 2.445

1 2 1 1.0% 0. 11.74

2 3 1 2768 1.0 0.550

2 -1 1 101.08 1.0 0.1851

-1 4 1 0.1011 10. 97.40

-1 4 3 186.08 1.0 0.053

0. 263.4 37910. 1.56

4 5 1 186.08 1. C.095
-B




2 4 0.223 10. 185.9 -1 7.864
750,
3 1 0.0022 10, 2277. -1 10.80

ICE CONDENSER INPUT

NUMBER OF LOWER PLENUM AND UPPER PLENUM COMPARTMENTS
1

UPPER PLENUM COMPARTMENTS

LOWER PLENUM COMPARTMENTS AND THE SUMPS THEY DRAIN INTO
2
LOWER PLENUM COMPARTMENT THAT FACH STACK DRAINS INTO

ICE DESCRIPTION: TOTAL MASS, AREA, TEMPERATURE, LENGTH,
EMISSIVITY, VOLUME .

.4401E5 1.5433E4 263.56 14.63 .04 504.23

WALL AND STRUCTURES IN JCE CONDENSER (EXCLUDING BASKETS): MASS,
AREA, SPECIFIC HEAT, EMISSIVITY

(USE OLD MARCH-HECTR DATA)

.OE6 2058, 485.7 .9

MASS OF BASKLTS, AREA OF BASKETS, DRAIN TEMPERATURE.

(USE OLD #ARCH-HECTR DATA)

47E5 © .9ZE3 310.

ELEVATION OF BOTTOM OF ICE, TOTAL FREE GAS VOLUME, INITIAL
VERTICAL FLOW AREA, VERTICAL FLOW AREA WITH ICE GONE, LOSS
COEFFICIENTS FOR VERTICAL FLOW WITH AND WITHOUT ICE, FLOW AREA
WITH AND WITHOUT ICE FOR CROSS FLOW, LOSS COEFFICIE~TS FOR
CROSS FLOW WITH AND WITHOUT ICE, L/A FOR CROSS FLOW,

! (USE OLD MARCH-HECTR DATA)

20.42 30680.2

167 . 167, 1.0 1.0

',7.0 7.9 3.0 30 0.4
, NO SUPPRESSION POOL

| FAN DATA

! TEMP. AND PRESS. SETPOINTS, DELAY TIME, AND TIME TO TURN OFF.
: g% VALUE FOR TEMP. SETPOINT INDICATES THAT VALUE WON'T BE
10000. 0.0 0.187 1.E10

| coupsm_ra;'mm ID'S, FLOW RATE (- INDICATES USE OF HEAD CURVE),
: |

' HEAD (PA), EFFICIENCY, RELATIVE POSITION OF COMPARTMENTS .

5 3 37.753  1327.3576 1. -1

$§ END OF FANS TABLE

§ END OF FANS INPUT

§ NO FAN COOLERS

|

e ST ¥, [ ¢ SIS . [ . T S ——— T L
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RADIATIVE BEAM LENGTHS - UPPER RIGHT HALF OF MATRIX IS INPUT.
ICE SURFACES ARE NOT INCLUDED HERE. (THEY ARE DONE INTERNALLY)

BE/M LENGTHS

5.111720 5.111720 11-C.0
5.111720 11-0.0
5.801047 5.801047 5.801047 5.801047
5.801047
6«0.0
5.801047 5.801047 5.801047 5.801047
6+0.0
5 801047 5.801047 5.801047 6+0.0
5.801047 5.801047 6+0.0
5.801047 6+0.0
6.501352 6.501352 4-0.0
6.501352 4-0.0
13.80071 13.60871 13.60071 13.60971
13.60871 13.60071 13.60071
13.60071 13.60071
13.80671
)
' VIEW FACTORS
1
0.2042600 0.7857310 11-0.0
0.7957310 11-0.0
0.5474251 0.1804630 6.5156510E-02 © . SO77268E-02
9.I97736‘l-03
8.0
0.1804639 6.5156512E-02 © . 8077260E-02 © .8977280E-02
6«0.0
6. 5156542802 0 BU77208E-02 O .BO7720BE-02 6+0.0
9 . BOT77245E-02 0 BUT7245E-02 6.0.0
§ BOT77245E-02 6+0.0
0 .6068811 0.3031180 4-0.0
0.303118¢ 4-0.0
0 3057058 0 3753330 0 2182304 1.0640776E-02
0. 3753330 0 2182304 1 0640777E-02
0.2182304 1 .0640775E-02
1 .0640800E-02
SFRAY INPUT

et * Al e .

NUMBER OF COMPARTMENTS WITH SPRAYS, AND ID OF THOSE
COMPARTVENTS . SPRAY TEMP DURING INJECTION PHASE, FLCW RATE
(Mos , ¥_S2%R OF DROP SIZES, FREQUENCY AND DIAMETER
(MICRONS) FOR EACH DROP SIZE.

313 .56 0.593 1

.00 700

SPRAY CARRYOVER

~B.16-



§ NO CARRYOVER

! COMPARTMENT ID AND SPRAY FALL HEIGHT FOR THAT COMPARTMENT.
5 28.68]

!

TEMPERATURE AND PRESSURE SETPOINTS, DELAY TIME FOR SPRAYS,
. TIME THAT SPRAYS PEMAIN OPERATIVE AFTER INITIATION.
| HIGH TEMPERATURE INDICATES THAT NUMBER WON'T BE USED.
10000, 1207272 0.01611 1.E10

INJECTION TIME, RATED muv FLOW RATE gn , HEAT
RATED EFFECTIVENESS (W/K), SECONDARY § gur RATED
SECONDARY SIDE FLOW RATE (KG/S), SUMP THAT WATER IS {auu FROM .
g:gu n;uwn -HECTR REPORT) 2000. 587. 3.74B6 301.8
NO SPRAY RECIRCULATION (S2HF ACCIDENT SCENERIO)

LA AR AL LR R R R R A R R R R )

ENTER INITIAL CONDITIONS AND ACCIDENT SCENARIO INFORMATION
LR R A A A R A A R R R e T
SIMULATION TIME

fOOO.

! COMPARTMENT INITIAL CONDITIONS: TEMP; PARTIAL PRESSURES OF
! STEAM, NITROGEN, OXYGEN, HYDROGEN, CARBON MONOXIDE,

; CARBON DIOXIDE ; CONVECTIVE VELOCITY.

! C1 « CAVITY

et L b T

348 . B3 40183. 60218, |7304. O, O, 0. 0.3
! €2 - LOWER COMP

340. 08 42160. 67413, 16854. 0. 0. 0. 0.3
! C3 - ANNULLS

310.92 6617, OB08B7. 24022. ©0. 0. 0. 0.3
! C4 - UPPER PLENUM

31094 6628, OB078. 24020. 0. 0. O. 0.3
! C6 - UPPEP COMPARTMENT

31067 B65.. 06080, 24021. O, 0. 0. 0.3
! ICE CONDENSER INITIAL CONDITIONS

310 8B4 6578, 05538, 23885. 0. 0. 0O,

SOURCE TERMS

STEAM SOURCE FROM EXTERNAL TABLE

NO NITROGEN SOURCES

NO OXYGEN SOURCES

HYDROGEN SOURCE FROM EXTERNAL TABLE
NO CO SOURCES

NO CO2 SOURCES

NO SUMP WATER REMOVAL

NO ENERGY SOURCES

NO CONTINUOUS BURNING

MmN - -~
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; INITIAL SURFACE TEMPERATURES
! €1 RC
350 .39

:
5

Sg-ogabssa

25po8gEE
su® _SZ _gseze
I

Q- -—ww
——
§ oo
e
®

-

=

?

W!O(O;-l .0
TIMZER~4706 .6
0000. 2-FALSE

(3) HECTR/MAAF © Compartsent Mode)

! OllO”MO‘OOlOCOCW".’“OOCMO‘.‘WO‘.‘“‘W

ICE CONDENSER INPUT DECK
? §S3S38888ITISISTIIIITINIITITINSIIITISIISTIIIIISINSESIESI888588SS
ICE CONDENSER CONTAINMENTS

THIS IS THE INPUT DECK FOR ICE CONDENSER STANDARD PROBLENM .
DATA ARE REDUCED FROM THE HECTR 16 COMPARTMENT MODEL .

6 VOLUMES, 1-D ICE BED ARE TREATED IN THIS CASE.

LOWER BOUND FAILURE PRESSUPE (65 PSIG / 448200 Pa)

‘BT~



5 | NUMBER OF COMPARTMENTS EXCLUDING ICE REGION

!

! FOR EACH COMPARTMENT: THE VOLUME, ELEVATION, FLAME PROPAGATION
! LENGTH, NUMBER OF SURFACES, AND INTEGERS SPECIFYING WHICH SUMP
| TO DUMP EXCESS WATER (FROM SUPERSATURATION) INTO AND WHICH SUMP
; THE SPRAYS FALL INTO.

! WHERE SIMILAR NUMBERED COMPARTMENTS OCCUR ce -

! THEY ARE SPECIFIED BY COUNTING CLOCKWISE F*OI THE nmm.xm

: CANAL .

~ REACTOR CAVITY
896 00 0. 10.0
C2 - LOWER COMPARTMENT
5887 . 46 16.23 17.5
C3 - ANNULUS
2662 00 10.56 13.3
C4 - UPPER PLENUM
1330 .00 37.60 9.00 1
C10 - UPPER COMPARTMENT
17357 85 38.39 17.5
FOR EACH SUMP, SUMP m MAXIMUM VOLUME, SUMP NUMBER THAT
THIS SUMP OVERFLOWS TO

N O -
- B N BN -
& B W W =

366.00 2 ! SUMP IN REACTOR CAVITY

1450.0 1 ' LOWER COMPARTMENT SUMP

16.483 2 ! LOWER PLENUM FLOOR (« IN. DEPTH)
1300.0 0O ! REFUELING CANAL SUNP

FOR EACH SURFACE: TYPE OF SURFACE, MASS OF SURFACE, AREA OF
SURFACE, CHARACTERISTIC LENGTH, SPECIFIC HEAT, EMISSIVITY,
INTEGER INDICATING WHICH SUMP THE CUNDENSATE GOES INTO. FOR
SLABS (STYPE = 1), THE NUMBER OF LAYERS IN THE SURFACE, AND FOR
EACH, THE THICKNESS, THERMAL DJFFUSIVITY, AND THERMAL
CONDUCTIVITY. FINALLY, THE NODING INFORMATION AND BOUNDARY
CONDITIONS ARE SPECIFIED (0'S INDICATE THE CODE WILL DETERMINE
THE VALUES INTERNALLY). NOTE THAT SOME OF THE NUMBERS SET TO 1.
ARE NOT USED FOR THAT SURFACE TYPE.

REACTOR CAVITY - C1 - SURFACE 1 - 2

SUMP 1
3 560.82 §0.20 5§18 1.0 0.94 1
!

| LOWER COMPARTMENT- C2 - SURFACES 2 - 7
L]

o o D ) R e - - -
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LC STEEL

1 1. 3000.0 2. 1.0 0.9 2
1

0.0600 1.28BE-5 47.25

? 0. 0.0 0.0

LC CONCRETE

{ 1. 2560.0 4. 1.0 0.9 2
0.10 5 .8E-7 1.453

? 0. 0.0 0.0

LC SUMP

? 4 4188 353,00 10.87 1. 0.04 2
LC - LP STEEL WALL

: 1. 280.00 8. 1.0 0.9 3
0.013 1.28BE-5 47.25

? 0. 0.0 0.0

LC - IC SUPPORT STRUCTURE

1 1. 2660.0 0.2 1.0 0.9 3
1

0.0081 1 .28F-5 47.25

0 0. 0.0 0.0

\

wC » LI FLOCR/SUMP

? e N0V N 40 1. 0.04 3
; ANNULUS AROUND LOWER COMPARTMENT - C3 - SURFACES 8 - ©
AN STREL

L 1834 .0 4. 1. 0.9 2
1

0.0310 1.2BE-5 47.25

(’) 0. 0.0 0.0

AN CONCRETE

1 1 3257.0 4. 1. 0.9 2
1

O 4480 5 .BO0E-T7 1 .454

o 0 0.0 0.0

!

! UPPER PLENWM - C4 - SURFACE 10

'

UP - STEEL

1 1. 1000 . 5. 1. 0.9 3
1

9.013 1.2BE-5 47.25

0 0. 0.0 0.0

-B. 18-




! JUBPAR COMPARTMENT - C5 - SURFACES 11 - 14

8-
:

1
0127 1.28E-5 47.25

LB = J
o
(=]
o

1. 0.9 4

8~oo—~
(=]
o
O -
(=]

REFUELING CANAL SUMP
.250E6 67.75 6. 1.0 0.94 4

CONTAINMENT LEAKS

JUNCTION DATA: COMPARTMENT ID'S, TYPE OF CONNECTION, FLOW
, LOSS COEFFICIENT, L/A RATIO, RELATIVE POSITION OF
ARTMENTS, AND JUNCTION ELEVATION. COMPARTMENT 1D OF O
ICATES THE ICE CONDENSER. JUNCTIONS WITHIN THE ICE
NDENSER ARE SET UP INTERNALLY. ADDITIONAL INFORMATION 1S

- -
=z .
E

gE8¢

!

!

!

!

; PROVIDED FOR JUNCTION TYPES 3 AND 4.

1 2 1 3.345 3. 2.660 1 4.505
1 2 1 0.929 10. 13,12 1 6,00

2 3 1 27.7 10, 0.545 0 10.60
2 -1 1 §91.88 1.0 0.1864 1 20 .42
-] ¢ 1§ 1. 8538 3.0 48021 1 35.052
-1 4 3 91.30 1.0 0.100 1 35.082
0. 263.4 37010 1.56

4 5 1 1880 1. 0.081 1 40.186
§ 2 4 0.204 10. 1.0 -1 7.884
2 760,

: 3 1 0.0022 0. 1260C. -1 10.80

!

! ICE CONDENSER INPUT

!

! NUMBER OF LOWER PLENUM AND UPPER PLENUN COMPARTMENTS
11

- -
»



AND THE SUMPS THEY DRAIN

ITHAT EACH STACK DRAINS INTO

MASS AREA TEMPERATURI LENGTH,

2683 58 14 .63 v4 ovd 23
IN ICE CONDENSER (EXCLUDING BASKETS
EMISSIVITY
DATA

DRAIN TEMPFERATURE

AL, FREE GAS VUI INITIAI
AL, FLOW AREA WITH It NE LOSS
FLOW WITH AND WITHOUT ICE FLOW AREA
CROSS FLOW LUSS COEFF ¢ [ENTS FOR
LT A FOR CROSS FLOW




5+2.241683 7+0.0
4+2 241683 7+0.0
3+2.241683 7«0.0
2+2.241683 7+0.0

2.241683 7«0.0
1.88238) 1 882381 5«0.0
1.882381 50.0
4 . 7RBR8000 4+0.0
9.003546 0 .903548 ¥ .003548 0 903548
9 .903548 0 .9035468 0 .903548
§.003548 9 .903548
: 9.903548
: VIEW FACTORS
1. 000000 13-0.0
0.2040272 0.3508651 3.4703100E-02 2.7526543£-02
0.2615022
3.0475818E-02 7+0.0
0.3508651 3.4703100E-02 2.7526544E-02 0.2615021
3 . 0475818E-02
7«0.0
. 3 4T03108E-02 2.7526544E-02 0.2615022 3 . 0475816E-02
«0.0
2 7H26543E-02 0.2615022 3 . 0475R18E-02 7+0.0
0. 4815022 3 O475810E-02 7<0.0
3 . 0475705E-02 7+0.0
0. 3802438 0.6307564 5+0.0
0.8397564 5+0.0
1. 000000 4-0.0
0.2603724 0.4340742 0.2050410 1.0011482E-02
0. 4340742 0 20554190 1. 0011482E-N2
0. 2055419 1.0011483E-02
' 1. 0011435E-02
! SPRAY INPUT
! NUMBER OF COMPARTMENTS WITH SPRAYS, AND ID OF THOSE
! COMPARTMENTS . SPRAY TEMP DURING U‘M!Oﬂ PHASE, FLOW RATE
' (M«+3/8), NUMBER OF DROP SI1ZES, FREQUENCY AND uiucm
; (MICRONS) FOR EACH DROP SIZE.
5 313.586 0. 503 2
0.9 308
0.06 K10
! SPRAY CARRYOVER
$ NO CARRYOVER
; cour“A:tm‘ ID AND SPRAY FALL HE L HI FOR THAT COMPARTMENT.
’

TEMPERATURE AND PRESSURE SETPOINTS, DELAY TIME FOR SPRAYS,




! TIME THAT SPRAYS REMAIN OPERATIVE AFTER INITIATION,
! HIGH TEMPERATURE INDICATES THAT NUMBER WON'T BE USED.
10000. 120727.2 30. 1.E10
INJECTION TIII RATED SPRAY FLOW RATE iﬂll'i HIAS
TENP, IATIb

RATED EFFECTIVENESS iA ), SECONDARY §
SECONDARY SIDE FLOW (KO/Q). SUMP THAT WATER IS8 DIAIN FROM .

g:gu w'utau "HECTR REPORT) 2000. 587. 3.74E6 301.5
'NO SPRAY RECIRCULATION (S2HF ACCIDENT SCENERIO)
.................‘..‘.......".‘......‘.“.-.....‘...‘....

ENTER INITIAL CONDITIONS AND ACCIDENT SCENARIO INFORMATION

SIMULATION TIME
4000 .

PR T ——

|

| COMPARTMENT INITIAL CONDITIONS: TEMP; PARTIAL PRESSURES OF
| STEAM, NITROGEN, OXYGEN, HYDROGEN, CARBON MONOXIDE,

| CARBON DIOXIDE ; CONVECTIVE VELOCITY.

' C1 - CAVITY

348 B3 40183, 60218, 17304. 0. O, ©. 0.3
! €2 - LOWER COMP
340 .08 42168, 67413, 16854, 0. 0. O0. 0.3
! C3 - ANNULUS
310.82 6617, O6087. 24022. C. O O, 0.3
! C4 - UPPER PLENWNM
31064 6628, OBO78. 24020. O O0. ©. 0.3
! C8 - UPPER COMPARTMENT
310,97 6631, O6080, 24021, O O©O. O 0.3
' 1CE CONDENSER INITIAL CONDlTlogl o

: .

310.84 6578, ©5538. 23885
! SOURCE TERMS

!

!

§ STEAM SOURCE FROM EXTERNAL TABLE
§ NO NITROGEN SOURCES

§ NO OXYGEN SOURCES

§ HYDROGEN SOURCE FROM EXTERNAL TABLE
§ NO CO SOURCES

® NO CO2 SOURCES

§ NO SUMP WATER REMOVAL

§ NO ENERGY SOURCES

? NO CONTINUOUS BURNING

)
'
!
1

' INIGIAL SURFACE TEMPERATURES

Cl1 RC
«350 39

-B.23-



' C2 LC
342 .65
345 .00
342 .38
345 .00
342 .65
330.37

' C3 AN
2+310.51
! C4 P
312.60

! C6 LC
308.12
312.60
312.60
?ll.ll

: NAMELIST INPUT

DTHTMX = 1.0
DTFLMX = 1.0
SPRAYS = OFF
FANS = ON
MRUHSC=2
XHINIG(O;-!.O
TIMZER=4706 .6
30002-'ALll
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