
'~

...

NUREGICR-4348 Vol. I NUREG/CR 4348 Vol. I

ANL 85-42 Vol. I ANL 85 42 Vol. I

COMMIX-1 B: A THREE DIMENSIONAL TRANSIENT

SINGLE PHASE COMPUTER PROGRAM j

FOR THERMAL HYDRAULIC ANALYSIS

OF SINGLE AND MULTICOMPONENT SYSTEMS

VOLUME I: EQUATIONS'AND NUMERICS

|

sp\ONAL

o$ %,
,

i O "

%, f 31 g B'JO930O

%ry og & CR-4348 R PDR
_

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS
Operated by THE UNIVERSITY OF CHICAGO

Prepared for the Office of Nuclear Regulatory Research
U. S. NUCLEAR REGULATORY COMMISSION

under Interagency' Agreement DOE 40 550 75

. . - - . _ _. ._ - -. . .. . _ _ _ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

,

,

.. .

|
Argonne National Laboratory, with facilities in the states of Illinois and Idaho,is owned by the United States
government, and operated by The University of Chicago under the provisions of a contract with the Department of
Energy.

NOTICE

This report was prepared as an account of work spon-
sored by an agency of the United States Government.
Neither the United States Government nor any agency
thereof, or any of their ' employees, makes any warranty,
express or implied, or assumes any legal liability or
responsibility for any third party's use, or the results of
such use, of any information, apparatus, product or pro-
cess disclosed in this report, or represents that its use by
such third party would not infringe privately owned rights.

Available from

Superintendent of Documents
U. S. Government Printing Office

Post Office Box 37082
Washington, D.C. 20013-7982

and

National Technical Information Service
Springfield, VA 22161

__



._ __- _ _____ ____________ _ _ _ _ _ _ _ _ _ .

.

NUREG/m-4348 Vol. I
ANL-85-42 Vol. 1

(Distribution
Code: R7)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439

COMMIX-1B : A THREE-DIMENSIONAL TRANSIENT
SINGLE-PHASE COMPUTER PROGRAM
FOR THERMAL HYDRAULIC ANALYSIS

OF SINGLE AND MULTICOMPONENT SYSTEMS

VOLUME I: EQUATIONS AND NUMERICS

Analytical Thermal Hydraulic Research Program
Components Technology Division

September 1985

Prepared for the

U. S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research

Washington, D.C. 20555

under Interagency Agreement DOE 40-550-75

NRC FIN No. A2045



. . . _ _ __ ___

,

,

LIST OF G)NTRIBUTORS*

|

A large number of people have contributed to the development of the 00HMIX
code and to the preparation of this report. Since it was a team effort, there
was' considerable overlap in the areas of responsibility and contribution. The
participants are listed below according to their area of primary activity.

Report compilation and project : V. L. Shah
control

00HMIX-1A base : H. M. Domanus , R. C. Schmitt , W. T.
Sha and V. L. Shah

Code architecture and methods : H. M. Domanus, R. C. Schmitt, and
F. F. Chen

Turbulence modeling F. F. Chen

Skew-upwind differencing option : C. C. Miao and F. F. Chen
~

Code development and programming : H. M. Domanus, R. C. Schmitt, F. F.
Chen, and C. C. Miao

overall project direction and : W. T. Sha
management

.,

T

11

- . . . _ _ . - _ _ . -. , .



_ _ _ _ _ _

I

I Q)MMIX-1 B:
A THREE-DIMENSIONAL TRANSIENT SINGLE-PHASE G)MPUTER PROGRAM

POR THERMAL HYDRAULIC ANALYSIS
OF SINGLE AND MJLTIG)MPONENT SYSTEMS

VOLUME I: EQUATIONS AND NUMERICS

ABSTRACT

The COMMIX-1B computer program is an extended version of COMMIX-1 A
with three major additions: (1) three more turbulence-model
options for the computation of turbulent diffusivities, ( 2) a
volume-weighted skew-upwind dif f erence scheme to reduce numerical
diffusion, and ( 3) a single formulation to combine semi-implicit

~

and fully-implicit solution procedures.

COMMIX-1B solves the conservation equations of mass, momentum, and
energy, and transport equations of turbulence parameters. It is
designed to perform steady-state / transient, singlo phase, three-
dimensional analysis of fluid flow with heat transfer in a single-
component or a multicomponent system. The program is developed for
the analysis of heat transfer and fluid flow processes in a
nuclear reactor system. However, it is designed in a generalized
fashion such thdt with no or minimal modification, it can be used

to analyze processes in any engineering equipment, or in any
system.

The following are unique features of the COMMIX code.

o New Porous-Medium Formulation: COMMIX uses a new porous-
medium formulation with the parameters volume porosity,
directional surface porosity, distributed resistance, and
distributed heat source or sink. With this formulation, the

QDiMIX code has the capability to model an anisotropic flow-
domain with s tationary structures. The porous-medium
formulation with the additional parameter directional
surface porosity represents a unified approach to thermal-
hydraulic analysis. Because of this feature, it is now
possible to perform a multidimensional thermal-hydraulic
simulation of either a single component, such as a rod
bundle, reactor plenum, piping system, heat exchanger,
etc., or a multicomponent system that is a combination of
these components.

e Two Solution Procedures: In CDMMIX, two solution pro-
cedures, semi-implicit and fully implicit, are available as
a user's option. The semi-implicit procedure, a modifica-
tion of the ICE technique, is designed for fast transient
analysis, where our interest is to examine flow phenomenon
in the time period of the order of Courant time step size.
The fully implicit procedure, named SIMPLEST-ANL and
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similar to the SIMPLE / SIMPLER algorithms, is designed for
normal and slow transients, where our interest is to
examine phenomena at times that are larger than Courant
time step size.

e Geometrical Package: A special geometrical package has been
developed and implemented that permits modeling of any
complex geometry in the most storage-efficient way.

e Skew-Upvind Difference Scheme: A new volume-weighted skew-
upwind dif ference scheme has been developed and implemented
that reduces numerical dif fusion observed in simulations of
flow inclined to grid lines. The scheme also eliminates
temperature over/undershoots that are found to occur when
simulations are performed with normal skew-upwind
differencing schemes.

Volume I (Equations and Numerics) of this report describes in
detail the basic equations, formulations, solution procedures,
rebalancing scheme, and models to describe the auxiliary

phenomena. Volume II (User's Manual) contains the input

instruction, sample problems, flow charts, and description of
available options and boundary conditions.
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EXECUTIVE SmetARY
i
'

The COMMIX (Component Mixing) codes are designed for analyzing heat
transfer and fluid flow. The COMMIX-1B computer program--an extended version
of COMMIX-1 A-is designed to analyze steady-state / transient, single phase,
three-dimensional compressible / incompressible flow with heat transfer in a
reactor component / multicomponent system.

The three major changes that have been implemented in COMMIX-1A to
develop COMMIX-1B are

e Addition of three turbulence models to provide more options in
the computation of turbulent diffusivities,

* Addition of a new volume-weighted skew-upwind difference
scheme to reduce numerical diffusion, and

o Combination of semi-implicit and fully implicit solution
,

procedures into one single formulation.

One of the major unique features of COMMIX is its porous-medium
formulation, which has been rigorously derived through local volume
averaging. In the new formulation, we use volume porosity, directional
surface porosity * (directional because surface porosity is an anisotropic
vector quantity), distributed resistance, and distributed heat source or
sink. We refer to the formulation as new because the concept of adding a
parameter directional surface porosity is new. In the conventional porous-
medium formulation, only the volume porosity, distributed resistance, and
distributed heat source are used. Volume porosity is the ratio of the volume
occupied by fluid in a control volume to the total control volume. Surface
porosity is similarly defined as the ratio of fluid flow area through a
control surface to the total control surface area.

In any numerical analysis of an engineering system, modeling must include
distributed resistance (friction factor) because, in general, it is not a
precisely known quantity. Thus, with the conventional porous-medium formula-
tion, the flow distribution that we obtain completely depends on how
accurately we model the distributed resistance. However, in the case of the

,

| new porous-medium formulation, due to the introduction of directional surface
porosity (a geometrical quantity that can be prescribed accurately), the
dependence of the velocity field on resistance modeling is reduced. Hence, we
obtain improved resolution and accuracy in the modeling of velocity and tem-

' perature fields. The new porous-medium formulation thus represents the first
unified approach to thermal .wiraulic analysis. The conventional porous-
medium formulation can be considered a subset of this new porous-medium
formulation.

The COMMIX code provides detailed local velocity and temperature fields
for the problems under consideration. The conservation equations of mass,
momentum, and energy, and transport equations of turbulence parameters are
solved as a boundary value problem in space and an initial value problem in

*In previous publications, we have used the term surf ace permeability.
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time. The discretization equations are obtained by integrating the conserva-
tion equations over a control volume.

The code has a wide range of applicability. It is capable of solving

thermal-hydraulic problems involving either a single component, such as a rod
bundle, reactor plenum, piping system, heat exchanger, etc., or a multicom-
ponent system that is a combination of these components.

COMMIX has two alternative solution schemes. One is semi-implicit and is
a modification of the ICE technique. The other, a fully implicit scheme
called SIMPLEST-ANL, is a modification of the numerical procedure known as
SIMPLER. The option for solution schemes is implemented in such a way that a
user can switch from one solution scheme to cnother at any time during the
transient simulation of a problem.

The code has a modular structure and permits analysis using either Carte-
sian or cylindrical coordinate systems. It has two thermal-hydraulic property
packages, one for liquid sodium and one for water. Besides these two pack-

ages, an option is available for users to input simplified thermal physical
property correlations that are valid in the desired range.of applications.

Another unique ' feature of the COMMIX code is its geometrical package.
The basic concept is to use computational cells (either in Cartesian or
cylindrical coordinates) as building blocks that are stacked up to approximate
the shape of the physical systems under consideration. Then volume porosity

and directional surface porosity are used to account for the dif ferences
between the geometry used in computation and the actual configuration. This

i feature permits the COMMIX code to model any irregular and complex geometry
encountered in a real engineering system. Furthermore, the computer storage

requirement of the COMMIX code is' optimized; only the computational cells used
in calculations are counted.

Volume I (Equations and Numerics) of this report describes in detail the
volume-weight' d skew-upwind dif ference scheme,basic equations, formulation, e

and the solution procedures. It alao describes models used for the following

phenomena:

e Momentum interaction between fluid and stationary solid
4

structures,
i

e Thermal interaction between fluid and stationary solid

structures,

e Turbulence, and

e Effects of wire wrap for fuel assembly applications.

In Volume II (User's Manual), we provide flow charts, description of
subroutines, geometry modeling, initialization procedures, input instructions,'

etc. Two sample problems are also included so that readers who plan to use
C0KMIX-1B can become familiar with the input / output structures of the code.

I

__ _ _ _ . _ _ _ _ -_ _ _ __ _ _ _ __ _ . _ . _ _ _
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1. INTRODUCTION

COMMIX is a computer code for heat transfer and fluid flow analysis.
Since the development of COMMIX-1 in 1976, many features have been added to
augment the code's applicability. Consequently, COMMIX has become a very
general-purpose computer code with a very wide range of applications.
Although developed for nuclear reactor applications, with no or minimal
modifications, COMMIX can be used to analyze processes in engineering systems.

Many industries and organizations involved in design or analysis of
nuclear reactors are already using COMMIX. However, due to the code's.
generality ' of formulation and its wide ranan of aoplications, people from
other disciplines have also found COMMIX a very useful tool. We therefore
expect the number of COMMIX users to increase in the future.. Prospective
users of COMMIX can benefit from a comprehenaive description of the code. 'Ihe

'
purpose of the present report is to meet this need.

In describing COMMIX-1B,.we have two distinct aims. One is to convey to
the reader the capabilities of COMMIX, what equations are solved, and how they
are solved, which we have done here (Volume 1) . The second aim is to present
a step-by-step procedure on how to use COMMIX. To achieve this, we must'

describe the procedure with sufficient detail that a reader has no or minimum
dif ficulty in attempting to use COMMIX. This, of course, is very difficult,
but we are attempting it in the second part of this report, Volume II.

This volume describes the basic equations, formulations of discretization
;
'

equations, auxiliary models, solution procedures, etc. Volume II, the User's
Manual, describes all the information needed by the user, e .g . , input'

description, flow chart, sample problems, and user options.

1.1 OVERVIEW OF ColetlX-1B

The COMMIX-1B cc ~e is a generalized computer code for heat transfer and.

fluid flow analysis. Although it has been designed specifically for reactor
component /mult.icomponent applications, it has been developed in a way that

j make it applicable to any other complex engineering system. Its capability
includes steady-state / transient, three-dimensional, and single-phase analysisi

of nuclear reactor systems under normal and off-normal operating conditions.

In general, a computer code developed for numerical simulation of an
engineering process can be classified as either a system code or a component
code,

e A system code generally deals with many interlinking

components; it accounts for component interactions to provide
an overall analysis of a whole system without detailed
analysis of all -the components of a system.

* A component code, in contrast, deals with only one componen.
of interest and provides a detailed numerical simulation of a
single component.
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COMMIX-1B can be described as both a system code and a component code because
it is capable of providing detailed information about a single component or
analyzing a multicomponent system in sufficient detail. Because of this broad
capability, COMMIX-1B can also provide detailed information about component
interactions.

COMMIX-1B is an extended version of the COMMIX-1A codel that was released
in 1983. COMMIX-1B has retained all flexibilities, formulations, and colution
techniques of its predecessor, but now contains three more features. 'Ihese
are:

1. Three additional turbulence models to provide more user-
desired options for computation of turbulent diffusivities.
The models implemented are

- Zero-equation mixing length model,

- One-equation (k) model, and

Two-equation (k-c) model.-

Here k is the turbulence kinetic energy and c is the rate of
dissipation of k.

2. A new volume-weighted skew-upwind dif ference scheme to reduce
numerical diffusion observed specifically in -the analysis of
flow inclined to numerical grid lines.

3. A single formulation combining both semi-implicit and fully
implicit solution schemes.

COMMIX-1B solves the conservation equations of mass, momentum, and
energy, and transport equations of turbulence parameters, as a boundary-value
problem in space and an initial-value problem in time. The staggered grid
system is used, which considers the field variables as located at the center

of a cell and flow variables as located at the surface of a cell.

COMMIX-1B is a well tested computer code. Already, a large number of
2-37computationa for complex situations have been performed. The structure of

the code is modular. It has many unique features and these are described in
the following section.

1.2 UNIQUE FEATURES OF COMMIX SERIES

1.2.1 New Porous Media Formulation

As do all the codes in the COMMIX series, COMMIX-1B employs conservation
equations that are based on a new porous-medium formulation based on local
volume-averaging 3 8 '' '' * . It uses four parameters--volume porosity, directional
surface porosity, distributed resistance, and distributed heat source (sink)--
to model the effects of internal solid structures. In the conventional
porous medium formulation, only three parameters--volume porosity, distributed

*Recently, the new porous-medium formulations have been further refined via
time-volume averaging.
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resistance, and distributed heat source--are used. The addition of a fourth
! parameter, directional surface porosity 38 47, is a new concept.
;

The parameter volume porosity is defined as the ratio of the volume
occupied by fluid in a control volume to the total control volume. The,

j directional surface porosity is similarly defined as the ratio of area allowed
for fluid flow through a control surface to the total control surface area.,

1 We use the adjective " directional" because surf ace porosity is an. anisotropic
vector quantity.

,

T

: Implementing the fourth parameter, directional surface porosity, has the
j following advantages. In any thermal-hydraulic analysis, flow resistance due

to internal structures and/or irregular geometry (friction factor) generally
! is not precisely known for most engineering applications, and must be modeled
: as a distributed resistance. In the conventional porous-medium formulation,

the accuracy of numerical prediction therefore depends primarily on how well4

' ~

In the case of the new porous-medium formulation,the resistanceis modeled.
two parameters, distributed resistance and directional surface porosity, aree

, available for modeling of velocity and temperature fields in anisotropic
! media. Incidently, the directional surf ace porosity is a geometrical para-
I

meter and can be calculated precisely. By the introduction of directional
surface porosity in the new porous-medium formulation, we reduce the

. dependence of numerical prediction on the modeling of distributed resistance
{ (an empirical parameter not precisely known). Thus, the concept of adding
| directional surface porosity greatly facilitates modeling of velocity and
i temperature fields in anisotropic media and, in general, improves resolution,

and accuracy.,

!
{ If we set directional surface porosity equal. to one, the new formulation

reduces to the conventional porous-,nedium formulation. We can thereforei

j consider the conventional porous-medium formulation as a subset of the new
j porous-medium formulation. Furthermore, if we set the volume porosity equal
j to one and distributed resistance and heat source to zero, the porous-medium

formulation reduces to a continuum-medium formulation. Thus, the new porous-,

| medium formulation can be considered a moe.t general and unified approach to
thermal-hydraulic analysis. -

,

|

; 1.2.2 Two-Solution Algorithms

| In COMMIX-1B, we have maintained two solution algorithms as user's

| options:

A semi-im licit algorithm derived from the los Alamos ICE-

4 N. This algorithem is ideally suited for analyzing.
Technique

! fast transients, where we are interested in details at small
' time intervals (on the order of Courant time step size).
i

! - A fully implicit algorithm named SIMPLEST-ANL. This algorithm

f is a modification of the Patankar-Spalding numerical procedure 51
i known as SIMPLE / SIMPLER. It is particularly suitable for the
; analysis of slow and normal transients.

We have combined these two solution procedures into one formulation, but

| implemented such so that a user can switch from one solution scheme to another
at any time during a transient simulation of the same problem.;

|
t

i

i
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1.2.3 Geometry Package

The . geometry package developed and implemented in COMMIX-1A is also
retained 1.n COMMIX-1B. This package is capable of approximating any irregular
geometry. It uses basic computational cells as building blocks to model the
geometry under consideration. Then both volume porosities and directional
surface porosities are used to account for the differences between the
approximated and actual configuration.

To save computer storage, a computational cell is defined by a number
rather than its conventional (1, j, k) location, where i, j, and k are the
computational cell indices in the three principal axes (e .g ., x, y, and z in
the Cartesian coordinate system). With this approach, the storage requirement
depends only on the total number of computational cells and not on the dimen-
sional values of (IMAX * JMAX * KMAX), where IMAX, JMAX, and KMAX denote the
maximum values of computational cell indices in the three corresponding
principal axes.

A normal three-dimensional computational cell has six surfaces. But to
facilitate true and proper modeling of a complex irreguSr geometry (most
geometries in engineering systems are complex and irregular), we have provided
flexibility so that a user can specify an additional seventh surface, called
an irregular surface, to a computational cell.

1.3 OTHER FEATURES OF COBSGI-1B

Other features of COMMIX-1B are described below.

* The following four turbulence model options are provided to give
COMMIX-1B a wide range of applications:

Constant turbulent diffuaivity model-

Zero-equation mixing length model-

One-equation (k) model-

Two-equation (k-c ) model-

! * A volume .eighted skew-upwind difference scheme has been
developed and implemented to reduce numerical diffusion,
specifically for the case of flow inclined to grid lines.

| e The discretization equations are formulated . by integrating the
I conservation equations and transport equations over a control

volume surrounding a grid point. Thus, the derivation process
and resulting equations have direct physical meaning, and the
consequent solution satisfies conservation principles.

|
! * The final form or all of the sets of discretization equations is
i

1
! 6

| a0 - a@g&g - b , = 0 ,#
00 0

| L=1

- -. . - - _ . _ - -_ _ - _ . . .__ _. . . . . - . _ _ - - _ _
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where $ is a dependent variable and the subscript i stands for
neighboring points. This general form cf the discretization
equation lends itself to various solution schemes, e.g., cell by
cell, line by line, plane by plane, block iterative, direct
matrix inversion.

* The program has a decoupled-transient-simulation option that
permits solution of

- mass-momentum equations only, or

- energy equation only, or

- coupled mass momentum and energy equations,
at any given time step.

* The code has an option that allows use of either Cartesian or
cylindrical coordinates.

e The COMMIX-1B code has a modular structure, which permits rapid
inplementation of the latest available drag models, heat-
transfer models, etc.

* COMMIX-1B has built-in properties for liquid sodium and water,
with an option permitting use of simplified property correla-
tions for any fluid.

e The code also contains:

- A generalized resistance model to permit specification of
resistance due to internal structures (fuel rods, wire wrap,
baffles, grid spacers, etc.).

- A generalized thermal structure formulation to model thermal
interaction between structures (fuel rods, wire wraps, duct
wall, baffles, etc.) and surrounding fluid.

- Options for mass rebalancing schemes, either in a primary or
user-specified direction, for improving the mass convergence
rate.

e Heat source / sink and boundary conditions can be functions of
time.

* The COMMIX-1B code is structured to permit solution of ID, 2D,
or 3D calculations.

1.4 ORGANIZATION OF THE REPORT

This volume describes the formulations of the governing equations for
three-dimensional, single pbase, steady / transient flow with heat transfer.
The description starts with dif ferential equations and deals with numerical
methods incorporated into the COMMIX-1B program. Section 2 is devoted to the
general form of governing conservation equations for a quasi-continuum domain.
This generalization facilitates unified development of the numerical method
and the construction of the computer program.

L
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The quasi-continuum domain is defined as a medium that contains fir.ite,
idispersed, stationary heat-generating (or absorbing) solid structures. The I

effects of solid structures in a medium are accounted for by introducing
volume porosity, directional surface porosity, distributed resistance, and
distributed heat sources.

Section 3 describes the staggered grid arrangement and the conventions
used in COMMIX-1B to define the location of a control volume. Section 4
assembles the finite-difference equations. The finite-difference formulation
of the general equation is presented in Sec. 4.5. Because a staggered grid
system is used, the control volumes for momentum equations are different and
require special consideration. The special features of the finite-difference
equations for momentum are discussed in Sec. 4.6.

The pressure appearing in the momentum equation must be such that the
velocity distribution obtained satisfies the continuity equation. The deri-
vation of the pressure equation (derived by combining the momentum and
continuity equations) is presented in Sec. 5.

Currently, there are four turbulence models to account for turbulence
effects.

\

- Constant Turbulent Diffuaivity: This medel is very simple; the
turbulent viscosity and turbulent _ thermal 3 conductivity are
assumed constant. No transport equation is solved.

- 0-Equation: In this model the turbulent viscosity is assumed to
be a function of mixing length and velocity gradient. No
transport equation is solved.

.

One-Equation: In the one-equation turbulence model, the partial-

differential equation for turbulence kinetic energy (k) ;isg
solved and the turbulence quantities are evaluated. '

- Two-Equation: We solve the transport equations of turbulence
kinetic energy k and dissipation rate of turbulent kinetic
energy c to evaluate turbulent quantities.

All these models are described in Sec. 6.

General practice in the formulation of convective terms is to use p' re-u
upwind differencing rather than central differencing. This is becasso " the
pure-upwind scheme prevents instability at high Peclet numbers. However, it
has been found that with pure upwind differencing the false (nurterical)
diffusion can be large if the flow is inclined to grid lines. To minimize the
numerical diffuston, we have implemented two additional options in COMMIX-18--
skew-upwind differencing as suggested by Rahitb 2, and a volume-weighted
skew-upwind difference scheme developed at ANL . Both these difference3

schemes are described in Sec. 7. The Von Newmann stability analysis of the
volume-weighted skew-upwind differencing scheme is presented in Appendix A.

In the initial period of development, emphasis was on the analysis of
hexagonal fuel assemblies. Consequently, severali3ptions have been maintained.
in COMMIX-1B that facilitate the analysis of hexaronal fuel assemblies. These
options are described in Sec. 8. (

'

. . _
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Section 9 describes several of the models that have been maintained in
the COMMIX-1B computer program, including a generalized-force model, and a
generalized thermal-structure 'model . The force model computes distributed
resistance to account for the friction between fluid and submerged solids.
The thermal-structure model is designed for computing the distributed heat
source (fluid and submerged solids) and the thermal inertia of submerged
solids.

In COMMIX-1B, there are several boundary condition options for momentum,
energy, and continuity equations. These options are described in Sec. 10.

To speed-up convergence, we ' have developed a mass rebalancing scieme,
described in Sec. 11. In the current version, two alternative formulations
leading to two alternative solution procedures are available--the semi-
implicit modified ICE-type solution scheme and the fully implicit solution
scheme SIMPLEST-ANL, an extension of the numerical procedures known as SIMPLE /
SIMPLER. Section 12 presents an overall flow chart and describes in detail
the semi-implicit and fully implicit solution sequences. In Se c . 13, we
highlight the major differences between the semi-implicit and fully implicit
solution schemes and between the fully implicit scheme (SIMPLEST-ANL) and
SIMPLER algorithms.

The thermodyr.amic and transport properties of liquid sodium and water are
gLven in Appendix B.

Volume II of this report is written specifically for COMMIX-1B users. It
describes steady-state and transient calculation and various procedures in

i the preparation of load modules, input data, reading and writing of restart
files, etc. Two sample problems, along with ~ their description, input, and
output, are presented to provide a sound introduction to the capabilities of
COMMIX-1B. The code input description is also included in Volume II.

|
.

, .

,

1

I
,

i
l



_

10

2. GENERAL FORM OF CONSEEVATION EQUATIONS

The conservation equations of mass, momentum, and energy possess a' common -
form. If we denote the general dependent variable as 4 , the corresponding
conservation equations have the following form in the Cartesian coordinate
system.

In Continuum Domain:

(p$ ) + (p u> ) +, (p v$ ) + (pw$ )

(Unsteady) (Convection)

" + + +8 (2.la)
$ $ $ $

t 1 LJ
(Diffusion) (Source)

In Quasicontinuum Domainte l ;

A(y M Ab M Ah3 x y z
B t" (T + + +

v Ax Ay At
i J t j

(Unsteady) (Convection)

A(y*rE)+A(vr*M3 l + Aly r$ az/M
43* Y Y \z g g.

( Ax Ay Az j t y $j .,

(Diffusion) (Source)

Here u, v, and w are the velocities in the x, y, and z directions, respec-
tively; y is the volume porosity (fraction of the volume occupied by they
fluid) and yx, y and y are the directional surface porosities (fraction of

y,that is unobstructed to fluid flow) in the x, y, and z
z

the surface area
directions, respectively. The convective and diffusive terms A($)/Ax in Eq .
2.lb are defined as

*(xg + A x /2) - ( x - Ax /2)g(p) ~ g i g
' *

Ax Ax
i i

.in which xi stands for the x, y, or z coordinate. The diffusion coefficient
r4 and the source term S4 are specific to each meaning of $. The sources for
all conservation equations are given in Tables 2.1 and 2.2.

The conservation equations in the cylindrical coordinate system also have
the same general form (Eq. 2.1) when we place the centrifugal and Coriolis
force terms in the source term S . We can, therefore, apply all formulations

9

,
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Table 2.1 Source Terms in the Cartesian Coordinate System

Diffusion
Equation Variab'.e-($) Direction Coefficient SourceTerm(S)g(r,)

Continuity 1 Scalar 0 0

Nomentina
(i) u x direction y pg +V -R g

-

h

(ii) v y direction y pg +V -R -

(iii) w z direction y pg +V -R ~

z

h+Q,+Q+4Energy h Scalar k

V,, V , V : Balance of the viscous diffusion termsy z

R,R,R : Distributed resistances due to solid structures in a momentum control volumex y z

Q : Rate of heat liberated from solid structures per unit fluid volume

Q Rate of internal heat generation per unit fluid volume:

4 : Dissipation function

I 1



Table 2.2 Source Terms in the Cylindrical Coordinate System

Diffusion

Equation Variable ($) Direction Coefficient SourceTerm(S)4(I )$

Continuity 1 Scalar 0 0

vj*Momentum g. 3
(1) v r direction y p + pg +V .R r 3r (rP)r r

**

E V *0 13r
(ii) g 0 direction p + PEG *YO ~ 0 r 30 (P)

-

r

O
3p (p) g(iii) v z direction p pg +V -R

g g

h+Qrb+N**Energy h Scalar k

* : Centrifugal force term ,

** : Coriolis force term

V'V'Y : Balance of the viscous diffusion terms
r 0 z

R,R,R : Distributed resistance due to solid structures in a momentum control volume
r g z

Q Rate of heat liberated from solid structures per unit fluid volume
g

:. Rate of internal heat generation per unit fluid volume4

4 : Dissipation function

.-

_ _ _ _ _ _ _
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for the' Cartesian coordinates to cylindrical coordinates with the simple
transformations shown in Table 2.3.

Table 2.3 Transformations for Cartesian and
Cylindrical Coordinate Systems

Cartesian Coordinates -Cylindrical Coordinates

x r

y 0

z z

Ax Ar

Ay rAB

Az Az

u vr
y

v0
w vx

,

Equation 2.lb can be considered very general, because it reduces to the
conservation equation for a continuum regime (Eq. 2.la) when we make volume
porosities and directional surface porosities = 1 (Y =Y =Y =Y 1.0),=y x y z
distributed resistances R =Ry=R = 0 (or Rr=R0-R = 0 in a cylindricalx z z
coordinate-system), and heat source Q = 0.g

For turbulent flow, all quantities in Eq . 2.1 are considered time-
averaged values and dif fusion coefficient T is interpreted as the effective
(laminar and turbulent) diffusion coefficient, i .e . ,

I$"I$ , laminar + I) , turbulent. (2.3)

We can also express the effective diffusion coefficient as the ratio of
effective viscosity to the corresponding Prandtl number, i.e.,

," laminar * " turbulent
p& (2.4).

0
4

Here, og is the Prandtl number based on the diffusivity of variable $.
*

The transport equations of turbulence parameters k and c for computation
of the turbulent diffusion coefficient also have the same gener.al form as Eq.
2.1; however, for clarity of presentation, they are included in Sec. 6.

.

k__
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3. CONTROL VOLIME

3 .1 CONSTRUCTION'0F A COMPUTATIONAL CELL

The computational cells around a grid point can be defined in a number of
ways. In COMMIX-1B, the computational cell is defined by the locations of
cell volume faces, and a grid point is placed in the geometrical center of
each cell volume. Cell sizes can be nonunifor:.. This type of construction is
shown in Fig. 3 .1. The convention used in ''MMIX-1B for defining the
neighboring cells and cell faces is given in Table 3.1.

..i.. ..f.. ..i.. . .i . _
* *

. .. : -

'

: : : :..... ..... ..... .....
. . .

. . .

; : : :..... ..... ..... . . . . .
. . . .

: #
Y :

. . . . . ..... .....
. .

.
. . .

..[.. ..k.. ,..[.. ..i..
: : : \ :y

"
A typical cell volume

Fig. 3.1. Construction of Cell Volumes

Table 3.1. Convention used in COMMIX-1B to Define
Neighboring-Cell Control Volumes

- . _

Subscript Cell Centers Cell-Face Centers,

t

: -

0 i, j, k
1 1-1, j, k i-1/2, j, k
2 i+1, j, k i+1/2, j, k
3 1, j-1, k i, j-1/2, k
4 1, j+1, k 1, j+1/2, k

5 i, j, k-1 1, j, k-1/2
6 i, j, k+1 1, j, k+1/2

,

. . - . - - - - - - , - - . _ - _ - , . _ . , ,c. ,- -- ,,, - -,.
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3.2 COIffROL TOLIBER FOR FIELD VAaTABLES

In COMMIX, es use the staggered grid system, in which all dependent field
variables are calculated at a cell center and flow variables are calculated at
the surfaces of a cell.

For a field variable, we consider the control volume to . be as shown in
Fig. 3.2. It is constructed around a grid point 0, which has grid points 1
(1-1) ac.o 2 (i+1) as its west and east neighbors; grid points 3 (j-1) and 4
(j+1) as its south and north neighbors; and grid points 5 (k-1) and 6 (k+1) as
its bottom and top neighbors . We integrate each term of the conservation
equation, step by step, over the control volume to derive the finite-
difference equation.

.. .

.. 4. .
.....J+1.....

. s .

. . .

V4
[j

[A_ .I _d ..2 )

f ||

.y .

.
..3 .

.. .. . J.g.....
. . .
.. .,

x

-l-1 I l+1

Fig. 3.2. Cell volume around Point 0 in 1 j ,k Notation
!

3.3 C00ffROL VOLIME FDE FIAW VARIABLES

Although all dependent variables are calculated for a grid point, the
velocity components u, v, and w are an exception. They are calculated for
displaced or " staggered" locations, and not at the grid point . The displaced
locations of the velocity components are such that they are placed on the
faces of a control volume. Thus, the i-direction velocity u is calculated at
the faces that are normal to the i disrection.

Figure 3.3 shows the locations of u and v by short arrows on a two-
dimensional grid; the three-dimensional counterpart can be easily imagined.
With respect to - a grid point,' the u location is displaced only in the i
direction, the y location only in the j direction, and so on. The location
'for u thus lies in the i direction link joining two adjacent grid points. It
is the pressure difference between these grid ~ points that will be used to
drive the velocity u located between them. This is the main consequence of
the staggered grid.

_ _
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x

& U

d i y

e Other variablesFig. 3.3. Staggered Grid

.

y momentum

Control Volumt , ,

MM . .

/e ,y
A wa g

\
x momentum

;y control Volume

Fig. 3.4. Momentum Control Volumes

_ _ _ . _ _ _ _ . _ __ . - . . _ _ _ _ . - - . _ _ _ _ _ _ _ _ _ - - - . . _ _ _ _ _ _ _ . _ . _ . . . _
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A direct consequence of the staggered grid is that the control volumes to
be used for the conservation of momentum must also be staggered. The control
volumes shown in Figs. 3.1 and 3.2 will now be referred to as the main control
volumes. The control volumes for momentum will be staggered in the direction
of the momentum such that the faces normal to that direction pass through the
grid points (see Fig. 3.4) . Thus, the pressures at these grid points can be
directly used for calculating the pressure force on the momentina control
volume. Table 3.2 shows the convention used for the subscripts, and Fig. 3.4

; shows the momentum control volumes for the i and j directions.
.

Table 3.2. Convention Used in COMMIX-1B to Define Neighboring
Control Volumes for i Direction Momentum Equations

.
i

Momentum Control Momentum Control
Subscript Volume Centers Volume Face Centers

i

0 i+1/2, j k,

1 1-1/2, j k 1, j k, ,

2 i+3/2, j k i+1, .j k, ,

3 i+1/2, j-1, k i+1/2, j-1/2, k
4 i+1/2, j+1, k i+1/2, j+1/2, k
5 i+1/2, j k-1 i+1/2, j k-1/2, ,

6 i+1/2, j k+1 i+1/2, j k+1/2,
,

i

i

I

.

g s>

1

. -_,._y . ,. - - , - , - i, y- --,-- -,...-,---_y,- ..n,, -wm-.-- 7- --,-.~-~w,,.+,---,,-ww- c .m, . . -,----~=,y--
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4. FINITE-DIFFERENCE FORMULATION

Although the finite-difference formulation is applied to a grid in both
the Cartesian and cylindrical coordinate systems, only a Cartesian coordinate
grid system is used here to demonstrate the formulation of the finite-
difference equations. Similarly, we have used only the x momentum equation to
. illustrate the formulation of the momentum equation.

The finite-difference equations'are derived by integrating the governing
i equation (Eq. 2.1) over a control volume. We integrate each term separately.

4 .1 UNSTEADY TERN

4.1.1 Main Control Volme

Representation of the ters 8(Y p$) is obtained assuming that the values
y

p0 and $0 Prevail over the control volume surrounding point 0 (see Fig. 4.1) .
Integration of the unsteady terms over the control volume then gives

(94)o - (04)o3
[ g (Y f() dx dy dz = V *)gg O'

where V =Y Ax Ay Az is the volume of the fluid; the superscript n refers to
known okd time-step values, and the superscript n+1 for new time-step values
is omitted for simplicity.

. e i
i . .

--.-. ... .....
0 0

.

. . .

C /,k-'
'

--

#/I 2

e '
i

e e .
. . . . . ... --...

Y e

+3 e

: e

4
x

Fig. 4.1. Control Volume for Field Variables

O

_ _ _ - - - _ -. - . . _ . . _ . _ _ _ _ _ _ _ _ - _.-_ _ -._.
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4.1.2 Momentum Control Volume

Because the momentum control volumes are staggered, there are differences
(mainly geometrical) in the resulting finite-dif ference equations. To illus-
trate these differences, we consider the x momentum control volume as shown in
Fig. 4.2. If we integrate the unsteady term, we can obtain the same form as
Eq. 4.1, but we express it a little differently.

[ (Yf()dxdydz=f(p +$ Y dxdydz

- :(';3")(+ u") + 0 ;*")(s): 9. <4 ie0

He re, the bar over a variable is to suggest that the variable now refers to
the momentum control volume and not the main control volt.me. The geometrical
differences between Eq. 4.1 and Eq. 4.la are'the following:

Volume of fluid is for the x momentum control volume, i.e.,o

0" (T i + T +1) (Axg + Ax ,g) Ay Az , (4.2)i g

and

e The property values are evaluated at the center of the x-momentum
control volume, e.g.,

- Ax pi g + Ax ,g g,gp
i

80"8 1+1/2 " Axi + Ax +l
*

i

i 4

+u4-.-..- e -

e e t

?- .1 04 u ' ~-u
g 0 * "2

-

. . '1 -e- e u - e--

g
8o I e

x

Fig. 4.2. Control Volume for x momentum

I
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In Eq. 4.la, we have used the symbol $ for the dependent variable (i.e., the 7.

direction velocity) instead of u. This is only because our desire here is to
illustrate the formulation of a general equation rather than to describe the
derivation of a specific equation.

~

For the momentum equation, we express the right side of Eq. 4.la little
differently. We assume

f ~ p, and ~ ;
,

therefore, the transient term for the x-momentum control volume shown in Fig.
4.2 is

[ (Yp$)dxdydz= E
'

+
y At 2 0

- 91/2

+ k~ ~

a i+1/2,,

It will become clear later, when we assemble the full equation, why we have
formulated the transient term for the flow variables differently from that of
the field variables.

4.2 CONVECTION TERM

4.2.1 Main Control Volume

The integration of the convection terms over the control volume gives

"A(Y f u$) A(y p v$) A(ygw$)~
[ # * * I *Ax Ay Az .

,

F<> -FN + -# + F <* ~#N (4 * }= *
2 I 4 3 6 5

Here, F (= density x velocity x flow area) is the mass flux across the surface
of the control volume and subscripts 2, 1, 4, 3, 6, and 5 stand for the east,
west, north, south, top, and bottom surf aces, respectively (see Fig . 4.3a) .
For example,

*0)F +1/2 "F * " "=
i x x +1 x i+1/22

2 2

is the mass flux at the east surface, as shown in Fig. 4 .1. We use the
upwind-difference scheme to define a property value at the surface of a cell;
i .e . ,

4

- - - , , -- , . - . - . , - . . _ , - _n . . . - _ . , - . - . - . - - - - _
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.
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3
*, ,

x .

(a) Field. Variable (b) x momentum

Fig. 4.3. Control Volume Showing Convective Fluxes

F <* >02 = F +1/2
i

0 = F +1/2 1 (ifF is +ve) , (4.7a)U +1 = F2 # #2 i i i 2

H1/2 M (if F is -ve) . (4.7b)=F # =F #2 2 2

The superscript location value is to be used for positive velocity and
subscript location value is to be used for negative v'elocity. Equation 4.7
can also be written as

F<#>2=|0,F|0i
#~ ~

2 2 (4.8)2 2 '

The operator | | 18 to be interpreted as equal to the greater of two
arguments; i.e.,

|A,B|=A if A>B,
I

=B if B > A. (4.9)

In accordance with the above convention and after some simplification, we
rewrite Eq. 4.5 as



.
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f . (y f u$) A(y pv$) A(ygd"A
* * dx dy dx

h Ay Az .

=[|0,F|+|0,F|+|0,F + ++ ~

'1 3 5 0
~

' ''2 4 6

-(|0,-F|$ +|0,-F|$ +|0,-F|4 6

+|0,F|$g+|0,F|$3+|0,F (4.10).
3 5 5

Please note that we have introduced a curly bar over the dependent variable $
in Eq. 4.10. We define

$ = a$ "*I + (1 - a ) 4 " , (4.11)

where a is an implicitnesa parameter. The introduction of the implicitness
parameter a makes the convective flux formulation, Eq . 4.10, very general,
i .e . from the semi-implicit formulation where some variables are at old-time
values (a = 0) to a fully implicit formulation where all variables are at new-
time values (a = 1).

All six convective fluxes for the main control volume are listed in Table 4.1.

Table 4.1. Convective Fluxes for Main Control Volume

g ( A u) @>F :

( A u) @)F :
2

(A,v)F : @>3

4 (Av) @)F :
y

( A,w) @>/ :5

( A,w)F : @)6
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4.2.2 Momentum Control Volume

We consider the x momentum control volumen as shown in Fig. 4.3b. If we
compare the main and x momentum control volumes (Figs. 4.3a cnd 4.3b), we can
define the total j direction flowrate at the upper face of the momentum
control volume as

E= (F4+F244

~

1 j i+1
=7 A v)i,j+1/2 j+1 + ( A d +1,j+1/2 i+1,j+1 }* *y y i

.

Similarly, the i direction flowrate entering the momentum control volume can
be defined as

A " i-1/2 + ( A uji+1/2 }1"IP0 * *
x x

The convective fluxes F ....f r e x m men um e n r v use are sted ing 6Table 4.2.
,

,

Table 4.2 Convective Fluxes for x Momentum Control Volume

#0I x i-1/2 + (uA )i+1/2,1 x

1
-

2 I . uA,)i+1/2 + (uA )i+3/2,8 #
2 x

E :
3 7 (vA )i,j-1/2 + (vA )i+1 j-1/2y 2 y

i
'

- 1 2
4 I. (vA )i,j+1/2 + 24 (vA )i+1 j+1/2-# 8

y y
.

I f :
3 7 (wA,)i,k-1/2 + (wA,) i+1,k-1/ 2,2

6 7 (wA,)i,k+1/2 + 26 (wAz i+1,k+1/2:

,

.

| Thus, when we integrate the convective terms over the momentum control volume,
we have the same form of equation as Eq. 4.10, except that we use the momentum'

control volume fluxes F (Table 4.2) instead of the main control volume fluxes
F (Table 4.1).

I

_ . ,__.__,__, _ _._.___-- _ m_..___.____.,_,__,_,_..__..._____...,m..,_._,.___ _
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- (o w ,+) a(ow +) a(ow,+)16
y[ gx 3y 3, ,

dx dy dz- . + +
_

+ + + 0,-E=(|0,E|+|0,E + 0,E
2

. 4 6 ~ 1 3 5 0' '

- (|0,-F | 2 + |0,-F | $4+|0,-F_
~

-
~

_
~

2 4 6 6

+ |0,E | $g + |0,E | h + | 0,E I '5] . (4.14)
g 3 3 5

Please note, once again, that the dependent variable $ has a curly bar over
it. Thus, it represents (as defined in Eq. 4.11) a combination of old and new'

time values.

4.3 DIFFUSION TERM

4.3.1 ' Main Control Volume

The integration of diffusion terms over a main control volume (Fig. 4.4a)
gives

.
.

A(y I A(y P A(y I
x$ y4 z$! * + d* d7 d*Ax oy Az

,
, ,

-D(h ~ 3-Dh~1 +D($ -$=D(2 ~$ g 0 4 4 0 3 02 0

. . . .

+D ~i -D(I ~4 '6 6 0 5 O 5

. . . . .

=D$g+D+2+D$33+D$44+D45 5 + D *6g 2 6
.

(Dg+D2+D3+D4+DS+D) 0 (4.15)-

6

Here, D (= ef fective dif fusivity x flow area / distance between the centers of
two control volumes) is the diffusion strength across the surface of the
control volume, $ (Eq. 4.11) represents the sum of the contributions of old
and new time values, and T4 is the effective diffusivity for the variable $.

To determine the value of D at a surface, we assume a uniform value of
diffusivity T prevails over each main control volume and use harmonic
interpolation, e.g.,

._)

2"(Ax 1+1/2D
0 2.

The values of diffusion strength for main control volume are listed in Table
4 .3 .

, _ - - - . . _ . _ _ _ _ _ _ . _ - - .._ _ ___ _ . . _ . . _ _ _ _ _ _ _ _ _ _ _ _ . . _ _ _ __ _ ___
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Fig. 4.4 Control Volume Showing Dif fusive Fluxes

Table 4.3 Diffusion Strengths for Main Control Volume

- -1
(AD :

g x i-1/2
0 1.

.-1

(AD * +
2 x i+1/2

0 2..

. -1-

( A )j-1/2D :
3 y , 2r 0 3.

i

+(N.-1
.

N( A )j+1/2D -
*

4 y 2r r
0 4_

. _1
D 8 A *

S z k-1/2
0 5.

"Az Az
~~

(A)k+1/2 2fD 8
6 z

0 6.,

..

e

,

-- - , - - _ . - . - - . , , _ _ . - _ . , - _ _ _ _ . , ,. --.m-,_ .. , - . - - - - - , - - ---,.--_---.----,~,ye- -r--
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4.3.2 Momentum control Volume

The integration of i dif fusion terms over x momentum control volume (Fig.
] 4.4b) also results in an expression similar to Eq. 4.15:

,

M alyr M a ly r MA /y r B

\ x 43 x1 \ y 4 By/ \ z4 az/ g g
ax ay az

. . . . . .

=Deg g + Df 2 + D $33+Df4 4 + D *5 + D 066+5

-(6g+6+3+ 4+ 5+ 6 0* O *I )
2

The only _ difference is that we now use the momentum control volume diffusion.,

strength D, instead of the main control volume diffusion strength D; e.g.,

2 " i _( A )i+1/2 + ( A )i+3/2 G .18).x x
2-

4

:

1 The values of diffusion strengths D for x momentum control volumes are listed
2 in Table 4.4. In Eqs . 4.17 and 4.18, we have used the symbol T instead of p

for the diffusivity (viscosity) of the momentum equation. This is only for ,
3

the purpose of retaining the generality of the formulation. ;

r

' Table 4.4 Diffusion Strengths for x Momentum Control Volume

!
!

1 7 A)1-1/2+(^xi+1/2x
O; -

t

2 7 ( A,)i+1/2 + ( A )i+3/2x
2

: .

" ay ,g Ay -1
i 3 3

- -g

7 _( A ) i,j-1/2 + ( ^y} i+1,j-1/2, ,(r3+r23) (r0+r3
_

D :
.

3 y 2

by +g Ay, "4"
*

j-
g .

I _( A )1,j+1/2 + (^y i+1.j+1/2 (r T24) (r T)
,_

D *
j 4 y 4 0 2., ,

. .

az ,g Az -1**

__

( A,)i,k-1/2 + ( A,)i+1,k-1/2 (r5+T25) * (r0+T)2.'5 2
8

, ,

Az +1
az- ~~

k k.

z1,k+1/2*(Az i+1,k+1/2, (r6+T26) (r0+F)2
,,

8 A
6 2

,

;

!

__ ___,_ __________,_ ..._ ____ __ _ _ _ . _ , . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ , . . . _ _ . _ . _ _ _ . . _ ,_ _
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4.4 SOURCE TERN

The finite-dif ference representation of the source tern S in Eq. 2.1 is
expressed as

S =S +S $ C4*l9)0'

where S S and $ 0 are assumed to prevail over the control volume, ,

surround ng pc nt 0. This "linearization" of the source term is an effective
device for stability and convergence. The exact expressions for the source

term coefficients S4 and Sg depend on the actual form of the source S . Thee
coefficient S is always Fess than or equal to zero; otherwise instability,pg
divergence or physically unrealistic solutions would result.

The integration of the source term over the control volume gives

/ S, dx dy dz = S V # V M .20a)4 O p$ O 0

for the main control volume, and

7*8 (4.20b)/S,dxdyds-S4 0 # 0 0

for the momentum control volume.

4.5 GEIERAL FINITE-DIFFKRKmN RQUATION

Having looked at each term of the general equation separately, we now
assemble all terms of Eqs. 4 .1, 4.10, 4.15, and 4.20 for the main control
volume to obtain the general finite-difference equation.

f((Unsteady)+(Convection)-(Diffusion)-(Source))dxdydz

(P&)0 -(A*)0 *

At O+ 0,-F | + h ,FY * ****
g 2 'O

=

(Unsteady) (Convectioa)
: . . .

- ( |0,F | + 1 + |0,-F | +: + "" } + CDg+D2*****)'O1 2

| (Convection) (Diffusion)
~ ~

- ( D ( g + Dg 2 * * * * * } ~ 8 Y ~8 Y =0. (4.21)g 4 O # 0 O
(Diffusion) (Source)

We now rearrange Eq. 4.21 such that only the terms containing $0 are on the
left-hand side of the equation, noting that

$ = a$ + (1 - a) (" . (4.22)

After some algebra and rearrangement, we obtain

i

-. -- -_ __ _ _ . . _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ . , _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ . . _ _ _ _ . _ - . , . - . _ _ . _ ~ - _ . , _ _ _ , _ _ _ _ . .
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'p
0 + a[( |0,-1 | + + |0,r D+,< 3, 1

+ (Dg+ +D6 p$ 0
~

- [( |0,r | + o ) + 1 + + (|0,-r,| + o ) +6] a1 i

+ [(|0,r | + o ) +" + + (10,-r 1 + 9 ) +( c1 - a)
1 i 6 3

- +" ~ci - = > [( |0,-r | + 10,r l) + (o + 0 ) - S +v 11 o 1 6 p 0

n n
4O 0

V, + S V (4.23)+ ,g

or

a*0 a + 3 f a#
i

2 2 + a#+3 + a*4 4 + *S S + a 4
i

4 4 I a+b#, (4.24)# =
0 3 66 0g

where

b*o = bl+g+ b2+0 + b3*g . (4.25)

ror ease in reading, the coefficients of Eqs. 4.24 and 4.25 for the main
control volumes are given in Table 4.5. As we have combined the extreme semi-
implicit and fully implicit formulations in one general form, the coefficients
of Table 4.5 may appear somewhat confusing. We have therefore also included
Tables 4.6 and 4.7, which give the coef ficients for extreme semi-implicit (a =
0) formulation and fully implicit (a = 1) formulation.

For the x momentum con'.rol volume, we follow the same procedure to
assemble all the terms of Eqs. 4 .4, 4.14, 4.17, and 4.21. The resulting
equation has the same form as Eq . 4.24, except that the coefficients are
elightly different. The coefficients for the x momentum control volume are
presented in Tables 4.8, 4.9, and 4.10.

It may be noted from Tabl 4.5 that we have expressed the coefficient a
in two forms. The first form a (1) is obte.ined by assembling all the terms of
Eqs. 4.1, 4.10, 4.15, and 4 0. The second form a0(2) is obtained by
subtracting the continuity equation from the first form a0(1); that is,

0 0( )a *" "" I '9"" ' " "8 . 6)~
.

We use only the first form a0(1) for the momenttaa equations because
during the solution of the momentum equations, the continuity equation might
not have been satisfied. The use of the second form a (2) may introduce0
inconsistencies. However, when we solve the energy equation, the continuity
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Table 4.5. General rinite-Difference Equation fcr the Main Control
-Volume (r.qs. 4.24 and 4.25) and Its Coefficient

a*o o # + bl + b2# + b3ii " *1+1 * **" * '6 6 0 o

at (lo.r l + o ) at (10,-'2|+"2): i i

/ (lo.r 1 + 9 ) at (lo.-r1+0): :
4 43 3 3

(lo.r 1 + 0 ) ## (lo,-r1+0)::
3 3 6 6 63

dit ( 1 - a > (/t+ " + / + " + #+ " + *$+ " + *$+ " + ai+ ")2 3

d2t : - (1 - a) (( lo,-r l + ~ ~ + lo.r,|) + (o, + .~. + o ) - s,,v ) +oi 3 o

33t : (a"*" + sv,,

dc!): * [ + a [(lo,-r l + ~~ + lo.r.| + (o1 + n "" + D ) - s + v lo , 1 2 6 p o

(1st form)

a(a+,+a*2*"""6ia (2) : + ~8 Y
OO

(2nd form)

-r+r~#}+ (1 - a) (i - r2+ 3 4 5 6g
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Table 4.6. Extreme Semi-Implicit (a = 0) Finite-Dif ference Equation
for the Main Control Volume (Eqs. 4.24 and 4.25) and Its
Coefficients

a#0 b1f+b2 + b3'O=
00

#
**1f" * **2*"* 8'3*3 + 8 + 8 ' S + a+6+bl

4 50

b2*0 - (( | 0,-F | + * * * * + |0,F + (Dg+****+D6 p. O
~

g 6

b3'O 8 *O Y
at O

#
k 00
a (l) *
O At

'

(1st form)
4

O + (F -F ~# -F)a (2) : -S V
g 2*#3 4*#50 6

(2nd form)

Table 4.7. Fully Implicit (a = 1) Finite-Dif ference Equation for the
Main Control Volume (Eqs. 4.24 and 4.25) and Its Coefficients

at.,=g.,......a., b31).

# (10,r | + o ) at (10,-F|+D)
1 i 2 2; 1

at (|0,r 1 + 0 ) at (10,-r | + 0 )3 3 4 4

at (|0,r1+0) 1 (|0,-r | + o ): :
3 3 3 ,

b3'O 8 +0 Y
ot O

p V" + ( ( | 0,-r | + . . . . + | 0, r,| )/oci) ,, 1

(1st form)
t,

+ ( D; + D ***.+0)~S Y i2 6 p4 O

a'g + ai * * * * * *+ia (2) : * ~0 v
O 2 6 0

(2nd form)

!

i

. - - , - - - - - - - - - - - - - - - , , _ _ ---n----- ---,.,--__.----e,-~~------e..-r- ---n.--,------..--..,---g,- - - - - - - -
.
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Table 4.8. Coefficients of General Finite-Dif ference Equation
for x Momentum Control Volume

+ bl4 + b2# + b3*08400"" "I' 1 * * * * * * "6* 6 0 0

at (10,P l + 5 ) a*2 ( I -F | + B ): :i 1 2 2

a$ (|0,F 1 + 5 ) at (10,-F | * 4):
3 3 4

ai (|0,F 1 + 5 ) =! ( | 0,-F. I + 5 ): :3 3 6

bl*O : (1 - a) a $" + a i" + **** + "+62

# - (1 - a ) [( |0,-F | + * * * * + |0,F 0b2 :
0 g 6

+ (Dg+****+D)~S V
6 M0 0

I i +~

0 a c$ 00

0 A 0+a 0,-F | + * * * * + | 0, Fa( 8 *
g 60.

+(6+****+6 ~
g 6 p$ 0

, _

h

,e *
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Table 4.9. Coefficients of Extrema Semi-Implicit (a = 0) Finite-

Dif ference Equation for x Homenture, Control Volume

a@0 0= b10 + b20 + b3

"*1" + "2 " + * ' * * + " +
#bl *

60

# - (( |0,-F | + * * + + |0,F |) + (Dg+****+D6 p$ 0 0#b2 : ~

0 6
., .- .

# #" +Sb3 * ~

0 a 4 0

"O( O A O
* +

,

Table 4.10. Coefficients of Fully Implicit (a = 1) Finite-
Difference Equation for x Momentum Control Volume

a*0 0 " i + b3i# "l l + **** "6 6 0

( 10,F | + 5 ) atat (|0,-F | + 5 )::
2 2t 1

(|0,F 1 + 5 ) ata+3 (10,-F | * 4):: 43 3

(|0,F 1 + 5 ) atat (|0,-F 1 + 5 ):: 6 63 3

# +Sb3 8 i
' ~

0 4 0

__ _

"

,d+(N)9,at Vo + [(|0,-F l + - 10,F 1: i 6

+ ( 5, + - 5 ) - s , V l6 p o
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equation is satisfied. The use of the second form a0(2) is thereforeacceptable during the solution of the energy equation.

In deriving the second form of the coef ficient a0 for the main control
volume, we have made use of the continuity equation in the following way. (If
a reader is not interested in details, the rest of this section can be
skipped.)

If we substitute (=1, Sg = 0, and P4 = 0 in the general equation (Eq.
2.1), we have the continuity 4quation. Therefore, all formulations derived so
far also are applicable to the continuity equation.

To derive the continuity equation, we substitute $ = 1 in Eq . 4.23,
remembering that D = 0 and S = 0 for the continuity equation. After simplifi-
cation, we have the.following:

Continuity Equation in the Discretized Form

0 0 + a ( |0,-F | + * * * * + | 0, F
g 6

- a ( | 0,F | + * * * * + | 0,-F
g 6

'

- (1 - a ) ( |0,F | + * * * * + |0,-F |]g 6

p"V
+ (1 - a ) ( |0,-F | + * * * * + |0,F |] ~ h =0. (4.27)g 6

Please note that the first density term in the continuity equation (Eq. 4.27)
is at the new time, while the second density term is at the old time . The
subtraction of Eq. 4.27 f rom a0(1), af ter some algebra, results in the second
form a0(2):

ia( "8
O 0(1) - Continuity Equation 4.27

= a(( Dg+***+D]~S V16 M0

+ a ( |0,F | + * * * * + |0,-F |]g 6

+ (1 - a ) ( |0,F | + * * * * + |0,-F |]g 6

p"V
- (1 - a ) ( |0,-F | + * * * * + |0,F |] + A tg 6

= a(( |0,F | + D ) + * * * * + ( |0,-F +D}g g 6 6

_ _ _ _ _
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.

fp"
+ -aS V

O

+ (1 - a ) ((|0,F | - |0,-F |) + .... t ( %,-F ~

g g 6 '6

= a (a# + a4 + a# + a# + a# * 8
+ ~"8 Y

g 2 3 4 5 6 p$ O

-F), (4.28)+ (1 - a) (F -F2+F3 -F4+F5 6g

because

10,ril-10,-ril=ri
and

|0,-F|-|0,F|=-F'2 2 2

4.6 FINITE DIFFERENCE OF BEINENTitt Equ&TIONE

We have derived the finite-difference equation for x momentsus following
the same procedure as for the general equation. We see that the pressure term
gradient appears in the momenttaa equation, but the pressure field is neither
known beforehand nor directly obtainable from some sort of " conservation equa-
tion for pressure." Therefore, we consider pressure as unknown and determine
it indirectly from the constraint that the velocity field satisfies the
continuity equation. For this reason, we display the pressure-containing term
in the finite-dif ference form of the momentum equation separately and do not
include it in the source' term.

From these considerations, the x momentum finite-dif ference equation for
the control volume shown in Fig. 4.3 is written as

a""O"*"I*8"2*8"3+8"4*8"5*86"60 2 3 4 5

+ b"O-d (P -P *'
2 O

Here,

d,=f(YO+T 2 Ay Az. G.30)

coefficients, a"0 * * * * a , and b"O = bt" + b2"O + b3"O ' "'8 EL''" I"The other
Tables 4.8, 4.9, and 4.10
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The contributions of the source term that enter. ay and b do not0
contain the pressure gradient; the effect of the pressure . gradient is
expressed by the last term in Eq. 4.29. The momentum equation for the j and k
directions are obtained in a similar manner.
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5. PRESSURE EQUATION

The pressure appearing in the momentum equation (4.20) is unknown and
must be determined f rom the conservation-of-mass equation. In this section,
we present the derivation of the pressure equation and the solution procedures
employed in COMMIX-1B.

The conservation-of-mass equation for the cell around ' point 0 (Fig. 4.1)
can be derived from Eq. 4.23 by substituting $ = 1, dif f taion strength D = 0,
and S = 0:

Au)i+1/20 ~ A " i-1/2 +
x x

- ( A v) > +(Av) Q>/2 /2

- ( A w)k-1/2 > + ( A w) Q) 6= */2 0*

Here, VO " T AxAy6z f.s the control volume, 6 is the mass residual of the0v
continuity equation, 4 > is the upwind density, u, v, and w are the normal
velocities at the surface of the control volume, and A is the flow area. We
define the flow area as the product of surface area and surface permeability.

When mass is precisely conserved, the right side of Eq. 5 .1 vanishes,
i .e . , 6 0. However, because Eq . 5.1 is solved by an iterative-solution=

procedure, the mass residual 6, in general, may not be zero.

To convert the indirect specification of pressure in the continuity-

equation to an explicit form, we write the momentum Eq. 4.20 as

$ = $ - d* A P ($ = u, v, w) (5.2),

where

6

[ a*g $ g + b1'O + b2'O + b3o
,

(for the general case) (5.2a)$ =

a'0

O+ 0* O (for he extreme semi-implicit case, (5.2b)
*

,

"O

and

6
4 I[ g $g + b3Oa

,
"

$= (for the fully implicit case, a = 1). (5.2c)
*,0
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For example, the x direction velocity u at east surface of the main control
volume is expressed as

4

-d (P -P ( * *)2 " "2u '2 O

where

1(Tv0 * Tv2 OY A*u
(5.3b)d2"I .u

*0

a A

With similar definitions fyc v, w, and d, the other velocities appearing in.,

Eq. 5.1 can be expressed as

- d" ( Pu =u ~
*g g 0 1

i - d' ( P -Pv =v '4 4 4 4 O

$ 3 (Pv =v -d ~
'3 3 0 3

6 " "6 -d"(Pr w ~
'6

and

5(P (5.4)~d5 * "5w -
.

0 5

Here, the subscripts 1 ... 6 for velocities refer to the surfaces of the main
control volume. Substitution of Eqs. 5.3 and 5.4 into Eq. 5.1 yields,

: 6

(5.5)a P
0 'A 1 0" 0

~ ~

!=1

The coefficients of Eq . 5.5 are listed in Table 5.1.'
,

Equation 5.5 is the required pressure equation. In the above equations,
!the superscripts for coefficients a and b indicate the equations they belong

to; e.g., a" and b" are coefficients of the u momentum equation.

-

r

p

!

!

!

,

--. _ . _ _ _ - . _ ~ _ _ _ _ _ . _ _ _ _ _ . . _ . . _ . _ . _ . _ _ . _ , . , _ _ _ _ _ . _ . _ _ _ _ . . _ _ _ . _ _ _ _ _ _ _
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Table 5.1. Coefficients of Pressure Equation (Eq. 5.5)

af : 1 I @> (Yv0 + Tv1 OI *

k*0 /i-1/2'

a * *> (Tv0 * Tv2 Ay Az
2

(80)i+1/2

f(Yv0+Yy3) Ax Az@>a : i |

N*0)j-1/2

[A )
f(Yv0 * Tv4 0* 0*a : i | @>

N80)j+1/2

!^z 51P
0* OY

I7| * >0 2 Iv0 * Tv5a
5

N#0 k-1/2

a : | C) (Yv0 * Iv6 x Ay

N"0Y+1/2k

P

af + a 3+a4+aS+a6+aa :

b * ~Y
0 O * '~ *

O

+ ( A v)j-1/2 >0 - ( A v)j+1/2y y

~(A")k+1/2 D>+(A,w)k-1/2 D>
z

!

!

!
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6. TURBULENCE MODELING

6.1 INTRODUCTION

For turbulent flow, the diffusivity in the governing conservation
equation (2.1) is considered as a time-averaged value. Therefore, the
viscosity u and thermal conductivity A in the momentum and energy equations
are the effective transport coefficients of momentum and energy, respectively.
Thus,

""Deff " U lam * "tur (6.1)
and

U lam + UturA-A .A lam + A g.
eff tur Pr

,

Here, the subscripts lam and tur stand for laminar (molecular) and turbulent
properties, and Pr is the effective Frandt1 number. There are four models in
COMMIX-1B for calculation of turbulent diffusivities:

Constant turbulent diffusivity model.-

- Zero-equation mixing-length model,

- One-equation (k) turbulence model, and

- Two-equation (k-c ) turbulence model .

After a brief background on turbulence modeling, we present here the
details of these models.

6.2 BACKGROUND ON TURBULENCE MDDELING

The subject of turbulence has attracted countless researchers over a
period of more than 80 years. In 1895, Reynolds proposed that a fluid
particle in turbulent flow is in randomly unsteady motion. lie averaged the
Navier Stokes equation over a time scale that is long compared with the t~r-
bulent time scale, and derived the equations that describe the mean turbulent
motion. In spite of the long time span and large research effort since
Reynolds averaged the Navier-Stokes equation, the problem of turbulence has
not been resolved completely for the following reasons.

The appearance of the time-averaged correlations, such as pu'v' in the
governing equations, gives rise to the so-called " closure" problem (more
unknowns than equations available for the solution of unknowns). lic re o
denotes fluid density, u' and v' are the fluctuating velocity components in
the coordinate directions x and y, and the overbar denotes the time
averaging. The correlations u'v' are known as Reynolds stresses.

Another difficulty is that the constituents of the turbulence phenomenon
normally take place in scales of motion that are very small orders of magni-
tude in size, while the whole flow domain may extend over meters or even
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kilometers. Important details of turbulence are small-scale in character
(although it is not the details but the time-averaged consequences that are of
interest in practical application). As a result, the computational nodes
required to resolve small-scale motions of turbulence will far exceed the
storage capacity of current computers. The corresponding computer running
time also will be unfeasibly long.

An alternative approach to resolve these difficulties is to employ some
form of turbulence modeling in which we solve only the time-averaged equations
of motion along with a set of transport equations of turbulence quantities,
e .g . , k the turbulence kinetic energy, c the rate of dissipation of k, etc.

Even this approach requires a significant amount of numerical computation. It

is only in the last 20 years, with the recent advances in computer power, that
this alternative turbulence modeling approach has been made feasible.

Many turbulence models have been proposed to resolve the above-mentioned
difficulties by providing solvable equations for computation of turbulent
flows. The central idea in most of the turbulence models, except the
Reynolds-stress model or algebraic stress modeling, in the employment of an
artificial turbulent viscosity utur to account for the additional diffusional
flux due to the turbulent motion. To do that, the Reynolds stress term is
expressed as

-fp(u'd +F+ (6.3)-p u'v' = p + .

We must note here that the turbulent viscosity u is a property of the local
tustate of turbulence and not a physical property o[ the fluid. The turbulence

model in this category is therefore generally referred to as a viscosity
model.

The most popular model among these viscosity models, yet the simplest, is
53 We refer to the mixing-lengthPrandtl's mixing-length hypothesis

hypothesis as a zero-equation model because it does not require solution of
any transport equation of turbulence parameters.

In 1945, Prandt154 suggested a more general approach than the mixing-
length hypothesis. His new approach is generally referred to as a one-
equation turbulence model. In this model, the turbulent viscosity is assumed
to be a function of the square root of the turbulence kinetic energy k. To
determine the value of k, we need to solve its transport equation. Sinc +=
then, many one-equation turbulence models have been proposed. The transport
equation for the shear stress developed by Bradshaw et al.55 and the transport

56equation for the turbulent viscosity developed by Nee and Kovanznay are
typical turbulent viscosity models.

Undoubtedly, one-equation models generally produce more reliable results
than the mixing-length hypothesis produces for most computations. However, a
need to obtain a more accurate estimate of the length scale distribution,
especially in a separated flow region, leads to the suggestion nf two-equation
turbulence models.
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There are several two-equation turbulence models (k-c model, k-1 model,
k-W model, etc.). Here, the symbol k is the kinetic energy of turbulence, c
is the dissipation rate of turbulence energy,1 is a macroscopic length scale
of turbulence, and W is interpreted as the time-averaged square of the veloc-
ity fluctuations. Among the two-equation models, the k-c model, as proposed

57by Harlow and Nakayama and Jones and Launder 58, is the most widely used.

The next level in turbulence modeling is represented by the complex
Reynolds stress models59%2 These models are still in the development
stages. We have therefore programmed in COMMIX only the 0, 1, and 2 equation
turbulence models for the analysis of turbulent flows. These models are
described in this section.

As we increase the level of turbulence modeling from 0 to 1 equation,
from 1 to 2 equations, and so forth, we are increasing complexity in the
turbulence modeling and, therefore, computer cost as well. So during
selection of a turbulence model, we must balance the increase in accuracy with
the cost of computing.

6.3 CONSTANT TURBUI.ENT DIFFUS1VITY MDDEl.

This is a very simplified turbulence model in which the turbulent
viscosity and the turbulent conductivity are assumed to be constant. The
value of turbulent viscosity is a user prescribed single input constant.

It is preferable to prescribe values of turbulent viscosity and turbulent
conductivity obtained from experimental data. If the experimental informattun
is not available, then turbulent viscosity can be estimated using the
following equation suggested by Sha and Launder 62,

= 0.007c pU,,x 1 (6.4)u ,
tur

where

c = 0.1 for Re > 2000 ,y max

= 0.l( 0.00lRe - 1) for 1000 < Re < 2000c
,p max - max -

and

c =0 for Re < 1000 (6.5).

lie re ,

U = Max (u, v, w) and (6.6)

Re = Ma x( Re Re . Reg) , (6.7),

the mixing length scale

1 =C D (6.8)1 h,
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62

the coefficient

C = 0.4 , (6.9)g

and D is the hydraulic diameter.h

If the information about turbulent conductivity A is not available and
not prescribed, then we can approximate itusingthefoS[owingrelation:

,"p"tur
3
tur Pr

tur

C p
P E"'

(6.10)=

0.8( 1 - exp(-6 x 10 ' Re Pr ! )) ~
,~

where Re is the user-specified characteristic Reynolds number and Pr = C u/A
p

is the molecular Prandt1 number, calculated based on the simplified property
option and user-specified characteristic temperature. Equation 6.10 is based
on the proposal of Nijsing and Eif fel63,

6.4 ZERO-EQUATION MIXING-LENGTH MODEL

In the 0-equation mixing-length model, the turbulent viscosity is
computed from the relation

~

3u 'Bu au ( 1/2

" tur " # A 3x 3x +3x (6.11).

llere, u's are the time-averaged velocities and x's are the Cartesian or cylin-
drical coordinates. We have adopted the usual summation convention where the
use of repeated subscripts implies summation over the three coordinate
componentn. The mixing length 1 is related to the distance y from the nearent
wall as

1 = ky (for y < ymax)'

= kymax II0f Y > Ym x). (6.12)

lie re , e is the von Karman constant with recommended value r = 0.42, y,ax (=
0.175*D ) is the cutoff value, and Dg it is the hydrauite diameter.

6.5 ONE-EQUATION MODE 1.

In the 1-equation (k) model, we solve the transport equation (Secs. 6.7
and 6.8) for turbulence kinetic energy k and compute turbulent viscosity using
the relation

Cydg

(b.13)p tur " c '

where c, the dissipation rate of turbulent kinetic energy is given by
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3/4 3/2C k
c=D (6.14)*L

C is a constant having the recommended value 0.09. and 1 is the length scaleD
related to the distance y f rom the nearest wall as described in Eq. 6.12.

In the caz.a cf multidimensional flow with more than one wall co-existing,
the value of y, used to compute 1, is the nearest distance from a wall. The
cutof f value y,,, is either 0.175 Dg or a preassigned length, where Dg is the
hydraulic diameter.

Af ter computation of turbulent viscosity, we compute the thermal conduc-
tivity using the relation

A *
tur P (6.15),

where Pr is the user-specified turbulent Frandt1 number.tur

6.6 14t>-Equ&T10N 20EL

In the 2-equation (k-c ) turbulence model, we first solve the transport
equations (Secs. 6.7 and 6.8) for turbulence kinetic energy k and the
dissipation rate of turbulence kinetic energy c . After obtaining the values
of k and c, we compute the turbulent viscosity utur using the relation

2
(Cf k 1tur"(cu (6.16).

Here, CD is a constant having the recommended value 0.09,

k = f ( u'Z + v'Z + w'Z) (6.17)

is the turbulence kinetic energy,

Su{ Bu{c=v (6.18)3,J 3,J

is the dissipation rate of turbulent kinetic energy and v is the kinematic
viscosity. After computing turbulent viscosity, we compute the thermal
conductivity using the relation

A *
tur '

g

where Pr is the user-specified turbulent Frandt! number.tur
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i

i
~

6.7 TRAMBPORT Eq0&T10ES OF k A15 e
\

6 .7 .1 Transsort gemattom for k
,

If we multiply the fluctuating velocity equations by fluctuating velocity
components, add them, perform time-averaging, and use the definition

k=fu{u{,weobtain <

g, I"k I "[ + 3p g + o u) =-pu{uj38"i+p'u{gSk ak -p gg
,

:

A B C
,

1
- - -

3 /ak 8"d"5 I "["d") (6.20)-Pu{6)* 3 x) 3 x) *
" ~# .

g3x 2g

;
- .

i' D
!

; Equation 6.20 is the exact form of the transport equation for k. Here, the

| terms are

I A: source due to mean shear,

I B: buoyancy interactions,

i

r C: loss of k through viscous dissipation, and
i

! D : diffusive transport of 15 and randomizing action of the pressure-
strain correlation.

i

j We can see that Eq . 6.20 has the closure problem. Adoption of the gradient-
j transport notion of Sha and Launder 62 eliminates the closure problem and
! simplifies Eq. 6.20 to
i

" " (6.21)=P #C
~ #* + Sq

I .p + p u) k k
" "Here,,

'j -.

Bug /Sug + Du )
i Pk"U tur Bx | | (6.22)

j (3xj i)
,

!

! is the source due to mean shear, and

:

"

Gk"~ f
g (6.23)

i
i

|

|
:

!
t
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; 65

is the source due to thermal buoyancy. The term containing ok in Eq . 6.21
represents the diffusion of k. o k is called the turbulent Frandt1 number for
k. Launder et a161 have recommended the value 1.0 for ok'

6.7.2 Tramayort Eemation for s'

The exact form of the transport equation for e is obtained by taking the
derivative of Eq. 6.3, with respect to xj, and multiplying it by

[3u{ Bu )
l. (6.24)29 | 3,j + ,il:

(

6The resulting equation is discussed in detail by Daly and Harlow ", Hanjalic3

and Launder 60, and 1.umley and Khajeh-Nour165 The only feasible approach
I toward devising an c equation is to apply both intuition and intelligent
'

dimensional analysis. The c equation contains several empirical coefficients
that require adjusting to account for different behaviors of dif ferent shear
flows. The equation proposed by Jones and Launder 58 and Daly and Harlow64 g,

o h +p u)
* g h(Pk+G)-C=C

k 2,

. .

3 /u *"tamh3ctur
j

+ 3 ,j )I
(6.2HI .

,C / 3,j
,

f Here, the source tern Pk has the same form as Eq. 6.23, the second term on the
right is the dissipation term, and the last term represents dif f usion. The
variable o is the turbulent Prandt1 number for c: the recommended value62 goc

( l.3. The coefficient of the production term Cg is normally chosen by
i reference to near-wall turbulence, whereas the coefficient C 2 is determined
| from the decay of grid turbulence. The values of Cg and C2 recommended by
| 1.aunder et al. 6 are 1.44 and 1.92, respectively.
5

i 6.6 BOUNDARY CDHDLTIONS FUE TRANSPORT EQUATIONS
i
'

There are three types of boundariest
i
; A line or surface (plane) of symmetry,
I
' Inlet and outlet boundaries, and
1

! A solid wall.

The first two boundaries are discussed here and a solid wall boundary is
; discussed in Sec. 6.10.
I

6 .8 .1 Syumstry amendary.

The simplest boundary is the line or plane of symmetryl at a symmetry'

| line, the normal velocity is sero. The gradients of scalar quantitles k and c
| normal to the symmetry line are also zero.
!
|

I

L
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i

6.8.2 Inlet and Ostlet Boundaries f

At the outlet plane (free boundary), the gradient of turbulence quan-
tities are assumed to be zero. The inlet plane requires special treatment.
The inlet turbulence kinetic energy kgn can be obtained from measurement if
available. For the uniform inlet velocity uin the inlet turbulence kinetic
energy kin can be estimated as follows:

,

k,=Ck,in in . (6.26)*
g

.
where C ,in is the user-specified coefficient. TherecommendedvalueofC,g*n,k k
is 0.001. The inlet dissipation rate of turbulence kinetic energy cin.' C""
estimated using the relation

c =C (6.27),g c ,in n

|

i where is a coef ficient that can be determined empirically or by using
thefoio'Nngequation

C"
c .in " 1 (6.28).

in

'

Here i ,(= tyin i c 0.175 D ) is the length. scale at the inlet. i
g g

If the profile of the mean velocity at the inlet plane is known or can be
guessed, then kin can be estimated from

2 f3u*f 3uy # in

kin " 34 tn By / as / . (6.29) i,

, where ugn is the mean velocity component in the main flow direction. The I

! inlet dissipation rate c in can be computed pointwise using the same relation !

{ (Eq. 6.27) as for the uniform velocity case. :
1 >

6.9 WALL FUNCTION TREATIELIrf

In the immediate vicinity of a solid wall, there is large variation in

] the values of turbulence properties. Therefore, to predict the correct values
,

of momentum flux, energy flux, and the gradients of k and c, we apply a |
4

' '
special treatment called the wall-function treatment. In this procedure, we
implicitly account for steep variation near a wall and avoid the need for a
fine mesh. This procedure is described briefly herel more detailed ;

4 information can be found in Sha and Launder!4

j 6 .9 .1 _ elt sheer Strese _.in the_ pheentus Equation _W
:

! The illustration of the model used for a near-vall region is shown in
Fig. 6 ,1. P is the node adjacent to the wall and outside the viscosity-,

i affacted zone (viscous sublayer), NP is the node next to P, and the distance
a

t

- ,_ _,--, - - - -, - ,., n . - - - -_,,-n.-- --.,.,, - , . , _ , . , _ ---n.,--
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Fig. 6.1. Model of a Near-Wall Region

,

!
;

1 ;

*y is the distance from P to the wal . The sublayer thickness y Le
d!termined such that the Reynolds number R(gj at the edge of the region is ~20.

?
: * *1/2

YR I = 20 . (6.30)g ,
>

.

I

k* ag y is obtained by linearly {
*

! The level of turbulent kinetic energy
j extrapolating the values of kp and kNP IOY*Y8 !
'

*
i y -y i. p

- k, + 4 y- ( k, - k ,) .i k (6.3i)g

i Based on the assumption of logarithmic velocity profile f rom turbulent
Couette flow, the wall shear stress between the node P and the wall is !

modified to account for the frictional force at the wall. The modified well I,

shear stress, in lieu of the normally calculated value, is,

*
,

1

,g /2t 1/4 !t u eC
t

= -_ p P y
(6.32) I" II4 !/2)'Ey C kp

j A" ( v / i
j l

| which is deduced from the velocity profile
;

i ,

! I! !\IEy'C k tu
) JL kI! = C~I!' 1

An \-
" #- |

v / (6.33) [.
j t ,/p p p e

;
<

[
;

i
I i

, - - _ .
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1 i

i

! The constant E has the value of 9.0 and u is the velocity parallel to the |p
wall at node P. The shear stress calculated from Eq . 6.32 is assumed

'

' invariant from node P to the wall.

6.9.2 Wall Esat Flum is the_Reersy Remetton

In the energy equation, the heat flux near the wall is modified using a
logarithmic temperature profile. The modification for the wall heat flum is

,

similar to that made for the wall shear stress in the momentum equation except,

i that an additional term is introduced to include the resistance of the laminar ;

sublayer. For the case of a laminar Prandt1 number oh iam of the order of 1 i

; or greater, the wall heat flux is

,

I! I!pk C (h -h) <

(6.34)9w" 1/ gj
(EYPh k

| 1 A"i P 1

/+Pgc ( v

I

where;
. 1

!f h 'I "" h

(g '*"'P = 9.24 i -1 N3H.

i ( h,tur / h, tant

! In Eq. 6.34, h is the enthalpy and subscripts w and P represent the values at
,

[ the wall and node P. respectively. Pg is generally referred to as the P- |

function and o is the turbulent Prandt1 number for thermal energy'

transfer,asdefI'nedpreviously.
[

l For the case of a low Prandt1 number, such as liquid metal flow where i

I o is on the order of 10 1 , the turbulence contribution to the wall heat ig,
| f ux $s ses11. The temperature profile between the wall and node P can be f

assumed linear.

I 6.9.3 _Ttsrhalemee Questittee k and c user __e_ setid_ Welt
1

I For treatment of the transport equations of k, the dif fusive flux from
node P to the wall is first set to sero. The production term P in the k ik

j equation is modified as
i !

| Pk = t ,u /y (6.36)p p

| instead of using mean shear, t, is the modified wall shear stress computed [
- from Eq. 6.32. l

i
; In the transport equation of t, the dissipation rate at node P is [
; computed as t

l
'

i !

c /' k3/4 I3

e =" P g,y)
p ,

> ;

i !

l

I
,

|
_ - ____ . _ - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - -.
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instead of solving the transport equation for c. In addition, the average
value of c is computed by integrating the nonlinear variation of c for the
near-wall cell. Thus,

t
e

c=b f cdy
i Yeo

A

3/4 3/2 (Ey* CII' kt/2\C k
=W D in - - - " D

/, (6.38)y

whare y, is the value at the edge of thJ control volume of node P as shown in
: Fig. 6 .1. The value of i is used to evaluate the dissipation terts in the

,
equaticn for k for the near-wall cell.

!
*

.

I

a

!

i
i

!
!

| |-

|

'

\

|
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7. VOLiBIE-4fEIGilTED SEEW-4fMf1ND DIFFERENCE SQISE

7.I 111T3000CT10Il

In fluid-dynamic calculations, the pure-upwind difference schetse is
generally preferred over the central-difforence scheme to discretize
convective terms. The reason is that for high-Pe.let number flows, the pure- i

upwind scheme prevents instablitty and provides a more accurate solution than
that obtained with the central-difference scheme. However, it has boon
observed that for flows inclined to grid lines, the pure-upwind scheme causes
an increased amount of numerical diffusion. To reduce numotical diffusion, we ;

'

have developed and implemented a volume-wotghted skew-upwind difference
scheme, which is described in this section.

7.2 PUEE-UPWIIIO DiFFEEEleCE SOGBIE

7.2.1 One-Diesne tonal._, ,

Because of its stabilizing effect, the pure-upwind dif ferenen scheme is
79 The iused extensively in one-dimensional hydrodynamic computer programs4

basic concept is briefly discussed here in reference to Fig. 7.1. i

'

I
U

; l.1 I l/2 1 1 +1/t 141

| ... ____

,

1-1 1 1+1
s

1-l/2 1 + 1/2

Fig. 7.1 One-Dimenstunal Upwind or Donur Cell

It is easy to difforence the model equation i
l

a
! g (t4 ) = 0 (7.1)
!

at node 1, where ( is some scalar and u is the velocity. Equation 7.1 can be,

; differenced at center node i as
,

( t4) i+1/2 ~('#}t-l/2
,

-o, 02)3
I

where the subscript 1+l/2 refers to the values of (td) at the cell edges. In
,

'

a staggered mesh system, $ and u are not known at the same points. If it is
assumed that $ is continuous, Eq. 7.2 can be approximated as

('4)i+1/2 '4 1-1/2 "t+1/2ft ~ "1-l/2 't-l |
~

g (7,3,)
t Ax Ax

!
i

,

-

i
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for the case u +1/2 > 0, andi

,,"1+1/2*i+1 - "i-1/2 10 (7.3b)am

ul/2 < 0. That is, the values of $ are considered " donated" (orfor u
upwinde3) to the cell edge, depending on the signs of ui 1/2'

7.2.2 hso-Dimensional

Now consider the two-dimensional situation as shown in Fig. 7.2. The
application of the one-dimensional pure-upwind dif ference schese to the two-
dimensional model equation

h (td ) + (v$) = 0 (1.4)

produces

4 ~ b43 (t( )_ * _ i+1/2.] 1-1/2.]
ex Ax

"1+1/2,] 't.] ~("t-1/2]'t-1,j_g 47,3)
on

and

~(3(v$) ,, 1.j+1/2 i.j-l/2
by Ay

(# # .] ~('t.j-l/2't.j-11.j+1/2 1g {7,g
by

assuming u and v are both positive . This extension assumos that the veloc-
ittes are locally one-dimensional, i .e . , each cell face is associated with
only one velocity component, as shown in Fig. 7.2.

7.2.3 Nuestical Dif fusion

This apparently straightforward application of the one-dimensional pure-
upwind concept to two and three dimensions has been identifled as one of the
main sources of numerical diffusion 68-70 It has been shown that for a
steady-state two-dimensional flow with constant velocity c omponents u and v
and equal grid sizes Ax = Ay =A, the numerical dif f usion coefficient rg
resulting from using F.qs. 1.5 and 7.6 in F.q. 7.4 is given asprontmately by

-. - _ _ _ _ _ _ _
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(1,1 + 1)
e

Vggu

u
u _u2,1

__
1n U2,n

_ _ , ,,

( I -1,1 ) (1,1) (i +i ll
i

v ;.1/27
. i,

.

(I,l 1)
=x ,

.

Fig. 7.2. Two-Dimensional Upwind or Donor Cell

c, = q sin (r . .) m s,nu,, , v .7,

where

~I0 = can (1.7a).

The maximum value of the numerical dif f usion coef ficient occurs for 0 = w/4,
i .e . , u = v .

7.3 WHAT IS laseutlCA1 DIFFUSION

The term " numerical diffusion" is highly misunderstood among the
practitioners of numerical analysis. Accordingly, we get different inter-
pretations from different practitioners.

The concept of numerical dif fusion can be described as follows. If we
subtract the finite-difference approximation from its partial differential
equation in a Taylor series expanded form, the resulting equation is generally
termed a " truncation error". lie r e , we are assuming that a Taylor series
expanded form is an accurate representation of the partist diffarential
equation under consideration.

The truncation error unus11y contains many odd and even derivative
terms. The effect of even derivative terma is generally to reduce all
gradients in the solution, whether physically correct or artificially induced.
This effect, called dissipation, is of ten looked on as if we have introduced
an artificial viscosity. This is why dissipation in of ten referred to as
false, artificial, or numerical diffusion. The odd derivative terms, on the
other hand, have a tendency to produce an onc111atory solution. This offact
is termed dispersion.
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The lowest-order term of the truncation error defines the order of the
numerical scheme. In general, if the lowest-order term in the truncation
erro* is an even derivative, than the dissipatise error will predominate; if
it la an odd derivative, then the dispersive error will predominate.

When we use an upwind-dif ferencing scheme, the lowest-order teris in the
truncation error is a first-order even derivative of the order O(Ax) . The
effect of upwind differencing is therefore to distort sharp gradients by
dissipation, as shown in Fig. 7.3b. In the caso of central differencing, the
even-derivative term gets cancelled, so the lowest-order term is a second-

2order odd derivative of the order O(Ax ). The effect of central differencing
is therefore dispersive, as shown in Fig. 1.3c.

e
(a) (b) (c)

Fig. 7.3. Effects of Dissipation and Dispersion (a) Exact Solution;
(b) Numerical Solution Distorted Primarily by
Dissipation Errors (Typical of First-Order Methods);
(c) Numerical Solution Distorted Primarily by
Dispersion Errors (Typical of Second#rder Hethode)

Since a pure-upwind scheme introduces dissipation, we need not consider
it as inaccurate or a misrepresentation of reality. On the contrary, for
convection dif fusion flows parallel to grid lines and at high Peclet numhet-
the pure-upwind scheme actually gives a better and more stable solution than
that we would obtain f rom a central-dif f erencing scheme. Ilowever, for flows
inclined to grid lines, we need modification to reduce numerical diffusion.

7.4 HOW TO REDUCK IRantR1CAI. DiFFUS1001

The apparent ways to reduce numerical diffusion are

e to use very fine mesh and

to use higher-order finite-difference approximations.a

But these procedures are not possible in practice when one is trying to
analyze a large, complex, real engineering situation. In addition, it may be
very uneconomical to do so.

What is needed is a scheme that is simple to implement, permits the une
of coarser mesh for given accuracy, and has acceptable numerical ditfusion.

. . - _ _ - - _ - _ _ _
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7.5 REVIEW OF AVA11.ABLE SCHEMKS

Numerous methods for reducing numerical dif f usion have been proposed in
the open literatura. We are presenting here our brief review of neveral of
these procedures that we had looked into for implementation in the COMMIX
code.

The method of Truncation Error Cancellation (TEC), used by LASL71,
involves adding diffusive terms to make sure that the coetitcients of all
second-order terms are positive. In the upwind scheme, the coefttetents are
already positive. Therefore, the procedure requiren the une of negative
diffusion coefficients. We tried this procedure and found that it decreasen
the stability of a solution.

The Flux-Corrected Transport (FCT) theory was developed by Borin and
lbok72 and extended by Zalemak73 An dancribed by Zalesak, the method
requiren the governing equations to be in conservation law form and computen
the net transportive flux an a weighted average of a flux computed by a low-
order scheme (e.g., upwind) and a flux computed by a higher-order nehomo
(e.g., a leapfrog trapezoidal algorittn with fourth-order spatial differ-
ences). Filtering is required to suppress overnhoots and undershoots
(" wiggles"). The procedure in a very high-order schemo and its implementation
in COMMIX would require major code modifications. Furthermoro, the procedure
would become computationally more expengive.

The une of the Anymmetric Weighted Re sidus t method, as propounded by
7Romstedt and Werner *, was not considered because it would require substantial

modification of COMMIX, it in an untried technique for multidimenatonal
fluid-flow problems, and is inappropriate for a COMMIX-type code.

R. G. Steinke15 describen the usn of a ntep function rather than a fint
shape in the pure-upwind schemo. Thin approach does not addregg numorical
diffusion due to cross-flow; inntend, it is concernod only with numerical
diffusion due to pure-upwind differencing.

1b in for multi-A nonlinear f!Lting technique (FRAM) presented by Chapman
dimenetonal homogeneous equatione in conservative form. The basic idea in to
uma a higher-order scheme and then locally introduce artiftetal diftunton when
spurious oscillations appear. Thetechniquenoemstoofferneveraladvantagenhigh-order scheme can be likn Crowley'n11' 8,over FCT. In particular, the
which in akin to central differencen. Thug, the baste schema would be a nine-
point scheme in two dimensionn and a N-point acheme in three dimonnionn.
Also, artifical diffugion is introduced locally rather than globally, as in
FCT. The modiftestion can be moderate in acopn. Wo wanted to ace if wn could
find a simpler alternative.

64 andA show-upwind differenco ( Si1D) scheme in dencribed by Patthby
L111tngton71 In this approach, ono appites upwind dif f erence in the stream
direction and ogsg a linear variation differencing in tho c ron n-n t r eam
direction. This techniquo addrennen the problen of numerical diffuglon due to
crose-flow gradients in the pure-upwind schemo. In two dimonnions, thin
achemo leads to, at most, a nine-point formula.
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7.6 SEl.ECT10010F A SCHEME

After reviewing the alternatives described, we decided to do the
following:

1. Extend Raithby's two-ditsensional SUD scheme to three dimensions,

2. Develop the WSUD scheme, and

3. Implement both these schemes (SUD and WSUD) into the energy equation
in COMMIX-18.

The following were our important cinsiderations for the development of
the WSUD scheme.

e As mentioned cariter, our objective was to develop a scheme that
is simple to implement, computationally efficient, and displays
acceptable numerical diffusion for flows oblique to the
computational grida.

'e The pure-upwind scheme is simple. It is based on the assumption
that for a steady-state convection-dominated flow, the variation
of property value in the streamwise direction in very small.
This is a valid assumption. A major deftetency of the pure-
upwind scheme is that it produces numerical diffusion when a
flow is inclined to the computational grid lines.

e Thu skew-upwind scheme, an entension of the pure-upwind scherne,
reduces the deficiency of the pure-upwind schemo . But SUD has
two other problemet it predicts results that may overnhout or
undershoot, and it requires an arbitrary cutoff value during
linear interpolation.

We therefore developed a scheme called the volume-weighted nk ew-u pwi nd
difference (WSUD) schemo, which is a modification of the SUD nchemn. It

climinates the two problems of the SUD nchemo. It approntmaten the property
value at the surface of a computational en11 using the volumes of two upstrears
cells as weighting factors.

We have implemented the WSUD ncheme in COMH t X-I n on l y in the energy
equation and not in the moment (se equation for the following reasons

e All our analyses have shown that the nurocrient diffusion due to
pure-upwind approntmation is mainly through the energy equation
and not through the momentum equation.

* The analysis of llaenan et 4178 has shown that increasing the
order of approximation (from pure-upWlnd to central difference)
in the moreenttaa equation, in general, does not make any appre-
ciable difforence in the velocity fintd.

So that a reader can clearly understand the Wr.UD scheme, we have in-
cluded RAtthby's skeWaupwind dif forencM (SUD) nCheme a4 hackground $nformatlon
before describing the alternative volume-weighted sknw-upwind ditforence
(WSUD) scheme .

- _ _ _ _ _ _ _ _ _ . . _ _ _
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7.7 RAITEST'S 1tIO-DDEIIS10Il&L MEW-URf1110 DIFFERENCE (SUD) SCIME

Raithby'8 developed what is called the skew-upwind difference (SUD)
scheme applicable to a two-dimensional flow field. It is based on the assusp-
tion that in a seati domain surrounding the center of a cell surface, a scalar

<

property function 6 (e.g., density, temperature, etc.) is continuous, linearly '

varying and constant along a streamline.

Mathematically,

=0. (7.8)

Here, d/d$ is the directive derivative along the streaa direction $ . Let us
conrider the west f ace of node (i.j), as shown in Fig. 7.4.

,

i
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Fig. 1.4. Two-Dimensional Skew-Upwind Dif f erencing Scheme

We denote, for clarity,

t o " f .j 'i

$w " $ -1/2.j ' ;1
, i

. .

! $g = $ .3,j, andt

1

'2 " $ -1.j-1 ' (i'9)1

>

.-- _ _._ _ , _ _ _ - . _ _ . _ _ , _ _ . . _ _ _ _ . .._,._.,__,_,_____---_.__.._._,,m,___.. , _ . , _ , _ - - .
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Equation 7.8 implies that j
;

; 1

(7.10)J $w = 6 p.

! where $p is the value of I at the point of intersection between the projection
of the velocity vector i and the vertical line connecting $g and 42 The -

,

property value $ 'erpolation, as
1 in turn can be evaluated from the values $ g and + 2' "*I"8
| simple linear int

I

| foy - d dy-d
g y

| Iw"4 p"hgy 4 II*II)I t+ 6y 2'

'

where

6y = (dyg+dy2)/2 (7.11a)

and oyg and oy2 are the cell heights. The lengths dg and d2 are determined ;

i froe (
!

!

3= { (4 x/2) (1.12) }d

l
!

; and i

(i

d2 = oy - dg. (1.12a)

I Here u and v are the coeponents of the velocity vector D, considered centered !

|
'

at the middle of etw west face, and du is the grid width for the cell con-
taining $g (or $ ). When dg is greater than 6 then di is set equal to 44 2

i and dy is set equal to aero, and vice versa fo[,the case of d2greatertha5 |
! 6,. These are Raithby's artif1Clat Cutof fs to prevent the pussibility of neg- (
! alive coefficiente in the interpolation formula given by th. 7.!!. Equation i
! 7.11 can be rewritten as

,

i

|; + . - + , = (i - i 'd ) + 1 + (4 'd5 )+2 <>.i"
| I

6

i This is the same as Itatthby's results for both u and y positive. Thus,
[

i Raithby's SUD scheme is a method to replace $, by a linear interpolation ;

| between $ g and $ 2 using velocity componente u and v. The flux on the .ee s t !
) face is then computed in the usual manner as |
1 |

|. F = $, d yg u . (7.14) jw
i I
; One benefit of the method is reduction in the ntanerical dif fusion in the ;

direction normal to the streme direction introduced by ttw indiscriminate I
'

extension of the one-dimensional pure-upwind difference scheme to two and [
| three dimensions. The method does not address the problem of numerical I

! diffusion that persists in that direction: neither does it addrese numerical ;
! dif fusion resulting from time-dependent terna . t

{
t

!
-

1 !
(

- . - _ _ _ _ _ _ _ _ _ _ -
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I The interpretation of the method as an interpolation procedure for $w
allows easy implementation in our existing COMMIX cosputer code without major

i reprogramming.

In the following section, we explain the extension of the method to the
three-dimensional situation.

|

|
7.8 EXTEllS1006 0F BALTilsY'S 2D-500 SQImps

i The approach employed in Sec. 7.7 to derive the skew-upwind dif ference
l (SUD) scheme in a two-dimensional flow field is simple and straightforward.

All the terms involved in Eq . 7.11 can be interpreted with physical and
,

geometrical meanings. The same approach is used to derive the three-|
dimensional skew-upwind dif ference scheme shown in Fig. 7.5. To illustrate

' the configuration easily and without loging generality, we will assume that
the velocity components u. v, and w of V, passing through the center of the
north face (+y) of the cell containing $0 (Fig. 7.5), are all positise.

|
,

1 I N /

| | '/
/, .

i i*/"

| p{| T4 '1 ^*
j{

~

| si, |I d:3 !Ie
I'

/
8 /rL r

o e
. ./p..

P 14

, .yu.. . . .j. --.. .

II
,/ pd,p,. [d 6I

g
2 f f 1/2 8 y

1 1 / / |
" r r 1|

_x 4X- -|- 4N Mg g

i

Fig. 7.5. Wree-Dimensional Skew-Upwind Dif forencing Scheme )

|

1

%e three-dimensional model equation under consideration is given by

g (ut) + 3g (vt ) + 4g (w$) = 0 . (1.15)
3

Equation 1.15 can also be written as Eq . 1.ft and the name corsideratione
described in Sec. 1.7 are then directly extended to three dimensions.

.

<
1

|

: <

. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. - - __ i
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The location of point P is the intersection of the projection of
velocity D with the plane cont ining the scalar values $ $y. Iwb, and $ 'bcan be derived easily from Fig. g,5 asThe length of d , and dix i.g

d , = { (6 y/2) (7.14g

and

" (6 y/2) . (7.17)d =
gg

If the center of the north face (+y) of the cell containing $o is considered
to be the origin of the local coordinate system, then the coordinates of point
P can be written asp

( P } 1ocal - P ( -d ,, -4 y/ 2, -d ,) . (7.10
p p g g

We define the interpolation coefficients as

dz-|d | if 6: >|d,|. (7.19)a,= 6z g

0 otherwisea = ,

z

and

o, = (6x - |d|i
if6x>|d,|, (7.20)gh

a,= 0 otherwise ,

where

= f (6:g + 6:2) (7.20s)6:

and

6x = f (6xg+6x). (1.20b)
2

Therefore, the intensive property $N defined on the north f ace of the cell
containing (O can be simply written, analogous to the two-dimensional case
given by Eq .1.!!, as

+N *i p" "z "x 'O* I ~ "z "x #w * "z (I ~ "x 'h

+ (( i - n,) (i - a,)] $,3 u .2i)
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7.9 VOLING-WEIGHTED SEEW-UNIND DIFFERENCING (VWSUD) SCIDDE

In this section, we describe the volume-weighted skew-upwind dif ference
(VWSUD) scheme, which overcomes some of the deficiencies of the skew-upwind
difference (SUD) scheme.

7 .9 .1 Two-Dimensional Volume-4fetEhted Skew-Upwind Dif ference (VWSUD) Scheme

As discussed in the preceding sections, the only assumption made to
derive the SUD scheme is

1=0 (7.22)
d$

and the only conclusive implication from this assumption in two or three
dimensions (shown in Figs. 7.4 and 7.5) is that

$, = $ p . (7.23)

Nevertheless, the expression of to in terms of 4 g and 4 2 in Eq . 7.2, or to,
in L . 7.21, is straightforward but not necessarily unique.4,, I ' f wb tb

In some cases, the interpolation may result in significant undershoots or
overshoots. For the case of highly angled flow, shown in Fig. 7.6, the
projected point P falls outside of the line cont.ecting $g and 4 'p 2
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Fig. 7.6, Deficiency of Skew-Upwind Dif ferencing Scheme
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To avoid the extrapolation, which may result in gross errors 68, we can
simplify Eq. 7.11 using the cutoff

$w=$p=+2 (7.24)

However, based on physical intuition, the intensive property of the flow
passing the west face of the cell containing $, should involve both $ 2 and $g.

To correct this situation, we consider the volume of flow passing
through the west face of the cell containing $ , as shown in Fig . 7.7. The0volume of flow passing through the west f ace originating f rom the portion of
the control volume containing $g is Agh, where h is the unit depth of the
flow. The remainder of the flow that passes through the west face originating
f rom the control volume containing $ 18 Elven by A h. Therefore, the average2 2of the intensive property associated with the volume of the flow passing
through the west face can be expressed as

A A

$y "$p" *1 A 2*#
A1+A2 1+A2

*

Since the coefficients in Eq . s .25 are always between 0 and 1, there is no
need for any artificial cutoffs in the WSUD scheme.

p C.V.9---.-_ - _ _ .

1 [
l / Ai
| |N j-

4 .| H |

fw
.Ii / / | 0

l
M ,'qi._ A a |1

|t :-4

| / l|| | |

| / / @ |<

| ,'
|' A [ l2 Y

f W~, N$ l- _- ~e
/-

5/
0Yo-

.' X

Fig. 7.7. Concept of Volume-Weighted Skew-Upwind Scheme
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7.10 EITEIISIGIl 0F 21 Mused to 1MEE-DEIMIS10N,

The extension of the two-dimensional VWSUD scheme to three dimensions is
. quite straightforward but difficgit to visualize . As shown in Fig. 7.8, theI projection ' line t of the vector V that passes through the north face (+y) of

the cell containing $ 0 esy result in the . formation of subvolumes inside the ,

-

! surrounding cells. To simplify the representation, we number the cello 1
| through 4 counterclockwise, starting with the cell containing 4 , as shown in0 .

: Fig. 7 .8 . Detailed configurations of the constituent subvolumes resulting
| from the projection line t are shown In Figs. 7.9 through 7.12.
.,

i The extension' of Eq. 7.25 to three-dimensional flow field can be written
j as

! [V1 i /V I IY3 \ [V I2 4
1 $

N " + p " |(V
i +2+1 '+3*I +4, (7.26)

tot / l + '(Vtot/ (Vtot/ (ytot) ,

! !
,

i where *

|

Vgog = Vg + V2+V3+V4 (7.26a)
i

j and V , v2' V , and V4 are the volumes as shown in Fig. 7.8.g 3
!
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7.I1 REMARKS ON THE SUD AND WSUD SCHEMES

The SUD and WSUD schemes have been implemented in the energy equation of
COMMIX-1B. These schemes have been tested by performing several multidimen-
sional steady-state and transient simulations of thermal-mixing benchmark
problems and two thermal mixing experiments. We have observed the following:

* The SUD scheme can significantly reduce numerical dif fusion for
steady-state thermal mixing problems with flow oblique to grid
lines. However, significant undershoots and overshoots occur
and appear greater in three dimensions than in two dimensions.

The SUD scheme appears less stable than the WSUD scheme and maye

require high underrelaxation,

o For the same mesh size, the computer running time for the SUD
and WSUD schemes are larger than that for the pure-upwind
scheme, but numerical diffusion is less. So there is a price to
be paid for reducing numerical diffusion. The additional
running time is highly problem-dependent.

Overall, the WSUD scheme

e is numerically stable (the stability analysis is presented in
Appendix A),

has the same order of accuracy as the SUD scheme, but eliminatese

all of the undershoots and overshoots (computational values
below and above the limits of physically allowable values)
observed in the SUD scheme in this study,

e retains the simplicity of the SUD scheme without resorting to
artificial cutoffs needed in the SUD scheme; this advantage is
crucial in many thermal-hydraulic applications,

e significantly reduces the numerical diffusion for steady-state,

| and transient thermal mixing with flow oblique to computational
g rid s-he nce , the WSUD scheme permits more realistic analysis

j of thermal mixing to help resolve many critical engineering
problems such as the pressurized thermal shock issue, and

e permits use of a coarser mesh than with pure-upwind and still
provides results that are of the same order of accuracy, saving
significant computer running time by a factor of 4 to 8.
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8. HEXACONAL FUEL ASSEMBLY

In the initial COMMIX development period, major emphasis was on the
analysis of hexagonal fuel assemblies. Consequently, several features and
models have been implemented in COMMIX that are specifically for hexagonal
fuel assemblies. These are described briefly in this section.

8.1 HEX-CEONETRY OPTION

The hex-geometry option is available in COMMIX-1B for the calculation of
all required geometrical parameters for hexagonal fuel assemblies. The
subroutines for this option have been developed so that a minimum amount of
information is required as input, relieving the user from the tedious work of
preparing geometrical data. The user has to provide only the following input
data:

Pins Number of pins, pin diameter, distance between pin
centers, and clearance between pin and wall.

Wire wrap Diameter of wires next to wall, diameter of wires
away f rom wall, and type of wire wrap option desired
(see Sec. 8.3).

Partitioning Number of axial partitions, size of each axial
partition, and type of cross-sectional partitioning
(see Figs . 8.1 and 8.2) .

With this minimum information, the code calculates all required geometrical
parameters--grid sizes in x and y directions, directional surf ace porosities,
volume porosities, wetted perimeters, hydraulic diameters, surface areas, etc.

During calculation of all of the parameters, we have assumed that

- Axial length is along the z direction,

- One flat surface of the hex assembly lies on the x axis, and

- Eight surfaces of the hex assembly have the following locations:

Surf ace No . Location

1 Lower left diagonal in x-y plane

2 Upper left diagonal in x y plane

3 Lower right diagonal in x-y plane

4 Upper right diagonal in x y plane

5 Lower flat along x axis

6 Upper flat parallel to x axis

7 Entrance; z = 0 plane

8 Exit plane normal to z axis
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We have designed this option with two types of cross-sectional
partitioning:

- Quarter-pin and

- Full pin.

To illustrate the differences, a quarter pin partitioning and a full pin par-
titioning of a 19-pin hexagonal fuel assembly are shown in Figs. 8.1 and 8.2.

The hex-geometry option can also be used even if the hexagonal fuel
assembly under analysis has some deviations f rom a regular hex-geometry, and
contains some internal structures, e .g . , blockage, that affect the values of
volume porosity and directional surface porosities. The only dif ference is
that the user now has to input the values of volume porosity and directional
surface porosities that are different from a regular geometry. The user-
prescribed values in the internal-cell-initialization cards override the code-
calculated values.

If the hex-geometry is very irregular, e .g . , different fuel pin diam-
eters, nonunif o rm spacing with different pitches, etc., then the user may
bypass the hex-geometry option and use the normal box geometry option. Of
course, with the box-geometry option the user has to provide all the required
geometrical details.

8.2 WIRE WRAP MODEL

8.2.1 Introduction

The presence of helical wire wrapping around a fuel pin has two effects
on fluid flow.

- The geometrical effect, where the presence of wire wrap
influences the fluid flow by reducing the available flow space
(this effect is accounted for by modif ying the volume porosities
and directional surface porosities), and

- The physical effect, where the presence of wire produces addi-
tional drag on the fluid flow (this effect is accounted for by
including additional resistance terms in the momentum equation) .

In this model, we have provided two options. They are described here.

8.2.2 Smeared Wire option

In this option, the volume porosities and directional surf ace porosities
are modified uniformly across the section. This is done by distributing total
wire volume equally over all cells and total wire-wrap cross-sectional area
equally over all cells in each axial plane. Physical effects are neglected.
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8.2.3 Call Integrated Option4

8.2.3.1 Geometrical Effacts

The geometrical effects due to the presence of wire wrap are accounted
for by modifying volume porosities and directional surface porosities. This
is done using the relations

Y) = Y , - (a g g ,) [ A" 6 z , (8.1)
,

1

(Ayaz)*[ A ( *}T =Y ~

1+1/2 x,1+1/2 ,1+1/2 '

1

i

w I *2'
w

OA (8.3)Ty,j+1/2 " Ty,j+1/2
(axaz) ,1 y,j+1/2 '

~

<

and

A" k+1/2w z. (8 0Tz,k+1/2 " Tz,k+1/2 (axay)
~

,

where the superscript w refers to the wire wrap and A is the cross-sectional
area'of the wire wrap. The right sides of Eqs. 8.1-8.3 are integrated numeri-
cally. At each axial position, A" is computed by determining . its proper
location in a cell. The step size for numerical integration is taken to be
equal to three degrees of angular rotation, i.e.,

g , wire pitch . (g $)
120

,

!

l
8.2.3.2 Wire Drag Effect

The resistance force due to the wire wrap is modeled as
,

t,

+ |
'

| } , C p |w|wA (8.6)
e (a d A z) '

where
t

) =f1+f3+f1 (8.7)
w x .y z

is the resistance force per unit volume, C is the drag coefficient, and

.

I

l

- - - _ _ _ - . _ _ - . . . , _ . _ _ . - , . _ - - _ _ _ - _ _ _ - - -.



70

1=A1+A)+Ak (8.8)
g

is the projected area of the wire wrap. The calculation of A is briefly

described here.

Figure 8.3 shows a typical wire wrap arrangement. Consider the wire wrap
as a spiral ring of width d , attached to the fuel pin and located at position
S(x,y,z) as shown in Fig. 8.4. The projected area is

dl = dS x d,n

= (dxi + dy) + dzk) x d (1 cos a + 3 sin a) , (8.9)y

where

n = 1 cos a + j sin a (8.10)

is the unit normal vector,

S = (xi + yj + zk)

= ir cos a + j r sin a + k (z0+5w ( *

is the wire wrap position vector,

ds = 1(-r sin a) + 3 r cos a + 1 h da (8.12)
p p-

is the change in the wire wrap position vector, t is the radius of fuel pin,o
and P, is the wire pitch. Substituting. Eq . 8.f2 into Eq . 8.9, we obtain,
after simplification,

dl = " " (1(-sin a) + } cos a - k tan 0)da (8.13),

where

(2Wr
D (8.14)~

0 = tan p
w

is the angle between the wire wrap centerline and the fuel pin centerline .
Integrating Eq. 8.13 between two z planes [k-1/2 and k+1/2] for a given cell,
we obtain

Pd
1 = "h ( (" * "2 ~ " * " 1) + j("i" " 2" 'i" " I ~ "2 ~ "1 '*" 'IN'

i

(
t

!
u-. __.
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where *

2n( z - z,)
a= (8.16),p

w

2 -"1 *k+1/2 ~ *k-1/2} , (8.17)*

w

and z0 is the axial location when the wire wrap position is on the x axis
passing through the centerline of a fuel pin.

8.3 FUEL PIN EESISTANCE

We model the distributed resistance forces R, R, and R, (defined inx y
Table 2.1) due to fuel pins in the following way:

1 1 2
f (8.18)R =7fu ,

where R is the distributed resistance force per unit volume, f is the friction
factor per unit length, and the subscript x refers to the x direction.

When a rod bundle is aligned along the z axis, the cross-flow friction
62factor f is given by

3 x
2Yg

f,-2j",ji (8'I9)x .2 '

1-r

y/

where
W = the wetted perimeter per unit cross-sectional area ,p

d = the rod diameter ,

P = the pitch in the y direction ,y
and

i, = the largest of the following three expressions:

P -d h

(P [0.93d)If = 3Re (8.20),x x
y

P -
-

0.118 *E - 0.6 1 0.25 + ,, -0.15 (8.21),

(P /d - 1) .08
* x

y
-

.

and

,

,. .. . _- -..-..._,-- ,,,..,,_ _ .~. _ . _ - _ _ _ _ _ __ - . .-- . . _ _ , . , , _ _ . . , , . , _ _
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-

/ P -d = -1

y ,u g g 'x I+ (8.22)~
.x P 0.93d d

In these expressions,

p |u|P Yyy
Re, = (8.23),

and

p |u|W* v
"x " p( 1 - d/P J * *

Analogous expressions are used for f , replacing u with v. P with P , and Rey y x x
with Re in the above definitions.y

The axial friction factor f, is given by

f, =2 W ( aRe + c) , (8.25)p z

where

p|w|Dh
(8.26)Re, = ,

D = the equivalent hydraulic diameter ,h

and the constants a, b, and c are:

a b c Re,

8 -l' 0 < 940

0.07 -0.32 0.0007 > 940

8.4 OTHER FEATURES

8 .4 .1 Heat Source

To provide an easy input of heat source from the fuel pins, three
variables have been introduced in COPMIX: QIN, QK, and QFLUX. The variables
QIN and QK are the normalized power distribution functions in a transverse
plane and in an axial direction, respectively. QFLUX is an average heat
source per unit area of fuel pin. With these three variables prescribed, the
code calculates the heat source in a cell using the relation

Q(1,j ,k) = Q1N(1,j) * QK(k) * (wdAZ) PINF * QFLUX * f g(t) , (8.27)
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where PINF is the fraction of a pin in the cell under consideration, (wdaZ) is
the pin surface area, f is the transient function to account for the variation
of heat source with time, and the subscript nf is the transient function
numter.

Equation 8.27 assumes that all axial planes have the same normalized
power distribution Q1N, and all vertical axes (cells with same (1,j)
locatioas) have the same normalized power distribution QK.

Note that the power Q, calculated in Eq . 8.27, is added to the heat
source term in the fluid-energy equation. Thermal inertia of fuel pins is not
accounted for in this calculation. The use of the easy heat source input
described here is therefore recommended only for

Steady-state analysis and-

- Slow transients.

For fast transients, it is recommended that fuel pins be considered as thermal

structures (described in Sec. 9).

When we b. v a nonuniform heat source distributions in all three direc-
tions, there at two other alternatives:

Prescribe a volumetric heat source for each cell through a-

variable QSOUR, or

Treat fuel pins as thermal structures and prescribe a heat-

source through thermal structure input.

8.4.2 Pressure-Boundary Conditions

Most simulations need a velocity boundary at the inlet and a pressure
boundary at the exit. However, we may have situations needing pressure
boundaries at both ends, inlet and exit. This additional capability of
simulating with pressure-boundary conditions at both ends has been implemented
and tested for hexagonal fuel assembly cases.
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9. SUPPLBENTARY PHYSICAL NDDELS

4

To broaden the scope of COMMIX-1B applications and to more accurately
account for phenomena that affect thermal-hydraulic simulation, a number of
supplementary physical models have been incorporated into COMMIX-1B.

|

9.1 SIMPLIFIED FLUID PROPERTY OFTION

There are two fluid property packages in COMMIX, one for liquid sodium I

and one for water. Nominally, COMMIX makes use of the sodium property
package. Use of the water property package requires the creation of a
separate load module. Both property packages are developed and formulated.in
a modular fashion to accomodate replacement by any other fluid property

i package. The details of the two property packages and procedures for creation iof the load module are given in Volume II.

Besides the two fluid property packages, another option is available to,

the COMMIX user. This option is known as a simplified property option. This
option, when in force, automatically disconnects the soditan property package

| and calculates properties as specified by the user. Enthalpy, density,
thermal conductivity, and viscosity are all assumed to be functions of only i

temperature, and are all assumed to have the functional forms
.

h=C0h + 1h *

|

- p =Cg+Cg T, -

1
k=C '0k ik

,

and

u=C +C T. (9.1)g

} Here, CO and Cg are constant coef ficients and are required as input.
' 9.2 OTMER N&TERIAL PROPERTIES
i

In many real applications, solid boundaries and immersed solid objects
affect the thermal behavior of the fluid. When these effects are to be

; accounted for, the thermal properties of the solid materials must be
j prescribed. Volume II describes how the material types are prescribed and

their properties evaluated.)

t

In COMMIX, we can prescribe properties of as many materials as desired
(steel, cladding, etc.). For each material, the density, thermal conductiv-
ity, and specific heat are assumed to be functions of temperature having the
following functional forms:

0 =Cg+Cg T+C T ,

L

!

i

|!

|
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k =Cg+C1k 2k
*

'

and

'

* (9.2)c =C 0cp * Icp 2cp -

p

Here, C , C , and C2 are the input coefficients.O g

!

9.3 HEAT-TRANSFER CORREIATIONS

To calculate the heat transfer between fluid and solid surfaces (either
{ the solid boundaries of a flow domain or the surfaces of internal structures),

a heat-transfer coefficient model is required in the code. In the model
,

! implemented in COMMIX, all heat transfer coefficient correlations are assumed
to have the following form:

! C
Re 3 (9.3)+ Nu = Cg+C2

i Here Nu is the Nusselt number, Re is the Reynolds number, and C , C , and C3g 2
are the con 9 tant coefficients for a given correlation number NH. The user can

,

! prescribe several correlations by inputting different values of coefficients
,

Cg, C, and C. The Nusselt number and Reynolds number are based on the [a 2 3' characteristic lengths of the structures. These characteristic lengths are h

input and must be prescribed by the user.

; i
9.4 INTERACTIONS WITH STRUCTURES;

As described before, the solid structures in a flow domain interact with
! fluid and influence the momentua and energy distributions. In the new porous- t

media formulation employed in COMMIX, these interactions are modeled using !

j distributed resistances and distributed heat sources. |
t :
'

9 .4 .1 Structure-Fluid Musentum Interaction

9 . 4 .1.1 Modeling in CapelI1-1B

As mentioned earlier, solid structures near fluid have the physical
i effect of influencing fluid flow by increasing flow resistance. In the quasi- |continuum formulation, this effect is accounted for by providing an additional

distributed resistance term in the momenttaa equation. This section describes [
,

i how the calculation of distributed resistance, also known as force structure,
is carried out, and how a wide range of generality and flexibility is provided-

'

in COMMIX.
|

The pressure drop due to stationary solid structures is expressed, in the I

| literature, in many different forms, e.g., f

i !

| Ap = 4 h p v f, (9.4a)
>

i

l I

'

i L1 2
| Ap = y 7 p v CD , and (9.4b)
!

!
i !

:

. - _ _ _ _ . . . . ,- .-_.._ - __ - _._ - .. . _ - . _ - _ _ - . . _ _ - - _ . - - . . _ _ . - . - _ _ . .
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Ap = p y K. (9.4c)

The coef ficients f C , K, etc. have dif ferent names-Fanning friction factor,D
Darcy f riction f actor, drag coef ficient, loss coefficient, etc.--depending on
the form of the equation. To accommodate all friction loss equations, COMMIX
enploys the following general form:

Ap = cghp v f (9.5a).

In terms of distributed resistance R, the equation has the form
*

R=cp f (9.5b).
g

Here, L(Ax, ay, or Az) is the length of the cell, D is the hydraulic diameter,
and cg is the coefficient, depending on the form of the equation desired. The
values of cg and D depend on the geometry and type of the structure and are
required to be provided by the user.

There may be more than one structure in a flow domain of interest. Sub-
merged structures usually have different geometries and so require dif ferent
values for the parameters cg and D. In COMMIX we have provided this flexi-
bility; details are given in Volume II.

The f riction f actor f in Eq. 9.5 is a function of the Reynolds number and
is assumed to be of the form

b

f = a ,, Re ""+c,, 0 6a)g g

for Re < Re and
tr

f=a Re "# + c (9.6b)tu

for Re > Re Here, Re is the Reynolds number, and a, b, and c aretr.
constants. The subscripts tam, tur, and tr stand for laminar, turbulent, and
transition. COMMIX h.is the flexibility of permitting as many correlations as
the user desires. Each correlation requires seven input numbers--ag,,, bgam,

( lam, atur, btur' Ctur, and Retr'C

| To simplify the specification of which fluid cells interact with which
j structure, a specific input arrangement has been implemented in COMMIX;

details are presented in Volume II of this report.,

00 has been prepared that provides a convenient collection ofA report
resistance correlations that are most comenly needed by COMMIX users . This
collection of resistance correlations are also included as an Appendix in
Volume II.
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9.4.1.2 Friction-Factor Library

occasionally, the COMMIX-1B user may be f aced with the situation that the
desired correlation is not of a form directly suitable for input as described
. in Sec. 9.4.1. The user is then f aced with two choices:

- Approximate the correlation to fit the input form, or

Use the friction-factor library.-

The friction-factor library has been created to r.ccomodate up to 50
different additional correlations. Currently, only six correlations, as
described in Table. 9.1, have been added to the library.

An a:nbitious user who wishes to define his or her own correlation may
first examine the code to see what correlation numbers are free and available.
Then, with other library correlations as a guide, the new correlation can be
inserted appropriately in the code and recompiled. Every effort has been made
to modularize this part of the subroutine so that a user has minimum
difficulty in inserting new correlations in the code.

9.4.2 Structure-Fluid Thermal Interaction

9.4.2.1 Introduction

To determine the heat-transfer interaction between a structure and sur-
rounding fluid, C0KMIX contains a so-called thermal-structure module.

The heat transfer to fluid from a structure is calculated by solving the
one-dimensional heat conduction equation for the structure. This assumes that
heat conduction in the other two directions is negligible. The COMMIX
numerical model has the following features:

e The model considers all internal structures. The input

determines the total number of structures.
.

e A structure can be planar, cylindrical, or spherical with either
one surface (e.g., solid cylinder or sphere) or two surfaces
(plane or annular cylinder) having thermal interactions with
surrounding fluid. The axis of alignment of the structure can be
aligned with any of the three coordinate axes.

e Each structure can consist of more than one type of material,
each separated by a gap.

* Radial variation and temperature dependence of thermal
conductivity and specific heat of structures are incorporated.

* The effects of gaps in a structure element are accounted for in
the model. The gap width and heat-transfer coefficient across a
gap are input parameters.

e The heat source in a structure element is considered in the heat '

conduction equation. The heat source can be transient.
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Table 9.1 Friction Factor Library
i

'
BETLEN

Correlation CLENTE (length used
Description Correlation (hydraulic to compute

diameter, a) Reynolde
ausber)

90 CERE fuel f=0 (1-x+ 6 3.25 x 10-3 3.25 x 10-3
*

.5
Re

x = 0; Re i 400,

x = (Re - 400)/4600; 400 < Re < 5000

; x - 1; Be 15000,
5

91 CRER blanket f= (1 x + - 0.48 6 3.39 x 10 3.39 x 104 4
assembly Be , 3i

: x = 0; Be 1 400,

; x - (Be - 400)/4600; 400 < Re < 5000

x - 1; Be 1 5000,
1

h.22
92 Direct reactor f- 0.1055 0.1055

heat exchanger Be

A = 0.171 + 0.012 (F/D) - 0.07e-50(F/D-1) |

|
F/D = 1.84 )

l

I.

;

l

_ . _ . _
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!

l
* i

!
Table 9.1 (Contd.)

REYLEN
CLENTE (length used

I Correlation Description Correlation (hydraulic to compute
; 3 diameter, e) Reynolds

number)

93 CRSR ,- (1 - x + 0.1 4 6 0.12, 0.12,
,3

chimneys Re

x - 0; Re i 1200,
,

*}g ; 1200 < Re < 4000x-

x - 1; R* 2. '000'

)
a>
o

94 FFTF f- ; Re ,< 1000 3.95 x 10-3 3.95 x 10~3
,

pin bundle,

i

, ) . 0.1,4. (ir)3 0.0,., erf: , - 1.01, ,

i

3' I
= -0.8686 log *

kRa/f
~~

| /f c/c
I

95 CRBR control f 60 68 /1 x + 6 3.48 x 10~3 3.48 x 10-3f .5
; assembly Re

x - O. He < 400
i x = (Re - 400)/4600; 400 < Re < 5000

I

!
x - 0; Ra 2. 50c0

i

t i

t

. . - _. , , . _.
_
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o Each structure is divided into a desired number of axial
elements. A set of discretization equations is obtained for
each element using the proper boundary conditions. The
equations are solved using the Tri-Diagonal Matrix Algorithm.
The temperature variations in the element and heat transfer from-

the element to fluid are calculated.
i
'

9.4.2.2 Geometrical Description

.
To explain the geometrical features of the model, we consider a cylin-.

drical structure with its axis aligned in the z direction, and its length
extending over a number of Az partitions (K levels), as shown in Fig. 9 .1.
Although the description and the subsequent formulation are geared toward
cylindrical-type structure, the model in COMM1X-1B also is applicable to
spherical and slab-type geometries.

Each Az partition of the structure is referred to as a thermal-structure
element. Each element has its own internal temperature distribution as it
interacts with surrounding fluid cells. Each element has two surfaces, outer
and inner. The outer surf ace interacts with surrounding fluid. The inner
surf ace can either be adiabatic or interact with fluid, as shown in Fig. 9.2.
Each element can interact with no more than one fluid cell per element
surface, while each fluid cell can interact with more than one structure

| element; this can be seen in Figs. 9.3 and 9.4.

Figure 9.5 shows the cross-section of a typical structure element . The
outside surface is considered as surface 1 and the inside as surface 2. Each
element can be made up of more than one material. In Fig . 9.5, there are
three materials. Each material region can be subdivided into a number of
partitions, as shown in Fig. 9.5.

9.4.2.3 Governing Equation

The transient one-dimensional heat conduction equation is

*(-Aq) + q''' (9.7)oc = .
p

i

*

Here, p and c are the density and specific heat of the material, q''' is thep
, heat source per unit volume, q is the surface heat flux per unit area, and A

| is the cross-sectional area.
i

9.4.2.4 Finite-Difference Formulation
r

', Figure 9.6 shows the cross-section of a typical structure element under
consideration. Each element is divided into a number of material regions and
each material region is subdivided into a nusber of partitions. let Ar be the
partition size and let 1. be the total number of partition cells.

Consider the energy balance of cell 1, as shown in Fig. 9.7. The
integrated energy equation for the control volume of cell 1 gives

I

:
i

l



_ _ _ - _ _ _ - _ _ _ _ - _ - - -

,

82
!

4

1 / !
/ AZ
/ {

' /
/
/,

'
' -ELEMENT Or, -

# A STRUCTUREe
,

/
/,

,

l-

< t

i
:

I

o |.
|

Fig. 9.1. Flow Domain Showing a Cylindrical Structure

' Syumetry Line/ Plane

)

' '
;

- i'

2

-

%ter
I

,
5urface hd,~

i | 7i
d Inne'

Surf as
V

"

j<
'

'.
e . ~ , . *. . ,

,
'

/ '2/ - Sue f ere

/ N -....,J
''

Inner %ter Sewndaryg gg
i suriace Sur f ac e
4

Fig. 9.2. Element of a Thermal Structure Showing ;,

Outer and Inner Surfaces '

i

I

!

i

t'
.- . - , - - . , - - - - - , . . , , - - . ., .,,,----.-,---..,.,_.__-.-,,_,..-,.,.n. _-, - - - , _ . - - . . . , _ , _ - - . - - - -



_ ._ . - _ _ . - - _ _ - . . . _- . -_

83

V/d

Fig. 9.3 Four Quarter Cylindrical Structures each
Interacting with One Fluid Cell

!

Og
O

.

Fig. 9.4 More than one Structure Interacting
with a Single Fluid Cell

i
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oc V

- T") = - ( A[t q -Aq)+q'''V (9.8)Tg g gg g,g .gg g

A A
A +1 ^t+2t-1 t t

*9 * - q ,g ''
g g

T _g T T ,7g g g

.

Fig. 9.7. Energy Balance of a Partition Cell i

Here, V is the cell volume. The heat flux gg can be expressed in terms ofg
temperature difference:

2, = U,( T, _ , - T,) = ( T _ , - T, ) / a, , (9.9)g

Here, Ug is the overall heat transfer coefficient (conductance) and R is theg
overall thermal resistance between Tg and T _g:g

|

=b=U for conduction , (9.10)
*

g_g g

and

=b= ## " ""E " "" " " " " "
U (9.11)

"A f+[ (gap or surface),

where A is the thermal conductivity and h is the convective heat transfer
coefficient. Af ter substituting Eq. 9.9 in Eq. 9.8 and rearranging, we obtain

(ag+bg + b ,g)T = b T _g + b ,g t+1 * 1*T *g g tg g

where

a = p c V/6 t , (9.13)p
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b = A U = A/R , (9.14)

and

d = q''' V + a T" (9.15)*
.

Here, T" and T are the temperatures at time t and (t + 6t), respectively.

Cell Adjacent to Coolant
.

For the case of Cell 1 (Fig. 9.8), adjacent to the fluid, the
integrated energy equation gives

OM-(ag+bg+b2 g = b T ,,g +bT22+dgT .gc
l

Here, a, b, and d have the same meaning, except that bg now includes
the convective contribution. Therefore,

A A i (9.17)b, = j = .

@,,)1
,

i
hcool g

Similarly, if the other end of the thermal structure, say Cell L, is
in contact with fluid, we get

(ag, + bg + b ,g)T T + ('gg + b ,g ,,,g b'=bT gg g
2

* *
:

-

=_

Y T TegwT. _

Ts es T. T, Te
m = :x - :: - - :=

Rew Row Rea
_

is 4e

Fig. 9.8 Energy Balance of Cell 1 Adjacent to Coolant



. - - _. _. _ _ - _ - . - - . _ . - - - - _ - . . _ _ _- _. _.

87

j

where<

A ,g g,,gL
b ,3 (9.18b)= =

L 1 ar .

*I *
h 5 .

coo 1
, 2

Cell Mjacent to a Different Material

For a cell adjacent to a dif ferent m.sterial cell, as shown in Fig.
9.9,

(ag+bi + b ,g)T =bTg g g pg + b ,g T ,g + dg O.10.g g
;

|' Equation 9.19 is similar to Eq. 9.12, except that the term b ,ggincludes the gap resistance. Rus ,
I

*I ^L*I
b (9.20)= =

+h +
g p gg

l
|

GAP

!
3R 3R .f f ;.

= = = =

t T

W !!A
4

;. T Tg . ,t
=

; - _ _ _ _ _ _ _ _ _ _ _
'

R R R otit eep

!
Fig. 9.9. Cell Surrounded by Different Materials

with Air Gap between hen [
,

P

! Bed Cell with Misbetic Boundary Coedition

In solid cylindrical or spherical structures, the other end (symmetryi

line) has the adiabatic boundary condition. The end cell for this <
,

boundary condition is shown in Fig. 9.10. We have no heat transfer,
,

so thermal resistance is infinite and the term bgg goes to zero. [

The final equation, therefore, is
,

- - - _ . . _ - _ _ , _ , - - - . . - _ , , _ _ _ - - - _ - . . . _ _ _ . - - - - - _ . . , _ _ _ - _ _ _ . _ , __ - - _ _ . - - _ _ _ _ - , , _ .



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .-_ _ _ _ _ _ _ _ _ _ _ __ _

88

(aL + b )T =b T_g+dL. (9.21)g L

Adiobotic Boundary

T Fig. 9.10

! Cell with Adiabatic BoundarykY/ [MS
I

Tg., i :i=0t

R=e

9.4.2.5 Solution of the Discretisation Equations

We can see from the formulation of the preceding section that there are L
number of equations for L number of unknown temperatures.

e Outside Surface Cell (i = 1)

(ag+bg + b )Tg= bT22+ dg+bTg eool2
g

e Intermediate Cells (i = 2, "* * L-1)

(*1 + b, + b ,gh , = b T _g + b ,g g,g + d,T .g gg g

I (i = 2. '' L-1) (9.22b)

e Inside Surface Cell (i = L)

(aL+b b ,gh g = b T ,g + b T + ('' }+ g gg gg eool b
2

if the inside surface is non-adiabatic, and>

(ag + b )T = b T _g + (d ) (9.22d)g gg

if the inside surface is adiabatic.;

'
Equation 9.22 can be transformed to

e

] C{Tg =bT22+A{ (i = 1) (9.23a)

| CjTg = b ,g g ,g + Af , (i = 2 . " * * L- 1 ) (9.23b)Tg

i

_.-_ - . , - _ - _ - _ , - - _ . - . - . - - _ . , - - - . - , - , - . ___- _ _ . - . . - - - . -
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,

C{Tg = b ,g eool +A{ (t = L; nonadiabatic) (9.23c)Tg
2

or
8

C{Tg =A{ (t = L; adiabatic) (9.23d).

Here,

Aj = d ' + ( b Aj_ g /Cf _ ) , (t = 2 + + + + L) (9.24a)g g

and

Cj=ag+bg + b +1 - (bg /Cj _ g ) . (t = 2, + + + + 1.) (9.2%)i
.

;- The first set of coefficients is
*

;
.

Aj=d g + b T ,og (9.24c)gc
I|

; and

C{ = ag+bg+b2* *

The inside-surface cell temperature is first calculated from Eqs. 9.23c or
, 9.23d. Then the rest of the temperatures are computed using Eqs. 9.23a and ,

1 9.23b. I

i

9.4.2.6 Heat Transfer to the Adjacent Fluid

once the temperature distribution in a structure element is computed, the,
.,

: heat transfer rate to the adjacent fluid is computed from '

'

; 1

A'

|.

q = f (T -T)g g
1,

.

i

I

= U A (T -T) for outside surface =Tgg g g g cool
g

1

4= (T -T)g g
L+1

i

g(T -T) for insMe sudace , = T ,,g=U A O.20 |gg g c
.

*
Here q is the heat transfer rate in watt, U is the overall heat transfer
coefficient given by

;

U=1= (9.27)*R 1 ,43
cool

,
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A is the surface area, Tg and Tt are the temperatures of the edge partition
cells, and Tg is the respective fluid temperature. The heat transfer rate is ,

then trantlated into an effective volumetric heat source for the fluid cell.

*
* q

(9.28)Qrb "Y V e

v0

where V0 .is the computation cell volume (e.g., AxhyAz) of the adjacent fluid
cell and.Q is the heat source from solids per unit fluid volume. The compu--
tation of #cke heat transfer coef ficient is carried out as described in Sec.
9.3.

.

9

2

!

.

4

1

1

4
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10. INITIAL AND BOUNDMtY CONDITIONS

'

10.1 INITIAL CONDITIONS

Generally, before the solution sequence can begin, all values of
variables must be assigned. In COMMIX, we can accomplish this either

By continuing a previous run via the restart capability
-

(recommended for all but the first run), or

- By specifying the initial . distribution throughout the interior
points and boundary of the space under consideration.

When the initialization is not a restart, we have to specify initial pressure,
temperature, velocity and turbulence parameters distributions. The determin-
ation of these distributions and their subsequent input into the code are
generally tedious. In COMMIX, we have provided several simplified input
procedures, which make the initialization of velocity, pressure, and temper-
ature less tedious. These procedures are described in Volume II. The
procedures of initialization relating to turbulence parameters are described
in Sec. 6 of Volume I and Sec. 8 of Volume II.

10.2 BOUNDMtY CONDITIONS

This section describes the boundary conditions for mass, momentum, and
energy equations. The boundary conditions for turbulence transport equations
are described in Sec. 6 of Volume I and Sec. 8 of Volume II.

10.2.1 Velocity Boundary Conditions

The most common physical boundaries in an engineering system are solid
impervious wall, inlet, symmetry, and outlet. To accommodate all possible
velocity conditions at these four boundaries, we have provided seven boundary
condition options . Here, we describe the meaning of these options in mathe-
matical terms. In Table 10.1, we have summarized all seven velocity boundary
options for the four most commonly occurring physical conditions. Volume II
tells how to implement them in the input data.

* Constant Velocity

This boundary condition implies that normal velocity v = constant.nIn COMMIX, this is achieved by simply not altering the value of the normal
velocity v specified during initialization. This option is applicable to an
solid surface with zero normal velocity and to an inlet surface with constant
inlet velocity.

* Transient Velocity

; This option is applicable when an inlet velocity varies with time,
e .g . ,

y =v *
0 *

- _ - _ _ -. _ _ . . -- - - . . . . - _. . - _ - - . - _ _ - _ _ _ . _ _ _ _ -
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Table 10.1 Velocity-Boundary Options

Option
Boundary Suitable Option No. Remarks

Solid (i) Constant velocity 1 Specify normal velocity v =0nImpervious during initialization
Surface

Inlet (i) Constant velocity 1 Specify inlet velocity during
initialization

(ii) Transient velocity 2 Specify inlet- velocity and
appropriate transient function

Symmetry (i) Free Slip 3 Axis through origin in cylin-
drical coordinate is a symmetry
surface

Outlet (i) Continuative 4 Ceneral outlet condition
mass flow

(ii) Continuative 5 Suitable when areas are equal
momentum

(iii) Continuative 6 Suitable when areas and
velocity densities are equal

(iv) Uniform velocity 7 Suitable when outlet is finely
divided (Fig. 10.2)

Here,

v = surface-normal velocity at time t ,

v surface-normal velocity at time t = 0 ,
0

and

f(t) = transient tunction.

e Free Slip

The free-slip option means the shear stress at the surface is
zero. Also,

v = 0 .0 . (10.2)

i
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This option is applicable to a symmetry boundary. For a cylindrical coordinate
system in COMM1X, the z axis passing through the origin is considered as a
symmetry boundary with zero surface area.

* Continuative Mass Flow Outlet

This option is for an outlet surface as illustrated in Fig. 10.1.
, Here, 1 and a are the outlet boundary cells and 1+1 and a-1 are the
' neighboring cells. The continuative mass flow outlet implies that normal

surface velocity at the outlet must be such as to balance the mass flow, i .e . ,

(p A)1+1/ 2;

(#n 1-1/2 " (p Aji-1/2 +!

and

(pA)m-1/2

m+1/2 (pA)m+1/2 "m-1/2 *
("~

*n

The sign difference between Eqs. 10.3a and 10.3b is due to the COMMlX-18
convention that surface-normal velocity is directed into the flow domain.

!

Outlet Outlet
Boundary Boundary2

I i
~

i 1 1+1 m-1 m :
'

i I

,

I

i n
| . ..

!

| Inlet

Fig. 10.1 Near Boundary Cells

,

i
|

|

- - -- - - - - - _ _ . _ - - . _--
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i

e Continuative Momentum Outlet

When an outlet area is the same as the neighboring surf ace area,
then Eq. 10.3a simplifies to

" t+1/2(v,)t-1/2" (10.4).p 1-1/2

We call this option continuative momentum because it appears that we are
equating neighboring and outlet momentum fluxes.

* Continuative Velocity Outlet

If we have a constant area and equal densities, then Eq . 10.3a
simplifies to

( v )t-1/2 " (")t+1/2 (10,5)

We call this option continuative velocity because it appears that we are
equating neighboring and outlet velocities.

e Uniform Velocity Outlet

The uniform velocity outlet boundary condition option sets the
normal velocity for all surface elements of a surface to the same value. This
value is computed such that the total mass flow through a surface is the same
as what would have been obtained from the continuative mass flow outlet
boundary condition. Mathematically,

i+1/2 (10.6)v = .

1-1/2
Here the summation is taken over all surface elements of a surface. This
option is suitable when an outlet is very finely divided, as shown in Fig.
10.2.

Outlet Boundary

.j _ _ j . _ - .). ... _ j _ -

-

Fig. 10.2 Model Suitable fer Uniform Velocity Outlet Option
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10.2.2 Temperature Boundary Coeditions

The six temperature boundary-condition options available in COMMIX-1B'are
briefly described here and summarized in Table 10.2.

Table 10.2 Suitable Temperature Boundary Options

Boundary / Option Option No. Remark

Solid surface
Constant temperature 1 T,= constant

Transient temperature 2 T,= f(t)

Constant heat flux 3 q,= constant

Transient heat flux 4 q,= f(t)

Adiabatic 5 q, = 0
Duct Wall 6 Considers thermal

inertia of wall

Inlet

Constant temperature 1 T,= constant

Transient temperature 2 T,= f(t)

Outlet

Adiabatic 5 q, = 0

Symmetry

Adiabatic 5 q, = 0

e Constant Temperature

This option is for a constant surface temperature. The temperature
associated with each surface element, as shown is Fig.10.3, is set initially
and remains unchanged throughout the calculation. While the temperature
remains fixed, the surface element heat flux is calculated using the relation

*

q = UA ( T, - T ) . (10.7)g

Here

u = , +I (10.8),g
ii is-

w
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j Surface at
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j Fig. 10.3 Constant-Temperature Boundary

,

|
*

;

| where h is the heat transfer coefficient, A is the conductivity of the wall
' material, and AL is the wall thickness. The subscripts w and f refer to the i

surface element and boundary fluid cell, respectively. For calculation of the t

overall heat transfer coefficient U, we need to provide wall thickness,
suitable correlation for h, and material properties for A .4

! If the wall is very thin, as shown in Fig. 10.4, then we do not
I have to specify wall thickness and material properties. The overall heat t

: transfer U is then equal to h.
!

|

) If a constant temperature is associated with, say an inlet surf ace
as shown in Fig. 10.5, then we do not have to specify even the heat transfer'

j correlation. The surface heat flux is then calculated from the Fourier
{ relation

|
.

A,ggA@,-T) ig.

(10.9)q= .3,f (,

3

1 2
!

i Here, A ,gg is the effective thermal conductivity of the fluid in the adjacent |

internal cell, Axg is the distance between the surface and the boundary cell
! ' center, and the subscripts w and f stand for wall (surface element) and

adjacent internal cell, respectively.

| I
|
1

|

_--_ , _ _ . _ .-, _ . _ _ ___ _ _ _ _ _._ _ ~_-_-_ _ -...
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i

Thin Surface at
Constant Temperature T

Fig. 10.4 Thin-Wall Constant-Temperature Boundary

--

A
I

urface at
Constant Temperature T

Fig. 10.5 Nonconvective Constant-Temperature Boundary
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e Transient Temperature

This option is for a surface whose temperature varies with time ,
e .g . ,

f(t) (10.10)T, = To ,

where

T = surface temperature at time t ,

T = surf ace temperature at time = 0 ,
O

and

f(t) = transient function .

We calculate the surface-element heat flux using the same procedure described
for the constant-temperature boundary option.

* Constant Ikat Flux

When we have a surface with constant heat flux, then we use this
option. The heat flux associated with each surf ace element is set initially
and remains unchanged throughout the calculation. Although the surface heat
flux remains fixed, we now calculate the temperature using Eq. 10.9 based on
the effective thermal conductivity of the adjacent internal cell.

e Transient Heat Flux

This option is useful when we have surf aco heat flux varying with
time, e.g.,

'q = '9 f(t) (10.11),9

where

q surface heat flux at time t ,

*

q i surface heat flux at time t = 0 ,
0

and

f(t) : transient function # nf .

Once the surface heat flux is known for a given time t, the surface tempera-
ture can be calculated f rom Eq.10.9.

* Adiabatic Surface

The adiabatic boundary condition implies that surface heat flux,

q=0, in this option, the normal heat flux for all surface elements of a
surface are initialized to zero and remain zero during calculation. The

- .- . .-. _ __ _
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surface-element temperature is set equal to the temperature of the neighboring
internal cell,

Duct Wall (KTEMP = 500'+ NF)e

We have provided the duct wall boundary condition option for a case
when we want to consider the transient thermal response of a finite-thickness
wall. In COMMIX-1B, this is carried out by solving the energy equation for
each wall (surf ace) element. It is assumed that the element is sufficiently
small that we can consider it to have a uniform temperature and can apply the
lumped-heat-capacity method.

Figure 10.6 shows a finite-thickness surface element. The energy
equation for the element is

3T
yg ( T, - T ) - h,,A(Tp C AaL =-h A -T +

p 8t * *g sink

where T is the temperature A is the area of a surface element, AL is the wall
thickness, and h is the heat-transf er coef ficient . The subscripts w, f, and
sink stand for wall element, fluid in the adjacent cell, and surrounding
atmosphere, respectively. The transient volumetric heat source Q in given by

Q=Q9O ( * *
0 k ij

/

/
T,/'

Tg T ngsi
# '

SURROUNDING/

: : AL

/

.

Fig. 10.6 Finite-Thickness Wall Ikjundary

{



. _ _ _ .

100

Here.

Q = average v lumetric heat source at t = 0 ,
0

Q = axist distribution function ,

Q, = radiat distribution function ,

and

f(t) : transient function .

The integration of Eq. 10.12 from time t to time (t + At) gives

' h*( h*T =T ~
' *

where

0 + "w f * "a sink
T *

'h a,+a,

h,g
"w " p C A L '

P

h

0, " pc at ' " " "w # " a '

P

and

8 - .

Sc
p

In COMMIX-1B, Eq . 10.14 is used to eticulate the advanced time value of the
surface-element temperature.

The duct wall boundary condition option requires several input
specifications, which are described in Volume II.

10.2.3 Pressure Boundary Conditions

Currently, two types of pressure boundary-condition options are provided
in COMMIX-1Bt

Constant pressure, and-

Transient pressure.-

The pressure boundary is applicable only at the inlet and outlet
surfaces. The option is therefore used in conjunction with the continuative
mass flow boundary condition.

. _ _ _ _ _ _ - _ - - - _ - _ _ _
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If an intet surf ace has a specified velocity boundary condition, then we
do not require a pressure boundary option because surface pressure does not
enter into any calculation.

It is important to note here that the pressure boundary condition in
COMMIX-1B refers to the pressure of the boundary adjacent fluid cells. It is
therefore recommended to model the geometry such that the pressure boundary is
applied to

A surface with one surface element,-

or

A surface that is normal to the direction of gravity and has-

parallel flow

as shown in Fig. 10.7.

When we specify a constant pressure boundary option, the pressures of all
internal cello adjacent to a surface are set to prescribed initial value.
These values then remain unchanged during the eniculation.

For a transient pressure over a surface, the pressure of all internal
cells adjacent to that surface are calculated from

P, P f(t) (10.15)
=

.g

Here,
P, pressure of the adjacent cell m at time ta

.

Pm0 " Pressure of adjacent cell m at time = 0 ,

and
f(t) = transient function .

Volume II explains how to implement these options in the input.

DESIRED PRESSURE BOUNDARY
'

,

% . . .
; t

Ig

_ . _

Fig. 10.7 Recommended Surf ace Arrangersents for
Prosauro Boundary Condition

. . _ _ . . . _ _ . . -
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11. MASS senatAmeluc

11.1 INTRODUCTION

All iterative solution procedures provide a solution to a set of alge-
braic equations of the form of Eq. 4.16. However, it is important to solve
them as efficiently as possible to minimize computer running time. A scheme
called mass rebalancing has been developed and implemented in COMMIX. The
scheme is called mass rebalancing because it uses coarse mesh rebalancing of
the pressure equation (the equation of conservation of mass).

After several years of testing, the mass rebalancing scheme has proved
to be extremely effective. It significantly reduces the number of iterations
required to achieve mass convergence, thus saving computer running time. The
description of the scheme and the derivation of the mass rebalancing equations
are briefly described here.

11.2 DESCRIPTION

In the mass rebalancing scheme, we form a coarse mesh domain by combining
several fine mesh cells, as shown in Fig. 11.1. A coarse mesh containing
several computational cells is called a region. For each region, a pressure
correction equation is derived by summing up the pressure equations of all
cells contained in that region. During summing, we apply the following
conditions:

The pressure corrections for all cells in a region are the same,-

and

The pressure correction for each region is determined such that-

the sum of mass residuals over all cells in that region equals
zero.

The pressure corrections obtained from the solution of these equations,
when applied to all cells of a flow domain, help in resolving large-scale
distributions and hence reduce the number of iterations required for finnt
solution of the pressure equation.

11.3 DERIVATION OF FRESSURE CORRACTION MQUATION

1.e t us divide the flow domain into, say, N regions, as shown in Fig.
11.1. The regions are chosen such that any region n has neighboring cells
contained only in the neighboring regions (n-1) and (n+1) . Mass leaving the
region n and entering the region (n+1) does so through rebalancing surf ace
n. Mass leaving the last region N goes into the remaining cells, where no
rebalancing is performed. Region 1 has neighboring cells only in Region 2.

Let P* be the pressure distribution, which does not satisfy the
continuity equation. The pressure equation for a cell m is

6a .

= 6 ,, , (L1.1)-b
m0 m "af, Pg ga ~

A=1
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Fig. !!.1 Coarse Mesh Showing Rebalancing Regions

where 6* is the mass residual, a, and b, are the coef ficients of the pressure
equation, and A indicates the six adjacent cells surrounding cell m. For t

simplicity in writing, the superscript P is omitted f rom the coef ficients a, !and b,. We sum the pressure equations for all cells e in the region n. Thus ;
;

*
6 I-

e *

[ 6 ,* , (11.2) [[ a P [ a P -b =g , tal g g g
as:n me n.

where [ indicates the summation over all cella m located in the rebalancing i
ur n region n, ;

i

and [
e

[ 6 , is the net mass nonconservation for the region n. ,

ust n

I
..

It

i

_ _ . _ _ _ _
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1

| Let APg, AP , AP AP be the pressure corrections for the2 n N... ...

| rebalancing regions 1 to N. The new pressure distribution P can be written as
:

P, = P +AP ; ac n . (11.3)

If we substitute the new pressure field in Eq . 11.1, we obtain, for each
region, N equations of the form

|

| ( 6 )
[ P [ a,g g - b,9 1= [ 6, . (11 4P1a,n m

t=1( / me nte n

{ We want to rebalance all N regions such that the new pressure fteld

| achieves net mass conservation. In other words,

| [ 6, = 0 (n = 1 * * * * N) (11.5). .

| nc n
|

| Substitution of Eq. 11.3 into Eq . 11.4, with the constraint of Eq.11.5, and >

{ after some rearrangement, gives us

|

[ f b ) ~-
e s

[ l a -b + APl

*t 1 m0 n "m0 *t
~ ~

\ m0 m tal j ,me n ic na a
cc n

,

- .. .

n-1 P,,g [ [ a =0,-A P a -

,esn (tc(n-1) ,ec n ic(n+1)
,

( n = 1, * * * * N) . (11.6)

In the set of equations ( Eq . 11.6), we do not have AP -1 term for n = 1 andn
AP +1 term for n = N. We rewrite these equations asn .

A"AP - A" A P - A" AP +1 -B =0, (11.7)
O n n-1 n

|

| where

A" = [ [ g = A"2 (ll'8")a '
| nc n te (n-1)

|

| A" = [ [ (ll.8b)a ,g
I ncn tc(n+1)

A"O = A" + A" , (ll.8c)

and

B" = [ 6 (11.83).

no n

_ . _ _ . . _ . . - . . _ _ . . _ __ . _ . . . _ . - .. _ . . _ _ . _ . . _ _ _ _ _ _ . _ _. . . - . . -
-
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,

In deriving Eqs. 11.8c and 11.8d, we have made use of the relation |

6

af=!=1
P[ a ( g g ,9)g

and Eq . 11.1. For the first rehalancing region (region 1), the coefficients
t

'
A =0

and 6

!

A =A .

I
iFor the last rebalancing region, no pressure correction is desired in the '

neighboring cells. In this case,

APpg = 0
1

,.

and A can be evaluated from the relation in Eq .11.8..

2

!

We now have N equations of the same form as Eq. 11.7 for N rebalancing
regions. These equations can be solved for pressure corrections AP by any 5

Gaussian elimination-type procedure. In COMMIX we are using the tridiagonal
.

j. matrix algorithm to solve these equations. I

i

11.4 RBIAggs og estaasmggg

IIt is important to note that pe pressure field P obtained here, after i
-

the addition of corrections AP to P , is not the final solution, because the
[preessure field obtained with mass rebalancing satisfies only the mass conser- -

vation of rebalanced regions, and not of all fluid cells. Rebalancing makes i.

only large-scale corrections. To satisfy the mass convergence of all fluid |

celle, we must solve a pressure equation for each cell. As rebalancing makes
the large-scale final corrections rapidly by direct solution, it reduces the

|number of iterations required for the solution of the pressure equation. ;4

:

e

t

|

! ,

. _ _ _ _ - - - _ .
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12. SOLUTION PROCEDURES

12.1 INTRODUCTION

COMMIX performs thermal-hydraulic calculations by marching in time. The
values of the dependent variables at a given time step, say n, are known and
the values of the dependent variables at time step n+1 are calculated. By
repeating this procedure, we determine thermal-hydraulic conditions for the
desired time span. The overall flow chart of the program is shown in Fig.
12.1.

For steady-state calculation, the same procedure is followed. We start
with an initial guess and continue the marching-in-time process until the
values of all dependent variables stop varying with time. The time step size
for the implicit steady-state calculation can be many timos as large as the
Courant time step criterion.

Start

Spectfy Orld

Intstantsettons t = 0
(Olve values of el

output

Begin a llee step.

Set e*6 t a t + 41

solution saquen .

4:?.x...

n.

Stop

Fig. 12.1 COMMIX-1B Flow Chart

-_ - - - _ - . - _ _ .
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In C0KMIX, we have provided two options for the time-step size.

The user-desired time step size (the details of this input are-

given in the Input Description in Volume 11), and

The automatic time step option.-

In the automatic time-step option, the time step size is evaluated based on
the Courant condition

At = C At (12.1)g C,

where C is the user prescribed coefficient and at is the time step sizeg Cevaluated from the Courant condition. The Courant time step size in defined
as the minimum time required for fluid to be convected through a cell . In
C0KMIX, each computational cell is examined with respect to all three
component directions to calculate the Courant time step size.

In C0KMIX, we have two distinct solution sequences--the semi-implicit and
the fully implicit. However, the solution procedure option has been imple-
mented in such a way that a user can switch from one solution scheme to
another at any time during the transient simulation of a problem.

Both the solution-sequence options are combined into one formulation
through an implicit parameter a. The solution procedure option becomes semi-
imr11 cit when o = 0 and fully implicit when a = 1. Therefore, in principle,
we can say that the formulation covers a full range from semi-implicit (a = 0)
to fully implicit (a 1). But as we have not performed enough testing at=

this time, we do not recommend any intermediate value of a--only a = 0 and a =
1.

12.2 SEMI-IMPLICIT SOLITTION SEQUENCE (a = 0)

The semi-implicit solution sequence (a = 0) used in the original version
of C0KMIX-1 is based on a modification of the ICE procedure developed at los
Alamos. The solution sequence is called semi-implicit because the old time
values of some variables and parameters are assumed to prevail throughout the
time-step period.

Because of the semi-implicit nature of the formulation, we are required
to limit the size of the time step to obtain a stable solution. The timo step
size has to satisfy the Courant condition, and must be less than the time
sizes associated with all explicitly formulated terms. Thus

~(AxpAt < At I (12.2)Courant ,

u Mn, i

/po x2
At < at ~C' I (12.3)vie ( u ) min

,

i

_ _ _ _ _
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2
( Ax{}

at < At ~Ci o I (12 0,eond p
( h / min

etc. Here, subscripts " Courant", "vis", and "cond" refer to time scales
associated with Courant condition, viscous diffusion, and thermal dif f usion,
respectively, and subscript i refers to the three coordinate directions. The

coefficient C has a value between 1/6 and 1/2. In most cases, the Courant
limitation is the determining factor; at and At are usually muchcond
larger. The viscous-dif fusion and thermaly [f fusion time scales may require
consideration only in the case of highly turbulent flow.

Although the semi-implicit scheme has time step limitations, the solution
of the equations requires less computer running time per time step. So for
fast transients, where the interest is in obtaining information at small time
intervals, the semi-implicit sequence works very well.

The details of the semi-implicit solution sequence are shown in Table
12.1.

12.3 FULLY IMPLICIT (SIMPLKST-ANL) SOL 1Tfl0N SEQUENCE (a = 1)

For long and slowly varying transients, it was found that the semi-
implicit procedut s, because of its time step size limitation, required a
great deal of computer running time. To eliminate this restriction, we have
developed and implemented an alternative, a new fully implicit solution
option.

The fully implicit solution sequence, named SIMPLEST-ANL, is based on a
modification to the SIMPLE /S1HPLER procedures developed at the Imperial
College in England. SIMPLEST-ANL requires less computer storage than SIMPLER
and still has comparable or better computing efficiency. Because this proce-
dure relieves many of the time step size limitations and permits use of larger
time step sizes, it is most suitable for steady-state and slowly varying
transient calculations. Rapid-transient situations still are most ef ficiently
calculated using the semi-implicit formulation.

J

The procedure is called fully implicit because the new-time values of all
variables are assumed to prevail during the time step. We therefore need nn
iterative procedure. Each outer * lteration loop yields a better estimate of
the advanced-time values of all variables. When the change in all variable
values becomes small from one outer iteration to the next, the iterative pro-
cess is considered converged and the last outer iterate values are used f or
the advanced time variable values. The solution sequence for the fully
implicit formulation is a seven step iterative process, as shown in Tablo
12.2.

*Here, outer iteration loop is used to distinguish it from the inner iterative
loops used for the solution of a specific variable equation, e.g., the itera-
tive loop (successive overrelaxation procedure) used for the solution of
pressure equations is considered as an inner iterative loop.

- - _ _ . . _ _ - . - _ _ _ _ _ - _ . _ _ _ _ _ _ . . - - - - ._ _ _ __
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Table 12.1 Algorithm of the Semi-Implicit (Modified ICE)
Solution Scheme (a = 0)

1. Calculate momentum coefficients using old-time step values of u,
v, and w

i , d' i ( + = u , v , w) .

~

2. Calculate pressure equation coefficients using (, d*:'

P P P
a0 ' *1 ' 0*

3. Solve pressure equation for new-time pressure P"*I

aP -[ a =0.~

99 gg ,

4. Calculate new-time velocities using

$=h-d# api ($=u,v,w)

and neW-time values of pressure.

5. Calculate energy equation coef ficient using new-time values of
velocities:

h h ha,n,b
n g g

6. Calculate _new-time enthalpy h"+I

h0= [afh"+b /a .g

'l

i

_ __.____.______ _ _ _._._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _
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j

Table 12.2 Fully Implicit (SIMPLEST-ANL) Solution Sequence (a = 1)

1. Calculate velocity-pressure relation coefficients from the
previous iterate values of u, v and we |

,

f $ M i ($ = u, v. w).

02. Calculate pressure equation coefficients using (, d : [
I

P P P,

a ' ** ' 0*i 0

- 3. Solve pressure equation for new-time, new-iterate pressure P !

I

j afPO" *1 g + b 'P 0

!

j 4. Calculate new-time, new iterate velocities u, v, w from velocity-
pressure relations: |

.r

$ = $ - / A P 1 ($ = u, y, w) !;

! !
.

j 5. Calculate energy equation coefficients using new-time, new-iterate
; velocities:

{
i h h h |

a ' "A ' 0*0 1;
,

.

6. Solve energy equation for new-time, new-iterate enthalpy ha
1

1 h
*t k * h f

h !'

a h * O'0 o
i

! t

j 7. Check for convergence of u, y, w, h if not converged, return to ;
l

j Step 1.

'

i

!
.

!.

|
,

l

:

l i

! !
!

i .i
:

_ .,._ ___,. . _ . . . . . _ _ _ . . _ _ _ . _ . _ _ . . . , _ - .-_., _ . _ ,
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The major differences between the semi-implicit and fully implicit
solutions are discussed in Section 13.

12.4 SUCCESSIVE OVERREIAIATION (SOE) ITREATIVE SOLLrt10N

Both solution procedures, semi-implicit and fully implicit, require
solving a set of algebraic equations. In COMMIX-18, the solution of the
equations is achieved by the successive overrelaxation procedure.

The successive overrelaxation (SOR) type iteration scheme uses one pass
through the computational cell domain. As each cell is visited, the residual
of the $-equation to be solved is computed, using the most recent values of
the surrounding $ 's. In this way, an updated value of $ is used if the
neighboring cell has been visited earlier in the pass, and a previous iterate
value of ( is used if the neighboring cell is to be visited later. Immedi-
ately after the residual of the $ equation for a cell under consideration is
computed, the $ is adjusted in that cell before the computation proceeds to
the next cell in the pass.

Af ter all cells have been visited, the convergence is checked and if it
has been achieved, then the iterative process terminates; 11 convergence has
not been achieved, another single-pass iteration is performed.

The SOR scheme requires the relaxation parameter w to be between 0 and 2.
Generally, convergence can be achieved in fewer iterations than for the Jacobi
scheme. Because w can have values greater than 1.0, it is termed overtelax-
ation. The optimum value of the relaxation parameter is generally geometry-
and problem-dependent; usually, it is between 1.4 and 1.8.

12.5 MASS ODNVERGENCE CRITER10N

In theory, the pressure equation (Eq. 5.5) is considered solved when mass
residue 6 is equal to 0 for all cells. Because Eq . 5.5 is solved itera-
tively, this will, in general, never be true. Instead, a nonzero mass
residual 6 is computed for every cell and a maximum is determined as |6| max.
The iterative process continues until either a maximum specified number of
iterations have been performed or the maximum mass residual falla below the
convergence criterion.

|6| max /convergencecriterion. (12.5)

The mass convergence criterion is calculated using the relation
. .

/0Y u )gg
Convergence criterion = c * I | (12.6)g h #"2 ,

jv 1/ max,

where eg and c2 are the input convergence constants and subscript i stands for
three coordinates.

12.6 ITERATION CRITERIA

The seventh step in the fully implicit scheme is to check for conver-
gence. Here, the changes f rom ore iteration to the next, in all $'s, are
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checked against the convergence criteria. The mass convergence criterion is
discussed in Sec.12.5. The iteration criteria are satisfied when

new oldi
i4 ~9 Imax

$old
4 ,3 ,

_ ,old g-x < c
,new

.
-

V 3,
max

new oy _y

"" * < c 3 , andV
max

|W" -"
max

V g,3 (12.7)
max

simultaneously. Here, V,,, is the maximum velocity magnitude, c 3 is the user
input convergence parameter, and the superscripts new and old refer to current

i and previous iterate values. If any one of these convergence criteria is not
met, the sequence is repeated from Step 1. The solution proceeds through the
sequence until it converges or the specified maximum number of iterations have
been performed.

;

i

f

1

i
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13. MMOR DIFFERENCES BEftfEEN SOLUTION FBDCEDUERS

I

13.I FULLY IMPLIC1T SEMPLEST-ANL AND SIMPLE /SIMPLEE '

Although the fully implicit procedure is derived from the SIMPLE / SIMPLER
procedure, there are some major dif ferences in the solution algorithms. To '

illustrate the major dif ferences we are presenting the solution algorithms of
SIMPLE and SIMPLER procedures in Tables 13.1 and 13.2 If we compare these |

algorithms with that of our fully implicit scheme (SIMPLEST-ANL, Table 12.2),
we see that in our SIMPLEST-ANL scheme

e The pressure correction equation is not used, and

e The velocity field is obtained from the momentum equation
in the form

,

$ = $ - / A P; ($ = u, v, w) (13.1)

instead of the momenttes equation being solved in the form

0
"'AL 0 - "Od*Ap. (13.2)a0 I #

00"A
i

Because of these two major dif ferences. SIMPLEST-ANL requires less computer
storage while still maintaining comparable or better computational efficiency.' |

| This is illustrated in Table 13.3. [
!

13.2 FULLY IMPLICIT SIMPLEST-ANI. (e = 1) AND SEMI-lMPLICIT (e = 0)

The major dif ferences between the semi-implicit (Table 12 1) and fully
,

implicit SIMPLEST-ANL (Table 12.2) procedures are presented in Table 13.4'

| We can see f rom this table that the fully implicit scheen is preferable I

for the solution of

* Steady-state, and;

e Slow-transient cases.

The semi-implicit solution procedure, due to its simplicity, is bene f icist
when we are simulating fast transients.

|
Although we are comparing here semi-implicit and fully implicit

procedures, it should be noted that both these procedures are combined into
one formulation in COMMIX-15. It is the value of the implicitness parameter

,
in the formulation that determines whether the procedure to be used in semi-

: implicit, fully implicit, or between the two.

'
t
I

i

|

. _ . _ _ _ - _ _ _ _ _ _ - _ _ _ _ _ _
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Table 13.1 Algorithm of the SIMP!.E Solution Scheme

1. Calculate coefficients in the momentum equations using
previous iterate values of u, y, we

a+0'*1' 0' 3 " I' **** OI * * "' '' "}' t

i

2. Solve for velocities using these coefficients
and pressure field P

a*0' O ** ' t ~ D'O * "'Od' AP = 0; ($ = u, v, w) .~

1
! E

3. Calculate coefficients in the pressure correction
(P') equation:

P' P', 6P'an,ag 9 .

4. Solve for pressure correction field P's

'

Pf - {Ag P{-b =0.a a

S. _Umfate pressure and velocity fields:

P = P + P' .

$ = $ - M AP ($ = u, v, w).
;

6. Cateulate coefficients in the energy equations

h h h I

a ' "L ' O*0

i 7. Solve for ha

" -b = 0. !ah ~

c0 1
A

l8. _ Check velocities u, v, w, and energy h for convergences
|

if not converged, return to Step 1.
.

!

i

>

__ _
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Table 13.2 Algorities of the SIMPLER Solution Scheme

|

1. Calculate momenttan coefficients in using
previous iterate values of u, v, vs

m'o ,a+, , d'o , # (t = t , . . . 6 + = u, v, w).

2. Calculate coefficients in the pressure

P P Pa ' "4' 0*0

3. Solve pressure correction for Pa

aP
O "t g -b =0. !P~

t

4. tJaing this pressure and the momentum coefficients,'j
solve the momenttaa equation for u, v, w

a'O' O ~b8 - b+0 + a d' A P = O g ($ = u , v , w) .1
4

P'5. Calculate the b coefficients in the pressure
correctionequakion.

PUsingthea[anda coefficients of the pressure equation6.
g

P' , , i ,gP ' , ,gP and b ,_motve for thea
0

pressure correction P's !

P' P'
0 0 "AP'Pj-b =0,a ~

o
4

7. Updated velocities

$ = $ - / AP: ($ = u, y, w).

8. C41culate energy equation coefficienis:
'

h h h
0' "1 b0*4

'

9. Solve for ha
{

\-b =0.ah *t 1
~

o

; 10. Check for convergence of u, v, w, hl
.

Tf not converged, return to step 1.
|
1

|

!
'

- _ _ _ _ ---



. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____ _ _-_

116 |

.

Table 13.3 Comparison of Computer Storage Requirements

Minimum Number of Matrix Number of Coefficient Storage
Scheme Coefficients Required Matrix for 2000 Cell Problem

per Cell Inversions Assuming 8 Byte Variables

SIMPLE 14 5 I* 224K

SIMPLER 38 6I 608K

Fully Implicit 14 2I 224K
(SIMPLEST-ANL)

Semi-Implicit 14 1 224K
(Modified ICE)

*1 = Number of outer iterations.

13.3 CONCLUDING REMARKS

The fully implicie scheme (SIMPLEST-ANL) is similar to the SIMPLE /
SIMPLER procedures but requires less computer storage than SIMPLER with
comparable or better computing efficiency. The semi-implicit and fully
implicit (SIMPLEST ANL) schemes of COMMIX-1B both have advantages and
limitations.

e The semi-implicit schemet

requires less computer time per time step.-

has timo step size limitations, and-

is advantageous for simulations of fast transients.-

e The fully implicit (SIMPLEST-ANL) scheme

requires more computer time per time step.-

han no time step size limitalons, and-

la advantageous for simulations of steady-state and-

slow transients.

In COMMIX-18, we have provided an implicitness parameter that permits use
of desired implicitness from semi-implicit to fully impiteit. Further, the
option has been irsplemented in such a vaanner that a user can switch frors one
implicitness to another at the completion of any time-step during simulations.

. _ . __ _ _ . __ _ ._ _ _ _ _ _ - _ _ - _ _ _ _ - _ _ _ _ _
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Table 13.4 Major Dif ferences between Semi-Implicit and Fully Implicit Procedures

Equation Semi-Implicit Fully implicit (SIMPLEST-ANL)

a$P . { ,P pn
+bh ahP

Conservation = a Pg+b0O Oof mass 1 L

Coefficients are calculated from Coefficients are calculated from
previous time-step values. previous iterate values.

1

a'O $=[a $ + b'O - d' A P a# 0 * l *' 01+b - d' AP
Conservation

! of momentum 1 0 t
1

l ($ = u, y, v)
! Neighboring velocities are at Coef ficients and neighboring velocities
! old-time values, at previous iterate values.1
1

i Uses new-time values of pressure Direct calculation of 6 after solution'

obtained f rom conservation of mass. of pressure equation.

h={a h +bConservation a hg 0 *0 0 t* O
* "0

of energy 1 1

Explicitly calculated coef ficients have Coefficients use current it rate values
new-time values of velocity. Neighboring of velocities. Neighboring enthalpies
enthalples are at old-time vaues, are at previous iterate values.

Iteration continued until all mass,
comentum, and energy equations are
conse rved .

Time-step Yes; unstable for large time-step size. No; quite stable for large time
limitation step size.

_ . _ _ . - _ _ - - - - _ _ _ _ _.
__. _
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Although, as mantioned above, both the semi-implicit and fully implicit
schemes have advantages and limitations, we advocate the use of the fully
implicit scheme for the following reasons:

* In most simulations, either a transient itself is slowly
varying, or a major part of the transient is slowly sarying.

e We have found significant savings in computer running time
during many of our simulations with the fully implicit scheme.
To illustrate this, we present the results of three problems in
Table 13.5.

Table 13.5 Comparison of Computer Running Times

Computer Running Time

Problem Semi-Implicit Fully-Implicit (SIMPLEST-ANL)

German 7-pin hexagonal
fuel assembly

Steady-state 70 sec 31 sec
9-see transient 56 min, 11 sec 2 min, 48 see

CRBR upper plenum
Steady-state 6 min, 3 sec 1 min, 40 see

Blockage in hexagonal
fuel assembly

Steady-state 3000 min 10 min, 35 sec
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14. DISCUSSION

14.1 UNIQUE FEATURES OF COMIX

All the important features of COMMIX-1B are briefly mentioned or des-
cribed in detail in the text, There are several features that are unique.

and distinct from other computer codes. These features significantly expand
the capabilities of CoretIX. Five of these features are discussed here. They
are:

Geometry-modeling,-

New porous-medium formulation,-

Turbulence modeling.-

Volume-weighted skew-upwind differencing, and-

Two solution options.-

14.1.1 Geometry hdeling

Unique features related to geometry modeling are the following:

e Identification of a computational cell by a cell number instead
of its (i,j ,k) location: All "do loops" are performed with the
cell number as an index instead of with the conventional direc-
tional indices i,j,k. Consequently, the storage requirement
depends on the total number of computational cells and not on
the dimension of IMAX * JMAX * KMAX. This is illustrated
through a simple example in Fig .14.1.

e Use of surface arrays to store boundary values at the boundary
surface: We do not use fictitious boundary cells to store
boundary values.

* Extra surface to model irregular geometry: An irregular surface
~

is defined as a surf ace that is at an angle to a grid plane. An
irregular surface is an additional surface to the six normal
surfaces (parallel to grid planes) of a computational cell. We
also account for heat transfer in the energy equation and shear
stress in the momenttsu equation from this seventh irregular
eurface, in addition to those from the six normal surfaces.
This treatment of an irregular surface as an additional surface
facilitates true and proper modeling of a complex irregular
geometry.

14.1.2 New Porous-Medisma Formulation

In COMMIX, we use four parauecera (volume porosity, directional surf ace
porosity, distributed resistance, and distributed heat source) to model a flow
domain with solid objects. The inclusion of the parameter directional surf ace
porosity is new. This inclusion has greatly facilitated the modeling of flow

>and heat transfer in an anisotropic medium and has improved the resolution and
accuracy of numerical modeling,

w_
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IMAX = 3

JM AX = 7

Total number of cells = 14

Conventional storage requirements = 8 x 1 = $6

Storage requirement in COMMIX-IA = 14

Fig. 14.1 Grid Arrangement in a Two-Dimensional Piping System
to Illustrate Storage Requirements in COMMIX-14

The new porous-medium formulation has been rigorously derived 40,47 from
the governing partial differential conservation equation. 'Ihe derivations use
the local volume averaging procedure. The resulting equations are more
general. If we substitute directional surface porosity equal to the volume
porosity in the formulation, the equations simplify to the same as for the
conventional porous-medium formulation. Furthermore, if we set volume
porosities and directional surface porosities to unity, and distributed
resistances and heat sources to zero, then the new porous-medium formulation
simplifies to the same as for the continuum formulation. We can therefore say
that the continuum formulation is a subset of the conventional porous-medium
formulation, which is a further subset of the new porous-medium formulation.

It is worth stressing here that the porous-medium formulation has
provided a wide range of applicability to the COMMIX code. We can now analyze

,

e A single-component system, such as
- A fuel assembly.

Reactor plenum, and-

Piping system,-

as well as

_ _

__
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e A multicomponent system, such as
Vessel,-

- Downcomer and lower plenum, and
Cold leg, high pressure injection system, downcomer-

in sufficient detail.

14.1.3 Turbulence Modeling

Almost all flows in an engineering system are turbulent. For a computer
code to realistically simulate a flow process, the code must account for the
effects of turbulence. COMMIX-1B accounts for the effects of turbulence
through

- Distributed resistance modeling and

- Turbulence modeling.

'For many geometries and flow conditions, the experimentally verified
resistance correlations, which include the ef fects of turbulence, are avail-
able in the literature, e .g . , flow in a tube, flow normal to a rod bundle, l

flow through an orifice, etc. For such regions of a system, we employ appro-
priate correlations through distributed resistance modeling and can provide a
realistic account of turbulence.

For geometries where correlations are not available, we have provided the
following turbulence models as available options in COMMIX-1B:

- Constant turbulent diffusivity model,

- Zero-equation model,

- One-equation (k) models, and

- Two-equation (k-c ) model .

With several turbulence model options and the distributed resistance
model, one can perform a very realistic simulation of turbulent flow in any
flow geometry system.

I 14.1.4 Options for Reducing Mmmerical Diffusion
1

f In the finite-difference formulation, the even derivative terms of the
i truncation error have a general tendency to reduce the gradients, producing

what is known as numerical diffusion. For high Peclet number flows and for
flow parallel to grid lines, numerical diffusion is generally small. However,
for multidimensional flow oblique to grid lines, the numerical dif fusion can
be high.

To provide a more realistic and accurate solution, we have provided two
options:

Skew-upwind diffcrencing, and-

:

4

_ _ _ . . _ . ._ _ _ . . _ ___ _ __. _ _ . _. - _ . . . . _ _ _ _ _ ___
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Volume-weighted skew-upwind h iferencing-

that reduce numerical diffusion for flows inclined to grid lines.

With these options, C0KMIX-1B has the unique capability of performing
multidimensional flow simulation with reduced numerical diffusion.

14.1.5 hso solution option

In C0KMIX, we have two solution options

Semi-implicit solution algorithm, and-

Fully implicit solution algorithm.-

The semi-implicit solution scheme, based on the ICE technique, is ideally
suitable for fast transients where our interest is in examining flow and
temperature distributions at small. time intervals.

The fully implicit scheme, based on.the SIMPLE algorithm, on the other
hand, is ideally suitable for slow transients and steady-state problems.
Here, we can use larger time step sizes without affecting stability and thus
save computer running time.

Both solution options have been implemented in such a way that a user can
switch from one scheme to another during any part of the transient simulation.

14.2 CODE APPLICATION AND VALIDATION

The COMMIX-1B code has been tested and applied to a variety of prob-

lems. Detailed descriptions and numerical results of problems that we have
analyzed are published as 'ANL technical reports er papers in technical
journals. We have also compared numerical results with available experimental
measurements. Re f e rences for some major applications and validations are

given below.

* Piping System

Thermal-hydraulic transient in a pipe [2,15,17].

* Fuel Assemblies

19 pin fuel a'ssembly with power skew [2,5].
19 pin fuel assembly with planar blockage [6,7].
Loss of piping integrity transients in an INFBR fuel assembly
[9].
Pretest prediction of the W-1 SLSF experiment [10].
Flow-rundown transient in a 7 pin bundle [11,13].
6MW P2 transient free-convection test (14].

e Reactor Upper Plenus

CRBR upper plenum under thermal stratification condition [16].

i,

, - . . . , , , .-- - - - - , ,
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e Beactor Downconer and Iower Plenum

Thermal-hydraulic mixing in the downcomer and lower plenum due
to temperature and flow imbalances between the cold legs [8].

e Cold-leg High pressure Injection System and Downcomer

B&W/EPRI thermal mixing experiments for OCONEE1 PWR [22].

Thermal and fluid mixing during high pressure coolant injection
[25].
Tha.rmal and fluid mixing for Creare scaled experiments and
generic full-scale PWRs [34].

* Reactor Vessel

Steady-state / transient in-vessel analysis of FFTF [23,24,26].
Steady-state / transient in-vessel analysis of EBR-II [28,29] .
LMFBR decay heat removal system [27].

o Other Areas

Heat loss modeling for the ANL solar pond [81] .

Cross-flow. between parallel channels connected by a narrow
lateral slot [19].
Atmospheric fluidized bed mixing analysis.

We can see from this list of applications that COMMIX-1B has a wide range
of applicability.

Our future plan for COMMIX-1B is to continue to perform representative
analyses, validate the models, improve the code, and augment its capabilities.

14.3 FUTURE DEVEIDFMENTS

Numerical simulation programming is a very active and developing field.
New physical models and better solution procedures are expected to emerge.
Like all other computer codes, COMMIX will, therefore, remain a dynamic
code. Here we are listing the possible developments that, if incorporated,
will further augment the capabilities of COMMIX.

14.3.1 Single-phase Development

New single phase capabilities that are desirable for future implementa-
tion are:

Free-Surface Boundary Condition: Currently, COMMIX-1B does not *
have a free-surface boundary condition option. With implementation
of this additional capability, one could apply the COMMIX computer
code to the analysis of free-surface problems, e .g . , pool-type
reactors.

Regionwise Coordinate System: Although the porous-medium
formulation of COMMIX-1B permits modeling of any complex geometry,
there are instances in which it appears that a geometry could be
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modeled better if COMMIX had a regionwise coordinate system option.
We define the regionwise coordinate system as a capability wherein

; one can use different coordinate systems for different regions of a
system. For example, a rectangular duct connected to a cylindrical
vessel can be better modeled using a Cartesian coordinate system
for the duct and a cylindrical coordinate system for the vessel.
So a possible future plan could be to develop and implement a
regionwise coordinate system capability in COMMIX.

Transient Three-dimensional Heat Conduction Equation for Solid
Structures: At present in COMMIX-1B, we solve the one-dimensional
transient heat conduction equation to account for thermal inertia
of. submerged solid structures. We are therefore assuming that heat
conduction in an axial direction is negligible. In most analysis,
this assumption is a valid assumption. But to extend the range of
applicability, one must implement an option that will permit use of
a 3-D heat conduction equation for structures where axial heat4

conduction is not negligible.

Marching Solution for Partially / Fully Parabolic Flow: In the case
of partially / fully parabolic flow, many variables (e.g., tempera-
ture) are governed only by the upstream conditions. For such
cases, only a two-dimensional array is required. One can also
employ a marching solution procedure, which is simpler and faster
in computer running time than any conventional solution procedure
for elliptic flows. Therefore, a savings in computer storage and
running time would be possible if an option (capability) of the
marching solution technique were available in COMMIX for partially /,

fully parabolic flows.

4

i Vectorizing for Supercomputers: Recently there has been a signifi-
cant development in the area of vectorizing and parallel,

processing. These developments have increased the speed of
computing by several orders of magnitude. Vectorizing COMMIX- for
adaptation to recent supercomputers will enhance the speed of
COMMIX simulations.i

Input / Output Processing: COMMIX is a very large computer code with
a wide range of generalities and applicabilities. Consequently,
input preparation and output processing many times become very
tedious tasks. Further developments and efforts need to be made to
make COMMIX a more user friendly computer program.

1

14.3.2 Two-Phase Development

Concurrent with the development of the COMMIX-1B code, ef forts have been r

made to develop a two phase code (COMMIX-2)82,83, using a two-fluid model and
'

a homogeneous equilibrium model to analyze two phase flows. The structure of
,

COMMIX-2 is similar to that of COMMIX-1B with some additions or modifications '

pertinent to two phase flow. t

,

We have been successful in applying COMMIX-2 to several two phase
simulations .84 -88 However, more representative analyses and further

; development work are needed to ensure that

I

L. _ _ . . -_ ._ -- -- . - - - - - - . - - .- - - - - - --
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The solution algorithm is stable for the whole range of-

applications, (
-

- The convergence rate is suf ficient to make numerical simulation
favorable, and

The computer storage requirement is reasonable.-

Accordingly, the future plans in two phase-development work will be to

Perform more analysis,-

Improve the solution procedure, and-

Implement improved physical models

if development ef forts are continued.

''

.
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APPENDIX A. ACCURACY AND STABILITY ANALYSIS OF THE
VOLUME-WEIGHTED SKEW-UPWINO DIFFERENCING SCHEME

Our discussion of the volume-weighted skew-upwind dif ferencing scheme is

limited to two dimensions; however, the results can be readily extended to

three dimensions. The weighting scheme is shown in Fig. A.1 for the north and

east faces. hio flows are shown, one at 30' and the other at 60* . The situa-

tions on the south and west faces follow from this figure. In this discussion

we shall assume that u and v velocities are positive and uniform with Courant

numbers a and 8 defined as a - u6t/6x and 6 = v6t/6y, where 6x and 6y are the
cell sizes in the x and y direction, respectively. The scheme uses volume

weighting to determine the value of $ at the calculational f aces. That is,

the scheme is like Raithby's but uses volume weighting rather than linear

interpolation. Our first task is to write expressions for the volumes in

terms of the Courant numbers.

* East and West Face

6 x6 y ( 1 - 8 /4a) when S/2 < a

f 6 x6 y a/S when a < S/2

f 6 x6 y S /2a when 8 < a

f 6 x6 y ( 1 - a/28 ) when a < S

e North and South Face

f 6 x6 y ( 1 - a/48) when 8 > a/2

f 6 x6 y S /a when 8 < a/2

f 6 x6 y a /S) when 6 > a/2

f 6 x6 y ( 1 - 8 /2a) when 6 < a/2
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Fig. A.1 Volume-Weighted Skew-Upwind Scheme for North and
East Faces at (a) 30* Angle and (b) 60' Angle

Having found the areas, we can approximate 9,, 4,, $n, and $, just as in

Raithby's scheme. Thus, we have
.,

" $ ") 6 d y ( F, - F, + F - F,) , (A.3)4
j

where we approximate the fluxes as
,

* * . *

F, J uS W ,, F , * uS W ,, F " *# n ' * *
n s s

In the WSUD scheme, we use (u, y > 0):
,

!

I
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l

Ad 0 + A $ g e* g

0e" A0 + ^1

Agg+A(5W* g

kw" A0 + ^1
4

$ Ad O + A $ ge g

n" A0 + ^1
,

and

A 'S * ^1+SW* O
#s " A0+A1

^* '
'

,

Here it is understood that A0 and Ag are calculated in accordance with Eq. A.1
for the appropriate face.

j. Using Eq. A.1 with Eq . A.4, setting w = 8 /a , and
;

+0"*j'# * * j-l' +W " I -1.j ' # w " I -1.j-l'S S
!

; we find that
,
' r

1 -{ $0* i fr0<w<1
S

'!

0+1 1 b (S(1E $* 2 h
for 1 < w < 2 (A.5)(e = 3 w 1

; 2 4 h
I

0+1 1 b (S1 4 2 hw
for 2 < w

1 3y+g; . w

1-{$g+{$ for 0 < w < 139

(w = (
1 "4-+W+1 1 1- $ sv* 2 b

for 1 < w < 2 (A.6)3 w 1,

2 4 h
,

! d +v + 1 - h + SW
# <"

l 3

| I*E '

,

. , , c _ - - - . - - , , . , , , , - - - - . - - - _ , - , . , - - . , - . . - - , , , . , - - , - -,- - . . . - - - - - - , = . - , , , - - , . - ---
-
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#
1w$ ,+ i 1wY IW

for 0 < w < ]I* *
.

4-$g. 4 0
f0f <"

1.1_ - g2 48

1- 40+ # '# I<"W

r
1w$ g + Y Iw IT SW

for 0 < w'< 1

T* *

1 1 w
IE40+I ~5 SW 1<w<1 (A.8)

*

's " l _ 1_ _ ".
for

2 48 4

1- $,+ $g for 1 < w .
3

Just as in Raithby's scheme, we use the approximation

6 x6 y F, = a$ ,, 6 x6 y F, a a$,, 6x6y n n' 6 x6y F,a$$, (A.OF

to obtain

$ fj = $[j - {a$ - a$ + 86 - 84,} , (A.10)

which can be written for each of the four cases

0<wIf,f<wf1,1<wf2,2<w .

0 < w < f (w = 8 /a)* Case I:

(

/8+1+4
2 2

I 1 + 4 E/)fij + 1
)
4 ,j-1I +1 8 /a n"|1-"*8 8 /an n

I_ 33 1 1ij 3g
\ k i a/Y
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(l- )
#n

(1 - )#n
"

S S+ ^** "4 ~

-- + .3 8-- 1-1 j 4 1 36 1-1,j-11 - . + - - - -
2 4a . 2 4a. . .

1
e Case II: 7<w<1

n+1 , , , , S_ _ S 1- n 8 1- n
ij 4 3 a S ij , _i,34 a S i,j-1

2 48 4a 2 48 4a .. ..

~

8_
" ~

b- 2 gh lg_h
4 3 a L i-1,j , L,3n 2 n

(A.12)+ a
4 'a 6 1-1,j-1

- 2 48 4a . 2 48 4a ..

* Case III: 1<w<2

S
-- a g , g_-

,
*I 1-8+1- $ "ij +

a 2 28 n
$ "ij 8 4 ,j-1=

4 3 8 a 4 3 6 a 1

2 4a 48 2 4a 48 .. .

6
- a-

, g y _ a_,,
--

" " 2 28 n
9- + 3 (A.13)-+3_L_a_ $ "i- 1,j ++
4 S a 1-1,j-14

. 2 4a 48 2 4a 48 ..

* Case IV: 2<w

~ "
_ g_

2 /S ) 4g +1 , /g , g ,1,n a n
8 E-

$ "i ,j -1ij l 4 1 3 a, | ij + 4 l_ 3 a_
\ 2,46) - 2,4S .

- 'a a

4 "i-1,j + 1+2 ~5 n

+ / 1 + 1, 4 S/
" /6 I (A.14)1 4 3 a, I 4 1 3 a_ i-1,j-1

\ 2 . 2 4S .

Just as for Raithby's scheme, we can interpret this difference scheme as

an interpolation scheme. We again recall that the interpolation point in the

xy (spatial) plane is R* : ((*,n*) where (* = - a, n* = - S. Thus, the right

side of Eqs. A.11 through A.14 can be regarded as interpolants of ( evaluated
"

at ((*, n ) . We shall call this interpolant $(C ,n), but ws will not write it*



139

out because the expressions are quite involved. However, one obtains it from

Eqs . A.11 -through A.14 by replacing a by -( and 8 by -n . Thus,

QJ1 - i (C- , n ) . (A.15)
* *

The interpolation domain is the square shown in Fig. A.2, and this domain
is subdivided into four subregions. We note that the WSUD scheme involves
four points wherea's the Raithby scheme involved six points. The domain is now
divided into four parts, whereas in the Raithby scheme the domain was divided
into three parts. The WSUD scheme is entirely rational; the Raithby scheme

was partially polynomial and partially rational.

n-

o

n - 2C

n=C

n - C/2

(-1,0)

- C
(0,0)

Rg

2

3- R
4

(0,-1)
(-1,-1)

Fig. A.2 Interpolation Domain
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On the question of order of accuracy, we see,inunediately that $ is a con--
tinuous interpolant that will ~ reproduce the set IC , but will not reproduce i

(n. Thus, we are again considering a first-order scheme, just as Raithby's.

We next consider the stability of the WSUD scheme. (Again, the regions

R1 - R4 are in the a ,8 plane reflected through the origin and we denote the
,

corresponding regions in the a,8 plane by R1 - R4.) Consider a Fourier anode

p "g exp(ikxy + iAy)) ~ and set 0 = kSx and $ = 16y; then from Eqs. A.11 through
A.14, we find the following:

0 < p/k < f,a ,p > 0, Region 1 (R1)o Case I:
,

~

6 6
2 1

= 1 - a + p_ 8 /a a a- 2 m '

coe6
2,3S+ 2 ,- 4 a -

- p
k,1 4 1 4 1 3 g,'

4a -

~

6 6

+ | 0- + 0 I" cos4 + b+ cos(0 + ()4 1 36 1 4 1 36
k 2,40) 2,4a. - ,

g g . . ., .

-i< a8 2 1p b + 8 I*sine +

h + 3_ +h, sin $- - -

_

+ E- + 2 (1_ 8__J(0 + 4 ) >

~'

@_
m

sin (A.16)
h + 6-. .

,

{ < 8 < h, a ,8 > 0 Region 2(12)e Case II: -

8 (1~ V)+a 7 3 (1 - h )cose
8

o ,g = 1 - a + s73g , , , ,

2 4 % 2 4 %. !.

~ ~

6 1- 1-
cos(0 + ()cos$ + 4+3+ 4+3-

a g_ a g_
2 46 4a . 2 46 4a. ..

i,

r

. , - - - - __ , .,._y . . , _ _ . , -__ , .,_.,,.._m ,--,_m._. ___.m.-.y __.,___.._m___. . _ , . _ _ _ , . . , - _ - , . .__
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8 fl g1-
i< a b- sine + 0- + 3 sin $-

4 3 a S 4 a 6
- 2 48 4a - 2 48 4a ..

@- t _ 6_
~ ~

0-+ sin (0 + $) (A.17)+ >

4 3 a 6
- 2 @ ha - ,

1 < - < 2, a ,8 > 0, Region 3(k3)e Case III:

" l~ " I-a
p =1-8+a + cos0-- ---

k,1 4 3 8 6 4 3 8 a
2 h 4 2 M @.-

~ - - -

a_ a a ,a
2 26

-
2 2

6 E- cos$ + "4 + 3 cos(0 + $)+ g_ , a_4 3_ , g_ a
2 4a 48 - 2 4a 48.- -

'-
S a a- - -

2 l~T" I
4a sine + 6-a sin $- 11 +a--

3 6 a 4 3 8 a
-

4
2 4a 48 . 2 % 48 .,. -

-
I"T

a+3 (A.18)sin (0 + $)+ >

4 6 . a
2 4a 48-

2 < , a ,8 > 0, Region 4 (k4)* Case IV:

0 " 0 -
| coe0

p =1-8+1 "

3 a_ + | E + 1 , 4 8 /4 3 a,k,1 4 1
-

2,4S \ 2

- ~ ~

a a a , a_
6 E+2 2 cost + E+ cos(0 + ()+

4 1 3a 4 1 3a
- 2,48 2,46- - -

' ~

E
sine + 6E2 1_2 -

sin $E+1+31
"

14
_

-

4 1 4 1,3g
k 2 48 / 2 46 --
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-

a_ g , a_ .

1+2 3 (A.19)sin (0 + ()+ '

J_ , 4 63, a,
4

2 -

In the a,6 plane we have four regions defined, as shown in Fig. A.3. For each |

region,ok,1 has the form

~N , m = 1,2,3,4 , (A-20)p = A, + B,e- # + C,e" + D,e" e
g

where A ' B, C, D, can be ' read from Eqs . A.16 through A.19. Consider any
m m

one of the four regions and drop the subscript a for now. Because this inter-
polation procedure reproduces the set of monomials and because (* = -o

*
and ri = -6, we have the following relations:

B

n

A

a=m

a = 1/2
/

Unstable
Region

/
y/

o

) | * * "c a

a.1

A

Region R1

Fig. A.3 Domain Showing Unstable Region for Case 0 = $ in R1
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A+B+C+D=1,
~

C + D = a , and

B+D=8. (A.21)

Thus, we can write any p in Eq. A.20 as

p = 1 - a - 6 + D + (a - D) e-10+(6-D)e-14 & h-10,-1$ . (A.22)

Set

C(0)=1-cose=2 sinh;
then from Eq. A.22, we find

|p |1 = 1 - A C(0 ) + h C(0 ) - 28 C($ ) + 26 C($ )2 2

+ M8 [C(0) + C($) - C(8 - ())

+ 2D [C(0) + C($) - C(0 + ()] , (A.23)

1.e . ,

|p |2 = ~1 - 2[(a - u2 - a8) C(0) - DC(0) + D(a + 6 - D)C(0)C($)

+ (8 - 82 - a8 ) C($ ) - DC($ ) + D(a + 6 - D) C(0 ) C($ )

+ a6 C(6 - () + DC(6 + ()] (A.24).

We are going to rewrite this expression in a form more convenient for
checking stability. Before doing this, we note that any four parameter inter-

polating sche:ne that reproduces the set of monomials 1 ,C ,9 will produce Eqs.

A.21 through A.23. In particular, a bilinear donor cell scheme corresponds to
setting D = a8. A linear donor cell scheme corresponds to the choice D 3 0.
So at this point we are looking at the question of stability for general four

point schemes. Raithby's skew-upwind scheme, as we have seen, is a six point
scheme rather than a four point scheme, so it does not fit this discussion.
The form in Eq. A.24 is convenient when D = 0, because in this case one can
see that

|p |2 = 1 - 2f , (A.25)

where

f = a (1 - a - 6 ) C(0 ) + 8 (1 - a - 6 ) C($ ) + a6 C(0 - () , (A.26)

and one sees that a sufficient condition for f J,0 (i.e., the linear donor

cell scheme is stable) is that
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~

01a, 018, a + 811. (A.27)
'

|

However, Eq. A.24 is not convenient when D = e6 (bilinear donor cell scheme) '

and we do not think this form would be convenient for the D's associated with
; the WSUD scheme. For this reason, we will rewrite Eq. A.24. We start with

the identity
1

[1' - 2(a - a2 + D - a8 ) C(0 )] [1 - 2(8 - 82 + D - a8 ) C($ )] ;,

I [fac a) [fac 8]
1 ,

2 2
! = 1 - 2(a - a ) C(6 ) - 2(8 - $ ) C($ )
!

!
2+ 4(a - a ) (g g2 ) C(6 ) C($ )

2- 2(D - a6) C(6) [1 - 2(8 - 8 ) C($)]
!

- 2(D - a6 ) C($ ) [1 - 2(a - m ) C(6)] f
I 2

i
'

+ 4(D - a6 )2 C(6) C($) (A.28) [

! and use Eq. A.38 in Eq. A.23 to obtain

|p |2 = [fac a ] [fac 8 ] .- h6 C(0 - () - 2DC(6 + () + 4DC(0 ) + 4DC($)

i + C(0 ) C($ ) [- 4(a - a2) ,(g g2) - 4(D - a8 ) (8 - 8 )2

2 2- 4(D - a8 ) (a - a ) - 4(D - 08)2 - 4eD - 48 D + 4D ] (A-29).

i Next we use the relation

C(8 + $) + C(0 - () = 2C(6) + 2C($) - 2C(6) C($) (A-30).

} Then after some algebra, we find that

|p |2 = 1 - 2f , (A-31)

j where

f = [a (1 - a ) + D - a8 ] { 1 - [8(1 - 8 ) + D - a8 ) C($ )} C(0 )
! ,

+ [8 (1 - 8 ) + D - a8 ] { 1 - [a(1 - a) + D - a8 ] C(0 )} C($)
'

''

1
'

+ (a8 - D) C(6 - () . (A-32)

f The form in Eq. A.32 is very convenient for the bilinear donor scheme
,

i where D = a8. In this case, it is easily shown that f.)_ 0 if and only if 0 1 !

a i 1, and 018 1 1. When considering stability for the WSUD scheme, we

shall use Eq . A.32. For the WSUD scheme we shall consider (a ,8 ) c R1 = i

1 , O im 11} . In this case, D is defined from Eq.{(a,8): 0 < a/8 < 1/2,8 0
f

A.11; that is, |,

|

! i

I
4 !

_ _ _ _ _ _ _ . _ . , . _ , _.__, .. _ ____ _ __.,,_ _ . ._ . _ . _ _ . _ _ _ , _ , _ _ _ _ , _ _ . _ _ , _ . _ _ _ , , _ . _ . . , _
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~

D(a,8) = + = (A.33).,

2 4a

To investigate stability, we use this expression for D in Eq. A.32 and

ask whether f is greater than or less than 0 for (aS)ckt and 0 < 0 < w, 01 $
Sw. The most obvious approach would be to look at sufficiency conditions for
f > 0. For example, a set of sufficient conditions for f > 0 would be

0 la (1 - a ) + D - a8 1 1/2 for (a ,8 )cR1

0 1 8(1 - S) + D - a8 1 1/2

0 1 08 - D , (A.34)

where D is defined by Eq . A .33. Unfortunately, these conditions define a
, ,

small donain D A R1 c R1 that is too small to be useful . If D AR1 denotes, thei g, ,

set (a ,8 )c R1 where f > 0, then we shall call DAR1 the stability domain. The
_

problem is that conditions in Eq. A.34 define a domain D c D , where D is too
i i g

small to be able to use as an indication of stability.

Set

S = m , 0 < a < 1, O < a < 1/ 2

a (a ;m) = aa (a ;m) = a { "2m ~ C I * ")"

a (a ;m) = a a (a ;m) = m , C g + ,),"18
g

a,(a;m>=ca,(a;m>--(a- c,;,) .ia (i.35>

Then Eq. A.32 can be written
. . . .

f = ah = a{ a ( 1 - as C($ )) C(0 ) + a ( 1 - as C(0))C($)

.

4a C(6 - ( )} . (A.36)
3

The central question is whether h(a;m;0,$), defined in Eq . A.36, is

positive for 0 l a 1 1, 010, $ i s , and 0 < a < 1/2. Consider a special

case when e = $. Setting x = C(0 ), we have
' ' ' ~

h(a ;m;0 ) = a (a ;m) ( 1 - aa (a ;m) X] X + a ("I") ( I ~ ""I "I") *I *
g 2 2
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.

' ' ~

= X { ('a (a ;m)' + a (a ;m)] - hxa (a ;m) a (" 3")} !

3 2 g 2

= X [ g (a ;m) - hxg,(a;m)] , (A.37)
3

where

8+4g (a;m) = - (1 + m) a (A.38)8 2

and

8 (a ;m) = ( 8 + 22m - a ) (18 + 11m )
'

l 2s

2 (8 + 12a)Z*

.

*("
( 26 + 33 - m ) a + a(1 + m)2 22 a-

,,

, m ( 144 + 4 'm + 224m2 _ gg,3)i

(8 + 12a)Z

8 + 12m (1 + m) (26 + 33e - m ) a + a(1 + m)
2 2 (A.39)a-

.

,

The function g (a;m) is a straight line sun with a negative slope:g

g (0;m) > 0, o < a < 1/2g;

g (1;m) = 6 - 11a - # ,
1 4 + 6m

We observe that
,

|

I g (1;m) > 0 when 0 < a < m a 0.43990171634g e

g (1;m) < 0 when me < a < 1/2. (A.40)
'

g

when 0 < a < m , g (a ;m) < 0 for 0 < a < 1. When me<a< 1, thenHence, e g

g [a;m] has a root in (0,1]. The root isg

!

8 + 40s + 10m2 4 + 20e + Su2
"

" (8 + 12 ) (1 +m)Z 4 + 14e + I W + 6m8 *~

11

and when o < a < 1, thenc

. _ . _ _ . _ , . _ _ _ . _ . - _ _ _ _ - - _ _ _ . . . _ _ . _ _ . _ _ . . . ._. . __ _ _ . _ _ _ _
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gg(a;m) > 0 for 0 < a < a g g,

. g (a ;m) < 0 for a g g < a < 1. (A.42)g

Note a g g(m ) = 1, a g g (1/2) = 0.968253968.e

Next we consider the nature of g2(a;m). Because

g2(*I") " *1("I") *2(a;m) (A.43),

we can gain.some information from the properties of'$g and $ '2

Consider a , fr a Eq. A.35; we have
2

2''

a (0;m) == 18m + 11m
2 8 + 12m

~

(a (II") ~ 1 0 f r an 0 1 a 1 1/2 .2 8+ 2m

Hence, the sign of g2(a;m) is determined by the sign ag.

From Eq. A.35, we have

a (0;m) = 8 22m > 0 for 0 < m < 1/22

(
a (1;m) = " 8 + 12m

"~

1

Hence, when 0 < m < 2/13 4 0.15385, then

a (a ;m) < 0 for 0 f a f 1 . (A.44)g

And when '/13 < m < 1/2, then a (a;m) changes sign in [0,1].2
g

*1(a ;m) > 0 when 0 < s < a01,

a (a;m) < 0 when a01<"< ^*g '

where

,_8 + 22m - M
(A.46),01 8 + 20s + 12mz *

~

Now the sign of g (a ;m) is the same as the sign of a Thus, when 0 < m ig g.
2/13, then

g (a ;m) > 0 for 0 l a i l (A.47).
2

When 2/13 < m i 1/2, then

|
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4

.g2(a ;m) > 0 when 0 < a < a01

(A.48)g2(a;m) < 0 when a01 < a < 1 .

Table A.1 combines this information. (Note that a01 < "11 when me < a < 1/2.)

From Table A.1, we see that our task is to check whether gg - 4g2 > 0 for
various ranges of m and a. If necessary, we look at gg - 4ag2, which is
greater than gi - 4g2 However, we note from Case III that when m < m < 1/2

and all < a < 1, then the quantity of interest is

H(a;m;x) = - |g (a;m)| + 2ax|g ("I")| *g 2

e<m< 1/2, and a given a , a g g < a < 1, there is aClearly for a given m, m

value of x such that H(a ;m;x) < 0. The question is whether this value of x

satisfies 0 < x < 2; i.e., whether |g (a;m)| < kg2(a;m)| for some a gg < a <g

1, me<m< 1/2. In any event, it is clear that we have to investigate the

functions

H(a ;m) = g (a ;m) - 4ag2(a;m) (A.49)g

and/or

(A.50)H (a;m;) = g (a;m) - 4g2(a;m) .
g g

H(a;m) provides a stronger estimate and is cubic ma, whereas Hg(a;m) provides
,

a weaker estimate and is quadratic in a.

H(a;m) = C (m) - C (a)a + C (m)a2 - Cg(m)a3 (A.51)4 3 2 ,

where
,

2
C @) = 8 + 40m + 10m8 + 12m

4

C (m) = ( 16 + 224m + 632m2 + 344,3 + 25m )
4

3 4(2+3mj' '

C (") " 4m(1 + m) (26 + 33m - m ) " m(1 + m) (26 +33m - m )
2 2

'

2 8 + 12m 2 + 3a

Cg(m) = 4m(1 + m)2 ,

and

2Hg(a ;m) = D (m) + D (m)a - Dg(m)a3 2 ,

.

I

-. - - . . _ - . - . . -. . . - - - . _ _ _ . . _ , _ . . - . - . _ . , - - , , . - . , . , . , - _ _ _ . , , - _ . . . ~ - . , . . - . - , . .
-



Table A.1 ~ Sign Properties of the Function 11

Case a Range Properties g ,g2 Question of Signg

1 0 < m < 2/13 gg > 0, g2 > 0, g -2axg2 > 81-482 > 0? , O < a < 1a g

II 2/13 < m < m 81 > 0, g -2axg2 > 81-482 > 07, O < a < a01a ge

8g-2axg2." El + 2ax|g2| > 0, a01 < " < 182 < 0, root a01

>e < m < 1/2 S -2axg2 > 81-482 > 0? , O < a < a01III m tg1 < 0, root a11

8 -2axg2 81+2ax|g2|>0,a1< < "111 0g 0, rcot a
2 01 z.

8 -2axg2 " - |E | + 2ax|g2!' "11 < "- < 11 1

._ _-- ,
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*

where

D (*) " (8 + 12mjz (16 - 40m - 344m2 _ g94,3 + gg,4) ,3

D (m) = (- 2 + 19m + 51m2 + 29m3-34) g
2 2 + 3m

D (m) = 4m( 1 + m)2 ,
g

i

Now, whenever g g > 0, g2 > 0, then H > H ; so if we can show Hg > 0, weg

have established stability for these values of a.m. From Table A.1, we see
,

that gg > 0, g2 > 0 in all cases of interest except the last subcase for Case
the coef ficient D (m) changes sign in the interval [0,1/2], soIII. However, 3

we find it more convenient to work with the cubic function H(am) . When 0 1 a
i 1/2, this cubic has . exactly one real positive root a00(") * Nf*0V8f' f0f

;

O 1 m < 0.490250 , (A.52)

the root a00(m) satisfies

1<a00(*) '

Thus, referring to Table A.1, we see that gg - 2nxg2 > 0 in every case except
possibly the last subcase of Case III. Consider me < a < 1/2 and agg(m) < a <

j' 1. Thus we have gg(a ;m) < 0 and g2(a;m) < 0. Thus, the equation

gg-bxg2"-|s1|+hx|g2|=0 (A.54)

has the solution

|s| -g
g g

(A.55)| x=bh"-g.
-

i Now we must have 0 < x < 2; therefore, we must have

! 18 11

x=b < 2, for a gg<a<1
'

Isil<als2|->-81<-as2 -> 81 > as2,Of

i.e., H(a;m) = gg - b g2 > 0.

Now we have H(a ;m) > 0 on 0 < a < 1 for a < 0.49025 = m. Thus, if m =
e

0.4399017 < m < a = 0.49025 and agg < a < 1, then H(a ;m) > 0 for a g g < a < l .

;

I

|

_ - _ . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ _ . _ _ - _ _ _ _ _ _ _ _ - . _ . . - . - _ - ._
_
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|8!1
Therefore, x = .h|g|<2,adweseethatforeachmc < a < m, and each a g g <

g

a < 1, there is an x = x(a ;m) such that

0<x<2

and

gg(a ;m) - 2 xg2(a ;m) < 0. (A.56)

Moreover, the values of x = x(a;m) defined by Eq. A.55 range over the full

interval [0,2). To see tuis, we recall that ag g(m) is a root of gg(a;m) and
g2(a;m) 4 0 for a ig < a < 1. Thus, if we set

(8 } min = mind 8 (a;m)|:aig(m) < a < 1} , then2 2

|8(a;m)| |g(a;m)|g g

* I" " 2 j g (a ;m)| 2a gg(g } min2 2

gg. Thus, when 0 = $, there areand the right side goes to zero as a + a'

i values (a ,S )c R1 when h as defined in Eq. A.37 is negative; hence, for these
' values (a ,8 )c R1, the WSUD scheme is unstable. It is worth noting that these

} points (a ,S )c R1 occur in a small region, as shown in Fig . A.3. (Note that
1 . ,
'

atg(m) = 0.97345). The figure has exaggerated the values of m .m to illus-c
trate the shaded region. Our conclusion is that the WSUD scheme is

^

esser.tially stable in R1 when 0 = $..

i. .

|

;

i

:

:

1

1
'

!

!

I
J

l
!
i

i

'
:
i

. _ . , . _ , - _ _ . _ . _ _ _ _ . . _ . . . ~ . _ _ _ _ _ . _ _ . . _ . , _ . _ _ , __ _ , _ _ _ _ _ _ _ _ _ _ _ _ , , _ . . . _ _ _ . . _ _ , _ . _ _ _ _ _
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APPENDIX B. THERMODYNAMIC AND TRANSPORT PROPERTIES

|
Thermodynamic and transport properties of sodium were obtained from '

Golden and Tokar89, and those of water are from Brookhaven National
Laboratory.

B.1 SODIUM / LIQUID PROPERTIES

3Density (kg/m )

p (T) = 9.50076E2 + T[-2.2976E-1

+ T(-1.46049E-5 + 5.63788E-9 T)). (B.1)

Viscosity (pascal-second) or (Pa+s) !

p (T) = 3.2419E-3 exp[5.0807E2/(T + 273.15)

-0.4925 An(T + 273.15)]. (B.2)

Specific Heat (J/kg* K)

c (T) = 1.43605E3 + T(-5.802E-1 + 4.62506E-4 T). (B.3)p

Conductivity (W/m K)

2k(T) = 92.948 - 5.809E-2 T + 1.1727E-5 T , (3,4)
!
'

In the above, T is the temperature in degrees Celsius.

Enthalpy (J/kg)

The enthalpy of liquid H(P,T) is calculated from the enthalpy of
saturated liquid and the enthalpy change relation

. .

dH = K-- 11 + - g)I/ T 3p
-

g
dp , (B.5)

P T#1j L/ g
"p

where K is the ratio of gas constants in joules / pascal *a , and Tg is the
temperature in Kelvin.

Temperature ('C)

The temperature of sodium liquid T(H,P,T) is calculated using an
iterative procedure. Initially the liquid temperature T* is assumed, and then
the enthalpy H*(T*,P) is calculated. If the enthalpy H* does not agree with
the specified enthalpy H, then T* is modified. The procedure is repeated
until H*(T,P) is in close agreement with the prescribed enthalpy.

,

- - - - --n -m . - - . - - , , , , , - - - - - - - - - ,- --,-----.-,,-.,-----m- . , , , - , , - - - - - ~ - - - , . - , - - - , - _ _ _ , - - . - , - - - - - - - - , - . -
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Saturation Pressure (pascals)
!

P, (T) = 1.01325ES 3.0 266E6 ,-2.30733E4/TR (for T f 9. ( .6).

R
R ,

i

(T )0.61344 ,-22981.96/T
6.8817602E6

R (for TR.> 2059.7)P, (T) = 1.01325ES (3,7 ).

R
'

Here, TR is the temperature in degrees Rankine.

Saturation Enthalpy (J/kg)
,

sat (T) = 2.32444E3(-29.02 + (T [0.389352H
R

i

+ T (-0.5529955E-4 + 0.113726E-7 T }I (I' )*
R R

.

Saturation Temperature (*C)
.

'
The saturation temperature Tsat(P)_ is obtained by iterative solution of

Eqs. B.6 and B.7.
;

- B .2 WATER / LIQUID PROPERTIES

Density

2 * "3 H (H { 6.4477ES) (B.9)p (P.H) = 16.018436 a Hg+a2 .

R R

2 * "3 H (Y}p (P,H) = 16.018463 Hg+a2a
R R

-

f b ) -g
+ [1 - f(y)] I '

b\g+H -b
R 3/:

-

,

'

(6.4477E5 < H { 6.57793E5) (B.10).

( b \
\ g + 11 f H > 6.9793EH . (B.H)p (P,H) = 16.018436 I b

b/3R

i

| Here,

ag = 62.4 + 2.14E-4 P , (B.12)R

a2 = -8.73E-5 + 1.438E-9 P , (B.13)R
,

f a3 = 2.32E-10 - 6.20E-15 P , (B.14)R

bi = 92.924 + 5.761E-4 P , (B.15)R,

{. t

.

a ,m---~-vr- ~r e s h n s em -- w-w m . -----r------~m w- wer,---.~- eww wne- -one-~~ me,,---ve--ee-ww~-=m=~~~m-- -me-~--
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(B.16)b2 = 3.94402E4 + 1.6386 PR

b3 = 1.37735E3 + 3.5704E-2 PR* (8'I7)

H" - 280 (5.18)y=
2.8

,

f(y) = h ( 8 - 15y. + 10y3 _ 37 ) , (3,gg)
5

HR = 4.299226E-4 H, and (5.20)

PR = 1.4503774E-4 P. (B.21)

where H is the enthalpy in J/kg, and P is the pressure in pascals.

' Viscosity (Pa sec)

p(P,H) = a 8 *8 x +a*1+82* 3* 4 5

n+bn +bn (P - 6.8945753ES)- bg+b2 3 4

(5.22)(H 1 2.765ES) .

p(P,H) = e g + e H + "3" + " 4"2

g+fH+fH +fH (P - 6.8945753E5)+ f
2 3 4

(5.23)(2.76E5 < H $, 3.94ES) .

Y+dy +dY *dy (H > 3.94E5). (B.24)y(P,H) = dg+d2 3 4 5

Here,

ag = 1.29947E-3, a2 = -9.2640321E-4,

a3 = 3.8104706E-4, a4 = -8.2194445E-5,

a5 = 7.022438E-6, bg = -6.5959E-12,

b2 = 6.763E-12, b3 = 2.88825E-12,
.

b4 = 4.4525E-13, di - 3.0260323E-4,

d2 = -1.8366069E-4, d3 = 7.5670758E-5,
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!
:
,

d4 = -1.6478789E-5, d5 = 1.4164576E-6,

eg= 1.4526053E-3, e2 = -6.9880085E-9,

e3 = 1.5210230E-14, e4 - -1.2303195E-20,

'fg - -3.8063508E-11, f2 = 3.9285208E-16,

f3 = -1.2585799E-21, f4 = 1.2860181E-27, (B.26) [
!

,H - 42658.84 (B.27),116532.6

H - 55358.8 (B.28)n= ,154213.8

and

H - 401467.6 (B.29)Y" 256953.22

Specific Heat (J/kg.K)

[ x \2
(H < 8.12E5) (5.30)c (P.H) =| x

P (I (g ; 1.7556418E6)2
| -j

f x \2
l f(y)c (P,H) =| x ~

P 1
4 (H - 1.7556418E6) / !

!

+ H [1 - f(y)]+ Zg+Z2 3
.

(8.12E5 < H < 8.16ES) (B.31),

g+ZH+ZH (H > 8.16E5) (5.32)c (P,H) = Z .

2 3
,

p,

Here,

x = 2.4688303E-4 + 1.24419E-13 P,
g

| x = 1.8790464E7 - 5.634438E-2 P,
2

Zg = 1.1964506E-5 + 6.291758E-12 P,

i 2 = 4.58929E-10 - 1.1980206E-17 P,
2

Z = -2.576343E-16 + 6.046356E-24 P, (B.33)
3

4

'
- -. _ _ . _ _ , _ . _ . . _ _ _ _ _ . _ _ . _ _ - - - _ _ _ _ _ . _ _ _ _ _ . - . _ _ . _ , , _ . _ _ _ _ _ _ . _
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3 5
.f(y) = ( 8 - 15y + 10y - 3y ) , g,,34)

,

and
.

H - 8.14E4
(n.35)-y= 2000

.
:

i t

4 Conductivity (W/m K)
!

k(H) = ag + a2x + a3x2 + a4x3 (5.36) '

f Here,
4 ,

! ag = 0.57373862, a2'= 0.25361036,

a3 = -0.14546827, a4 = O.013874725
'

and
j

| x = H/5.815E5. (B.37)
.
,

j Rathalpy (J/kg)
;

The enthalpy H(P,T) is calculated iteratively. We start .with an assumed j,

' value of enthalpy.' Liquid temperature is calculated. If the calculated
j liquid temperature does not agree with the prescribed temperature, then
! enthalpy is modified. The modification is continued until the agreement in

j temperatures is achieved.

Temperature ('C) ;1

/ *3
a

1- 273.15 (H < 8.12E$) (B.38)T(P,H) = | x
g + x H + n - 1.7556418E6j

.
2

I i

/ X h
i T(P.H) = x

g+XN+H-1.7556418E6[2

g+ZH+ZH +ZH (1 - f(y)) - 273.15+ Z
2 3 4

;

] (8.12E5 < H $ 8.16E5) (B.39).

i

T(P,H) = Zg+Z"# 3" +'4H)-273.15 (H > 8.16E5). (5.40)2
i

! Here, {
i .

| xi = 2.8378E2 - 2.752333E-7 P, i

; x2 = 2.4688303E-4 + 1.24419E-13 P,
I !

;

| !

*
. _ _ _ _ . . , _ _ . , _ _ . _ , . _ _ _ , _ . _ , _ _ _ , _ _ _ _ _ , _ . . . . _ _ - . _ . _ _ _ _ _
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x3 = 1.8790464E7 - 5.634438E-2 P,

Zg = 3.49661E2 - 2.364921E-6 P,

Z2 - 1.1964506E-5 + 6.291758E-12 P.

Z3 = 2.294645E-10 - 5.990103E-18 P.

Z4 = -8.587812E-17 + 2.015452E-24 P, (B.41)

and y and f(y) are given by Eqs. B.34 and B.35 respectively.

Saturation 11seperature ('C)

T,,g(P)=g,g(Cg+CP2R+C3 p
-

R

(P 090.8). (B.42)R

1 *1
T,,g(P)=1.8\a 3+ 4j'+

~*
2

(PR{ .4302). (B.43)
. .

1 I *1 \
x i+ 273.M f(y)Tsat(P) = g,3

(a2 /
I * "3 * "4-x

, ,

g,g(bg+bx+bx +bx +b*+
2 3 4 5 j

+ 273.15 (1-(y)]-273.15
.

(43.4302 < P f 45.4298). (5.44)R

3+b*)IT,,g(P)=g,3(bg+b** 3 4
x +bx

52

(P i1069.2). (5.45)R

g+b**Dx +bx +bx 273.15 f(y)T,,g(P) = 1.8 ( b 2 3 4 5 g

(1.8"I+"2R "3 R Pg + 768.85
1 2 226805

~

+ 273.15 (1 - f(y ]] - 273.15g

|
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(1069.2 < P $ 1090.8). (B.46)R

Here,

cg = 588.994, c2 = 0.055386,

c3 = -3.516E-6, ag = 2634.7,

a2 = 6.026, a3 - -367.486,

a4 = 4.484, bg ='73.802,

b2 = 65.14, b3 = 24.859,

b4 = -4.3391, b5 = 1.6889, (B.47)

PR = 1.4503774E-4 P. (B.48)

P - 44.98

(B.49)y= 0.4498 ,

080P -

R
(B.50)yi 10,30

=
,

x = Iog10 ( P ) , (B.51)R

and

f(y) is given by Eq . B.34.
)
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