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similar to the SIMPLE/ SIMPLER algorithms, is designed for
normal and slow transients, where our {interest {is to
examine phenomena at times that are larger than Courant
time step size.

L] Geometrical Package: A special geometrical package has been
developed and implemented that permits modeling of any
complex geometry in the most storage-efficient way.

. Skew-Upwind Difference Scheme: A new volume-weighted skew-
upwind difference scheme has been developed and implemented
that reduces numerical diffusion observed in simulations of
flow inclined to grid lines. The scheme also eliminates
temperature over/undershoots that are found to occur when
simulations are performed with normal skew-upwind
differencing schemes.

Volume 1 (Equations and Numerics) of this report describes in
detail the basic equations, formulations, solution procedures,
rebalancing scheme, and models to describe the auxiliary
phenomena. Volume II (User's Manual) contains the {input
instruction, sample problems, flow charts, and description of
available options and boundary conditions.
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EXECUTIVE SUMMARY

The COMMIX (COMponent Mixing) codes are designed for analyzing heat
transfer and fluid flow. The COMMIX-1B computer program--an extended version
of COMMIX-lA--is designed to analyze steady-state/transient, single-phase,
three-dimensional compressible/incompressible flow with heat transfer in a
reactor componen:/multicomponent system.

The three major changes that have been implemented in COMMIX-lA to
develop COMMIX-1B are

- Addition of three turbulence models to provide more options in
the computation of turbulent diffusivities,

= Addition of a new volume-weighted skew-upwind difference
scheme to reduce numerical diffusion, and

- Combination of semi-implicit and fully {implicit solution
procedures into one single formulation.

One of the major unique features of COMMIX {s its porous-medium
formulation, which has been rigorously derived through local volume
averaging. In the new formulation, we use volume porosity, directional
surface porosity* (directional because surface porosity 1is an anisotropic
vector quantity), distributed resistance, and distributed heat source or
sink. We refer to the formulation as new because the concept of adding a
parameter directional surface porosity is new. In the conventional porous-
medium formulation, only the volume porosity, distributed resistance, and
distributed heat source are used. Volume porosity is the ratio of the volume
occupied by fluid in a control volume to the total control volume. Surface
porosity is similarly defined as the ratio of fluid flow area through a
control surface to the total control surface area.

In any numerical analysis of an engineering system, modeling must include
distributed resistance (friction factor) because, in general, it is not a
precisely known quantity. Thus, with the conventional porous-medium formula-
tion, the flow distribution that we obtain completely depends on how
accurately we model the distributed resistance. However, in the case of the
new porous-medium formulation, due to the introduction of directional surface
porosity (a geometrical quantity that can be prescribed accurately), the
dependence of the velocity field on resistance modeling is reduced. Hence, we
obtain improved resolution and accuracy in the modeling of velocity and tem-
perature fields. The new porous-medium formulation thus represents the first
unified approach to thermal-. iraul'c analysis. The conventional porous-
medium formulation can be counsidere! a subset of this new porous-medium
formelation.

The COMMIX code provides detailed local velocity and temperature fields
for the problems under consideration. The conservation equations of mass,
momentum, and energy, and transport equations of turbulence parameters are
solved as a boundary value problem in space and an initial value problem in

*In previous publications, we have used the term surface permeability.



time. The discretization equations are obtained by integrating the conserva-
tion equations over a control volume.

The code has a wide range of applicability. It 1is capable of solving
thermal-hydraulic problems involving either a single componert, such as a rod
bundle, reactor plenum, piping system, heat exchanger, etc., or a multicom-
ponent system that is a combination of these components.

COMMIX has two alternative solution schemes. One is semi-implicit and is
a modification of the ICE technique. The other, a fully {implicit scheme
called SIMPLEST-ANL, is a modification of the numerical procedure known as
SIMPLER. The option for solution schemes is implemented in such a way that a
user can switch from one solution scheme to zuother at any time during the
transient simulation of a problem.

The code has a modular structure and permits analysis using either Carte-
sian or cylindrical coordinate systems. It has two thermal~hydraulic property
packages, one for liquid sodium and one for water. Besides these two pack-
ages, an option is available for users to input simplified thermal physical
property correlations that are valid in the desired range of applications.

Another unique feature of the COMMIX code is its geometrical package.
The basic concept 1is to use computational cells (either in Cartesian or
cylindrical coordinates) as building blocks that are stacked up to approximate
the shape of the physical systems under consideration. Then volume porosity
and directional surface porosity are used to account for the differences
between the geometry used in computation and the actual configuration. This
feature permits the COMMIX code to model any irregular and complex geometry
encountered in a real engineering system. Furthermore, the computer storage
requirement of the COMMIX code is optimized; only the computational cells used
in calculations are counted.

Volume 1 (Equations and Numerics) of this report describes in detail the
basic equations, formulation, volime-weighted skew-upwind difference scheme,
and the solution procedures. It also describes models used for the following
phenomena:

. Momentum interaction between fluid and stationary solid
structures,
L] Thermal interaction between fluid and stationary solid

structures,
- Turbulence, and
- Effects of wire wrap for fuel assembly applications.
In Volume II (User's Manual), we provide flow charts, description of
subroutines, geometry modeling, initialization procedures, input instructions,

etc. Two sample problems are also included so that readers who plan to use
COMMIX-1B can become familiar with the input/output structures of the code.



1. TNTRODUCTION

COMMIX is a computer code for heat transfer and fluid flow analysis.
Since the development of COMMIX-1 in 1976, many features have been added to
augment the code's applicability. Consequently, COMMIX has become a very
general-purpose computer code with a very wide range of applications.
Although developed for nuclear reactor applications, with no or minimal
modifications, COMMIX can be used to analyze processes in engineering systems.

Many 1industries and organizations involved in design or analysis of
nuclear reactors are already using COMMIX. However, due to the code's
generality of formulation and 1its wide ran~o of aoplications, people from
other disciplines have also found COMMIX a very useful tool. We therefore
expect the number of COMMIX users to increase in the future. Prospective
users of COMMIX can benefit from a compreher.ive description of the code. The
purpose of the present report is to meet th's need.

In describing COMMIX-1B, we have two distinct aims. One is to convey to
the reader the capabilities of COMMIX, what equations are solved, and how they
are solved, which we have done here (Volume 1). The second aim is to present
a step-by-step procedure on how to use COMMIX. To achieve this, we must
describe the procedure with sufficient detail that a reader has no or minimum
difficulty in attempting to use COMMIX. This, of course, is very difficult,
but we are attempting it in the second part of this report, Volume IIL.

This volume describes the basic equations, formulations of discretization
equations, auxiliary models, solution procedures, etc. Volume II, the User's
Manual, describes all the information needed by the user, e.g., input
description, flow chart, sample problems, and user options.

1.1 OVERVIEW OF COMMIX-1B

The COMMIX-1B cc.e is a generalized computer code for heat transfer and
fluid flow analysis. Although it has been designed specifically for reactor
component/mulLi{icomponent applications, it has been developed in a way that
make it applicable to any other complex engineering system. [ts capability
includes steady-state/transient, three-dimensional, and single-phase analysis
of nuclear reactor systems under normal and off-normal operating conditions.

In general, a computer code developed for numerical simulation of an
engineering process can be classified as either a system code or a component
code.

. A system code generally deals with many interlinking
components; it accounts for component interactions to provide
an overall analysis of a whole system without detailed
analysis of all the components of a system.

] A component code, in contrast, deals with only one componen.
of interest and provides a detailed numerical simulation of a
single component.



COMMIX-1B can be described as both a system code and a component code because
it is capable of providing detailed information about a single component or
analyzing a multicomponent system in sufficient detail. Because of this broad
capability, COMMIX-1B can also provide detailed information about component
interactions.

COMMIX~-1B is an extended version of the COMMIX-1A code! that was released
in 1983. COMMIX-1B has retained all flexibilities, formulations, and golution
techniques of its predecessor, but now contains three more features. These
are:

l. Three additional turbulence models to provide more user-
desired options for computation of turbulent diffusivities.
The models implemented are

= Zero-equation mixing length model,
= One-equation (k) model, and
= Two-equation (k-€) model.

Here k is the turbulence kinetic energy and € is the rate of
dissipation of k.

2. A new volume-weighted skew-upwind difference scheme to reduce
numerical diffusion observed specifically in the analysis of
flow inclined to numerical grid lines.

3. A single formulation combining both semi-implicit and fully
implicit solution schemes.

COMMIX-1B solves the conservation equations of mass, momentum, and
energy, and transport equations of turbulence parameters, as a boundary-value
problem in space and an initial-value problem in time. The staggered grid
system is used, which considers the field variables as located at the center
of a cell and flow variables as located at the surface of a cell.

COMMIX-1B is a well tested computer code. Already, a large number of
computations? 37 for complex situations have been performed. The structure of
the code is modular. It has many unique features and these are described in
the following section.

1.2 UNIQUE FEATURES OF COMMIX SERIES

1.2.1 New Porous Media Pormulation

As do all the codes in the COMMIX series, COMMIX-1B employs conservation
equations that are based on a new porous-medium formulation based on local
volume-averaging®® ™+, It uses four parameters--volume porosity, directional
surface porosity, distributed resistance, and distributed heat source (sink)--
to model the effects of internal solid structures. In the conventional
porous-medium formulation, only three parameters--volume porosity, distributed

*Recently, the new porous-medium formulations have been further refined via
time-volume averaging.



resistance, and distributed heat source--are used. The addition of a fourth
parameter, directional surface porosity?®™7 {5 a new concept .

The parameter volume porosity 1is defined as the ratio of the volume
occupied by fluid in a control volume to the total control volume. The
directional surface porosity is similarly defined as the ratio of area allowed
for fluid flow through a control surface to the total control surface area.
We use the adjective "directional” because surface porosity is an anisotropic
vector quantity.

Implementing the fourth parameter, directional surface porosity, has the
following advantages. In any thermal-hydraulic analysis, flow resistance due
to internal structures and/or irregular geometry (friction factor) generally
is not precisely known for most engineering applications, and must be modeled
as a distributed resistance. In the conventional porous-medium formulation,
the accuracy of numerical prediction therefore depends primarily on how well
the resistanceis modeled. 1In the case of the new porous-medium formulation,
two parameters, distributed resistance and directional surface porosity, are
available for modeling of velocity and temperature fields in anisotropic
media. Incidently, the directional surface porosity is a geometrical para-
meter and can be calculated precisely. By the introduction of directional
surface porosity in the new porous-medium formulation, we reduce the
dependence of numerical prediction on the modeling of distributed resistance
(an empirical parameter not precisely known). Thus, the concept of adding
directional surface porosity greatly facilitates modeling of velocity and
temperature fields in anisotropic media and, in general, improves resolution,
and accuracy.

If we set directional surface porosity equal to one, the new formulation
reduces to the conventional porous-medium formulation. We can therefore
consider the conventional porous-medium formulation as a subset of the new
porous-medium formulation. Furthermore, if we set the volume porosity equal
to one and distributed resistance and heat source to zero, the porous-medium
formulation reduces to a continuum-medium formulation. Thus, the new porous-
medium formulation can be considered a ﬂObt general and unified approach to
thermal-hydraulic analysis.

1.2.2 Two-Solution Algorithms

In COMMIX-1B, we have maintained two solution algorithms as user's
options:

- A semi-implicit algorithm derived from the Los Alamos ICE
Technique*® 50, This algorithem is ideally suited for analyzing
fast transients, where we are interested in details at small
time intervals (on the order of Courant time step size).

= A fully implicit algorithm named SIMPLEST-ANL. This algorithm
is a modification of the Patankar-Spalding numerical procedure’!
known as SIMPLE/SIMPLER. It {s particularly suitable for the
analysis of slow and normal transients.

We have combined these two solution procedures into one formulation, but
implemented such so that a user can switch from one solution scheme to another
at any time during a transient simulation of the same problem.



1.2.3 Geometry Package

The geometry package developed and implemented in COMMIX-lA 1is also
retained ‘n COMMIX-1B. This package is capable of approximating any irregular
geometry. It uses basic computational cells as building blocks to model the
geometry under consideration. Then both volume porosities and directional
surface porosities are used to account for the differences between the
approximated and actual configuration.

To save computer storage, a computational cell is defined by a number
rather than its conventional (i, j, k) location, where i, j, and k are the
computational cell indices in the three principal axes (e.g+, x, ¥, and z in
the Cartesian coordinate system). With this approach, the storage requirement
depends only on the total numher of computational cells and not on the dimen-
sional values of (IMAX * JMAX * KMAX), where IMAX, JMAX, and KMAX denote the
maximum values of computational cell indices 1in the three corresponding
principal axes.

A normal three-dimensional computational cell has six surfaces. But to
facilitate true and proper modeling of a complex irregu'ar geometry (most
geometries in engineering systems are complex and irregular), we have provided
flexibility so that a user can specify an additional seventh surface, called
an irregular surface, to a computational cell.

1.3 OTHER FEATURES OF COMMIX-1B
Other features of COMMIX~-1B are described below.

® The following four turbulence model options are provided to give
COMMIX-1B a wide range of applications:

- Constant turbulent diffusivity model
- Zero-equation mixing length model

- One-equation (k) model

- Two-equation (k-€) model

® A volume-seighted skew-upwind difference scheme has been
developed and implemented to reduce numerical diffusion,
specifically for the case of flow inclined to grid lines.

® The discretization equations are formulated by integrating the
conservation equations and transport equations over a control
volume surrounding a grid point. Thus, the derivation process
and resulting equations have direct physical meaning, and the
consequent solution satisfies conservation principles.

® The final form or all of the sets of discretization equations is

6
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where ¢ is a dependent variable and the subscript ¢ stands for
neighboring points., This general form of the discretization
equation lends itself to various solution schemes, e.g., cell by
cell, line by line, plane by plane, block iterative, direct
matrix inversion.

® The program has a decoupled-transient-simulation option that
permits solution of

= mass-momentum equations only, or
= energy equation only, or
= coupled mass-momentum and energy equations,

at any given time step.

® The code has an option that allows use of either Cartesian or
cylindrical coordinates.

® The COMMIX-1B code has a modular structure, which permits rapid
implementation of the latest available drag models, heat-
transfer models, etc.

® COMMIX-1B has built-in properties for liquid sodium and water,
with an optior permitting use of simplified property correla-
tions for any fluid.

® The code also contains:

= A generalized resistance model to permit specification of
resistance due to internal structures (fuel rods, wire wrap,
baffles, grid spacers, etc.).

= A generalized thermal structure formulation to model thermal
interaction between structures (fuel rods, wire wraps, duct
wall, baffles, etc.) and surrounding fluid.

- Options for mass rebalancing schemes, either in a primary or
user-specified direction, for improving the mass convergence
rate.

® Heat source/sink and boundary conditions can be functions of
time.

® The COMMIX-1B code 1s structured to permit solution of 1D, 2D,
or 3D calculations.

I .4 ORGANIZATION OF THE REPORT

This volume describes the formulations of the governing equations for
three-dimensional, single-phase, steady/transient flow with heat transfer.
The description starts with differential equations and deals with numerical
methods incorporated into the COMMIX-1B program. Section 2 is devoted to the
general form of governing conservation equations for a quasi-continuum domain.
This generalization facilitates unified development of the numerical method
and the construction of the computer program.



The quasi-continuum domain is defined as a medium that contains firite,
dispersed, stationary heat-generating (or absorbing) solid structures. The
effects of solid structures in a medium are accounted for by introducing
volume porosity, directional surface porosity, distributed resistance, and
distributed heat sources.

Section 3 describes the staggered grid arrangement and the conventions
used in COMMIX-1B to define the location of a control volume. Section 4
assembles the finite-difference equations. The finite-difference formulation
of the general equation is presented {n Sec. 4.5. Because a staggered grid
system is used, the control volumes for momentum equations are different and
require special consideration. The special features of the finite-difference
equations for momentum are discussed in Sec. 4.6.

The pressure appearing in the momentum equation must be such that the
velocity distribution obtained satisfies the continuity equation. The deri-
vation of the pressure equation (derived by combining the momentum and
continuity enuations) is presented in Sec. 5.

Currently, there are tour turbulence models to account for turbulence
effects.

- Constant Turbulent Diffusivity: This model is very eimple; the
turbulent viscosity and turbulent rhermal conductivity are
assumed constant. No transport equation is solved.

= 0O-Equation: In this model the turbulent viscosity i{s assumed to
be a "inction of mixing length and velocity gradient. No
transport equation is solved.

= One-Equation: In the one-equation turbulence model, the partial
differential equation for turbulence kinetic energy (k) 's
solved and the turbulence quantities are evaluated.

= Two-Equation: We solve the transport equations of turbulence
kinetic energy k and dissipation rate of turbuient kinetic
energy € to evaluate turbulent quantities.

All these models are described in Sec. 6.

General practice in the formulation of convective terms is to use pure~
upwind differencing rather than central differencing. This i{s becauwse the
pure-upwind scheme prevents instability at high Peclet numbers. However, {t
has been found *hat with pure-upwind differencing the false (numerical)
diffusion can be large if the flow is inclined to grid lines. To minimize the
numerical dirfusion, we have implemented two additional options in COMMIX-|B--
skew-upwind differencing as suggested by Rahitdby®?, and a volume-weighted
skew-upwind difference scheme developed at ANL3®. Both these difference
schemes are described in Sec. 7. The Von Newmann stability analysis of the
volume-weighted skew-upwind differencing scheme is presented in Appendix A.

In the initial period of development, emphasis was on the analysis of
hexagonal fuel assemblies. Covsequently, several yptions have been maintained
in COMMIX~1B that fac!litate the analysis of hexs;onal fuel assemblies. These
options are described in Sec. 8.



Section 9 describes several of the models that have been maintained in
the COMMIX-IB computer program, including a generalized-force model, and a
generalized thermal-structure model. The force mode! computes distributed
resistance to account for tae friction between fluid and submerged solids.
The thermal-structure model is designed for computing the distributed heat
source (fluid and submerged solids) and the thermal inertia of submerged
solids.

In COMMIX~1B, there are several boundary condition options for momentum,
energy, and continuity equations. These options are described in Sec. 10.

To speed-up convergence, we have developed a mass rebalancing scteme,
described in Sec. 1l. In the current version, two 4lternative formulations
leading to two alternative solution procedures are available--the semi-
implicit modified ICE-type solution scheme and the fully implicit solution
scheme SIMPLEST-ANL, an extension of the numerical procedures known as SIMPLE/
SIMPLER. Section 12 presents an overall flow chart and describes in detail
the semi-implicit and fully implicit solution sequences . In Sec. 13, we
highlight the major differences between the semi-implicit and fully implicit
solution schemes ard between the Ffully implicit scheme (¢IMPLEST-ANL) and
SIMPLER algorithms.

The thermedynamic and transport properties of liquid sodium and water are
given in Appendix B.

Volume II of this report is written specifically for COMMIX ‘!B users. It
describes steady-state and transient calculation and various procedures in
the preparation of load modules, input data, reading and writing of restart
files, etc. Two sample problems, along with their description, input, and
Ooutput, are presented to provide a sound introduction to the capabilities of
COMMIX-1B. The code input description is also included in Volume II.
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2. GENERAL FOERM OF CONSERVATION EQUATIONS

The conservation equations of mass, momentum, and energy possess a common
form. If we denote the general dependent variable as ¢, the corresponding

conservation equations have the following form in the Cartesian coordinate
system.

In Continuum Domain:

3T 08 55 6w v 6w + 57 Gw)
- <)L
(Unsteady) (Convection)
ax (I'. Ix +3y ) ay) %_(Q% +S. (2.1a)
J
(Diffusion) (Source)

In Quasicontinuum Domain®!:

3\
a(y pu) A(v’ovv, a(y ow)

El
-3_t(yvp’) x Ax y] Ay i At
_ ¥ e )
(Unsteady) (Convection)
ol -1) A(k fgf r
’ 3’ - “ +Y 8 (2.1b)
L Ax Az Y e ‘)
(lefuaion) (Source)

Here u, v, and w are the velocities in the x, y, and z directions, respec-
tively; is the volume porosity (fraction of the volume occupied by the
fluid) ang‘vx, Yy, and Y, are the directional surface porosities (fraction of
the surface area that 1is unobstructed to fluid flow) in the x, y, and z
directions, respectively. The convective and diffusive terms A(V)/Axi in Eq.
<+lb are defined as

w(u +A48x,/2 -"x - 8x, /2

Aéy! ¥ i i ) ( i i )' (2.2)

*y -

An whick xy stands for the x, y, or z coordinate. The diffusion coefficient
', and the source term are specific to each meaning of ¢. The sources for
all conservation equations are given in Tables 2.l and 2.2.

The conservation equations in the cylindrical coordinate system also have
the same general form (Eq. 2.1) when we place the centrifugal and Coriolis
force terms in the source term S.- We can, therefore, apply all formulations



Table 2.1 Source Terms in the Cartesian Coordinate System

Diffusion
Variab'e (¢) Direction Coefficient Source Term (S.)
(ry)
1 Scalar 0 0
u x direction +V_ -R - (22)
» Pg, x x ax
v y direction "] Pg._ +V ~-R - (12)
Yy ¥y ¥ \¥%
-R - Ez)
w z direction M pgz + Vz Rz (az
h Scalar k %f— + Ql +Q+9

11

Balance of the viscous diffusion terms
Distributed resistances due to solid structures in a momentum control volume
Rate of heat liberated from solid structures per unit fluid volume

¢ Rate of internal heat generation per unit fluid volume

: Dissipation function




Table 2.2 Source Terms in

the Cy'indrical Coordinate System

Diffusion
Equation Variable (¢) Direction Coefficient Source Term [S.)
(ry)
Continuity 1 Scalar 0 0
*
Womsatun % 12
(1) v r direction u eabd L A R (rp)
ok
PV )
(ii) Vg 8 direction B - et + pgg + ‘Io Ra - (p)

. )
(1i1) v, z direction u pg, + vz - lz -3z (p)
Energy h Scalar k ac * Qrb +d+0
* Centrifugal force term
*h : Coriolis force term
Vr, Vg » Vz : Balance of the viscous diffusion terms
R, Bﬁ, R, : Distributed resistance due to solid structures in a momentum control volume
Qrb Rate of heat liberated from solid structures per unit fluid volume
4 : Rate of internal heat generation per unit fluid volume
k2 : Dissipation function

144
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for the Cartesian coordinates to cylindrical coordinates with the simple
transformations shown in Table 2.3.

Table 2.3 Transformations for Cartesian and
Cylindrical Coordinate Systems

Cartesian Coordinates Cylindrical Coordinates

X £
8
z
Ar

Az

Ve

Vo

Vz

Equation 2.1b can be considered very general, because it reduces to the
conservation equation for a continuum regime (Eq. 2.la) when we make volume
porosities and directional surface porosities = | 7, =9 Yy =¥y ® 1.0),

distributed resistances Re = Ry =R, =0 (or Ry = Rg = R, = 0 in a cylindrical

coordinate system), and heat source brb = 0,

For turbulent flow, all quantities in Eq. 2.1 are considered time-
averaged values and diffusion coefficient I' {s interpreted as the effective
(laminar and turbulent) diffusion coefficient, i.e.,

Ty = ¢ ,laminar * ro,turbulent' (2.3)
We can also express the effective diffusion coefficient as the ratio of
effective viscosity to the corresponding Prandtl number, {.e.,

+tu

¥ b ulanlnar turbulent

¢ g

¢
Here, o‘ is the Prandtl number based on the diffusivity of variable ¢ .
The transport equations of turbulence paramcters k and € for computation

of the turbulent diffusion coefficient also have the same geners. form as Eq.
2.1; however, for clarity of presentation, they are included in Sec., 6.
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3. CONTROL VOLUME

3.1 CONSTRUCTION OF A COMPUTATIONAL CELL

The computational cells around a grid point can be defined in a number of
ways. In COMMIX-1B, the computational cell is defined by the locations of
cell volume faces, and a grid point is placed in the geometrical center of
each cell volume. Cell sizes can be nonunifur=. This type of construction is
shown 1in Fig. 3.l. The convention used in ~ ‘MMIX-IB for defining the
neighboring cells and cell faces is given in Table 3.1.

L.

Fig. 3.1. Construction of Cell Volumes

A typical cell volume

Table 3.1. Convention used in COMMIX~1B to Define
Neighboring-Cell Control Voiumes

Subscript Cell Centers Cell~Face Centers
0 o I k
1 =1, 4. k i-1/2, 3, k
2 i+l, 3, k i+*1/2, 3., k
3 , =1, & : 3=1/2, &k
4 i, j*l, k i, j*1/2, k
5 i, P k-1 i, i, k=1/2
6 5 s k+l i, o k+1/2
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3.2 CONTROL VOLUME FOR FIELD VARIABLES

In COMMIX, "2 use the staggered grid system, in which all dependent field
variables are culculated at a cell center and flow variables are calculated at
the surfaces of a cell.

For a field variable, we consider the control volume to be as shown in
Fig. 3.2. It is constructed around a grid point 0, which has grid points |
(1-1) aua 2 (i+1) as its west and east neighbors; grid points 3 (j-1) and 4
(j+1) as its south and north neighbors; and grid points 5 (k-1) and 6 (k+l) as
its bottom and top neighbors. We integrate each term of the conservation
equation, step by step, over the control volume to derive the finite-
difference equation.

»
L}
'
v Be
'
L]
'
-.
-
1
|
e i
.
'
-
)
-

i-1 | i+

Fig. 3.2. Cell Volume around Point O in {,j,k Notation

3.3 CONTROL VOLUME FOR FLOW VARIABLES

Although all dependent variables are calculated for a grid point, the
velocity components u, v, and w are an exception. They are calculated for
displaced or "staggered” locations, and mot at the grid point. The displaced
locations of the velocity components are such that they are placed on the
faces of a control volume. Thus, the i-direction velocity u is calculated at
the faces that are normal to the i direction.

Figure 3.3 shows the locations of u and v by short arrows on a two-
dimensional grid; the three-dimensional counterpart can bYe easily imagined.
With respect to a grid point, the u location 1is displaced only in the 1|
direction, the v location only in the § direction, and so on., The location
for u thus lies in the i direction link joining two adjacent grid points. It
is the pressure difference between these grid points that will be used to
drive the velocity u located between them. This is the main consequence of
the staggered grid.
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A direct consequence of the staggered grid is that the control volumes to
be used for the conservation of momentum must also be staggered. The control
volumes shown in Figs. 3.1 and 3.2 will now be referred to as the main control
volumes. The control volumes for momentum will be staggered in the direction
of the momentum such that the faces normal to that direction pass through the
grid points (see Fig. 3.4). Thus, the pressures at _hese grid points can be
directly used for calculating the pressure force on the momentum control
volume. Table 3.2 shows the convention used for the subscripts, and Fig. 3.4
shows the momentum control volumes for the i and j directions.

Table 3.2. Convention Used in COMMiX-1B to Define Neighboring
Control Volumes for i Direction Momentum Equations

Momentum Control Momentum Control
Subscript Volume Cent-=rs Volume Face Centers
0 i+l1/2, 13, k
1 i-1/2, j, k . i k
2 §+3/2, 1, k i+1, 5 k
3 i+1/2, -1, k i+1/2, 3-1/2, k
4 1+1/2, j3+1, k 1+1/2, j+1/2, k
5 i+1/2, 3, k=1 i+1/2, 3, k=1/2
6 i+1/2, 3, k+l i+1/2, 3, k+1/2
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4. FINITE-DIFFERENCE FORMULATION

Although the finite-difference formulation is applied to a grid in both
the Cartesian and cylindrical coordinate svstems, only a Cartesian coordinate
grid system 1is used here to demonstrate the formulation of the finite-
difference equations. Similarly, we have used only the x momentum equation to
illustrate the formulation of the momentum equation.

The finite-difference equations are derived by integrating the governing
equation (Eq. 2.1) over a control volume. We integrate each term separately.

4.1 UNSTEADY TERM

4.1.,1 Main Control Volume

Representation of the term O(Y 90) is obtained assuming that the values
Po and ¢, prevail over the control Yolume surrounding point O (see Fig. 4.1).
Intcgtatfgn of the unsteady terms over the control volume then gives

(p8), = (08)"
(v po) dx dy dz = L —2 v, , (4.1)

/

t

where V. =Yy Ax Ay Az is the volume of the fluid; the superscript n refers to

known o&d tf‘e-ntep values, and the superscript n+l for new time-step values

is omitted for simplicity.

Fig. 4.1. Control Volume for Field Variables



4.1.2 Momentum Control Volume

Because the momentum control volumes are staggered, there are differences

(mainly geometlrical) in the resulting finite-difference equations, To illus

trate these Gifferences, we msider the x momentum ontrol volume as shown 1in

Fig $ 20 If we integrate the unsteady term, we can obtain the same form as

Eq. 4.1, but » express it a little differently

Here, the bar over a variabl Suggest the variable now refers Ct«
the momentum control volume nd not the main \ l volume. The geometrical

1

iifferences between Egq. 4.1 an« +.la are

- Volun f fluid 1is f

Lhe X-momentun
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In Bq. 4.la, we have used the symbol ¢ for the dependent variable (i.e., the »
direction velocity) instead of u. This is only because our desire here is to
{llustrate the formulation of a general equation rather than to describe the
derivation of a specific equation.

For the momentum equation, we express the right side of Eq. 4.la little
differently. We assume

e g e (38)~ (8

therefore, the transient term for the x-momentum control volume shown in Fig.
4.2 is

[ %—; (v p#) dx dy dz = [p‘ (’ ;tL" * (L; o“) (ﬁp} "] 7,

i+1/2
= L*l(&én].- E—--_l.(_aﬂn].n 6 (4 .4)
At 2 \dt At 2 \adt 141/2 I i

It will become clear later, when we assemble the full equation, why we have
formulated the translent term for the flow variables differently from that of
the field variables.
4.2 CONVECTION TERM

4.2.1 Main Control Volume

The integration of the convection terms over the control volume gives

Alypuw) Ay pw) Aly ow)
/ [ fi + ZZ + :z dx dy dz
0 1 0 3 0 5
- F,8>, = P45, + F 4>, -~ F, ), + Fo>, - F >, (4.5)

Here, F (= density x velocity x flow area) is the mass flux across the surface
of the control volume and subscripts 2, 1, 4, 3, 6, and 5 stand for the east,
west, north, south, top, and bottom surfaces, respectively (see Fig. 4.3a).
For example,

0 0 1
Py =P ™ @ (v‘mp.)z - ¥, (uAn)2 -9 (m\u)“”2 (4.6)

is the mass flux at the east surface, as shown in Fig. 4.1, We use the
upwind-difference scheme to define a property value at the surface of a cell;
i.e.

-
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(a) Field Variable (b) x momentum
Fig. 4.3, Control Volume Showing Convective Fluxes
P 8> = F @t =F, ¢, =F ¢ (1f P, 18 +ve) (4.7a)
2772 1+1/27 "1+1 270 i+1/2%4 2 ' :
Py, = Fii/%e (A€ Py 18 ~ve) . (4.7b)

The superscript location value is to be used for positive velocity and
subscript location value is to be used for negative veincity. Equation 4.7
can .i1so be written as

0 .
F 4>, = |o.rz|¢0 - |0.-172|¢2 ' (4.8)
The operator | | 1s to be interpreted as equal to the greater of two
arguments; 1.e.,
[A,B] = A 1f A > B,
=B 1if B> A. (4.9)

In accordance with the above convention and after some simplification, we
rewrite Eq. 4.5 as
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sy pw) alypw) aly ow)
[ 4 + A{; - - ]dx dy dz

Ax
“ [10uty] + (0| + 08| + 0,8, | + Jo,Fy] + Jo,-,]] 4,
= [0k, 0, + 0,8, | 0, + | 0,-¥] by
+ |o,r1| o, + [0.F,] 0, + | 0»'5| o] . (4.10)
Please note that we have introduced a curly bar over the dependent variable ¢
in !q- 4.10, We define
o =at™ 4 (1 -a)e", (4.11)
where a 1is an i{mplicitness parameter. The introduction of the implicitness
parameter a makes the convective flux formulation, Eq. 4.10, very general,

f.. from the semi-implicit formulation where some variables are at old-time

values (@ = 0) to a fully implicit formulation where all variables are at new-
time values (a = 1),

All six convective fluxes for the main control volume are listed in Table 4.1.

Table 4.1. Convective Fluxes for Main Control Volume

1
@,

0

<D>2

3




23

4.2.2 Momentum Control Volume

We consider the x momentum control volumes as shown in Fig. 4.3b. If we
compare the main and x momentum control volumes (Figs. 4.3a z2nd 4.3b), we can
define the total j direction flowrate at the upper face of the momentum
control volume as

1
F -2{'1"”2[‘)

"y b 1+1
2 [( AV g g2 @250t (AY) ) a2 ‘”m.m] . (412

Similarly, the i direction flowrate entering the momentum control volume can
be defined as

= 1
P, =30, [(A!u)i_l/z + (Axu)“l/z] ' (4.13)

The convective fluxes il "“56 for the x momentum control volume are listed in
Table 4.2,

Table 4.2 Convective Fluxes for x Momentum Control Volume

R [( e PRYPR (“‘x)mlz]
Fp o+ o0y [( wAJ j1/2 * (“‘x)u)/z]
Fy ';'[‘”8 (VA sor/2 * “”23 (vay) l+l,j-l/2]
F, % [“”2 (YA y ya1s2 * ‘”ga (‘"y)m.jﬂ/z]
by i [‘”(5) (W) { yeryz * @77 ("‘:)m.k-x/z]

= 1 [ 0 2
Fo  t 2 19% (WA war/2 * €226 ("“z’m.kﬂ/z]

Thus, when we integrate the convective terms over the momentum control volume,
we have the same form of equation as Eq. 4.10, except that we use the momentum
control volume fluxes F (Table 4.2) instead of the main control volume fluxes
F (Table 4.1).
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[A(owxo) a(p wlo) blowr 9) 1

Ax " Ay " Az éx dy ds

- ['0'i2| * |0’ia| * ‘O.ibl . '0"i1| ¢ |0"i3| * |°-'75|] ;0

- [|o,-#,]| ;2 + |o,-F | ;,‘ + |0,-F | ;e

v |0,F,| ;1 + |0,F,| ;3 + | 07| ;s] . (4.14)

Please note, once again, that the dependent variable ¢ has a curly bar over
it, Thus, it represents (as defined in Eq. 4.11) a combination of old and new
time values.

4.3 DIFFUSION TERM

4.3.1 Main Control Voiume

The integration of diffusion terms over a main control volume (Fig. 4.4a)
glves

3. 3
aly T , A Aly
( xxa ax) * ( 9 dy ) " ( z 1733) dx dy da

< D)8, =4,) = D85 =8,) +D,(8, - 4) - Dyl6y -4,
+ Doy = o) - Dsl0, = 0g)
D#, *+ D@, +Dpqy + D9, +Dbs * Dby

- 4
\Dl*Dz*Ds*Da’Ds’Do) R (4.15)

Here, D (= effective diffusivity x flow area/distance between the centers of
two control volymes) 1is the diffusion strength across the surface of the
control volume, ¢ (Eq. 4.11) represents the sum of the contributions of old
and new time values, and r, is the effective diffusivity for the variable ¢ .

To determine the value of D at a surface, we assume a uniform value of

diffusivity I' prevails over each main control volume and use harmonic
interpolation, e.g.,

D, = (A) M/z[ ) (‘6'1)]- (4.16)

The values of diffusion strength for main control volume are listed in Table
4.3,
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(a) Field Variable (b) x momentum

Fig. 4.4 Control Volume Showing Diffusive Fluxes

Table 4.3 Diffusion Strengths for Main Control Volume

-1

D, + (AJi /2 [(%0 * %%)L]
-1

D, : (AJye1/2 [ez':’)o *(%% 2]
- q“l

0y ¢ (Adyoyy2 (%)o ’(%)’J

- -l
s ° (A,)jn/z _92%)0 * (%)“.

(82 az\ 1"

t (A).. + (57
5 2w=1/2 [\2r), “\7r); |

6 ' (A [%;')0 . (’Ai'x"')b:

-1
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4.3.2 Momentum Control Volume

The integration of i diffusion terms over x momentum control volume (Fig.
4.4b) also results in an expression similar to Eq. 4.15:

- Dl‘l . °2‘z + 0303 R Dlo‘l. + DS’S + 06.6 +

-(nl ’°2*°3’°a’°s"’6) b
The only difference is that we now use the momentum control volume diffusion
strength D, Instead of the main control volume diffusion strength D; e.g.,

(4.17)

r
- " % [( Aoy * (a) u:/z](z%)z ¢ (4.18)

The values of diffusion strengths D for x momentum control volumes are listed
in Table 4.4, In Eqs. 4.17 and 4.18, we have used the symbol I' instead of u
for the diffusivity (viscosity) of the momentum equation. This is only for
the purpose of retaining the generality of the formulation.

Table 4.4 Diffusion Strengths for x Momentum Control Volume

b % :( AJ g7z * (A ux/z] Gx‘)o

= L, r
0 ¢ 2 [(Ad 1 ’(‘x)ua/z] (E)z

-

.-

. - Ay Ay, 1=
7 . 4 -1
Dy ¢ 7 {A)y 5172 " ("y]m.j-l/z] 7 3"} Yol |10, '+‘Lr‘2'l-'
.‘ l - Ay ’l Ay .-l
Ya P 7 [( Aignnt (Ar)l*l.J’”z] (7, T " T+ 1)

r Az bz, -1
- .1 k=1 K
's ' 2 [(‘-)1.k-1/2 g (“z)m.n-l/z] [Ty + T, L

Az Az 1~

2 . 4 K+l "
l)6 S [( A,)hlﬂ/z + ('-,)U-l.hﬂ/?] L(T" + rZ(J ® (ro + rzl
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4.4 SOURCE TERM

The finite-difference reprusentation of the source term S in Eq. 2.1 is
expressed as

% " %o " Sw %0
where S.., S.,, and ¢ are assumed to prevail over the control volume
ourround?%; pJ’ht 0. This "linearization” of the source term is an effective
device for stability and convergence. The exact expressions for the source
term coefficlients S, and S , depend on the actual form of the source S,. The
coefficient § 10‘11ICYI 88 than or equal to zero; otherwise instability,
divergence or physically unrealistic solutions would result.

(4.19)

The integration of the source term over the control volune gives

[s‘ dx dy dz = S, Vo * S5 Yo % (4.20a)
for the main control volume, and
[s.axdyd:-sqvoos”vooo (4.20b)

for the momentum control volume.

4.5 GENERAL FINITE-DIFFERENCE EQUATION

Having looked at each term of the general equation separately, we now
assemble all terms of Eqs. 4.1, 4.10, 4.15, and 4.20 for the main control
volume to obtain the general finite-difference equation.

/| (Unsteady) + (Convection) - (Diffusion) - (Source)] dx dy dz

n
_(o#)g - (pe)g
At

(Unsteady) (Convection)

Y +[|o,-rl| + |o.rz| + eeee |y,

- { '0,'l| ’l + 'O,"z' ’: 4 erne } + (Dl 0 DZ 4 sens ) .0

(Convection) (Diffusion)
—{n|¢l+02¢z+----}-s“vo-s”oovo-o. (4.21)
(Diffusion) (Source)

We now rearrange Eq. 4.21 such that only the terms containing ¢, are on the
left~hand side of the equation, noting that

;'50*(1 'G)On . (4.22)

After some algebra and rearrangement, we obtain
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0%
’o{ ae *oll]0s | #eeee o o,R])
+ (Dl +aeee 4 Db) - s” VO]

“[(lo,e,| + D) ¢, +eeee + (Jo,F| + D) ¢,] a

+ [(|0.r1| + Dl) Q'; +oeees 4 (|0,-l’6| + Db) 02] (1 -a)

- .: (1 =a) [('0,""" 4+ seen 'O,Fbl) + (Dl 4+ vene 06) - s”vol
n . n
[N )
00 :
+( At vo + s“ Vo . (4.23)
or
$ ¢ k] b ¢ + K b
a " (‘l‘l Fap, bAoA, tag, ‘6‘6)“ + by, (4.24)
where
o $
by = b1’ o b2h + w3 . (4.25)

For ease 1in reading, the coefficients of Eqs. 4.24 and 4.25 for the main
control volumes are given in Table 4.5. As we have combined the extreme semi-
implicit and fully implicit formulations in one general form, the coefficients
of Table 4.5 may appear somewhat confusing. We have therefore also included
Tables 4.6 and 4.7, which give the coefficients for extreme semi-implicit (a =
0) formulation and fully implicit (a = |) formulation.

For the x momentum con.rol volume, we follow the same procedure to
assemble all the terms of Eqs. 4.4, 4.14, 4,17, and 4.21. The resulting
equation has the same form as Eq. 4.24, except that the coefficlents are
ciightly different. The coefficients for the x momentur control volume are
presented in Tables 4.8, 4.9, and 4.10.

It may be noted from Table, 4.5 that we have expressed the coefficlent n'

in two forms. The first form l’(l) is obteined by assembling all the terms 8!
Eqs. 4.1, 4,10, 4.15, and 4.,20. The second form a;(2) 1s obtained by

subtracting the continuity equation from the first form ag(1); that 1is,

no(l) = {continuity equation} = lo(l) . (4.26)

We use only the first form a,(l) for the momentum equations because
during the solution of the momentum equations, the continuity equation might
not have been satisfied. The use of the second form a,(2) may introduce
inconsistencies. However, when we solve the energy equation, the continuity
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Table 4.5. General Finite-Difference Equation fcr the Main Control
Volume (Eqe. 4.24 and 4.25) and Its Coefficient

¢ a

‘0’0 “ + reee 4 .:’6) + (bl + bz. + b3’)
& (low|+p) & (lo,F,| +0)
0.3 t (IO.!,' +0,) a: s (|0.-l6| +0,)
o : (|o,Fg| + D) & : (|o,-r| + D)
5 e 6 i 6

Y (R RS R SRR,

b2 ¢ - (1 -a) [(Jo,-#,| # eeee + |°"o|) + (D) #eese 40 - s”vo] %
nn
(23{- + s“’)o v,

P,V
l‘o(l) H %QOO [('0.-’l| 4+ rren 4 |0.'°| + (Dl + Dz sees 4 Do) - s" VO]
(lst form)

n
’ . . . cane ’ ( - )
10(2) $ a (c' + ‘2 - QG)O %t- s” VO
(2nd form)

¢ =a) (s =000, =0, 40, -0,

&
.
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Table 4.6, Extreme Semi-Implicit (a = 0) Finite-Difference Equation
for the Main Control Volume (Eqs. 4.24 and 4.25) and Its
Coefficients

(U A IO T
0 (bl + b2 + b3 )

o o (T e e el e D el

bz’) : - [('0'-'l| 4+ oo & |°”6|) + (Dl + v 4 Db] - S”VO]
b (el
o T ( ac ' sd)o Yo
p.V
¢ , 990
(lst form)

n
® i B - - -
ag(2) (At s”) Vot (P, =P, em -0 o Py = F,)

(2nd form)

Table 4.7. Fully Implicit (a = 1) Finite-Difference Equation for the
Main Control Volume (Eqs. 4.24 and 4.25) and Its Coefficients

.:).0 - .1. I TIT .6’6 + b3’)
B i (o | +0) sy ¢ (|o,m,| +0,)
-’3 ! (|o.13| + D) .: ¢ (|o,-¥,| +0,)
lg : (|0"5| + DS) a: : (|o.-ro| + Db)
A (LA{— + s“)o v
‘%(l) ’ 0 0 +[(|o,~F | +oeeee 4 |0, '6')
(lst form)

' (Dl * D, seee ¢ DO) SPO.VOJ
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Table 4.8, Coefficients of General Finite-Difference Equation
for x Momentum Control Volume

.%’0 =-a "l’l +oeeee ¢ ':’6) + ("1:) + bZt) + b]t))

(l0.B ] + 51) ' (lO.-iz| +D,)

: (|0.53| + 53) (|0.-i“| + 5‘)

(1L =a) ('.l“l‘ + "2.'21 4 orene 0;0:
- (= a) [([0,F,| +ver + [0,5,)

n
+ (D, #ooee + D) = SV %0

6 -\0
0 1 /3 - - -
[57 . E(S% 0] URAR U ARSI S LAA)

+(D

R +D6) - 5 v

1 M 0
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Table 4.9. Coefficients of Extreme Semi~Implicit (a = 0) Finite-

Difference Equation for x Momentuwr Control Volume

Pa o nt® o i 4 el
3000 blo * b20 + b'lo

’ . ‘ n ’ n LR ’ R
Blg &9, rap, A
bz:) . [ lo ~F | 4 oeene 4 '0. 6|) + Dl 4 reee & 06) ”- S”VOI ‘3

oo o[- (sﬁ)]*s.,.l

Table 4.10, Coefficients of Fully Implicit (a = !) Finite-

Difference Equation for x Momentum Control Volume

( 0 ¢
1000 - l‘ + 000 '6’ + b3 )
& + (|oF|+B o o (Jo,-F,| +B,)
o ([0.7,| + B,) s ¢ (Jo,-F| +B,)
.’s i _(.'_91'5'_’_31)_,_ o (fo,-F,| »_56)
s a[®0 _ 1 (%
by ¢ " [E'E ) 5‘?0]’ scolvo
0 3 -
a:, [I\T ( ") ] ¥ * [(|0.—il| 4 oreee = |o.!6|

-S”V

 aran _B

6 ol
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equation 1is satisfled. The use of the second form 8,(2) 1s therefore
acceptable during the solution of the energy equation.

In deriving the second form of the coefficient a; for the main control
volume, we have made use of the continuity equation in the following way. (If
a4 reader 1is not interested in details, the rest of this section can be
.kipm o)

If we substitute ¢ =], sz = 0, and Ty = 0 in the general equation (Eq.
2.1), we have the continuity equation. Therefore, all formulations derived so
far also are applicable to the continuity equation.

To derive the continuity equation, we substitute ¢ = 1| in Eq. 4.23,

remembering that D = 0 and § =~ 0 for the continuity equation. After simplifi-
cation, we have the following:

Couttuuit! Equation in the Discretized Form:
p.v
S e a [10,r | +oeee o [0,0,]]

=a [|o,p,| #eeee & fo,-p]|]
= (0 =a) [|o,p | +eeee 4 |o,-¢,|]
¢ (1 =a) [o,-F | +eeee s fo,8, 11 - Luo (4.27)

Please note that the first density term in the continuity equation (Eq. 4.27)
is at the new time, while the second density term is at the old time. The
subtraction of Eq. 4.27 from a5(1), after some algebra, results in the second
form ay(2):

a:)(Z) - n:)(l) = Continuity Equation 4.27

-a[(ol ¢e0s 1) = s”voj

ta (o, | +eeee s fo,r]]

+ (1 =a) [[o,p,| + eeee & |0,-F]]

0"V,
= (0 =a) [o,F | #eeee s o,p ] + T

=a[(|o,# | + D) #eeee 4 (fo,-8,| + )
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The contributions of the source term that enter aj and b2 do not
contain the pressure gradient; the effect of the pressure gradient {s
expressed by the last term in Eq. 4.29. The momentum equation for the j and k
directions are obtained in a similar manner.
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5. PRESSURE EQUATION

The pressure appearing in the momentum equation (4.20) 1is unknown and
must be determined from the conservation-of-mass equation. In this section,
we present the derivation of the pressure equation and the solution procedures
employed in COMMIX-1B.

The conservation-of-mass equation for the cell around point 0 (Fig. 4.1)
can be derived from Eq. 4.23 by substituting ¢ = 1, diffiston strength D = O,
and S = 0O:

1 0
o( W -1/2 €20 * (M), @2,
- (A ")jllz +LAv)jﬂ/2 <p>
B 0
-(a v)k 12 @2 ¢ (Azu)m,z > = 8, . (5.1)

Here, V, -yvﬁﬂ)ﬁ: ‘s the coantrol volume, §, is the mass residual of the
continuity equation, ¥ > is the upwind density, u, v, and w are the normal
velocities at the surface of the control volume, and A is the flow area, We
define the flow area as the product of surface area and surface permeability.

When mass is precisely conserved, the right side of Eq. 5.1 vanishes,
ie., § = 0. However, because Eq. 5.1 is solved by an iterative-solution
procedure, the mass residual §, in general, may not be zero.

* To convert the indirect specification of pressure in the continuity
equation to an explicit form, we write the momentum Eq. 4.20 as

.-;-'(pAP b =u, v, w) , (5.2)
where
s bbb
a | Alol0blo+b20¢b3o
b = A=l 3 (for the general case) (5.2a)
a
0
®
2 M0 x "200 ‘ b3‘0 (for the extreme semi-implicit case,
® ’ s = 0) (5.2b)
a !
and
6
AR
1 L=1
¢ = » (for the fully {mplicit case, a = 1), (5.2¢)
a
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For example, the x direction velocity u at east surface of the main control
volume is expressed as

u, =u, = d, (P, = B) , (5.3a)
where
u 1 (va ol YVZ) Ay &2
62 .i 3 ? (5.35)
%

With similar definitions fi," v, w, and d, the other velocities appearing in
Eq. 5.1 can be expressed as

E u
ul - “l - dl (PO Pl) s

v
W, = v, - 4 (Pb - Po) .
and
“ w
"s"'s'ds(’o"s) . (5.4)

Here, the subscripts | .... 6 for velocities refer to the surfaces of the main
control volume. Substitution of Eqs. 5.3 and 5.4 into Eq. 5.1 ylelds

P P
8 P-1 4 -d =4, . (5.5)
L=]
The coefficients of Eq. 5.5 are listed in Table 5.1.
Equation 5.5 is the required pressure equation. In the above equations,

the superscripts for coefficients a and b indicate the equations they belong
to; e.g., a” and b" are coefficients of the u momentum equation.
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Table 5.1. Coefficients of Pressure Equation (Eq. 5.5)

..

2 >ty 4y ) ayas:z
02 Yo * Yt/ WY
1

f.a 01~ )
“u ©2; 7 Wyg * Yy 8y 2
%0

i+1/2
A 31
v) <p>0-17(7%) *le) o
%
3=1/2
A
X 01
( v) ©>, 7 (ryg +7y,) dx b2
%
j*1/2
A 5 1
w ®2% 2 (YvO s sz) o
%
k=1/2
A
2 530 L1
(") @3, z(Yvo * Y, bx By
o172
v P N
ll’lz".}’l *ls*lo

. ¥ - ! L (2 0
Vo ae . * (A1) @2 = (Au) g, @2,
3 . 0

+ (Ayv)j_”z ®>, = (Ayv)jﬂ/! ®>,

.- 5 - 0
+ (A i/2 @20 = (M) 01/ ©%




6.1 INTRODUCTLON

For turbulent flow, the diffusivity 1in the governing conservation
equation (2.1) is considered as a time-averaged value. Therefore, the
viscosity u and thermal conductivity A in the momentum and energy equations
are the effective transport coefficients of momentum and energy, respectively.
Thus,

L 73 '“ln*“tur (6.1)

u +u
lam tur
xh- ’Atur Pr u (6.2)

Here, the subscripts lam and tur stand for laminar (molecular) and turbulent
properties, and Pr is the effective Prandtl number. There are four models in
COMMIX~1B for calculation of turbulent diffusivities:

- Constant turbulent diffusivity model,
Zero-equation mixing-length model,
One-equation (k) turbulence model, and

= Two-equation (k- ) turbulence model.

After a brief background on turbulence modeling, we present here the
detalls of these models.

6.2 BACKGROUND ON TURBULENCE MODELING

The subject of turbulence has attracted countless resesrchers over a
period of more than B0 years. In 1895, Reynolds proposed that a fluld
particle in turbulent flow is in randomly unsteady motion. He averaged the
Navier Stokes equation over a time scale that (s long compared with the t r~
bulent time scale, and derived the equations that describe the mean turbulent
motion, In spite of the long time span and large research effort since
Reynolds averaged the Navier-Stokes equation, the problem of turbulence has
not been resolved completely for the following reasons.

The appearance of the time-averaged correlations, such as ou'v' In the
governing equations, gives rise to the so-called “closure” problem (more
unknowns than equations available for the solution of unknowns ). Here p
denotes fluld density, u' and v' are the fluctuating velocity components in
the coordinate directions x and y, and the overbar denotes the time
averaging. The correlations u'v' are known as Reynolds stresses.

Another difficulty is that the constituents of the turbulence phenomenon
normally take place in scales of motion that are very small orders of magni-
tude in size, while the whole flow domain may extend over meters or even
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kilometers. Ilmportant detafls of turbulence are small-scale in character
(although it is not the details but the time-averaged consequences that are of
interest in practical application). As a result, the computational nodes
required to resolve small-scale motions of turbulence will far exceed the
storage capacity of current computers. The corresponding computer running
time also will be unfeasibly long.

An alternative approach to resolve these difficulties is to employ some
torm of turbulence modeling in which we solve only the time-averaged equations
of motion along with a set of transport equations of turbulence quantities,
e.8., k the turbulence kinetic energy, ¢ the rate of dissipation of k, etc.
Even this approach requires a significant amount of numerical computation. It
is only in the last 20 years, with the recent advances in computer power, that
this alternative turbulence modeling approach has been made feasible.

Many turbulence models have been proposed to resolve the above-mentioned
difficulties by providing solvable equations for computation of turbulent
flows . The central idea in most of the turbulence models, except the
Reynolds-stress model or algebralc stress modeling, s the employment of an
artificial turbulent viscosity u,, . to account for the additional diffusional
flux due to the turbulent motion., To do that, the Reynolds stress term 1is
expressed as

-9 u'v'-umr(%-;fO%)--;-p(WOWOG"’). (6.3)

We must note here that the turbulent viscosity w,. is a property of the local
state of turbulence and not a physical property ol the fluid. The turbulence
model 1in this category 1is therefore generally referred to as a viscosity
model .

The most popular model among these viscosity models, yet the simplest, is
Prandtl's mixing-length hypothesis®?, We refer to the mixing-length
hypothesis as a zero-equation model because (t does not require solution of
any transport equation of turbulence parameters.

In 1945, Prandtl®* suggested a more general approach than the mixing-
length hypothesis. His new approach is generally referred to as a ane-~
equation turbulence model. In this model, the turbulent viscosity (s assumed
to be a function of the square root of the turbulence kinetic energy k. To
determine the value of k, we need to solve its transport equation., Since
then, many one-equation turbulence models have been proposed. The transport
equation for the shear stress developed by Bradshaw et al.®% and the transport
equation for the turbulent viscosity developed by Nee and Kovasznay®® are
typical turbulent viscosity models.

Undoubtedly, one-equation models generally produce more reliable results
than the mixing~length hypothesis produces for most computations. However, a
need to obtain a more accurate estimate of the length scale distribution,
especially In a separated flow reglon, leads to the suggestion of two-equation
turbulence models.




There are several two-equation turbulence models (k< model, k-t model,
k=W model, etc.). Here, the symbol k is the kinetic energy of turbulence, ¢
is the dissipation rate of turbulence energy, L is a macroscoplc length scale
of turbulence, and W is interpreted as the time-averaged square of the veloc~
ity fluctuations. Amo the two-equation models, the k< model, as proposed
by Harlow and Nakayama®’ and Jones and Launder®®, (s the most widely used.

The next level in turbulence modeling (s represented by the complex
Reynolds stress models’®™®2,  These models are still {n the development
stages. We have therefore programmed in COMMIX only the 0, |, and 2 equation
turbulence models for the analysis of turbulent flows. These models are
described in this section.

As we increase the level of turbulence modeling from 0 to | equation,
from | to 2 equations, and so forth, we are {increasing complexity in the
turbulence modeling and, therefore, computer cost as well. So during
selection of a turbulence model, we must balance the Increase in accuracy with
the cost of computing.

6.3 CONSTANT TURBULENT DIFFUSIVITY MODEL

This is a very simplified turbulence model in which the turbulent
viscosity and the turbulent conductivity are assumed to be constant. The
value of turbulent viscosity is a user-prescribed single input constant.

It 1s preferable to prescribe values of turbulent viscosity and turbulent
conductivity obtained from experimental data. [f the experimental information
is not available, then turbulent viscosity can be estimated using the
following equation suggested by Sha and Launder®?:

Veur * 0.007cu9U..‘ s, (6.4)

e = 0.} for Re > 2000
“ max

¢ = 0,1{0.001Re = 1) for 1000 < Re
" max .

for hn' < 1000

u = Max(u, v, w) and
max

h.“ - Hn(h'. by. lo‘) ’

the mixing length scale
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the coefficient

C‘ « 0.4 , (6.9)

and D, is the hydraulic diameter.

If the information about turbulent conductivity A 18 not avallable and
not prescribed, then we can approximate it using the !o“oﬂn‘ relation:

C
A tur

tur "tur

C_ v
. B_tus 75T * (6.10)
0.8 1 = exp(=6 x 107" Re Pr' )]

where Re is the user-specified characteristic Reynolds number and Pr = C u/A
is the molecular Prandtl number, calculated based on the simplified propz:ty
option and user-specified chnucnruuc temperature. Equation 6,10 is based
on the proposal of Nijsing and Eiffel®?

5.4 ZERO-EQUATION MIXING-LENGTH MODEL

In the O-equation mixing-length model, the turbulent viscosity 1is
computed from the relation

1/2
T - pt? (;—- ;—-) ‘ (6.11)

Here, u's are the time-averaged velocities and x's are the Cartesian or cylin-
drical coordinates. We have adopted the usual summation convention where the
use of repeated subscripts implies summation over the three coordinate
components. The mixing length £ is related to the distance y from the nearest
wall as

L =xy (for y < youu)s
® S ¥uns (for y > Yoax) * (6.12)

Here, « 1is the von Karman constant with recommended value « = 0.42,
0.175‘0,,) is the cutoff value, and Dy is the hydrau.lc diameter.

6.5 ONE-BQUATION MODEL

Yaax (*

In the l-equation (k) model, we solve the transport equation (Secs., 6.7
and 6.8) for turbulence kinetic energy k and compute turbulent viscosity using
the relation

y il (6.13)

where €, the dissipation rate of turbulent kinetic energy is given by



(6.14)

is a constant having the recommended value 0.09, and & is the length scale
related to the distance y from the nearest wall as described in Eq. 6.12.

In the cace «f multidimensional flow with more than one wall co~exisiing,
the value of y, used to compute &L, is the nearest distance from a wall. The
cutoff value Yoax 18 elther 0.175 Dy or a preassigned length, where Dy is the
hydraulic diameter.

After computation of turbulent viscosity, we compute the thermal conduc~
tivity using the relation

o 4

tur

tur © Pr. * (6.13)
tur

where Pro e 18 the user-specified turbulent Prandtl number .
6.6 TWO-EQUATION MODEL

In the Z-equation (k=) turbulence model, we first solve the transport
equations (Secs. 6.7 and 6.8) for turbulence kinetic energy k and the
dissipation rate of turbulence kinetic energy €. After obtaining the values
of k and €, we compute the turbulent viscosity Vpyr Using the relation

¥ eur .(_Ci_hi) . (6.186)

£

Here, C; is a constant having the recommended value 0.09,

k .%(“'r‘ V'T* 'lI)

is the turbulence kinetic energy,

5u; Ou:

£ =y ol T (b.18)
J )

is the dissipation rate of turbulent kinetic energy and v Is the kinematic
viscosity. After computing turbulent viscosity, we compute the thermal
conductivity using the relation

[
. P tur

A
tur "tur

where Prt“ is the user-specified turbulent Prandt! number,
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6.7 TRANSPORT EQUATIONS OF k AND ¢
6.7.1 Transport Kquation for k

If we multiply the fluctuating velocity equations by fluctuating velocity
components, add them, perform time-averaging, and wuse the definition

k = 4 u"u" , we obtain

2
du a4 u u
ak Ik T o 1va B 2 i

9""'00\0"—‘-1---001035-;}’9“;“ ur;; s-'—:-or‘%

A B C

dulu a'ulu!
2 M., A, AAL . NT
03,‘) u("O '.‘) » =5 pu &” (6.20)
L

Equation 6.20 is the exact form of the transport equation for k. Here, the
terms are

A ! source due to mean shear,
B ! buoyancy interactions,
C 1 loss of k through viscous dissipation, and

D : diffusive transport of k and randomizing action of the pressure-
strain correlation,

We can see that Eq. 6.20 has the closure problem. Adoption of the gradient~
transport notion of Sha and Launder®? eliminates the closure problem and
simplifies Eq. 6.20 to

[ *u
pg—:op "j;-:-- 't’cl-” 03: (“'o 'n.-.—):-}—- . (6.21)
b J * )
Here,

du u du
1
P Y e r;;(n‘}’r:}) (8.22)

is the source dun to mean shear, and

u
3 - - —t“' ' 2-1.—

k ”h T
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is the source due to thermal buoyancy. The term containing o, in Eq. 6.21
represents the diffusion of k. o, 18 called the turbulent Prandtl number for
k. Launder et al®! have recommended the value 1.0 for 0.

6.7.2 Transport Equation for ¢

The exact form of the transport equation for € is obtained by taking the
derivative of Eq. 6.3, with respect to Xy and multiplying it by

TV T
”(l‘:';"r;‘l) (6.24)

The noulttni equation is discussed in detall by Daly and Marlow®“, Hanjalic
and Launder®®, and Lumley and Khajeh-Nouri®5. The only feasible approach
toward devising an ¢ equation is to apply both intultion and intelligent
dimensional analysis. The ¢ equation contains several empirical coefficlents
that require adjusting to account for different behaviors of different shear
flows. The equation proposed by Jones and Launder’® and Daly and Harlow®* is

e £ € el
g RS AR AL R VLS o
3 1/ Vtur * tam) 2

L '.J ( C‘ r.-; . (0-25)

Here, the source term P, has the same form as Eq. 6.23, the second term on the
right is the dissipation term, and the last term represents diffusion. The
variable 9, is the turbulent Prandtl number for ¢; the recommended value®? (s
1.3, The coefficient of the production term C; Is normally chosen by
reference to near-wall turbulence, whereas the coefficlent €y is determined
from the aca{ of grid turbulence. The values of C; and C; recommended by
Launder et al ®® are 1.44 and 1.92, respectively.

H.%  BOUNDARY CONDITIONS FPOR TRANSPORT EQUATIONS
There are three types of boundaries:
A line or surface (plane) of symmetry,
Inlet and outlet boundaries, and
A solid wall.

The first two boundaries are discussed here and a solid wall boundary is
discussed in Sec. 6.10,

680 Sywmstry Boundary

The simplest boundary is the line or plane of symmetry; #t & symmetry
line, the normal velocity is zero. The gradients of scalar quantities k and ¢
normal to the symmetry line are also zero.
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5.8.2 lInlet and Outlet Boundaries

At the outlet plane (free boundary), the gradient of turbulence quan~
tities are assumed to be zero. The inlet plane requires special treatment.
The inlet turbulence kinetic energy k;, can be obtained from measuresent (f
available. For the uniform inlet velocity ug, the inlet turbulence kinetic
energy kg can be estimated as follows:

®in ® S, 10%n (6.26)

where Cy (, 18 the user-specified coefficient. The recommended value of Cx,in
is 0,001, The inlet dissipation rate of turbulence kinetic energy €, can ‘o
estimated using the relation

¢ = k)/2

in €,in "in * (6.27)

where CI { is a coefficient that can be determined empirically or by using
the fol ng equation

R
PR (6.28)
» in

Here &, (= xy, <« 0.175 Dy is the length scale at the inlet.

If the profile of c(he mean velocity at the inlet plane Ls known or can be
guessed, then k; can be estimated from

“1a * ¥ [G%a)‘ ’ (";P)'] ' (6.29)

where u;. I8 the mean veloclity componsant in the main flow direction. The
inlet dissipation rate €,  can be computed pointwise using the same relation
(Eq. 6.27) as for the uniform velocity case,

5.9 WALL FUNCTION TREATMENT

In the (mmediate vicinity of a solid wall, there is large variation in
the values of turbulence properties. Therefore, to predict the correct values
of momentum flux, energy flux, and the gradients of k and ¢, we apply »
special treatment called the wall<function treatment. In this procedure, we
implicitly account for steep variation near a wall and avold the need for a
fine mesh. This procedure (s described briefly here; more detalled
information can be found in Sha and Launder!® .,

6.9.1 Wall Shear Stress (n the Momentus Squatio

The Lllustration of the model uwsed for & near-wall reglon is shown in
Fig. 6.1, P 1is the node adjacent to the wall and outside the viscosity~
affected zone (viscous wsublayer), NP (s the node next to P, and the distance
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Fig. 6.1, Model of & Near-Wall Region

Y, I8 the distance from P to the ul‘. The wsublayer thickness y' is
dBternined such that the Reynolds nusber Rr at the edge of the reglon Ls 20,

" 4172
R (6.30)

The level of turbulent kinetic energy h' ag y' is obtained by linearly

extrapolating the values of ky and ky, to y = y
. ’I - s \
k =k, ¢+ "(h"h"j . ‘.-")

Based on the assumption of logarithmic veloeity profile from turbulent
Conette flow, the wall shear stress between the node P and the wall s
modified to account for the frictional force at the wall. The modified wall
shear stress, in lieu of the normally calculated value, i»

(6.32)
which is deduced from the velocity profile
“
. .I/Z - c-'" l [} (M) (6.1))
'jt » b ™ v ' ’
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The constant E has the value of 9.0 and u, {8 the velocity parallel to the
wall at node P. The shear stress calculated from Kg. 6.32 (s assumed
flovariant from node P to the wall.

6.9.2 Nall Heat ¥lux in the Soergy Fquation

In the energy equation, the heat flux near the wall s modified using a
logarithmic temperature profile. The modification for the wall heat flux (s
similar to that made for the wall shear stress in the momentum equation except
that an additional term is introduced to include the resistance of the laminar
sublayer. For the case of a laminar Prandtl oumber o, tan Of the order of |
or greater, the wall heat flux is .

/2 _1/4
Kk C h = h
q ‘-2_1: 'R ( LA <l) (6.34)
v 176 _1/2 ’
TP 2 T ) DR
. v f
where
C] N h 1/4
P 9.24 (;5-&-!! - x) C-a-!l‘-'-) . (6.3%)
h,tur h,blam

In Eq. 5.34, h 1s the enthalpy and subscripts w and P represent the values at
the wall and node P, respectively. Py Is generally referred to as the P
function and o ¢ is the turbulent Prandtl number for thermal energy
transfer, as «!'lb? previously.

For the case of a low Prandtl number, such as liquid metal flow where
Oy gan 18 On the order of 107, the turbulence contribution to the wall heat
!t&sqo small, The temparature profile bdetween the wall and node P can be
assumed linear.

6.9.3 Terbulence Questitiss & end ¢ Near o Solid Well

For treatment of the transport equations of k, the diffusive flux from
node P to the wall (s first set to zero. The production term P, in the k
equation (s modified as

'i -ty u'/”; (6.38)

instead of using mean shear, T is the modifled wall shear stress computed
from Bq. 6.32,

In the transport equation of «, the dissipation rate at node P 1s
computed as

cllt .)/6

“ ._L_"_ (8.47)
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instead of solving the transport equation for €. In addition, the average
value of € Ls computed by integrating the nonlinear variation of ¢ for the
neac-wall cell. Thus,

t
.
Eod | cay
’. )
Al
4 k)lz (., cl/‘ hl/l)
- -t B
LJ—_,. tn | -2 . (6.38)

where y. Is the value at the edge of the control volume of node P as shown in
Fig., 6.1, The value of ¢ (s used to evaluate the dissipation term in the
equaticn for k for the near-wall cell.



50
7. VOLUME-WEIGHTED SKEW-UPWIND DIFFERENCE SCHEMEK

7.1 INTRODUCT LON

In fluld=dynamic calculations, the pure-upwind difference scheme (s
generally preferved over the central-difference scheme to discretize
convective terms. The reason is that for high-Pe:let number flows, the pure~
upwind scheme prevents instability and provides a more accurate solution than
that obtained with the central-difference scheme. However, It has been
observed that for flows inclined to grid lines, the pure~upwind scheme causes
an increased amount of numerical diffusion. To reduce numerical diffusion, we
have developed and {mplemented & volume-weighted askew-upwind difference
scheme, which ls described (o this section.

7.2 PURE-UPWIND DIFFERENCE SCHEME
7.2.1 One-Dimensional

Because of (ts stabilizing effect, the pure-upwind difference acheme Is
used extensively in one~dimensional hydrodynamic computer 'n.u-". The
basic concept is briefly discussed here In reference to Flg. 7.1,

I
.I-l =12 * Jmn ‘m
. —J ™Y {F—. .
=1 I .
=2 isi/2

Fig. 7.1 One-Dimensional Upwind or Donor Cell

It is eany to difference the model equation

};(m-o (7.0

at node L, where ¢ is some scalar and u I8 the velocity. Bquation 7.1 can be
differenced at center node | as

(‘)hlll .('.)1_1_1.0’ (1.0

where the subscript 141/7 refers to the values of (W) at the cell edges. In
A staggered mesh oynu. $ and u are not known at the same points, If 1t is
ansumed that ¢ Is continuous, Bgq. 7.1 can be approximated as

() iz (@) gain o Yenza ®s " Me/a i (7 30}
Ax Ax




for the case 't;l/! > 0, and

TV TR ST ¢ .3

Ax

for ugui7z € 0. That is, the values of ¢ are considered “donated” (or
-M.H i& the cell edge, depending on the signs of e/t

7.2 Two-Dimsasional

Now consider the two~dimensional situation as shown In Fig. 7.2, The
application of the one~dimensional pure-upwind difference scheme to the two-
dimensional model equation

g-.-(q)og;(un-o (7.4)
produces
%!1.(oh,“i'-(nh_“;'
x x
NORTRLY ').- (%gerz,s *4e10) o
and

(") “~(w)
4 * -
_‘.,!.)..~_LAJ.L?_‘.,___LL.L/J.
‘(“ jo1/2 4 )-5” r!ﬂ"lﬂ), -

assuming u and v are both positive. This extension assumes that the veloe~
ities are locally one~dimensional, {.e., each cell face I8 associsted with
only one velocity component, as shown in Fig. 7.2,

7:2.) Memsricsl Diffusion

This apparently straightforward application of the one-dimensional pure-
upwind concept to two and three 4 1 has been ldentifled as one of the
maln sources of oumerical diffusi ' It has been shown that for a
steady-state two~dimensional flow with constant velocity components u and v
and equal grid slzes Ax = Ay = A, the numerical diffusion coefficlient r,
resulting from using Bqe. 7.5 and 7.6 in Bq. 7.4 1s glven approximately by
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Fig. 7.2, Two-Dimensional Upwind or Donor Cell

ry -q stn ('I u) (V) & stnc20) , (7.1
where
o o tan’ (3) . (7.78)

The maximum value of the numerical diffusion coefficlent occurs for & = w/4,
fte., umyvw,

7.3 WHAT IS NUMERICAL DIFFUSION

The term “numerical diffusion” 18 highly misunderstood among the
practitioners of numerical analysis. Accordingly, we get different inter-
pretations from different practitioners.

T™he concept of numerical diffusion can be described as follows, [If we
subtract the finite~difference approximation from f{ts partial differential
equation in & Taylor series expanded form, the resulting equation is generally
termed a “truncation error”. MHere, we are assuming that a Taylor series
expanded form is an asccurate representation of the partial differential
equation under consideration.

The truncation error usually contalne many odd and even derivative
terms . The effect of even derivative terms s generally to reduce all
gradients in the solution, whether physically correct or artificlially induced.
T™his effect, called dissipation, is often looked on as If we have introduced
an artificial viscosity. This 18 why dissipation s often referred to as
faloe, artificial, or numerical diffusion. The odd derivative terms, on the
other hand, have a tendency to produce an oscillatory solution., This effect
is termed dispersion.
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The lowest-order term of the truncation error defines the order of the
numerical scheme. In general, 1(f the lowest-order term in the truncation
erro” is an even derivative, than the dissipatise error will predominate; if
it L an odd derivative, then the dispersive error will predominate.

When we use an upwind-differencing scheme, the lowest-order term in the
truncation error is a first-order even derivative of the order O(Ax). The
effect of upwind differencing is therefore to distort sharp gradients by
dissipation, as shown in Pig. 7.3b. In the case of central differencing, the
even~derivative term gets cancelled, so the lowest-order term is & second-
order odd derivative of the order O(Ax?). The effect of central differencing

is therefore dispersive, as shown in Fig. 7.%¢.

— S

(a) (b) (e)

Fig. 7.3, Effects of Dissipation and Dispersion: (a) Exact Solution;
(b) Numerical Solution Distorted Primarily by
Dissipation Errors (Typlcal of Flest-Order Methods ),
() Numerical Solution Distorted Primarily by
Dispersion Errors (Typlial of Second~ rder Methods)

Since & pure~upwind scheme introduces dissipation, we need not consider
It as inaccurate or a misrepresentation of reality. On the contrary, for
convection diffusion flows parallel to grid lines and at high Peclet numbe:
the pure-upwind scheme actually gives a better and more stable solution than
that we would obtaln from a central-differencing scheme. However, for flows
inclined to grid lines, we need modification to reduce numerical diffustion.

T4 MM TO REDUCK NUMERICAL DIFFUSION

The apparent ways to reduce numerical diffusion are

® to use very fine mesh and

® to use higher-order finite~difference approximations.
But these procedures are not possible In practice when one (s trylng to
analyse & large, complex, real engineering situation. In addition, it may be
very uneconomical to do wo.

What 1s neaded 1s & scheme that (s simple to lmplement, permits the use
of coarser sesh for glven accuracy, and has acceptable numerical diffuston.



7.5 REVIEW OF AVAILABLE SCHEMES

Numerous methods for reducing numerical diffusion have been proposed in
the open literature. We are presenting here our brief review of several of

t::c procedures that we had looked i(nto for ftmplementation in the COMMIX
¢ N

The method of Truncation Error Cancellation (TEC), wused by LASLT),
involves adding diffusive terms to make sure that the coefficlents of all
second-order terms are positive. In the upwind scheme, the coefficlents are
already positive. Therefore, the procedure requires the use of negative
diftusion coefficlents. We tried this procedure and found that (t decreases
the stabllity of a solution.

The Flux~Corrected Transport (FCT) theory was developed by Boris and
Book”? and extended by Zalesak’'.  As described by Zalesak, the method
requires the governing equations to be In conservation law form and computes
the net transportive flux as a welghted average of a flux computed by a low=
order scheme (e.g., upwind) and a flux computed by a higher-order scheme
(e, & leapfrog trapezoidal algorithm with fourth-~order spatial differ~
ences) . Flltering (s required to suppress overshoots and undershoots
("wiggles'). The procedure is a very high-order scheme and (ts {mplementation
in COMMIX would require major code modifications. PFurthermore, the procedure
would become computationally more expensive,

The use of the Asymmetric Welghted Residual method, as propounded by
Romstedt and Werner’®, was not consldered because it would require substantial
modification of COMMIX, (t Is an untried technique for multidimensional
fluld=flow problems, and (s inappropriaste for a COMMIX=type code .

Re G, Stelnke’® describes the use of a step function tather than & flat
shape In the pure-upwind scheme. This approach does not address nuserical
diffusion due to cross=flow;, Instead, 1t s concerned only with oumerical
diffusion dus to pure-upwind differencing.

A nonlinear fitting technique (FRAM) presented by Chapman’® (s for sultl-
dimensional homogeneous equations in conservative form. The basic ldea Is to
use a higher-order scheme and then locally i(ntroduce artiflcial diftusion when
spurious oscillations appear, The technlque seems to offer several “nnn,u
over FCT, In particular, the high-otder scheme can be like Crowley's’’+78,
which Is akin to central differences. Thus, the basic scheme would be 4 nine~
polnt scheme In two dimensfons and a J/=point scheme in three dimensions.
Also, artifical diffustion is introduced locally rather than globally, as in
FCT. The modification can be soderate (n scope. We wanted to see I wo could
find & simpler alternative,

A skew-upwind difference (SUD) scheme is described by Batthby®? and
Litlington’® . In this approach, one applies upwind difference (n the strean
direction and uses a linear vartation differencing in the cross-stream
direction. This techalque addresses the problem of numerical diffusion due to
cross~flow gradients In the pure-upwind scheme In two dimensions, this
scheme leads to, at most, a nine<point formulas,
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7.6 SELECTION OF A SCHENE

After reviewing the alternatives described, we decidec to do the
following:

l. Extend Raithby's two-dimensional SUD scheme to three dimensions,
2. Develop the VWSUD scheme, and

3. lmplement both these schemes (SUD and WSUD) into the energy equation
in COMMIX~IB.

The following were our ilmportant ¢ msiderations for the development of
the WSUD scheme .

® As mentioned earlier, our objective was to develop a scheme that
is simple to lmplement, computationally efficlent, and displays
aAcceptable numerical diffusion for flows oblique to the
computational grids.

® The pure~upwind scheme Is simple. It 18 based on the assumption
that for a steady-state convection-dominated flow, the variation
of property value in the streamwise direction s very wmall.
This is & valid assusption. A major deficlency of the pure~
upwind scheme (s that 1t produces numerical diffusion when a
flow is inclined to the computational grid lines.

® The skew-upwind scheme, an extension of the pure-upwind wscheme,
reduces the deficlency of the pure-upwind scheme. But SUD haw
two other problems: It predicts results that may overshoot or
undershoot, and It requires an arbitrary cutoff value during
linear interpolation,

We therefore developed a scheme called the volume-welghted skew-upwind
difference (VWSUD) scheme, which (s & modification of the SUD scheme., It
eliminates the two problems of the SUD scheme. 1t approximates the property
value at the surface of & computational cell using the volumes of two upstream
colln an welghting factors,

We have implemented the WSUD scheme In COMMIX-IB only In the enerxy
equation and not In the momentum equation for the following reasons:

® All our analyses have shown that the numerical diffusion due to
pure-upwind approximation is mainly through the energy equation
and not through the momentum equation,

® The analysis of Massan ot al”™ has shown that ftncressing the
order of appronimation (from pure-upwind to central difference)
in the momentum equation, (n general, does not make any appre-
clable difference in the velocity fleld,

So that & reader can clearly understand the VWEUD scheme, we have In-
cluded Ralthby's skew-upwind difference (SUD) scheme an background informat fon

before describing the alternative volume-welighted skew-upwind difference
(VWSUD) scheme .
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7.7 RAITHBY'S TWO-DIMENSIONAL SKEW-UPWIND DIFFERENCE (SUD) SCHEME

Ralthby®® developed what 1is called the skew-upwind difference (SUD)
scheme applicable to a two-dimensional flow fleld. It is based on the assump~
tion that i(n a small domaln surrounding the center of a cell surface, a scalar
property function ¢ (e.g., density, temperature, etc.) is continuous, linearly
varying and constant along a streamline.

Mathematically,

z--o . (7.8)

Here, d/® 1s the directive derivative along the stream direction ¢. lLet us
concider the west face of node (1,)), as shown in Fig. 7.4,

T
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Flg. 7.4, Two-Dimensional Skew-Upwind Differencing Scheme

We denote, for clarity,

00 "‘.,o

(ray
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Equation 7.8 ifmplies that

by "4, (7.10)
where 0. is the value of ¢ at the point of intersection between the projection
of the velocity vector V and the vertical line connecting ¢, and ¢,. The

property value ¢, in turn can be evaluated from the values $) and §, using
simple linear u&rnuuu. as

where

Sy = (c,‘ . lsz/z (7.11a)
::.ln and Sy, are the cell heights. The lengths d; and d; are determined

d, = '{-' (8x/2) (7.12)
and

dy =8y -~ 4,. (7.12a)

Here u and v are the components of the velocity vector ‘. considered centered
at the middle of the west face, and 8x Is the grid width for the ceall con~
talning ¢, (or 9,). When d; is greater than 8§, then 4, 1s set equal to §
and dy is wet equal to zero, and vice versa fof the case of 4, greater lh“
L #e are Ralthby's artificlal cutoffs to prevent the mot%tlicy of neg~
o‘tn coefficlents (n the interpolation formula given by Kq. 7.11. Equation

o " (' °%}':- %D‘I ’(43

This is the same as Raithby's results for both u and v positive. Thus,
Ralthby's SUD scheme s & method to replace 4, by a linear interpolation
batwaen ¢, and §, using velocity components u and v. The flux on the west
face s then computed In the usual manner as

v
4 ).z . (7.9

l.-o'dnn ' (7.1%)

One benefit of the method Ls reduction in the numerical diffuston in the
direction normal to the wstream direction (ntroduced by the (ndiscriminate
extenslon of the one-dimensional pure-upwind difference scheme to twn and
three dimensions. The method does not address the problem of numerical
diffusion that persists In that direction; nelther does 1t address numerical
diffustion resulting from time-dependent terms.
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The interpretation of the method as an interpolation procedure for L
allows easy implementation in our existing COMMIX computer code withou. major
reprogramming .

In the following section, we explain the extension of the method to the
three~dimensional situation.

7.8 EXTENSION OF RAITHBY'S 2D-SUD SCHEME

The approach employed in Sec. 7.7 to derive the skew-upwind difference
(SUD) scheme in a two~dimensional flow fileld is simple and stralghtforward.
All the terms invoived in Eq. 7.11 can be interpreted with physical and
geometrical meanings. The same approach Is used to derive the three-
dimensional skew-upwind differecace scheme shown in Fig., 7.5. To i(llustrate
the configuration easily and without loging generality, we will assume that
the velocity components u, v, and w of V, passing through the center of the
north face (+y) of the cell containing ¢, ‘Fig. 7.5), are a'l posicive.
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Fig. 7.5, Three-Dimenstional Skew-Upwind Differencing Scheme

The three~dimensional model equation under consideration (s given by

;—;(0)0;—;(')0}.—(‘)-0 : (7.1%)

Bquation 7,15 can also be written as Bg. 7.0 and the same corsiderations
described In Sec, 7.7 are then directly extended to three dimensions .
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The _location of point P, is the {intersection of the projection of
velocity v with the plane containing the scalar values 9,, ¢, ¢, and e
The length of d,, 6 and d,, can be derived easily from Fig. 9.5 Aan

d -%(ly/l} (7.18)

lz

.4 :
d,, =2(sy2) . (1.a7)

1

If the center of the north face (+y) of the cell containing ¢, is considered
to be the origin of the local coordinate system, then the coordinates of point
P can be written as

P
('p)loul : "(“ll' dy/2, -4,.) . (7.18)
We define the interpolation coefficients as
(a. Idul) 7
o, o \—p— it 62 > |4, |, (7.19)
.z - 0 othervise ,
and
(a. - |¢l'|)
M - e if 8x > |du| ’ (7.20)
o‘ - 0 otherwise
where
.y
L 3 (hl . 0:2) (7.208)
and
bn = 4 (8x, +6x,) . (7.208)

Therefore, the intensive property ¢y defined on the north tace of the cell
contulning 00’ can be silmply written, analogous to the two-dimensional cawse

given by Bq. 7.11, a»
byt m(o, 0 )o,o((1=0)a]e, ¢[a (1-a)ls,

e ({1 =a) (1 =a)] 0, - (7.21)
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7.9 VOLUME-WEIGHTED SKEW-UPWIND DIFFERENCING (VWSUD) SCHEME

In this section, we describe the volume-weighted skew-upwind difference
(VWSUD) scheme, which overcomes some of the deficlencies of the skew-upwind
difference (SUD) scheme.
7.9.1 ed Diffe ce (VWSUD

As discussed in the preceding sections, the only assumption made to
derive the SUD scheme {s

a.. 0 (7.22)

and the only conclusive implication trom this assumption in two or three
dimensions (shown in Figs. 7.4 and 7.5) 1s that

"..p ¢ ("23)

Nevertheless, the expression of ¢, in terms of ¢, and ¢, In Eq. 7.2, or b,
Py Py by In Eq. 7.21, is straightforward but not necessarily unique.

In some cases, the (nterpolation may result in significant undershoots or
overshoots . For the case of highly angled flow, shown in Fig. 7.6, the
projected point Pp falls outside of the line conrecting ¢, and ¢,.
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Fig. 7.6, Deflclency of Skew-Upwind Differencing Scheme
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To avoid the extrapolation, which may result in gross errors®®, we can
simplify Eq. 7.11 using the cutoff

by 0,0, (7.24)

However, based on physical intuition, the intensive property of the flow
passing the west face of the cell containing ¢, should involve both ¢, and I

To correct this situation, we consider the volume of flow passing
through the west face of the cell containing ¢+ a8 shown in Fig. 7.7. The
volume of flow passing through the west face originating from the portion of
the control volume containing $; 15 Ah, where h is the unit depth of the
flow. The remainder of the flow that passes through the west face originating
from the control volume containing ¢, Is given by Ajh. Therefore, the average
of the intensive property associated wi'h the volume of the flow passing
through the west face can be expressed as

. A
b =y = — b e g,
T R ey W R Wy W P

(7.25)

Since the coefficients in Eq. /.25 are always between O and |, there is no
need for any artificial cutoffs {n the VWSUD scheme.
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Fig. 7.7. Concept of Volume-Welghted Skew-Upwind Scheme
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7.10 BXTENSION OF 2D-VWSUD TO THREE-DIMENSION

The extension of the two-dimensional VWSUD scheme to three dimensions is
quite straightforward but difficylt to visualize. As shown in Fig. 7.8, the
projection line T of the vector V that passes through the north face (+y) of
the cell containing ¢, may result in the formation of subvolumes inside the
surrounding cells. 4% simplify the representation, we onumber the cells |
through & counterclockwise, starting with the cell containing ¢,, as shown in
Fig. 7.8. Detalled configurations of the constituent oubvolu-.l resulting
from the projection line t are shown in Figs. 7.9 through 7.12.

The extension of Eq. 7.25 to three-dimensional flow fleld can be written

e )or * () o2 () 05+ (525)
$y ®9_»* $, *lg—)0, * g0, * $, ., (7.26)
. P tot ) ' vtot 2 vtot 3 vmt .

vtot - V‘ + V2 + V3 + Vb (7.26a)

where

and Vi, Vy, V4, and V, are the volumes as shown in Fig. 7.8.
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7.11 REMARKS ON THE SUD AND WSUD SCHEMES

The SUD and VWSUD schemes have been implemented in the energy equation of
COMMIX~1B. These schemes have been tested bty performing several multidimen-
sional steady-state and transient simulations of thermal-mixing benchmark
problems and two thermal mixing experiments. We have observed the following:

® The SUD scheme can significantly reduce numerical diffusion for
steady -state thermal mixing problems with flow oblique to grid
lines. However, significant undershoots and overshoots occur
and appear greater in three dimensions than in two dimensions.

® The SUD scheme appears less stable than the VWSUD scheme and may
require high underrelaxation.

® For the same mesh size, the computer running time for the SUD
and VWSUD schemes are larger than that for the pure~upwind
scheme, but numerical diffusion is less. So there is a price to
be paid for reducing numerical diffusion. The additional
running time is highly problem-dependent.

Overall, the VWWSUD scheme

® 1is numerically stable (the stability analysis is presented in
Appendix A),

® has the same order of accuracy as the SUD scheme, but eliminates
all of the undershoots and overshoots (computational values
below and above the limits of physically allowable values)
observed in the SUD scheme in this study,

® retains the simplicity of the SUD scheme without resorting to
artificial cutoffs needed in the SUD scheme; this advantage is
crucial in many thermal-hydraulic applications,

| ® significantly reduces the numerical diffusion for steady-state
and transient thermal mixing with flow oblique to computational
grids--hence, the VWSUD scheme permits more realistic analysis
of thermal mixing to help resolve many critical engineering
problems such as the pressurized thermal shock issue, and

® permits use of a coarser mesh than with pure-upwind and still
provides results that are of the same order of accuracy, saving
significant computer running time by a factor of 4 to 8.
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8. HEXAGONAL FUEL ASSEMBLY

In the initial COMMIX development period, major emphasis was on the
analysis of hexagonal fuel assemblies. Consequently, several features and
models have been implemented in COMMIX that are specifically for hexagonal
fuel assemblies. These are described briefly in this section.

8.1 HEX-GEOMETRY OPTION

The hex-geometry option is available in COMMIX-1B for the calculation of
all required geometrical parameters for hexagonal fuel assemblies. The
subroutines for this option have been developed so that a minimum amount of
information is required as input, relieving the user from the tedious work of

preparing geometrical data. The user has to provide only the following input
data:

Pins Number of pins, pin diameter, distance between pin
centers, and clearance between pin and wall.

Wire wrap Diameter of wires next to wall, diameter of wires
away from wall, and type of wire wrap option desired
(see Sec. 8.3).

Partitioning Number of axial partitions, size of each axial
partition, and type of cross-sectional partitioning
(see Figs. 8.1 and 8.2).

With this minimum information, the code calculates all required geometrical
parameters--grid sizes in x and y directions, directional surface porosities,
volume porosities, wetted perimeters, hydraulic diameters, surface areas, etc.

During calculation of all of the parameters, we have assumed that

- Axial length is along the z direction,
- Ome flat surface of the hex assembly lies on the x axis, and

- Eight surfaces of the hex assembly have the following locations:

Surface No. Location
1 Lower left diagonal in x-y plane
2 Upper left diagonal in x-y plane
3 Lower right diagonal in x-y plane
4 Upper right diagonal in x-y plane
5 Lower flat along x axis
6 Upper flat parallel to x axis
7 Entrance; z = 0 plane
8 Exit plane normal to z axis
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We have designed this option with two types of cross-sectional
partitioning:

- Quarter-pin and
= Full-pin.

To illustrate the differences, a quarter-pin partitioning and a full-pin par-
titioning of a 19-pin hexagonal fuel assembly are shown in Figs. 8.1 and 8.2,

The hex-geometry option can also be used even if the hexagonal fuel
assembly under analysis has some deviations from a regular hex-geometry, and
contains some internal structures, e.g., blockage, that affect the values of
volume porosity and directional surface porosities. The only difference {is
that the user now has to input the values of volume porosity and directional
surface porosities that are different from a regular geometry. The user-
prescribed values in the internal-cell-initialization cards override the code-
calculated values.

If the hex-geometry is very irregular, e.g., different fuel-pin diam-
eters, nonuniform spacing with different pitches, etc., then the user may
bypass the hex-geometry option and use the normal box-geometry option. Of
course, with the box-geometry option the user has to provide all the required
geometrical details.

8.2 WIRE WRAP MODEL

8.2.1 Introduction

The presence of helical wire wrapping around a fuel pin has two effects
on fluid flow.

- The geometrical effect, where the presence of wire wrap
influences the fluid flow by reducing the available flow space
(this effect is accounted for by modifying the volume porosities
and directional surface porosities), and

= The physical effect, where the presence of wire produces addi-
tional drag on the fluid flow (this effect is accounted for by
including additional resistance terms in the momentum equation).

In this model, we have provided two options. They are described here.

#4.2.2 Sweared Wire Option

In this option, the volume porosities and directional surface porosities
are modified uniformly across the section. This is done by distributing total
wire volume equally over all cells and total wire-wrap cross-sectional area
equally over all cells in each axial plane. Physical effects are neglected.
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8.2.3 Cell Integrated Option
8.2.3.1 Geometrical Effects

The geometrical etfects due to the presence of wire wrap are accounted
for by modifying volume porosities and directional surface porosities. This
is done using the relations

z
w 1 2
Yo "V T Gewn ‘[ A, 8z, (8.1)
1
v 1 *2 .9
Tx,141/2 " Tx,141,2 T Thyh2) .f “x,xﬂ/z ’ (8.2)
1
. 1 22 v
Ty, 3¢1/2 7 Ty, 34172 T BBz ,f SAy ye172 (8.3)
1
and
AU
v . _ "2,k41/2
Yz,kﬂlz Yz,\zﬂ/z (AxAy) °* (8.4)

where the superscript w refers to the wire wrap and A is the cross-sectional
area of the wire wrap. The right sides of Eqs. 8.1-8.3 are integrated numerl-
cally. At each axial position, A¥Y is computed by determining its proper
location in a cell. The step size for numerical integration is taken to be
equal to three degrees of angular rotation, i.e.,

bu @ wire gitch

130 . (8.5)

8.2.3.2 Wire Drag Effect

The resistance force due to the wire wrap is modeled as

w|wA
i\\' 5 %A-%L)}ﬁ P (84

where
Ir' - f‘i +£] 4 f} (8.7)

is the resistance force per unit volume, C is the drag coefficient, and
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A=als A+ ak (8.8)
is the projected area of the wire wrap. The calculation of Ats briefly
described here.
Figure 8.3 shows a typical wire wrap arrangement . Consider the wire wrap

as a spiral ring of width d_, attached to the fuel pin and located at position
$(x,y,z) as shown in Fig. 8.4, The projected area is

dK-d’Sxd'E

= (dxi + dy} + dzk) x dv(i cosa + § sina) , (8.9)
where
B-i cos a +3 sin a (8.10)
is the unit normal vector,
» .

5= (xl +y] + 2k)

> * * a
-up cos a +3rp .1na+k(xo#2. r‘r) (8.11)
is the wire wrap position vector,
- » * PU
ds = 1(-tp sina) + L cocc#‘-z—'- da (8.12)

is the change in the wire wrap position vector, r, is the radius of fuel pin,
and P, is the wire pitch. Substituting Eq. 8.?2 into Eq. 8.9, we obtain,
after simplification,

Pd
dh = 5 [1(-stn a) + 3 cosa -k tan 0]da , (8.13)
where
-1 xr
8 = tan (—l-'J) (8.14)
w

i{s the angle between the wire wrap centerline and the fuel pin centerline.
Integrating Eq. 8.13 between two z planes [k-1/2 and k+1/2] for a given cell,
we obtain

P d
A= ;' [1(cola

- cos cl) + J(s1n a, - sin c!) - ‘(oz -ol)t.n 8] , (8.19)

2 2
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where »
>z - zo)
i P ’ (8.16)
w
3 4
.y * P' ['kﬂ/z ‘k-llzl ’ (8.17)

and z; is the axial location when the wire wrap position is on the x axis
passing through the centerline of a fuel pin.

8.3 FUEL PIN RESISTANCE

We model the distributed resistance forces Rye» I,. and R, (defined in
Table 2.1) due to fuel pins in the following way:

R‘-;’l—-;-t‘puz ) (8.18)
v

where R is the distributed resistance force per unit volume, f is the friction
factor per unit length, and the subscript x refers to the x direction.

When a rod bundle 1is aligned alorg the z axis, the cross-flow friction
factor f, is given byb?

- U 2 v p
f' 2 Tul f‘ 3 (8.19)

where
HP = the wetted perimeter per unit cross-sectional area ,
d = the rod diameter ,
P’ = the pitch in the y direction ,

and

?! = the largest of the following three expressions:
2

P - d
- g S TS
?x IRe (", < 0_”‘) , (8.20)
P
T Oo‘la .’0.15
f =0.6 - |0.25 + Re : (8.21)
. d (P,/d . 1)1.08 x

and



- 3 - -———:—— . (8 -22)
X Py 0.93d y d)]

In these expressions,

.olulr
X u

v
hl ull -d/p ]’ (8.24)

Analogous expressions are used for f,. replacing u with v, P

with loy in the above definitions.

The axial friction factor f, is given by

y with P, and Re

£, = ZT%THP(“': *c),

o |w|D
Re = L ’
z "

Dh = the equivalent hydraulic diameter ,

and the constants a, b, and ¢ are:

t b h'

8 bl 0 < 940

-0.32 0.0007 > 940

H.4 OTHER FEATURES

8.4.1 Heat Source

To 'provide an easy input of heat source from the fuel pins, three
variables have been introduced in COMMIX: QIN, QK, and QFLUX. The variables
QIN and QK are the normalized power distribution functions in a transverse
plane and in an axial direction, respectively. QFLUX {s an average heat
source per unit area of fuel pin. With these three variables prescribed, the
code calculates the heat source in a cell using the relation

Q(1,5,k) = QIN(1,j) * QK(k) * (vdAZ) PINF * QFLUX * !nf(t) ’ (8.27)
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where PINF is the fraction of a pin in the cell under consideration, (vdAZ) is
the pin surface area, f is the transient function to account for the variation
of heat source with time, and the subscript nf is the transient function
numter.

Fquation 8.27 assumes that all axial planes have the same normalized
power distribution QIN, and all vertical axes (cells with same (1,))
locations) have the same normalized power distribution QK.

Note that the power (, calculated in Eq. 8.27, is added to the heat
source term in the fluid-energy equation. Thermal inertia of fuel pins is not
accounted for in this calculation. The use of the easy heat source input
described here is therefore recommended only for

- Steady-state analysis and
- Slow transients.

For fast transients, it is recommended that fuel pins be considered as thermal
structures (des-ribed in Sec. 9).

When we b ve nonuniform heat source distributions in all three direc~
tions, there a1 two other alternatives:

- Prescribe a volumetric heat source for each cell through a
variable QSOUR, or

= Treat fuel pins as thermal structures and prescribe a heat
source through thermal structure input.

8.4.2 Pressure-Boundary Conditiocns

Most simulations need a velocity boundary at the inlet and a pressure
boundary at the exit. However, we may have situations needing pressure
boundaries at both ends, inlet and exit. This additional capability of
simulating with pressure-boundary conditions at both ends has been i{mplemented
and tested for hexagonal fuel as:embly cases,
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9. SUPPLEMENTARY PHYSICAL MODELS

To broaden the scope of COMMIX~IB applications and to more accurately
account for phenomena that affect thermal-hydraulic simulation, a number of
supplementary physical models have been incorporated into COMMIX-1B.

4.1 SIMPLIFIED FLUID PROPERTY OPTION

There are two fluid property packages in CUMMIX, one for liquid sodium
and one for water, Nominally, COMMIX makes use of the sodium property
package . Use of the water property package requires the creation of a
separate load module. Both property packages are developed and formulated in
a modular fashion to accomodate replacement by any other fluid property
package. The details of the two property packages and procedures for creation
of the load module are given in Volume II.

Besides the two fluid property packages, another option is available to
the COMMIX user. This option is known as a simplified property option. This
option, when in force, automatically disconnects the sodium property package
and calculates properties as specified by the user. Enthalpy, density,
thermal conductivity, and viscosity are all assumed to be functions of only
temperature, and are all assumed to have the functional forms

b= Cop* Crpl»

and

u=C. +C T. (9.1)

Here, Co and Cl are constant coefficients and are required as input.
9.2 OTHER MATERIAL PROPERTIES

In many real applications, solid boundaries and immersed solid objects
affect the thermal behavior of the fluid. When these effects are to be
accounted for, the thermal properties of the solid materials must be
prescribed. Volume [l describes how the material types are prescribed and
their properties evaluated.

In COMMIX, we can prescribe properties of as many materials as desired
(steel, cladding, etc.). For each material, the density, thermal conductiv~
ity, and specific heat are assumed to be functions of temperature having the
following functional forms:

2

(4] -Cwocbrtcb‘r s
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2
k =( . cka + CZKT "
and

2

¢c = C + C T+ C . (9.2)

P Oep lep 2cpT

Here, Cy, C;, and C, are the input coefficients.
9.3 HEAT-TRANSFER CORRELATIONS

To calculate the heat transfer between fluid and solid surfaces (either
the solid boundaries of a flow domain or the surfaces of internal structures),
a heat-transfer coefficient model (s required in the code. In the model
implemented in COMMIX, all heat transfer coefficient correlations are assumed
to have the following form:

y

Nu = cl + c2 Ke . (9.3)
Here Nu (s the Nusselt number, Re is the Reynolds number, and Ci» €3y and Cy
are the constant coefficients for a given correlation number NH. The user can
prescribe several correlations by inputting different values of coefficients
Cl, Cz. and C;. The Nusselt number and Reynolds number are based on the
characteristic lengths of the structures. These characteristic lengths are
input and must be prescribed by the user.

9.4 INTERACTIONS WITH STRUCTURES
As described before, the solid structures in a flow domain interact with
fluid and influence the momentuas and energy distributions. In the new porous-

media formulation employed in COMMIX, these interactions are modeled using
distributed resistances and distributed heat sources.

9.4.1 Structure-Fluid Momentus Interaction
9.4.1.1 Modeling in COMMIX-1B

As mentioned earlier, solid structures near fluid have the physical
effect of influencing fluid flow by increasing flow resistance. In the quasi-
continuum formulation, this effect is accounted for by providing an additional
distributed resistance cerm in the momentum equation. This section describes
how the calculation of distributed resistance, also known as force structure,
is carried out, and how a wide range of generality and flexibility is provided
in COMMIX.

The pressure drop due to stationary solid structures is expressed, in the
literature, in many different forms, e.g.,

2

Ap = & %o vi f, (9.4a)

o

Ap-ga',p vzcb,md (9.4b)
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Ap = %9 Vz K . (9.4¢)

The coefficients £, Cp, K, etc. have different names--Fanning friction factor,
Darcy friction factor, drag coefficient, loss coefficient, etc.--depending on
the form of the equation. To accommodate all friction loss equations, COMMIX
enploys the following general form:

. Ly 2
AP cl DD v f . (9:5.)

In terms of distributed resistance R, the equation has the form

viv
R = P =5 £ (9.5h)

Here, L(Ax, Ay, or 42) is the length of the cell, D is the hydraulic diameter,
and ¢, is the coefficient, depending on the form of the equation desired. The
values of c; and D depend on the geometry and type of the structure and are
required to be provided by the user.

There may be more than one structure in a flow domain of interest. Sub-
merged structures usually have different geometries and so require different
values for the parameters c, and D. In COMMIX we have provided this flexi-
bility; details are given in Volume II.

The friction factor f in Eq. 9.5 is a function of the Reynolds number and
is assumed to be of the form

b
Lam
f = & an Ke + Ctan (9.6a)
for Re € lc" and
tur
{ = - e - - (9.6b)

for Re > Ion.. Here, Re 1is the Reynolds number, and a, b, and ¢ are
constants. The subscripts Lam, tur, and tr stand for laminar, turbulent, and
transition. COMMIX hus the flexibility of permitting as many correlations as
the user desires. Each correlation requires seven input numbers-=~ag .o, Yg.m

€gam’ %tur® Prur Crurr ANd Re ..

To simplify the specification of which fluid cells interact with which
structure, a specific (Input arrangement has been I{mplemented {n COMMIX;
details are presented in Volume II of this report.

A report® has been prepared that provides a convenient collection of
resistance correlations that are most commonly needed by COMMIX users. This
collection of resistance correlations are also included as an Appendix iIn
Volume II.
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9.4.1.2 Friction-Factor Library

Occasionally, the COMMIX-IB user may be faced with the situation that the
desired correlation is not of a form directly suitable for input as described
in Sec. 9.4.1. The user is then faced with two choices:

- Approximate the correlation to fit the input form, or
= Use the friction-factor library.

The friction-factor library hLas been created to asaccomodate up to 50
different additional correlations. Currently, only six correlations, as
described in Table. 9.1, have been added to the library.

An ambitious user who wishes to define his or her own correlation may
first examine the code to see what correlation numbers are free and available.
Then, with other library correlations as a guide, the new correlation can be
inserted appropriately in the code and recompiled. Every effort has been made
to modularize this part of the subroutine so that a user has minimum
difficulty in inserting new correlations in the code.

9.4.2 Structure-Fluid Thermal Interaction

9.4.2.1 Introduction

To determine the heat-transfer interaction between a structure and sur-
rounding fluid, COMMIX contains a so-called thermal-structure module.

The heat transfer to fluid from a structure is calculated by solving the
one~dimensional heat conduction equation for the structure. This assumes that
heat conduction 1in the other twu directions 1s negligible. The COMMIX
numerical model has the following features:

® The model considers all internal structures. The (nput
determines the total number of structures.

® A structure can be planar, cylindrical, or spherical with either
one surface (e.g., solid cylinder or sphere) or two surfaces
(plane or annular cylinder) having thermal interactions with
surrounding fluid. The axis of alignment of the structure can be
aligned with any of the three coordinate axes.

® Each structure can consist of more than one type of material,
each separated by a gap.

® Radlal variation and temperature dependence of thermal
conductivity and specific heat of structures are incorporated.

® The effects of gaps in a structure element are accounted for in
the model. The gap width and heat-transfer coefficlent across a
gap are lnput parameters.

® The heat source in a structure zlement 18 considered in the heat
conductfon equation. The heat source can be transient.



Table 9.1 Friction Factor Library

REYLEN
CLENTH (length used
Coirelation Description Correlation (hydraulic to compute
Nuaber diameter, m) Reynolds
ousber)
90 CRER fuel ¢ e 8l 7oy o 28~ 3.25 x 1070 3.25 x 1072
Re ..0.25
1= 0; Re < 400,
X = (Re - 400)/4600; 400 < Re < 5000
x = 1; Re > 5000,
9 CRBR Slanket Ee 2Ty =a 3.9 x 107 3.39 x 107
sssendly e
X =0 ke < 400,
X = (Re - &UC)/4600; 400 < Re < 5000
x = 1; Re > 5000,
A
92 Direct reactor f - 333 0.1955 0.1055
heat exchanger Re

A= 0.171 + 0.012 (P/D) - 0.07¢ 30(P/D-1)
P/D = 1.84

6L



Table 9.1 (Contd.)

REYLEN
Correlation Description Correlation (hydrsulic to compute
Nuaber dismeter, ®) Reynolds
nusber)
93 CRBR feS /Ty "‘ 1 0.127 0.127
chimneys la
x = 0; Re < 1200
x = 20 L 1200 ¢ Re < 4000
x = 1; Re > 4000
9 FFTF £op ;e < 1000 3.95 5 107 3.95 x 1072
pin bundle
2 -
; 1000 1000 ]
f 1.075% l‘ [l + 0.1748 (~ ) + 0.0745 e )
L o 0.8086 105, (231
T ¢ oo/
< <
95 CRBR coatrol Q..!! M= ¢ ” x 3.48 x 1077 3.48 x 1077
asseably Re *

x =0, R < &0
x = (Re - 400)/4600; 400 < Re < 5000

x = 0; Re > 5000

08



® Each structure is divided into a desired number of axial
elements. A set of discretizatiou equations {is obtained for
each element wusing the proper boundary conditions. The
equations are solved using the Tri-Diagonal Matrix Algorithm.
The temperature variations in the element and heat transfer from
the element to fluid are calculated.

9.4.2.2 Geowmetrical Description

To explain the geometrical features of the model, we consider a cylin-
drical structure with its axis aligned in the z direction, and its length
extending over a number of Az partitions (K levels), as shown in Fig. 9.l1.
Although the description and the subsequent formulation are geared toward
cylindrical-type structure, the model in COMMIX~IB also is applicable to
spherical and slab-type geometries.

Each 4z partition of the structure is referred to as a thermal-structure
element. Each element has its own internal temperature distribution as f{t
interacts with surrounding fluid cells. Each element has two surfaces, outer
and inner. The outer surface interacts with surrounding fluid. The inner
surface can either be adiabatic or interact with fluid, as shown in Fig. 9.2.
Each element can {interact with no wmore than one fluid cell per element
surface, while each fluid cell can interact with more than one structure
element; this can be seen in Figs. 9.3 and 9.4.

Figure 9.5 shows the cross-section of a typical structure element. The
outside surface is considered as surface | and the inside as surface 2. Each
element can be made up of more than one material. In Fig. 9.5, there are
three materials. Each material region can be subdivided into a number of
partitions, as shown in Fig. 9.5.

9.4.2.1 Governing Equation

The transient one-dimensional heat conduction equation is

S LR s -
DCPTE A’ ( M) + q . (9.7)

Here, ¢ and ¢, are the density and specific heat of the material, :1"' is the
heat source per unit volume, q is the surface heat flux per unit area, and A
is the cross-sectional area.

9.4.2.,4 Finite-Difference Formulation

Figure 9.6 shows the cross-section of a typical structure element under
consideration. Each element is divided into a number of material regions and
each material region is subdivided into a number of partitions. Let Ar be the
partition size and let L be the total number of partition cells,

Consider the energy balance of cell R, as shown i(n Fig. 9.7, The
integrated energy equation for the control volume of cell & gives
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Fig. 9.1. Flow Domain Showing a Cylindrical Structure
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Fig. 9.2. Element of a Thermal Structure Showing
Outer and Inner Surfaces
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Fig. 9.3 Four Quarter Cylindrical Structures each
Interacting with One Fluid Cell

Fig. 9.4 More than one Structure Interacting
with a Single Fluid Cell
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Fig. 9.6 Cross-Section of a Thermal Structure Element
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pe V‘ " X
+t (T‘ - ‘)- - (‘lﬂqlﬂ - Alq!) +q'" V‘ . (9.8)
A1 Ay Mo Are2

M ~ —- R

L ] —— - ——— -
% TS
T L Ten
- |

Fig. 9.7. Energy Balance of a Partition Cell &

Here, V‘ is the cell volume. The heat flux qq can be expressed in terms of
temperature difference:

B - - - )
9 = Y(T,, - 1) (Teo, = T /R, (9.9)

Here, Ug is the overall heat transfer coefficient (conductance) and l‘ is the
overall thermal resistance between Ty and Tl-l‘

1
U, ==~ = for conduction , (9.10)
U )T L(E)
A 2

=1 L

5

and

. for conduction and convection

AT (9.11)

-t

&

% * (gap or surface),

where A (s the thermal conductivity and h (s the convective heat transfer
coefficient. After substituting Eq. 9.9 in Eq. 9.8 and rearranging, we obtaln

(ag + b, #0,,.)7, = BeTeot * BaiTeer * 4y o (9.12)

where

a 'QCPV/QQ » (9.“))




and

Here, T"

86
b=AU®=A/R, (9.18)

d=q''"veat . (9.15%)

and T are the temperatures at time t and (t + 8t), respectively.
Cell Adjacent to Coolant

For the case of Cell 1 (Fig. 9.8), adjacent to the fluid, the
integrated energy equation gives

(a, + b

L+ B BT =D

lrcooll + bzl'z + dl . (9.18)

Here, a, b, and d have the same meaning, except that b, now includes
the convective contribution, Therefore,

1
(%)

hccmll 1

(9.47)

A
i 1

b .-A—l—.
Rl

Similarly, if the other end of the thermal stcucture, say Cell L, is
in contact with fluid, we get

(ag # b # b )T, =bT _, ¢ bL,lrcoolz +d, (9.18a)

A

R
3 G

Fig. 9.8 Energy Balance of Cell | Adjacent to Coolant
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where

A A
Ll "Lﬂ h ! + (%E
<:o<>l2 L

b (9.18b)

Cell Adjacent to a Different Material

For a cell adjacent to a different material cell, as shown in Fig.
9.9,

(a, + 5, + b

L * BTy BTy ¢

+d

tot Tiar * % (9.19)

Equation 9.19 is similar to Eq. 9.12, except that the term D41
includes the gap resistance. Thus,

A
M, L+l
beer * R T ) Y . (9.20)
\Z) s T
L gap L+l

L e T )
By Resp Ry

Fig. 9.9. Cell Surrounded by Different Materials
with Alr Gap between Them

Bnd Cell with Adiabatic Boundary Condition

In solid cylindrical or spherical structures, the other end (symmetry
line) has the adiabatic boundary condition. The end cell for this
boundary condition is shown in Fig. 9.10., We have no heat transfer,
80 thermal resistance is infinite and the term b4 BOes to zero.

The final equation, therefore, is



(.L + bL)TL =b T,_, +d . (9.21)

Adiabatic Boundary

NN 77 Fig. 9.10

3 ,7,/ 90 Cell with Adiabatic Boundary
v

YL" T" —.ilo

O NS NSNS\ e NSNS NS\

9.4.2.5 Solution of the Discretization Equations

We can see from the formulation of the preceding section that there are L
number of equations for L number of unknown temperatures.

. Outside Surface Cell (2 = |)

(al +h + l’z)l'l = b,T, + (‘l + blrcooll) (9.22a)
- Intermediate Cells (& = 2, eoee L=])

(o # b # B )Ty = BTy * By Teay * 4y -

(B = 2, soee L=]) (9.22b)

N Inside Surface Cell (£ = L)

(a  + b, +b )T =bT  + (b“lrcoolz) +d, (9.22¢)
if the inside surface is non-adiabatic, and
(aL + z.l.)rL -bT ¢ (dL) (9.224)
Lf the inside surface is adiabatic.

Equation 9.22 can be transformed to
C;T‘ = b,T, + Ai (L= 1) (9.2%)
C"T. - bl*lrlﬂ + Al' . (8 = 2, sose L=]) (9.23b)



CLTL - bL*lrcoolz + Ai (2 = L; nonadiabatic) (9.23¢)
or

CLTL = Ai (t = L; adiabatic) . (9.234)
Here,

Ay =d, +(bay /e ), (R = 2esee ) (9.24a)
and

' - - 2 s LR
Cp =a, +b +b, (b‘ /c;_l] . (L= 2, X (9.24b)

The first set of coefficients is

Al - dl + bchooll (9.24¢)
and
' =
Cl a + bl + bz . (9.244)

The inside-surface cell temperature is first calculated from Eqs. 9.23¢ or
9.23d. Then the rest of the temperatures are computed using Eqs. 9.23a and
9023b'

9.4.2.6 Heat Transfer to the Adjacent Fluid

Once the temperature distribution in a structure element is computed, the
heat transfer rate to the adjacent fluid is computed from

A
"% (T

e

- ( - -
vAlT, Tf) for outside surface (Tf Tcooll) and (9.25)
A
L+1
jogisie ~ 1)
L+l

“ U ‘L&l(TL - Tg) for inside surface (?f -T (9.26)

coolz) :

Here, a is the heat transfer rate in watt, U is the overall heat transfor
coefficient given by

1.
U= R (9.27)

L)

hcool
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A is the surface area, T, and ‘l'k are the temperatures of the edge partition
cells, and T; is the respective luid temperature. The heat transfer rate 1s
then translated into an effective volumetric heat source for the fluid cell.

% i
T * ’ (9.28)
rb vao

where V, is the computation cell volume (e.g., Axaydz) of the adjacent fluid
cell and Qranln the heat source from solids per unit fluid volume. The compu~

tation of heat transfer coefficient 1is carried out as described in Sec.
9.3.



10, INITIAL AND BOUNDARY CONDITIONS

10.1 INITIAL CONDITIONS

Generally, before the solution sequence can begin, all values of
variables must be assigned. In COMMIX, we can accomplish this either

= By continuing a previous run via the restart capability
(recommended for all but the first run), or

= By specifying the initial distribution throughout the interior
points and boundary of the space under consideration.

When the initialization is not a restart, we have to specify initial pressure,
temperature, velocity and turbulence parameters distributions. The determin-
ation of these distributions and their subsequent {input 1into the code are
generally tedious. In COMMIX, we have provided several simplified {input
procedures, which make the initialization of velocity, pressure, and temper-
ature less tedious. These procedures are described in Volume I[I. The
procedures of initialization relating to turbulence parameters are described
in Sec. 6 of Volume I and Sec. 8 of Volume II.

10.2 BOUNDARY CONDITIONS

This section describes the boundary conditions for mass, momentum, and
energy equations. The boundary conditions for turbulence transport equations
are described in Sec. 6 of Volume I and Sec. B of Volume II.

10.2.1 Velocity Boundary Conditions

The most common physical boundaries in an engineering system are solid
impervious wall, iniet, symmetry, and outlet., To accommodate all poassible
velocity conditions at these four boundaries, we have provided seven boundary
condition options. Here, we describe the meaning of these options in mathe-
matical terms. In Table 10.1, we have summarized all seven velocity boundary
options for the four most commonly occurring physical conditions. Volume 11
tells how to implement them in the input data.

® Constant Velocity

This boundary condition implies that normal velocity vV, * constant.
In COMMIX, this is achleved by simply not altering the value of the normal
velocity Vo, Specified during initialization. This option is applicable to a
solid surface with zero normal velocity and to an inlet surface with constant
inlet velocity.

® Transient Velocity

This option {s applicable when an inlet velocity varies with time,
e.g.,

Y. " Y f(e) . (10.1)
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Table 10.1 Velocity-Boundary Options

Option
Boundary Suitable Option No . Remarks
Solid (1) Constant velocity 1 Specify normal velocity v, = 0
Impervious during inftialization
Surface
Inlet (1) Constant velocity 1 Specify inlet velocity during
initialization
(11) Transient velocity 2 Specify inlet velocity and
appropriate transient function
Symmetry (1) Free Slip 3 Axis through origin in cylin-
drical coordinate is a symmetry
surface
Outlet (1) Continuative 4 General outlet condition
mass flow
(11) Continuative 5 Suitable when areas are equal
momentum
(111) Continuative 6 Suitable when areas and
velocity densities are equal
(iv) Uniform velocity 7 Suitable when outlet s finely
divided (Fig. 10.2)
Here,
- surface-normal velocity at time t ,
Vo " surface-normal velocity at time t = O ,
and
f(t) = transient tunction.
® Free Slip

The free-slip option means the

zero. Also,

v = 0,0 .
n

shear stress at the surface 1{s

(10.2)
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This option is applicable to a symmetry boundary. For a cylindrical coordinate
system in COMMIX, the z axis passing through the origin is considered as a
symmetry boundary with zero surface area.

® Continuative Mass Flow Outlet

This option is for an outlet surface as illustrated in Fig. 10.1.
Here, & and m are the outlet boundary cells and 2+] and m1 are the
neighboring cells. The continuative mass flow outlet implies that normal
surface velocity at the outlet must be such as to balance the mass flow, f.e,.,

(0a)

L+1/2
(vJo_yin = [_.J_.L " (10.3a)
n)l 1/2  (pA t-1/2 /2

and

(V ) & = (DA)-I/Z

(10.3b)
B ae1/2 PA) at1/2

Ya-1/2 *

The sign difference between Eqs. 10.3a and 10.3b is due to the COMMIX~IB
convention that surface-normal velocity is directed into the flow domain.

Outlet Outlet
Boundary Boundary
l [ a
. 1 L[+l m-1 m [

- L J

f_-“‘]r

1 -.1-

Inlet

Fig. 10.1 Near Boundary Cells



® Continuative Momentum Outlet

When an outlet area is the same as the neighboring surface area,
then Eq. 10.3a simplifies to

lpu|l¢l
/2
v - ————— (lo")

We call this option continuative momentum because {t appears that we are
equating neighboring and outlet momentum fluxes.

® Continuative Velocity Outlet

If we have a constant area and equal densities, then Eq. 10.3a
simplifies to

(vae1/2 ® @gars2 (10.5)

We call this option continuative velocity because it appears that we are
equating neighboring and outlet velocities.

® Uniform Velocity Outlet

The uniform velocity outlet boundary condition option sets the
normal velocity for all surface elements of a surface to the same value. This
value is computed such that the total mass flow through a surface is the same
as what would have been obtained from the continuative mass flow outlet
boundary condition. Mathematically,

L A
¥ » el oMA (10.6)

n
L eny )

Here the summation 1s taken over all surface elements of a surface. This
option 1is suitable when an outlet is very finely divided, as shown in Fig.
10.2.

Outlet Boundary
"r“.'ﬂl'"‘ﬂr"- -
r-——i»——- ——4»—7‘—9—-—4

r——-ﬁ-» — — -T»--—T—-ol

- - 4}u- <4 -4t ——o
- - ——
Y S — {»— -4 — +
. .

Fig. 10.2 Model Suitable fcr Uniform Velocity Outlet Option
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10.2.2 Temperature Boundary Conditions

The six temperature boundary-condition options available {n COMMIX-1B are
briefly described here and summarized in Table 10.2.

Table 10.2 Suitable Temperature Boundary Options

Boundary/Option Option No.

Solid surface
Constant temperature Ty = constant
Transient temperature Ty = £(¢t)
Constant heat flux Gy = constant
Transient heat flux qy = f(t)
Adiabatic =0

Duct Wall Considers thermal
inertia of wall

Inlet
Constant temperature T, = constant

Transient temperature f(e)
Outlet
Adiabatic

Symmetry
Adiabatic

® Constant Temperature

This option is for a constant surface temperature. The temperature
associated with each surface element, as shown is Fig. 10,3, is set infitially
and remains unchanged throughout the calculation. While the temperature
remains fixed, the surface element heat flux is calculated using the relation

qeuA(T, -1) . (10.7)
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..._,\,.i "M AL

Surface at
Constant Temperature Tu

Fig. 10.3 Constant-Temperature Boundary

where h 1is the heat transfer coefficient, A is the conductivity of the wall
material, and AL is the wall thickness. The subscripts w and f refer to the
surface element and boundary fluld cell, respectively. For calculation of the
overall heat transfer coefficient U, we need to provide wall thickness,
suitable correlation for h, and material properties for A,

I[f the wall is very thin, as shown in Fig. 10.4, then we do not

have to specify wall thickness and material properties. The overall heat
transfer U {s then equal to h.

If a constant temperature is associated with, say an inlet surface
as shown in Fig. 10.5, then we do not have to specify even the heat transfer
correlation, The surface heat flux 1is then calculated from the Fourier
relation

A AT ~-T1,)
. eff w f
q = ix . (10.9)

f

Here, A £f is the effective thermal conductivity of the fluid in the adjacent
tnternal cell, Axg is the distance between the surface and the boundary cell
center, and the subscripts w and f stand for wall (surface element) and
adjacent internal cell, respectively.
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Fig. 10.4 Thin-Wall Constant-Temperature Boundary
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Fig. 10.5 Nonconvective Constant-Temperature Boundary




® Transient Temperature

This option is for a surface whose temperature varies with time,

e.g.,
LR ™ f(e) , (10.10)
where
1'. = gurface temperature at time t ,
1‘0 = gsurface temperature at time = 0 ,
and

f(t) = transient function .

We calculate the surface-element heat flux using the same procedure described
for the constant-temperature boundary option.

® Constant Heat Flux

When we have a surface with constant heat flux, then we use this
option. The heat flux assoclated with each surface element {s set initially
and remains unchanged throughout the calculation. Although the surface heat
flux remains fixed, we now calculate the temperature using Eq. 10.9 based on
the effective thermal conductivity of the adjacent internal cell.

® Transient Heat Flux

This option is useful when we have surface heat flux varying with
tt“. ...0.

q =7, (e, (10.11)
where
:a ¢ surface heat flux at time t
710 ¢ surface heat flux at time t = 0 ,
and

f(t) : transient function # nf .
Once the surface heat flux is known for a given time t, the surface tempera~
ture can be calculated from Eq. 10.9,
® Adiabatic Surface
The adiabatic boundary condition implies that surface heat flux

:|- O, In this option, the normal heat flux for all surface elements of a
surface are initlalized to zero and remaln zero during caleculation. The
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surface-element temperature is set equal to the temperature of the neighboring
internal cell.

® Duct Wall (KTEMP = 500+ NF)

We have provided the duct wall boundary condition option (or a case
when we want to consider the transient thermal response of a finite-thickness
wall. In COMMIX-1B, this is carried out by solving the energy equation for
each wall (surface) element. It {s assumed that the element (s sufficiently
small that we can consider it to have a uniform temperature and can apply the
lumped-heat-capacity method.

Figure 10.6 shows a finite-thickness surface element. The energy
equation for the element is

at
w .
acpm. 7 e h"a(r' - 1") - h“A(T' - t““) + QML , (10.12)

where T is the temperature, A is the area of a surface element, AL {s the wall
thickness, and h is the heat-transfer coefficlent. The subscripts w, f, and
sink stand for wall element, fluid in the adjacent cell, ch surrounding
atmosphere, respectively. The transient volumetric heat source  is given by

Q- boququ f(t) . (10.13)

r/ - -
/|
.___.V-/ o al

/

Fig. 10.6 PFinite~Thickness Wall Boundary
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Here,
bo = average volumetric heat source at t = 0 ,
Qh = axial distribution function ,
QU = radial distribution function ,
and

f(t) : transient function .

The integration of Eq. 10.12 from time t to time (t + At) gives

Ut . o (2f -1 )e™t, (10.14)
where
N .. 00'1' ’:,Junu
h °v’°o
e
caL'’
v P p
h
% “pCcAL ek "‘-'
P
and
-
P

In COMMIX~IB, Eq. 10.14 is used to calculate the advanced time value of the
surface-element temperature.

The duct wall boundary condition option requires several (input
specifications, which are described in Volume I1.

10.2.3 Pressure Boundary Conditions

Currently, two types of pressure boundary-condition options are provided
in COMMIX~18:

= Constant pressure, and
= Transient pressure.
The pressure boundary (s applicable only at the inlet and outlet

surfaces. The option is therefore used In conjunction with the continuative
mass flow boundary condition,
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If an inlet surface has a specified velocity boundary condition, then we
do not require a pressure boundary option because surface pressure does not
enter into any calculation.

It is important to note here that the pressure boundary condition in
COMMIX~1B refers to the pressure of the boundary adjacent fluid cells. It is
therefore recommended to model the deometry such that the pressure boundary is
applied to

= A surface with one surface element, or

= A surface that (s normal to the direction of gravity and has
parallel flow

as shown in Fig. 10.7.
When we specify a constant pressure boundary option, the pressures of all

internal cells adjacent to a surface are set to prescribed initfal value.
These values then remain unchanged during the calculation.

For a transient pressure over a surface, the pressure of all (nternal
cells adjacent to that surface are calculated from

P- - P.'J f(e) . (10.15)
Here,

P. = pressure of the adjacent cell m at time ¢t ’

oo = pressure of adjacent cell m at time = 0 ,
and

f(t) = transient function .

Volume II explains how to implement these options in the Lluput .

DESIRED PRESSURE BOUNDARY

Fig. 10.7 Recommended Surface Arrangements for
Pressure Boundary Condition
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1.1 INTRODUCTION

All iterative solution procedures provide a solution to a set of alge~
braic equations of the form of Eq. 4.16., However, it (s important to solve
them as efficlently as possible to minimize computer running time. A scheme
called mass rebalancing has been developed and lmplemented in COMMIX. The
scheme is called mass rebalancing hecause it uses coarse mesh rebalancing of
the pressure equation (the equation of conservation of mass).

After several years of testing, the mass rebalancing scheme has proved
to be extremely effective., It significantly reduces the number of {terations
required to achleve mass convergence, thus saving computer running time. The
description of the scheme and the derivation of the mass rebalancing equations
are briefly described here.

I1.2 DESCRIPTION

In the mass rebalancing scheme, we form a coarse mesh domain by combining
several fine mesh cells, as shown in Fig. 11.1. A coarse mesh containing
several computational cells is called a region. For each region, a pressure
correction equation Is derived by summing up the pressure equations of all
cells contained in that reglon. During summing, we apply the following
conditions:

= The pressure corrections for all cells in a reglon are the same,
and

= The pressure correction for each region is determined such that
the sum of mass residuals over all cells in that region equals
zero.

The pressure corrections obtained from the solution of these equations,
when applied to all cells of a flow domain, help in resolving large-scale
distributions and hence reduce the number of {terations required for final
solutifon of the pressure equation,

L) DERIVATION OF PRESSURE CORRECTION EQUATION

Let us divide the flow domain Into, say, N reglons, as shown in Fig.
1.1 The reglons are chosen such that any reglon n has neighboring cells
contained only in the neighboring regions (n=1) and (n+l). Mass leaving the
region n and entering the reglon (n+l) does wso through rebalancing surface
n., Mass leaving the last reglon N goes into the remaining cells, where no
rebalancing is performed. Reglon | has neighboring cells only in Reglon 2.

Lot P* be the pressure distribution, which does not satisfy the
continulty equation. The pressure equation for a cell m is

Mofe = L Ay By o b bl (11 1)
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Fig. 11.1 Coarse Mesh Showing Rebalancing Reglons

where 6" 18 the mass cesidual, a, and are the coefficlients of the pressure
equation, and & Indicates the six adjacent cells surrounding cell m. Por
simplicity in writing, the superscript P is omitted from the coefficlents ay

ans by. We sum the pressure equations for all cells m in the reglon n. Thus
- b . -
-{n [.wr.-.{.l(.‘ rl)- "0]'.5.. o (11.2)
where | indicates the summation over all cells m located {n the rebalancing
mn reglon n,
and

.
1 6. Is the net mass nonconservation for the reglon n,
L
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Let APy, APy, ... AP, ... APy be the pressure corrections for the
rebalancing regions | to N. The new pressure distribution P can be written as

.
P.'P.Ol'n;'n . (1.3

If we substitute the new pressure fleld in Eq. 1l.1, we obtain, for each
reglon, N equations of the form

"
n{m (.'0".&{-1 ay,? -n.o)-in L (11.4)

We want to rebalance all N reglons such that the new pressure fleld
achieves net mass conservation. In other words,

Z 6.- g . (ﬂ - | senn ") . (llos)
" n

Substitution of Eq. 11.3 into Eq. 1l.4, with the constraint of Eq. 11.5, and
after some f.‘fr.ﬂ‘mn‘. “V.‘ us

-In (."‘0': - 12:1 - i b'o) * & [ln (.'0 - l}c'n .")]
el [nzn (e ibots .")]- oo [-L(u o "")]. o
(n =1, sees W), (11.6)

In the set of equations (Eq. 11.6), we do not have AP“_| term for n = | and
APy term for n = N. We rewrite these equations as

n n n n

Ag 8P = AL AP . = A AP, =~V =0, (11.7)
where

n n~1

A=) ) a, *A, |, (11.8a)

: mn be(n=l) = 2

n

A, » Ra 4 (1).80)

: mn Le (nel) -

Ag-AToA'z‘ 3 (11.8¢)
and

B . st . (11.84)
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In deriving Eqs. L1.8¢ and 11.8d, we have made use of the relation

5
P P
e (11.9)
0 ._“I

and Eq. Li.l. For the first rebalancing region (region 1), the coefficlents

-0

1

1
‘0.‘2'

For the last rebalancing region, no pressure correction is desired i(n the
neighboring cells. In this case,

AP =0

N+l

and A: can be evaluated from the relation in Eq. 11.8,

We now have N equations of the same form as Bq. 11.7 for N rebalancing
reglons. These equations can be solved for pressure corrections AP by any
Gaussian elimination-type procedure. In COMMIX we are using the tridiagonal
matrix algorithm to solve these equations.

P16 REMARKS ON REBALANC ING

It is important to note that pressure fleld P obtained here, after
the addition of corrections AP to P, s not the final solution, because the
pressure fleld obtained with mass rebalancing satisfles only the mass conmer-
vation of rebalanced reglons, and not of all fluld cells. Rebalancing makes
only large-scale corrections. To satisfy the mass convergence of all fluid
cells, we must solve a pressure equation for each cell. As rebalancing makes
the large-scale final corrections rapidly by direct solution, it reduces the
number of (terations required for the solution of the pressure equation.
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12, SOLUTION PROCEDURES
12.1  INTRODUCTION

COMMIX performs thermal-hydraulic calculations by marching in time. The
values of the dependent variables at a given time step, say n, are known and
the values of the dependent variables at time step o+l are calculated. By
repeating this procedure, we determine thermal-hydraulic conditions for the
desired time span. The overall flow chart of the program is shown in Fig.
12.1.

For steady-state calculation, the same procedure is followed. We start
with an initial guess and continue the marching~in~time process until the
values of all dependent variables stop varying with time. The time step 8!«
for the lmplicit steady-state calculation can be many times as large as the
Courant time step criterion.

Specify Orid

Inttialisation; ¢ » 0
(Give values of o)

Output ‘]

Begin & time step. ]

Bet 4%, L ot + 0

‘ Solution Sequenes }

AN

1me stepa’

Filg. 12,1 COMMIX~1B Flow Chart
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In COMMIX, we have provided two options for the tim--step size.

= The user-desired time step size (the details of this tnput are
given in the Input Description in Volume 11), and

= The automatic time step option.

In the automatic time-step option, the time step wize (s evaluated based on
the Courant condition:

At = Cl “C ’ (12.1)

where C, is the user-prescribed coefficlent and Aty Is the time step size
evaluated from the Courant condition. The Courant time step size is defined
48 the minimum time required for fluld to be convected through a cell., In
COMMIX, each computational cell 1s examined with respect to all three
component directions to calculate the Courant time step size,

In COMMIX, we have two distinct solution sequences--the semi~implicit and
the fully implicit. However, the solution procedure option has been lmple-
mented In such a way (hat a user can switch from one solution schese to
another at any time during the transient simulation of a problem.

Both the solution-sequence options are combined ilunto one formulation
through an fmplici® parameter a. The solution procedure option becomes semi-
laplicit when o = 0 and fully implicit when a = |, Therefore, in principle,
we can say that the formulation covers a full range from semi-implicit (a = 0)
to fully fmplicit (@ = 1), But as we have not performed enough testing at

this time, we do not recommend any intermediate value of a==only a = 0 and a =
l.

12,2 SEMI-IMPLICIT SOLUTION SEQUENCE (a = 0)

The semi-implicit solution sequence (a = 0) used in the original version
of COMMIX~1l is based on a modification of the ICE procedure developed at los
Alamos . The solution sequence (s called semi-implicit because the old time

values of some variables and parameters are assumed to prevall throughout the
time-step period.

Because of the semi-implicit nature of the formulation, we are required
to limit the size of the time step to obtain a stable solutton. The time step
slze has to satisfy the Courant condition, and must be less than the time
sizes assoclated with all explicitly formulated terms. Thus

An
At < At ~(—1) (12.2)
" Courant Y atn g

pAl’
At < At ~c(~1) . (12.3)
vis
min



( A:‘)
At < At ~ C e " (12.4)
cond g e

etc. Here, subscripts “Courant”, “vis", and “cond” refer to time scales
'[ assoclated with Courant condition, viscous diffusion, and thermal diffusion,
respectively, and subscript | refers to the three coordinate directions. The
coefficient C has a value between 1/6 uﬂ 1/2, In most cases, the Courant
limitation is the determining factor; and At. .4 Are usually much
larger. The viscous-diffusion and thoml-Jf!huton tlu scales may require
consideration only in the case of highly turbulent flow.

Although the semi-implicit scheme has time step limitations, the solution
of the equations requires less computer ruaning time per time step. So for
fast transients, where the interest is in obtaining information at small time
intervals, the semi-implicit sequence works very well.

The detalls of the semi-implicit solution sequence are shown in Table
12.1.

12,3 FULLY IMPLICIT (SIMPLEST-ANL) SOLUTION SEQUENCE (a = 1)

, For long and slowly varying transients, it was found that the wsemi-
] lmplicit procedur:, because of its time step size limitation, required a
great deal of computer running time. To eliminate this restriction, we have

developed and implemented an alternative, a4 new fully implicit solution
J O’tion.

The fully tmplicit solution sequence, named SIMPLEST-ANL, is based on a
modification to the SIMPLE/SIMPLER procedures developed at the Imperial
College in England. SIMPLEST-ANL requires less computer storage than SIMPLER
and still has comparable or better computing efficiency. Because this proce-
dure relieves many of the time step size limitations and permits use of larger
time step slzes, it is most sultable for steady-state and slowly varylog
transient calculations. Rapid-transient situations still are most efficlently
calculated using the semi-implicit formulation.

The procedure is called fully implicit because the new-time values of all
variables are assumed to prevail during the time step. We therefore need an
iterative procedure. Each outer* (teration loop ylelds a better estimate of
the advanced-time values of all variables. When the change in all variable
values becomes small from one outer iteration to the next, the iterative pro-
cess is considered converged and the last outer iterate values are used for
,- the advanced time veriable values. The wsolution sequence for the fully

fmplicit formulation Is & wseven wstep {terative process, as shown In Table
12.2.

*Here, outer iteration loop is used to distinguish (t from the inner {terative
loops used for the solution of a specific variable equation, e.g., the itera~
tive loop (successive overrelaxation procedure) used for the wsolution of
pressure equations is considered as an inner f(terative loop.

i
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Table 12.1 Algorithm of the Semi-lmplicit (Modified ICE)
Solution Scheme (a = 0)

1. gggicu momentum coefficients using old~time step values of u
v, wi '

0.“ i (0 =u, v, .

2. Calculate pressure equation coefficlents using ;. a*:
A SN
.0. a.. lo .

3. Solve pressure equation for new-time pressure P**!:

P P P
‘o'o’i ar ~b,=0.

4. Calculate new-time velocities using
000°I6P;(0-u. v,

and new~time values of pressure.

b g%ggéogc energy equation coefficlent using new-time values of
velocities:

h h, h
A A, bo

6. Calculate new-time enthalpy h"*!,

hy * {."‘h:obsln:.
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Table 12.2 Fully Implicit (SIMPLEST-ANL) Solution Sequence (a = 1)

1. velocity-pressute relation coefficlents from the
previous iterate values of u, v, and w:

;n " @ =u, v, v,

2. Calculate pressure equation coefficlents using ¢, g

| S I
'0'\"0‘

3. Solve pressure equation for new-time, new-iterate pressure P:

agPy =L agk + %

4. Calculate new-time, new iterate velocities u, v, w from velocity-
pressure relations:

pep-Lari(o=u v,

b I8 energy equation coefficlents using new-time, new-iterate
velocitiesn:

h h .h
%o %+ %
6. Solve energy equation for new-time, new-iterate enthalpy h:
h h h
AR LA

7. ‘Fﬂ' for convergence of u, v, v, h; If not converged, return to
tep 1.
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The major differences between the semi-implicit and fully fmplicit
solutions are discussed in Section 13.

12.4 SUCCESSIVE OVERRELAXATION (SOR) ITERATIVE SOLUTION

Both solution procedures, semi-implicit and fully implicit, require
solving a set of algebraic equations. In COMMIX-1B, the solution of the
equations is achieved by the successive overrelaxation procedure.

The successive overrelaxation (SOR) type iteration scheme uses one pass
through the computational cell domain. As each cell is visited, the residual
of the $-equation to be solved (s computed, using the most recent values of
the surrounding ¢'s. In this way, an updated value of ¢ 1is used If the
neighboring cell has been visited earlier in the pass, and a previous lterate
value of ¢ 1s used Lf the neighboring cell {s to be visited later. Immedi~
ately after the residual of the ¢ equation for a cell under consideration is
computed, the ¢ is adjusted in that cell before the computation proceeds to
the next cell in the pass.

After all cells have been visited, the convergence is checked and 1f (it
has been achieved, then the {terative process terminates; (f convergence has
not been achleved, another single-pass iteration is performed.

The SOR scheme requires the relaxation parameter w to be between U and 2.
Generally, convergence can be achieved in fewer iterations than for the Jacobl
scheme. Because w can have values greater than 1.0, it is termed overrelax~
ation. The optimum value of the relaxation parameter (s generally geometry-
and problem~dependent; usually, it {s between 1.4 and |.8,

12,5 MASS CONVERGENCE CRITERION

In theory, the pressure equation (Eq. 5.5) is considered solved when mass
residue § is equal to O for all cells. Because Eq. 5.5 (s solved ftera~
tively, this will, 1in general, never be true. Instead, a nonzero mass
residual § 1s computed for every cell and & maximum (s determined as ‘llu:.
The iterative process continues until either a maximum specified number of
fterations have been performed or the maximum mass residual falls below the
convergence criterion.

|6|nn 7 convergence criterion. (12.5)
The mass convergence criterion is calculated using the relation

thu‘
- -
Convergence criterion = € T *e, (12.6)
v 1/max

where €, and ¢, are the input convergence constants and subscript | stands for
three coordinates.

12.6 ITERATION “RITERIA

The wseventh wstep in the fully implicit scheme (s to check for conver-
gence. Here, the changes from ore fiteration to the next, in all ¢'s, are
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checked against the convergence criteria. The mass convergence criterion is
discussed in Sec. '2.5. The iteration criteria are satisfied when

new old
07 = 0% qus

<e, ,
.oTr 3

14
'“m L uﬂ 'm- .
v -
max
new _ 'Oldl

I' e
v 3!
max

and

" - 'oldlm

simultaneously. Here, Vo . is the maximum velocity magnitude, €4 I8 the user
faput convergence parameter, and the superscripts new and old refer to current
and previous iterate values. If any one of these convergence criteria is not
met, the sequence is repeated from Step |. The solution proceeds through the
sequence until 1t converges or the specified maximum number of f{terations have
been performed.
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13
I3, MAJOR DIFFERENCES BETWEEN SOLUTION PROCEDURES

13,1 FULLY IMPLICIT SIMPLEST-ANL AND SIMPLE/SIMPLER

Although the fully fmplicit procedure (s derived from the SIMPLE/ SIMPLER
procedure, there are some major differences in the solution algorithms. To
tllustrate the major differences we are presenting the solution algorithms of
SIMPLE and SIMPLER procedures in Tables 13,1 and 13.2 If we compare these
algorithms with that of our fully ilmplicit scheme (SIMPLEST-ANL, Table 12.2),
we see that in our SIMPLEST-ANL scheme

® The pressure correction equation is not used, and
® The velocity fleld is obtained from the momentum equation
in the form
boo - av; @ eu v, W (13.1)
instead of the momentum equation being solved in the form
3. .1 2 L
9, % e, + oy = ad® ap. (13.2)
Because of these two major differences, SIMPLEST-ANL requires less computer
storage while still maintaining comparable or better computational efficlency.
This is fllustrated in Table 13.3.
13,2 FULLY IMPLICIT SIMPLEST-ANL (a = 1) AND SEMI-INPLICIT (a =~ 0)

The major differences between the semi-implicit (Table 12.1) and fully
implicit SIMPLEST-ANL (Table 12.2) procedures are presented in Table 1).4,

We can wsee from this table that the fully laplicit scheme is preferable
for the solution of

® Steady-state, and
® Slow-translent cases.

The semi-implicit solution procedure, due to fits wsimplicity, is beneficial
when we are simulating fast transients.

Altaough we are comparing here seni-lmpliclt and fully feplicit
procedures, it should be noted that both these procedures are combined into
one formulation in COMMIX~IB. 1t is the value of the implicitness parameter
in the formulation that determines whether the procedure to be used (s semi-
implicit, fully fmplicit, or between the two.
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Table 13.1 Algorithm of the SIMPLE Solution Scheme

.

3.

“.

5.

%ﬁ. coefficlents in the momentum equations using
previous iterate values of u, v, wi

‘%'{'%"‘“'l."" 6, 0 = u, v, ).

for velocities using these coefficlents
pressure fleld P:

Bo-Tdn e o oenm.

coefficlents In the pressu e correction
equation:

‘ ' ‘
o;.q:.b; ”

Solve for pressure correction fleld P':

1] ' '
.;r;,-gn:r;-s' .0 .

Update pressure and velocity flelds:
Popep .,
’ '0“0'; = u, v, w).

Calculate coefficlents In the energy equation:
o:. l:. l: '

Solye for h:
oMo 4 oy < b = 0.

velocitios u, v, w, and energy h for convergence|
not converged, return to Step 1.
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Table 13.2 Algorithm of the SIMPLER Solution Scheme

2.

“.

5.

7.

9.

momentum coefficlents in using
previous {terate values of u, v, w:

l%. {. B, e, e gy =, W),
Calculate coefficlents in the pressure:

l;. 0:. l; .

Solve pressure correction for P:

", -ga:r. “bp 0.

Using this pressure and the momentum coefficlents,
solve the momentum equation for u, v, wi

‘?’0'5 SR U T O

'
the b' coefficlents in the pressure
correction «ugtu.

Using the o; and u: confficients of the pressure equation

lz..C;s o:.-o: ulb;’ y Bolve for the

pressure correction P':

3 & P
.or;,-%.‘r;-u,, -0,

Updated velocitios:
.'."'"l = u, v, v,

Caleulate energy equation coefficlen.s:

e &s bg :
Solve for hi

'>o'§ ‘l\l ":'o'

10, H‘ln convergence of u, v, v, h;

converged, return to Step |.
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Table 13.3 Comparison of Computer Storage Requirements

Minimum Number of Matrix Number of Coefficlent Storage

Scheme Coetficlents Required Matrix for 2000 Cell Problem
per Cell Inversions Assuming 8 Byte VuubluJ

SIMPLE 14 5 1I# 224K
SIMPLER i1} 61 HOBK
Fully lmplicit
(81 ST-ANL) 14 33 224K
[Semt~tapltcte "
(Modified ICE) l ' —

*1 = Number of outer iterations.

13.3 CONCLUDING REMARKS
The fully flmplici*t wscheme (SIMPLEST-ANL) 1is wsimilar to the SIMPLE/
SIMPLER procedures but requires less computer storage than SIMPLER with
comparable or better computing efficlency. The semi-lmplicit and fully
lmplicit (SIMPLEST ANL) wschemes of COMMIX-IB both have advantages and
limitations .,
® The semi~implicit scheme:
= requires less computer time per time step,
“ has time step size limitations, and
= I8 advantageous for simulations of fast transients.
® The fully implicit (SIMPLEST-ANL) scheme:
= requires more computer time per time astep,

“ has no time step size limitalons, and

= is advantageous for silmulations of steady-state and
slow transients.,

In COMMIX-1B, we have provided an implicitness parameter that permits use
of desired implicitness; from semi-implicit to fully fmplicit. Purther, the
option has been leplemented In such & manner that & user can switeh from one
implicitness to another at the completion of any time-step during sisulations.



Table 13.4 Major Differences between Semi-lmplicit and Fully Implicit Procedures

Equation Semi-lmplicit Fully lmplicit (SIMPLEST-ANL)
P T P " P P P

Conservation P, = P+ b a, P =7 alp_+

- % %o 3 STt S 00 "¢ %t e ‘5
Coefficlents are calculated from Coefficlents are calculated from
previous time-step values. previous iterate values.

. L $ _ .0 . k] ¢ _ 0
Conservat ton e [ afogenh-atar syt =1 ag e, +nd-aar
of momentum i L

¢ = u, v, w)

Conservation

limitation

Neighboring velocities are at
old-time values.

Uses new-time values of pressure
obtained from conservation of mass.

a:h-{a:h:ﬁb;

Explicitly calculated coefficients have
new-time values of velocity. Neighboring
enthalpies are at old-time vauves.

Yes, unstable for large time-step size.

Coefficients and neighboring velocities
at previous {terate values.

Direct calculation of ¢ after solution
of pressure equation.

n " n
-ouo-gath.obo

Coefficients use current it rate values
of velocities. Neighboring enthalpies
are at previous iterate values.

Iteration continued until all mass,
somentum, and energy equations are
conserved.

No; quite stable for large time
step size.

(i
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Although, as mentioned above, both the semi-implicit and fully fmplicit
schemes have advantages and limitations, we advocate the use of the fully
implicit scheme for the following reasons:

® In most simulations, either a transient itself {s slowly
varying, or a major part of the transient is slowly varying.

® We have found significant savings In computer running tilme
during many of our simulations with the fully ilmplicit scheme.
To illustrate this, we present the results of three problems in
Table 13.5.

Table 13.5 Comparison of Computer Running Times

Computer Running Time

Problea Semi-Implicit Fully-lmplicit (SIMPLEST-ANL)|

German 7-pin hexagonal

fuel assembly
Steady-state 70 sec 3l sec
9-sec transient 56 min, 1l sec 2 min, 48 sec

CRBR upper plenum
Steady-state 6 min, 3 sec I min, 40 sec

Blockage in hexagonal
fuel assembly
Steady-state 10 min, 35 sec
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14. DISCUSSION

14.1 UNIQUE FEATURES OF COMMIX

All the important features of COMMIX-IB are briefly mentioned or des-
cribed in detail in the text, . There are several features that are unique
and distinct from other computer codes. These features significantly expand
the capabilities of COrMMIX. Five of these features are discussed here. They
are:

- Geometry-modeling,

= New porous-medium formulation,

= Turbulence modeling,

= Volume-weighted skew-upwind differencing, and

= Two solution options.

la.1.1 Geometry Modeling

Unique features related to geomecry modeling are the following:

® identification of a cowmputational cell by a cell number instead
of its (1,j,k) location: All “"do loops” are performed with the
cell number as an index instead of with the conventional direc-
tional indices 1,j,k. Consequently, the storage requirement
depends on the total number of computational cells and not on
the dimension of IMAX * JMAX * KMAX. This {is {llustrated
through a simple example in Fig. l4.1.

® Use of surface arrays to store boundary values at the boundary
surface: We do not use fictitious boundary cells to store

boundary values.

® Extra surface to model irregular geometry: An irregular surface
is defined as a surface that is at an angle to a grid plane. An
irregular surface 1is an additional surface to the six normal
surfaces (parallel to grid planes) of a computational cell. We
also account for heat transfer in the energy equation and shear
stress in the momentum equation from this seventh {rregular
surface, 1in addition to those from the six normal surfaces.
This treatment of an irregular surface as an additional surface
facilitates true and proper modeling of a compiex {irregular
geometry.

14.1.2 New Porous-Medium Formulation

In COMMIX, we use four paravecers (volume porosity, directional surface
porosity, distributed resistance, and distributed heat source) to model a flow
domain with solid objects. The inclusion of the parameter directional surface
porosity is new. This inclusion has greatly faclilitated the modeling of flow
and heat transfer in an anisotropic medium and has improved the resolution and
accuracy of numerical modeling.
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R o el i e

IMAX = §

MAX = 7

Total number of cells = |4

Conventlonal storage requirements = 8 x 7 = 5%

Storage requirement in COMMIX-1A = |4

Fig. 14.1 Grid Arrangement in a Two-Dimensional Piping System
to Illustrate Storage Requirements in COMMIX-1B

The new porous-medium formulation has been rigorously derived*?:*7 from
the governing partial differential conservation equation. The derivations use
the local volume averaging procedure. The resulting equations are more
general. If we substitute directional surface porosity equal to the volume
porosity in the formulation, the equations simplify to the same as for the
conventional porous-medium formulation. Furthermore, i{if we set volume
porosities and directional surface porosities to unity, and distributed
resistances and heat sources to zero, then the new porous-medium formulation
simplifies to the same as for the continuum formulation. We can therefore say
that the continuum formulation is a subset of the conventional porous-medium
formulation, which is a further subset of the new porous-medium formulation.

It 1s worth stressing here that the porous-medium formulation has
provided a wide range of applicability to the COMMIX code. We can now analyze

. A single-component system, such as

~ A fuel assembly,
= Reactor plenum, and
Piping system,

as well as
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. A multicomponent system, such as

Vessel,
- Downcomer and lower plenum, and
Cold leg, high-pressure injection system, downcomer

in sufficient detail.

14.1.3 Turbulence Modeling

Almost all flows in an engineering system are turbulent. For a computer
code to realistically simulate a flow process, the code must account for the
effects of turbulence. COMMIX~1B accounts for the effects of turbulence
through

- Distributed resistance modeling and

~ Turbulence modeling.

For many geometries and flow conditions, the experimentally verified
resistance correlations, which include the effects of turbulence, are avail-
able in the literature, e.g., flow in a tube, flow normal to a rod bundle,
flow through an orifice, etc. For such regions of a system, we employ appro-
priate correlations through distributed resistance modeling and can provide a
realistic account of turbulence.

For geometries where correlations are not available, we have provided the
following turbulence models as available options in COMMIX-1B:

- Constant turbulent diffusivity mode!l,

Zero-equation model,

- One-equation (k) models, and

- Two-equation (k- ) model.

With several turbulence model options and the distributed resistance
model, one can perform a very realistic simulation of turbulent flow in any

flow geometry system.

14.1.4 Options for Reducing Numerical Diffusion

In the finite-difference formulation, the even derivative terms of the
truncation error have a general tendency to reduce the gradients, producing
what is known as numerical diffusion. For high Peclet number flows and for
flow parallel to grid lines, numerical diffusion is generally small. However,
for multidimensional flow oblique to grid lines, the numerical diffusion can
be high.

To provide a more realistic and accurate solution, we have provided two
options:

=~ Skew-upwind differencing, and
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- Volume-weighted skew-upwind Jifterencing
that reduce numerical diffusion for flows inclined to grid lines.

With these options, COMMIX-1B has the unique capability of performing
multidimensional flow simulation with reduced numerical diffusion.

14.1.5 Two Solution Option

In COMMIX, we have two solution options
- Semi-implicit solution algorithm, and
- Fully implicit solution zlgorithm.

The semi-implicit solution scheme, based on the ICE technique, is ideally
suitable for fast transients where our interest is in examining flow and
temperature distributions at small time intervals.

The fully implicit scheme, based on the SIMPLE algorithm, on the other
hand, 1is ideally suitable for slow transients and steady-state problems .
Here, we can use larger time step sizes without affecting stability and thus
save computer running time.

Both solution options have been implemented in such a way that a user can
switch from one scheme to another during any part of the transient simulation.

14.2 CODE APPLICATION AND VALIDATION

The COMMIX-IB code has been tested and applied to a variety of prob-
lems. Detailed descriptions and numerical results of problems that we have
analyzed are published as ANL technical reports cr papers in technical
journals. We have also compared numerical results with available experimental
measurements, References for some major applications and validations are
given below.

® Piping System
Thermal-hydraulic transient in a pipe [Z,15,17].

® Fuel Assemblies

19-pin fuel assembly with power skew [2,5].

19-pin fuel assembly with planar blockage [6,7].

Loss of piping integrity transients in an LMFBR fuel assembly
[9] .

Pretest prediction of the W=l SLSF experiment [10].

Flow-rundown transient in a 7-pin bundle [11,13].

6MW P2 transient free-convection test [l4].

® Reactor Upper Plenum
CRBR upper plenum under thermal stratification condition [16].
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® Reactor Downcomer and Lower Plenum
Thermal-hydraulic mixing in the downcomer and lower plenum due
to temperature and flow imbalances between the cold legs [8].

® Cold-leg High-pressure Injection System and Downcomer
B&W/EPRI thermal mixing experiments for OCONEEl PWR [22].

Thermal and fluid mixing during high-pressure coolant injection
[25]).

Thermal and fluid mixing for Creare scaled experiments and
generic full-scale PWRs [34].
® Reactor Vessel

Steady-state/transient in-vessel analysis of FFTF [23,74,26].
Steady-state/transient in-vessel analysis of EBR-II [28,29].
LMFBR decay heat removal system [27].

® Other Areas
Heat loss modeling for the ANL solar pond [81].

Cross~-flow between parallel channels connected by a narrow
lateral slot [19].

Atmospheric fluidized bed mixing analysis.

We can see from this list of applications that COMMIX-1B has a wide range
of applicability.

Our future plan for COMMIX-IB is to continue to perform representative
analyses, validate the models, improve the code, and augment its capabilities.

14.3 FUTURE DEVELOPMENTS

Numerical simulation programming is a very active and developing field.
New physical models and better solution procedures are expected to emerge.
Like all other computer codes, COMMIX will, therefore, remain a dynamic
code. Here we are listing the possible developments that, if incorporated,
will further augment the capabilities of COMMIX.

14.3.1 Single-phase Development

New single-phase capabilities that are desirable for future implementa-
tion are:

Free-Surface Boundary Condition: Currently, COMMIX-1B does not
have a free-surface boundary condition option. With implementation
of this additional capability, one could apply the COMMIX computer
code t» the analysis of free-surface problems, e.g., pool-type
reactors.

Regionwise Coordinate System: Although the porous-medium
formulation cf COMMIX-1B permits modeling of any complex geometry,
there are instances in which it appears that a geometry could be
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modeled better if COMMIX had a regionwise coordinate system option.
We define the regionwise coordinate system as a capability wherein
one can use different coordinate systems for different regions of a
system. For example, a rectangular duct connected to a cylindrical
vessel can be better modeled using a Cartesian coordinate system
for the duct and a cylindrical coordinate system for the vessel.
So a possible future plan could be to develop and implement a
reglonwise coordinate system capability in COMMIX.

Transient Th-ee-dimensional Heat Conduction Equation for Solid
Structures: At present in COMMIX-1B, we solve the one-dimensional
transient heat conduction equation to account for thermal inertia
of submerged solid structures. We are therefore assuming that heat
conduction in an axial direction is negligible. In most analysis,
this assumption is a valid assumption. But to extend the range of
applicability, one must implement an option that will permit use of
a 3-D heat conduction equation for structures where axial heat
conduction is not negligible.

Marchiog Solution for Partially/Fully Parabolic Flow: In the case
of partially/fully parabolic flow, many variables (e.g., tempera-
ture) are governed only by the upstream conditions. For such
cases, only a two-dimensional array 1s required. One can also
employ a marching solution procedure, which is simpler and faster
in computer running time than any conventional solution procedure
for elliptic flows. Therefore, a savings in computer storage and
running time would be possible if an option (capability) of the
marching solution technique were available in COMMIX for partially/
fully parabelic fiows.

Vectorizing for Supercomputers: Recently there has been a signifi-
cant development in the area of vectorizing and parallel
processing. These developments have {increased the speed of
computing by several orders of magnitude. Vectorizing COMMIX for
adaptation to recent supercomputers will enhance the speed of
COMMIX simulations.

Input/Output Processing: COMMIX is a very large computer code with
a wide range of generalities and applicabilities. Consequently,
input preparation and output processing many times become very
tedious tasks. Further developments and efforts need to be made to
make COMMIX a more user friendly computer program.

14.3.2 Two-Phase Development

Concurrent with the development of the COMMIX~-IB code, efforts have been
made to develop a two-phase code (COMMIX-2)%2+83  ,ging a two-fluid model and
a homogeneous equilibri.m model to analyze two-phase flows. The structure of
COMMIX-2 is similar to that of COMMIX-1B with some additions or modifications
pertinent to two-phase flow.

We have been successful 1in applying COMMIX-2 to several two-phase
simulations .24 788 However, more representative analyses and further
development work are needed to ensure that
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= The solution algorithm is stable for the whole range of
applications, .

The convergence rate is sufficient to make numerical simulation
favorable, and

~ The computer storage requirement is reasonable.
Accordingly, the future plans in two-phase-development work will be to
- Perform more analysis,
- Improve the solution procedure, and
= Implement improved physical models

if development efforts are continued.
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APPENDIX A. ACCURACY AND STABILITY ANALYSIS OF THE
VOLUME-WEIGHTED SKEW-UPWIND DIFFERENCING SCHEME

Our discussion of the volume-weighted skew-upwind differencing scheme is
limited to two dimensions; however, the results can be readily extended to
three dimensions. The weighting scheme is slhiown in Fig. A.l for the north and
east faces. Two flows are shown, one at 30° and the other at 60°. The situa-
tions on the south and west faces follow from this figure. In this discussion
we shall assume that u and v velocities are positive and uniform with Courant
numbers a and B defined as @ = uSt/8x and B = vt/8y, where 8§x and 8y are the
cell sizes in the x and y direction, respectively. The scheme uses volume
weighting to determine the value of ¢ at the calculational faces. That 1is,
the scheme is like Raithby's but uses volume weighting rather than linear
interpolation. Our first task 1is to write expressions for the volumes iIn
terms of the Courant numbers.

- East and West Face
%Gdy (1 -8/4a) when B/2 < a

Ao - (Aol.)
%Gdy a/B when a < 8/2

T6xy8/m when 8 < a
A = (A.1b)
-}:Gﬂy(l -~a/28) when a < 8

v North and South Face

Loy (1 -a/48) when 8 >a/2

2

AO = (A.2a)
%Gdy 8 /a vhen 8 < a/2
-;-Gﬁy a/g) when 8 > a/2

A = (A.2b)

%Gdy(l ~B8/2) whenB <a/2
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A
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. \ . North Face
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/’v‘ A v An
WO AT | et
. ‘ ™ Eant Pace
(a) (b)

Fig. A.l Volume-Weighted Skew-Upwind Scheme for North and
East Faces at (a) 30° Angle and (b) #0° Angle

Having found the areas, we can approximate 0.. by o and by just as in

Raithby's scheme. Thus, we have

n+l

n St '
‘1) ..lj-m['c-'w*’n-'uj ! (A.3)

where we approximate the fluxes as
v * * *
- J - 3
F, d”., F, d”', Fo vaun. Fo véno. .

In the VWSUD scheme, we use (u, v > 0):
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o _Ado* Al ®
¢ e

R\
» %

s Afo* Al
n Ay * A 7

®

®

and

o ApstApgy

. Ay * 4 °

¢

(A.4)

Here it is understood that Ay and A; are calculated in accordance with Eq. A.l

for the appropriate face.

Using Eq. A.l with Eq. A.4, setting w = f/a,

and

n n n n
M TLAS Tl TR CR "Il S S LS VIl SO I L

we find that
r w w
V=% % *% Y%

e 1 vy -
’~_<‘ s 02 "W ¥
e Bw B

7%
i I 1
wt*2 1% %
1 3
- 2 ' e
f w w
L=% % "%

@ ) ' ®
o . V=2 %*72 '~ s
w 3 e 1

7% @
L 1 o B
w2 "W s
\ _12_,

for

for

for

for

for

for

0<w <1

1 <w < 2 (A.S5)

2<w

0<w <1

I <w <2 (A.6)

2<w
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1 w
(;.o’ 3 -3 & 1
for 0 < w < =
2 4
- i 1, _9
0.'<l “.O’Zl 2"‘ for'l-<u<l
n 3.1 s 2
2 4o 4
1 - - i f 1 €
" tte Y W
K"s’%"%‘su
i 3 for 0 <w < 1
EOIU
1 1 W
=% & $% 1= 9
* < w 02 2 "sw 1
0. tor2<u<l
2 W 4
1 - i ¢ + 1—-0 for 1 <w .
\ aw s w TSW

Just as in Raithby's scheme, we use the approximation

St * &8¢ * St LI |- o
by Te “Mer By Tu F M Ty To F P00 Ty T 400,

to obtain

n+l n * * - *
.1] ..tj - {“. o c" + “n - ’.'} L]

which can be written for each of the four cases
. 1 1
0<w s_i'. ] Cw <1l ,1<w<2,2<w.
®  Case I: ()(u(% (w = 8/a)

n+l 8 82 /a n 8 82/a \.n
-(1‘0 QI—W)QIJO(-zﬁl——L—).
2 4a

(A7)

(A.8)

(A.9)

(A.10)
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8 !2' "'z_s 8 % 1-';

" n
10T Mg YR T L IE [fega D
¢ 4a 2 4a

e  Case II: %(m(l
- a
n+l 8 ’(l"‘) n | - @ -
"y [I R R ]'13’['%’2_5_.-‘]‘11-1
t(-%) £ (-%)
] *
B _ 2( n n 8 2 x "
+c[a _J__g__!__] t-l'j"[é*}__g__!_].l-l.jl (A.12)
2 “ a 2 [T ™=

. Case IIl: | <w < 2

a a
21 - =
-2 ____”2 B n a 2 28 n
' ( 4 4 l + l‘_)‘l-l,] . [‘ - * 2!- ]."l.j“l (Aol‘)
4B Y4B

2

Just as for Raithby's scheme, we can interpret this difference scheme as
an interpolation scheme. We again recall that the interpolation point in the
xy (spatial) plane is l‘: (('.n*) where (' - -q, n" . - 8. Thus, the right
side of Eqs. A.ll through A.l4 can be regarded as interpolants of ¢ evaluated
at (6%, n"). ue shall call this interpolant ;(C.n). but we will not write it



139

out because the expressions are quite involved. However, one obtains it from
Eqs. A.ll through A.l14 by replacing @ by <€ and 8 by -n. Thus,

0::1 -¢ (8", 0" . (A.15)

The interpolation domain is the square shown in Fig. A.2, and this domain
is subdivided into four subregions. We note that the VWSUD scheme involves
four points whereas the Raithby scheme involved six points. The domain is now
divided into four parts, whereas in the Raithby scheme the domain was divided
into three parts. The VWSUD scheme is entirely rational; the Raithby scheme
was partially polynomial and partially rational.

ne 2§

ne=£g/2

Fig. A.2 Interpolation Domain
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On the question of order of accuracy, we see immediately that ¢ is a con-

tinuous interpolant that will reproduce the set ’:t

, but will not reproduce

En. Thus, we are again considering a first-order scheme, just as Raithby's.

We next consider the stability of the VWSUD scheme. (Again, the regions
Rl - R4 are in the a8 plane reflected through the origin and we denote the

corresponding regions in the a,# plane by Rl - R4.) Consider a Fourler mode

o®
kL
A.l14, we find the following:

- Case I: 0 < p/k < 2,¢,p > 0, Region 1 (Rl)

8 [

etiva sk BN _B_2\ &

Tt w1 e % 1
2 4a 2 4 a
} 8 (1 -L)]
_B , B°fa B ,2 _Q..
+( bt}—*é'.)con# ry T,3E Jco-(O +9)

2 4a 2 4 a

] B
G ] = 5= 2
- {1 -l-_z. S sinf + -!—4.!.1“—-— .l”
4TI 38 $T138
2 4 . 2 4a
B (, -E-
B, 2 &
*1T* T. 38 sin(d + ¢)
2 4a

o Case I: 3<2 <3 a8 >0 neglon 2(R2)

g ¥ 4“3 _a_ _a 4”3 _a

oxp(lh.u1 + uyj] and set 8 = kix and ¢ = 26y; then from Eqs. A.ll through

(A.186)

8 ]
g (1 -% 3 l—-—!
+ -%03( $ co“¢%4 2( 3 cos(® + ¢)



] sin(6 + .)’

® Case III: 1 <=< 2,a,8 >0, Region 3(R3)

~ ]-ln(O + 0)} (A.18)

2<=,a,8 >0, Region & (i&)
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!.(1 -2 2
+ ‘-:-» 2 3, sin(8 + ¢) (A.19)

In the a,8 plane we have four regions defined, as shown in Fig. A.3. For each
region, Dk,L has the form

4 ) -18 -18_-1¢ " .
pk.l Ai + lne + C-c + D.e e i ‘WY LESS 5 (A-20)

vhere A, B,, C,, D, can be read from Eqs. A.16 through A.19. Consider any
one of the four regions and drop the subscript m for now. Because this inter-

polation procedure reproduces the set of monomials ‘;C' and because t. - -0

and n' = <, we have the following relations:

Unstable
Region

Region Rl

Fig. A.3) Domain Showing Unstable Region for Case & = ¢ in Rl



A+B+C+D=1,
C+D=a, and
B+D=8,
Thus, we can write any p in Eq. A.20 as
p=l-a-8+D+(a-De®+(p-ne™® +pt¥e ., (22
C(O)-l-co‘-Zoln%;
then from Eq. A.22, we find
[o|* = 1 - me®) + nlcd) - 8C(o) + Bicw)
+ 2B [CB) + C(p) - C(® ~-9)]

+ 2D [CB®) + C(p) - C(O +¢)] ,

[o|? = 1 = 2@ ~a? ~aB) C(O) - DC(B) + Da + B - DIC(H)C(H)

+ (B 82 ~aB) C(p) - DC(4) + D(a + B - D) C(B) C(9)
+aB C(B -¢) + DC(O +¢)] . (A.24)

We are going to rewrite this expression in a form more convenient for
checking stability. Before doing this, we note that any four parameter inter-
polating scheme that reproduces the set of monomials 1,60 will produce Eqs.
A.21 through A.23. In particular, a bilinear donor cell scheme corresponds to
setting D = a8 . A linear donor cell scheme corresponds to the cholce D 5 0.
S0 at this point we are looking at the question of stability for general four
point schemes. Raithby's skew-upwind scheme, as we have seen, i(s a six point
scheme rather than a four point scheme, so it does not fit this discussion.
The form in Eq. A.24 is convenient when D = 0, because in this case one can
see that

p|2 =1 -2, (A.25)

f=a(l ~a =B)COB) +5 (I ~a ~B) Co) +aB CO ~9) , (A.26)

and one sees that a sufficient condition for f > O (i.e., the linear donor
cell scheme is stable) is that
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0<a, 0<B,a +8 <1 . ' (A.27)

However, Eq. A.24 is not convenient when D = af (bilinear donor cell scheme)
and we do not think this form would be convenient for the D's assoclated with
the VWSUD scheme. For this reason, we will rewrite Eq. A.24., We start with
the identiry

(1 =2(a ~a? + D -aB) CO)] [1 -~ 2(8 -B82 + D ~aB) C(®)]
: [faca)] (facB)
=1 ~-2a -a?) c) - 2(8 - 82) cv)
+ 4@ -a?) (8 - 82) c(®) C(e)
- 2(D ~aB) COB) [1 - 2(8 - 82) C(9)]
-~ 2D ~-a8) C@) (I - 2(a - a?) C(8)]
+ 4(D -aB)® C(8) C(o) (A.28)
and use Eq. A.38 in Eq. A.23 to obtain
|02 = (faca] (facB) - MB C(B - ¢) = 2DC(¥ + ¢) + 4DC(B) + 4DC(H)
+C0O)C@) [~ 4a ~a?) (B -82) - 4(D -aB) (B - 82)
- 4D ~aB) (@ ~a?) - &(D - aB)? - 4aD - @D + 4D?) . (A-29)
Next we use the relation
C® +4) +CO -¢) = 20(8) + 2C(9) = 2¢(9) C(9) . (A-30)
Then after some algebra, we find that

o|2 =1 - 2¢, (A=31)
where
f=fa(l ~a) +D-aB) {1 - (B(1 ~8) +D~-aB] Cl®)} c(8)

+ BCL -B)+D~-aB) {1 -~ (a(l ~a) +D ~ab] CO)} C»)
+ @ -D)ce -9¢) . (A-32)

The form in Eq. A.32 is very convenient for the bilinear donor scheme
where D = af. In this case, it is easily shown that £ > O if and only if 0 €
a ¢!, and O <8 < |. When considering stability for the VWSUD scheme, we
shall use Eq. A.32. For the WSUD scheme we shall consider (a,B8) ¢ ;l -
[a,8): 0 <a/f < 1/2,8 20, 0<a <1}. In this case, D is defined from Eq.
A.l; that is,
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8 8
& 1 - 5=
] 2 P 0 -fl/a
D@ g) = z* T +29- -2-—:—%/-;) (A.33)
2 a

To investigate stability, we use this expression for D in Eq. A.32 and
ask whether f is greater than or less than 0 for (aB)eRl and 0 <8 <n, 0 < ¢
£ w, The most obvious approach would be to look at sufficiency conditions for
f > 0. For example, a set of sufficient conditions for f > 0 would be

0<a(l ~a) +D ~-aB < 1/2 for (a.B)cil
0<B(l -B) +D-aB < 1/2
0O<aB - D, (A.34)

where D is doﬂned by Eq. A.33. Unfortunately, these condluono define a
small douin DA ll € ll that is too small to be useful . If DlAll denotes the
set (a.ﬂ)tkl where f > 0, then we shall call DARI the stability domain. The
problem is that conditions in Eq. A.}4 define a domain Dj. Dy, where D, is too
small to be able to use as an indication of stability.

Set

B =m, 0<a <<l, 0<m< 1/2

.l(a;.) -a-al(o;-) =q : ; 3272; o’ - (1 + l)u]

e i MR 18 + llm _
uz(o.-) uz(o.-) -:[ S EE (1 »-)u]

. e ) - 10 - m
n,(o.-) ca,(a.l) n( 8+ 12-) v (A.35)

Then Eq. A.32 can be written

f =ah -c{.at[l -c;z clo)] co) + ;2[1 -c;l c®)] cw)

.'.3 ce® -¢)} . (A.36)

The central question 1is whether hia;m;0.,¢), defined in Eq. A.36, 1s
positive for 0 <a < 1, 0 €6, ¢ <w, and O < m < 1/2. Consider a special
case when 8 = ¢, Setting x = C(9), we have

hia;m;6) = .sl(o;-) [1 -c;z(a;-) x| x + ;z(c;-) [1 -C;l(ﬁ;l) x| x
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- X {[;l(c;n) + ;2(0;-)] - hl;l(ﬁ;l) .lz(G;l)}

= X [g (a;im) - 2oxg,(a;m)] , (A.37)
where
'1 (a;m) = s :0: 12:0-2 - (1 + m)?a (A.38)
and

) (8 + 22m - o?) (18m + 1llw?
§,®im) = @ Ty ]

—%L:—-;—‘z%(zoosh—-z)a¢.u+-)2a2 ;

Jm (144 + 4 m+ 224 - lim?)
(8 + 12m)¢

~ 5o (L +w (26 + 33 -a?) a+all +m)F o . (AI9)

The function g (a;m) is a straight line ma with a negative slope:

8,(0;m) >0, 0<m< 1/2

gyt - o e o w)

We observe that

g1(1;m) > 0 when 0 < m < m, * 0.43990171634

g1(1;m) < 0 when m, < m < 1/2. (A.40)
Hence, when 0 < m < m,, g(a;m) < 0 for 0 (a < 1. When m;, < m < 1, then
g1la;m] has a root in [0,1]. The root is

5 - 8+ 40m + 10w 4 + 20m + 5uf bl
11 (B + 12m) (1 +m)? ~ 4 + lba + 160 + 6w’ .

lndwhou-c<l<l. then



gi@;m) > 0 for 0 <a <ay,

g1lam) < 0 fora; <a < 1.
Note a| (m,) = I, a;; (1/2) = 0.968253968.
Next we consider the nature of gz(a;n). Because
g,(@im) = a (a;m) a,(a;m) ,
we can gain some information from the properties of ;l and ;2.

Consider a), from Eq. A.35; we have

S (0em) o LBm + 1lof
%(0® = T

S (1em) o B(10 = 9m - 1207
ayilin) 8+ i2m

20 forall0<m< /2.

-

Hence, the sign of gy(a;m) is determined by the sign a .

From Eq. A.35, we have

B+ 22m - of
8 + 12m

‘1(0;'.) = >0 for 0 < m < 1/2

;X“;., o B (2 - 13m)

8 + 12m

Hence, when O < m < 2/13 # 0.15385, then
a@;m) <O for 0 <a < 1.

And when 2/13 < m < 1/2, then al(c;-) changes sign in [0,1].

0l

al(a;-) <0 whenam <a <1,

nl(o;-) > Owhen 0 <2 < a

where

.8+ 2m - o
01 8 + 20m + 120 °

a

Now the sign of g (a;m) {8 the same as the sign of a,. Thus, when 0 < m <
1 1 -

2/13, then
gy(@;m) > 0 for 0 Ca < 1 .

When 2/13 < m < 1/2, then

R e s e

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)
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g,(a;m) > 0 when 0 <a <@g,

gz(a;-) < 0 when a5, <Ca<l. (A.48)
Table A.l combines this information. (Note that a0 <aj; when m, < m < 1/2.)

From Table A.l, we see that our task is to check whether g, - 4g; > 0 for
various ranges of m and a. If necessary, we look at g, - 4agy, which is
greater than g, - 4gy. However, we note from Case III that when m < m < 1/2
and @, <a <1, then the quantity of interest {is

H(a;m;x) = - Isl(o;-)l + hxlgz(u;-)| .
Clearly for a given m, m, < m < 1/2, and a given a, a;y Ca < 1, there is a
value of x such that H(o;m;x) < U. The question is whether this value of x
satisfies 0 < x < 2; i.e., whether |gl(a;n)| < kn||2(a;.)| for some a;| < a <
I, mg < m < 1/2. 1n any event, it is clear that we have to investigate the
functions

H(a;m) = g (a;m) - 4ag,(a;m) (A.49)
and/or

H (a;m;) = g (a;m) - 4g,(a;m) . (A.50)

H(u;m) provides a stronger estimate and is cubic ma, whereas H|(a;m) provides
a weaker estimate and is quadratic in a.

H(a;m) = C4(m) = Cy(mla + Cy(m)a? - Cy(m)a? , (A.51)
where
8 + 40m + 10m?
W= =%+
Co(m) = L16 + 224m + 6320 + 344m’ + 25m*)
3" + )7 ’
C.(m) = 4m(l + @) (26 + Im - o) _m(l + m) (26 +33m - m?)
2 8+ 12m 2+ m '
Ci(m) = 4m(1 + m)? ,
and

Hi(a;m) = Dy(m) + Dy(m)a - Dl(l)az o



Table A.1 Sign Properties of the Function H

Case m Range Properties g,.%; Question of Sign
1 0<m< 2/13 8 20,8 >0, a g1"2axgy > g ~ 4822 0?7, 0<a <]
Iz 2/13 < m<m 8120, a g "2axg) > g) - 48y > 07, 0 <a <a,,
>
8 ¢ 0, root %91 8-2axgy; = g; *+ hxl(zl > 0, ag Ca <1
1881 m, <m<1/2 g : 0, root s g"2axg; > g ~ 4g3 > 0?, 0 <a <ay,
£, : G, reot a g1-2axg; = 8 + 2ax|gy| > 0, 2, <a <ay,

ol

8- 2axg,

= - |gy| + 20x|gy|, @y, <a <1

671
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where
4
Dy(m) = g5 Tm)7 (16 = 40m - 344m? - 194m® + 1lu*) ,

(= 2+ 19m + 510 + 29m’ - u*)
02(') = 7+ i , and

Dl(.) - 5*1 + -)2 .

Now, whenever 8 >0, g > 0, then H > Hii so If we can show H > 0, we
have established ctability for these values of a,m. From Table A.l, we see
that g, > 0, g7 > 0 in all cases of interest except the last subcase for Case
II1. However, the coefficient Dj(m) changes sign in the interval [0,1/2], so
we find it more convenient to work with the cubic functior H(am). When 0 < m
< 1/2, this cubic has exactly ome real positive root ago{m) . Moreover, for

0 < m < 0.490250 , (A.52)
the root a;,(m) satisfies

L <ayy(m).
Thus, referring to Table A.l, we see that 8 - Zaxgy > 0 in every case except
possibly the last subcase of Case [Il. Consider m;, < m < 1/2 and a | ;(m) < a <
L. Thus we have g (a;m) < 0 and gy(a;m) < 0. Thus, the equation

8) - mxgy = - |g;| + Bx|gy| =0 (A.56)
has the solution

ls,| -8

= e - . A.S,

Now we must have 0 < x < 2; therefore, we must have

l‘ll
x-h'z < 2, for a

“<a<l

or 8| < da|gy| = > - g < - dagy *> g > bagy,

10... H(G;I) ol .l - h‘z > 0.
Now we have H(a;m) > O on 0 <a < | for m < 0.49025 = m. Thus, if m, =

0.4399017 < m < m = 0.,49025 and @ <a <1, then H(a;m) > 0 for ajp <adl,
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8, ] .
Therefore, x = i—r:—-r < 2, and we see that for each m, <m < m, and each a9 <
1

a <1, there is an x = x(a;m) such that

0<x< 2

g1{a;m) - Zxgyla;m) < 0. (A.56)

Moreover, the values of x = x(a;m) defined by Eq. A.55 range over the full
interval [0,2]. To see tuis, we recall that a;y(m) is a root of g (a;m) and
g(a;m) # 0 fora ; <a < 1. Thus, if we set

(82)min = min{ [83(a;m)[:a  (m) <a < 1}, then

|8l(ﬂil)' |8l(¢;I)|

x(a;m) = : g
gylasm)| = 2a,,(8)) 040

and the righs side goes to zero as a * LR Thus, when 8 = ¢, there are
values (a,B )Rl when h as defined in Eq. A.37 1is negative; hence, for these
values (a,B )c?u. the VWSUD scheme is unstable. It {s worth noting that these
points (a8 )t?ll occur 1in a small region, as shown {n Fig. A.3J. (Note that
a“(;) = 0,97345). The figure has exaggerated the values of lc.; to {llus~
trate the shaded region. Our conclusion {s that the VWSUD scheme (s
essentially stable in ;ll when 6 = ¢,
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APPENDIX B. THERMODYNAMIC AND TRANSPORT PROPERTIES

Thermodynamic and transport properties of sodium were obtained from
Golden and Tokar®®, and those of water are from Brookhaven National
Laboratory.

B.l SODIUM/LIQUID PROPERTIES

Density (kg/m’)

p(T) = 9.50076E2 + T[-2.2976E~]
+ T(~1.46049E-5 + 5.63788E-9 T)]. (B.1)
Viscosity (pascal-second) or (Pa*s)
u(T) = 3.2419E~3 exp(5.0807E2/(T + 273.15)
=0.4925 2a(T + 273.15)]. (B.2)
Specific Heat (J/kg*K)
ep(T) = 1.43605E3 + T(-5.802E~1 + 4.62506E~4 T). (B.3)
Conductivity (W/ m K)
k(T) = 92,948 - 5.809E-2 T + 1.1727E~5 . (B.4)
In the above, T is the temperature in degrees Celsius.
Enthalpy (J/kg)

The enthalpy of 1liquid H(P,T) 1is calculated from the enthalpy of
saturated liquid and the enthalpy change relation

T.\ %

K K L

dH = — |1 0-—-)5—— dp , (B.5)
Py ( VA"

where K {is the ratio of gas constants in joulu/pncd'l’. and Ty is the
temperature in Kelvin.

Temperature (°C)

The temperature of sodium liquid T(H,P,T) 18 calculated using an
fterative procedure. Initially the liquid temperature T* {s assumed, and then
the enthalpy H*(T*,P) is calculated. If the enthalpy H* does not agree with
the specified enthalpy H, then T* {s modified. The procedure is repeated
until H*(T,P) is in close agreement with the prescribed enthalpy.
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Saturation Pressure (pascals)

Pnnt(T) = 1.0L325E5 (for T, < 2059.7) . (B.6)

R

Tx
H 6.8817602E6 ~22981.96/T

Poae(T) = 1.01325€5 (1 )o.en " S R (for T, > 2059.7) . (B.7)
R

Here, Ty is the temperature in degrees Rankine.

Saturation Eathalpy (J/kg)
Hoae(T) = 2.32644E3( =29.02 + {1,10.389352
+ T (~0.55299558~4 + 0.113726E-7 Tn"’) : (B.8)

Saturation Temperature (°C)

The saturation temperature T, (p) is obtained by iterative solution of
Eq.- B.6 and "70

B.2 WATER/LIQUID PROPERTIES
Density

o(P,H) = 16.018436 (;1 +a, u2 A

ot Ay Hy (H < 6.4477E5) . (B.9)

-

p(P,H) = 16.018463 l$.l +a, u: +a, n:) £(y)

>,
+ [1 - f(y)] (b + -——T——)
I

(6.,4477E5 < H € 6.,57793E5) . (B.10)
b2
p(P,H) = 16.018436 |b, + " (H > 6.57793E5) . (B.l11)
1 Hl - b,
Here,
ay = ~B.,73E-5 + 1.438BE-9 Py, (B.13)
ay = 2.326-10 - 6.20E~15 Py, (B.14)

by = 92,924 + 5.761E~4 Py, (B.15)



by = 1.37735E3 + 3.5704E-2 Py ,

“R - 280

e 7 ek

F(y) =1 (8 - 15y + 10y° - %) ,

Hg = 4.299226E~4 H, and
Pp = 1.4503774E~4 P,
where H is the enthalpy in J/kg, and P is the pressure in pascals.

Viscosity (Pa* sec)

u(P,H) = [(‘l *ax + a312 + n“xl . nsx")

2 3
- (bl #b,n +b,n" + bn )ﬂ (P - 6.8945753E5)

(R 2 2.765E5) .

u(P,H) = [(?l - czﬂ + 03H2 + c‘Ha)

2

3
+ (tl # EH+ £,0° + £H )] (P - 6.8945753E5)

(2.76E5 < H < 3.94E5) .

2 3 5
u(P,H) = (9| +d,y +dyy” vy +dgy ) (H > 3.94E5) .

1.29947E-3, =9.2640321E~4,
3.8104706E~4, -8 .2194445E~5,
7.,022438E~6, ~6.5959E~12,
6.763E~12, 2.888256~12,
4.,4525E~113, 3.0260323E~4,

=1.8366069E-4, 7.5670758E~5,




and

Here,

- © o (=3
— w — &>
. o L] L)

””
w
"

-1.6478789E~5, dg = 1.4164576E-6,

1.4526053E-3, e; = -6.9880085E-9,

1.5210230E~14,

e, = ~1.2303195€-20,

=~3.8063508E~11, fy = 3.9285208E~16,

-1.2585799E~-21,

H - 42658 .84

- J
L}

116532.6 °

H - 55358.8

154213.8 °

_H - 401467 .6
756953.22

Specific Heat (J/kg K)

P
cp(

| 4
cp(

P
cp(

~N
-

~N
L]

~N
o

=}

.
M) = \x - 3
(H - 1.7556418E6)

=}

x

) - (‘1 i : 2)
(H = 1.7556418E6)

f, = 1.2860181E-27,

(H < B.1285)

f(y)

2\=1
+ (zl * 2 M+ Z M ) (1 - £Cy)] .

(B.12E5 < H < B.16E5)

2\-1
JH) = (zl * ZH + 2 )

2.46B8303E~4 + 1.24419E~13 P,
1 B790464E7 - 5.63443BE-2 P,
1.1964506E~5 + 6.291758E~12 P,
4.58929E~10 -~ 1.1980206E~17 P,

=2.576343E~16 + 6.046356E~24 P,

(H > B.16ES)

(B.26)

(B.27)

(B.28)

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)
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£(y) = 15 (8 = 15y + 10y° - 3°), (B.34)
and
o - B.14E4
Conductivity (W/ w K)
k(H) = a) + axx + n:xz +* l‘xl. (B.36)
Here,
a = 0.57373862, a; = 0.253610%6,
ay = -0.14546827, a, = 0.013874725,
and
X = “/5-815!50 (.037)

Enthalpy (J/kg)

The enthalpy H(P,T) is calculated fteratively. We start with an assumed
value of enthalpy. Liquid temperature 1is calculated. If the calculated
liquild temperature does not agree with the prescribed temperature, then
enthalpy is modified. The modification is continued until the agreement in
temperatures is achlieved.

Temperature (°C)

x
3

x

T(P,H) = (‘l * XM e 3 vy “) f(y)

> (z CH b LH b2 n’) (1 = £(y)) - 273.15

1 2 3 4 y '

(B.12E5 < W < B.16ES) . (8.39)

T(P,H) = (zl *Z,H z3a2 + z‘u3) - 273.15 (H > B.16E5). (B.40)
Here,
x| = 2.8378E2 - 2.752333E-7 P,

Xy = 2.46B8303E~4 + |.24419E~13 P,
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1.8790464E7 ~ 5.634438E-2 P,

»
-
.

~N
a—
-

3.49661E2 ~ 2.364921E~6 P,

1.1964506E~5 + 6.291758E~12 P,

~N
~
o

2.294645E~10 - 5.990103E~-18 P,

~N
-
.

~8.587812E~17 + 2.015452E-24 P, (B.AL)

~N
&~
"

and y and f(y) are given by Eqs. B.34 and B.35 respectively.

Saturation Temperature (°C)

o 2 _ 226805
Teat'® * T3 (én * CoPp * CyPp Py + 768.85) *
(r‘ > 1090.8). (B.42)

1 *
Tut(” = Tj(az - % . a - '6') ’

(r. < 43.4302). (B.43)

a
1 1
T.‘t(') = T'—"(:;—-_——.- ta, l‘l) + 273.15] f(y)

1 2 3 4
’[T'.'J (bl #byx ¢ bax’ 4 bx 4 bx )
+ z13.1é] (1= ()] =273.5

(43,4302 < Py < 45.4298). (B.44)

o 2 3 4
Toa? " 7% (bl ¢ byx + byx” + bx” + bex)

(P < 1069.2). (B.45)

. 2 3 “ ‘
L [TJ (I:l #byx # bax” ¢ box” + bex e 273.15] t(yl)

1 2 226805
. (l.l R Py + 768.85

+ 273.15) (1= f(y)] = 2135
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(1069.2 < P, < 1090.8).

588,994, 0.055386,
~3.516E-6, 2634.7,
6.026, ~367 .,486,
4.484, 73.802,
65.14, 24.859,
-4.3391, 1 .6889,
1.4503774E~4 P,

0.4498 °

Pn - 1080

*To.s0 ° (8.50)

= Log, (Py)s (B.51)

f(y) is given by Eq. B.34,
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