

9810130216 981008 PDR ADOCK 05000336 P PDR

PARSONS	MILLSTONE UNIT 2 ICA PROJECT PROCEDUR	FF-UZ
TITLE: ACCIDENT MITIGATIC	ON SYSTEM REVIEW	**************************************
REVISION: 4	DATE: 10/05/98	PAGE 2 OF 12

LIST OF EFFECTIVE PAGES

Page No. Re	evision No.
-------------	-------------

4

All

TABLE OF CONTENTS

1.0 <u>PURPOSE</u>	3
2.0 DEFINITIONS	3
3.0 AMSR BASIS	3
4.0 RESOURCES	4
5.0 PROCEDURE	4
5.1 CDC DEVELOPMENT - DEFINE CRITICAL SAFETY FUNCTIONS	7
5.2 CDC DEVELOPMENT - IDENTIFY CRITICAL CHARACTERISTICS AND PARAMETERS	9
5.3 CDC VALIDATION - COLLECT SYSTEM DESIGN AND PERFORMANCE DATA	10
5.4 CDC VALIDATION - VALIDATE FSAR CHARACTERISTICS	

P	
	PARSONS

PP-02

TITLE: ACCIDENT MITIGATION SYSTEM REVIEW

REVISION: 4

DATE: 10/04/98

1.0 PURPOSE

The Accident Mitigation Systems Review (AMSR) will identify and verify the critical design characteristics for accident mitigation systems and their components required to meet the Design Bases Events (DBEv) identified in Chapter 14 of the Millstone Nuclear Plant Unit 2 Updated Final Safety Analyses Report (UFSAR).

2.0 **DEFINITIONS**

- 2.1 Design Bases Event (DBEv) Design Bases Events are defined as those initiating events as presented in Chapter 14 of the UFSAR and form the bases for the operating license of the Millstone Unit 2 Nuclear Power Plant.
- 2.2 Critical Safety Functions (CSF) "Critical Safety Functions" are defined as the required specific set of activities that must occur in order to ensure that a success path associated with the design bases event mitigation is met and maintained.
- 2.3 Critical Design Characteristic (CDC) A critical design characteristic is defined as that aspect of the functional/system design that must be provided to ensure that the system or component will meet the performance criteria identified in Chapter 14 of the UFSAR.
- 2.4 Critical Parameters A numerical value associated with a CDC.

3.0 AMSR BASIS

The following documents are the basis for the ICAVP AMSR

- UFSAR Chapter 14
- Accident Analyses & Supporting Calculations
- Technical Specifications

PARSONS

MILLSTONE UNIT 2 ICAVP PROJECT PROCEDURES

TITLE: ACCIDENT MITIGATION SYSTEM REVIEW

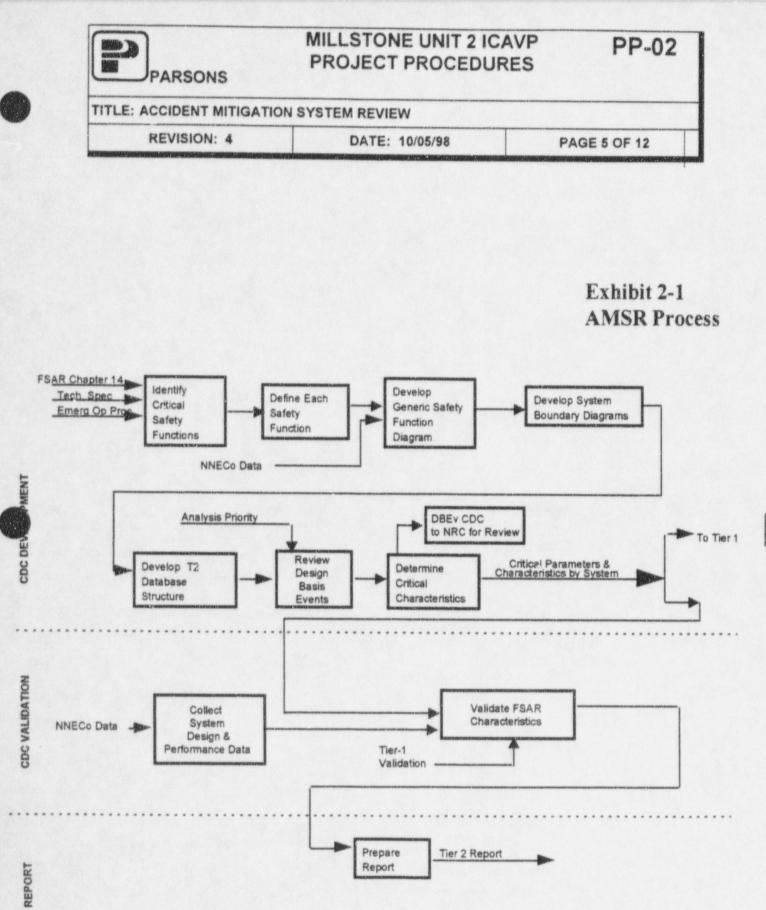
REVISION: 4

DATE: 10/05/98

PAGE 4 OF 12

PP-02

- System P&IDs & Diagrams
- System Design Descriptions (SDD)
- Design Calculations
- Emergency Operating Procedures
- Safety System Logic Documents
- Safety Evaluation Report (SER)
- Regulatory Commitments


4.0 <u>RESOURCES</u>

The following resources are utilized to perform the AMSR

- System Engineer
- Accident Analyst
- Electrical Engineer
- Mechanical Engineer
- Controls Engineer
- Operations Engineer
- Tier-2 Database

5.0 PROCEDURE

Overview: Determine the critical design characteristics for systems and components that must be confirmed in order to ensure that the plant complies with the safety analyses identified in Chapter 14 of the UFSAR. Validate the presence of the critical design characteristics in the installed plant systems. The simplified process flowchart is presented in Exhibit 2-1. The DBEv groups covered by this procedures are identified in Exhibit 2-2.

PP-02

TITLE: ACCIDENT MITIGATION SYSTEM REVIEW

REVISION: 4

DATE: 10/05/98

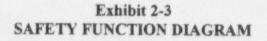
PAGE 6 OF 12

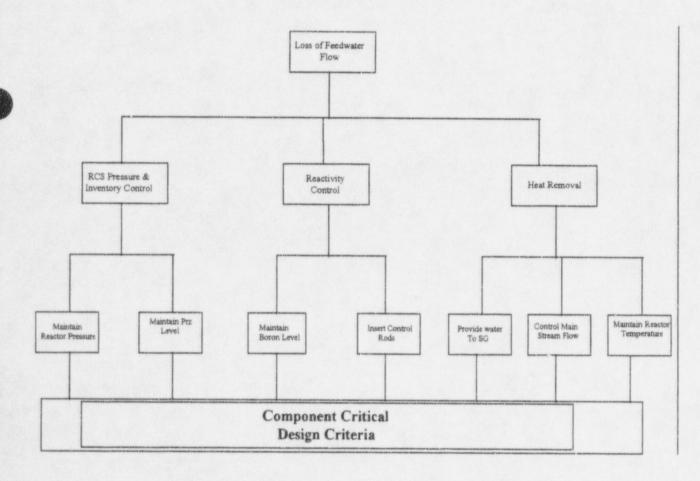
Exhibit 2-2 DBEv GROUPS

DBEV	Variation
Increase in Heat Removal	Decrease in Feedwater Temperature
by the Secondary System	Increase in Feedwater Flow
	Increase in Steam Flow
	Inadvertent Opening of a Steam Generator Relief or Safety Valve
	Steam Pipe Failure Inside and Outside containment
Decrease in Heat Removal	Loss of External Load
by the Secondary System	Turbine Trip
	Closure of Main Steam Isolation Valve
	Loss of Normal Feedwater Flow
Decrease in Reactor	Loss of Forced Reactor Coolant Flow
Coolant System flow	Reactor Coolant Pump Rotor Seizure
Reactivity and Power Distribution Anomalies	Uncontrolled Control Rod Bank Withdrawal From a Subcritical or Low Power Startup Condition
	Uncontrolled Control Rod/Bank Withdrawal at Power
	Control Rod Misoperation
	Startup of an Inactive Loop
	CVCS Malfunction That Results in a Decrease in the Boron Concentration in the Reactor Coolant
	Control Rod Ejection Accident
Decrease in Reactor	Inadvertent Opening of a Pressurizer PRV
Coolant inventory	Steam Generator Tube Failure - Rad Consequences
	LOCA From Breaks in the RCP Boundary
Radioactive Releases from	Waste Gas System Failure
a Subsystem or component	Fuel Handling Accident
	Spent Fuel Cask Drop Accident
Non-Standard Review Plan	Containment Analyses
Events	Hydrogen Accumulation in Containment
	Radiological Consequences of the Design Bases Accident

PARSONS	MILLSTONE UNIT 2 ICA PROJECT PROCEDURE	
TITLE: ACCIDENT MITIGATIC	ON SYSTEM REVIEW	
REVISION: 4	DATE: 10/05/98	PAGE 7 OF 12

5.1 CDC DEVELOPMENT - DEFINE CRITICAL SAFETY FUNCTIONS


Purpose


- 1.1 The purpose of this activity is to develop
 - CSF Definitions
 - CSF Diagrams
 - System Boundary Diagrams
 - Tier-2 Database Structure

- 1.1 Review UFSAR Chapter 14 and identify design bases events by groups (refer to Exhibit 2-2).
- 1.2 Evaluate DBEv groups to identify Critical Safety Functions essential to achieve and maintain a controlled condition following an event. (e.g. RCS Heat Removal, Reactivity Control, RCS Inventory Control, etc.)
- 1.3 Define Critical Safety Function objectives and system level processes/actions to achieve objectives.
- 1.4 Create generic Critical Safety Function Diagrams for each Critical Safety Function.
- 1.5 Identify system level active components that support the process or action. (Example shown as Exhibit 2-3)

PARSONS	MILLSTONE UNIT 2 IC PROJECT PROCEDUR	FF-UZ
TITLE: ACCIDENT MITIGATI	ON SYSTEM REVIEW	
REVISION: 4	DATE: 10/05/98	PAGE 8 OF 12

- 1.6 Develop a Boundary Diagram for each System involved with the DBEv.
- 1.7 Develop a data base structure to record the system and component critical characteristics and parameters for each DBEv.

PARSONS

TITLE: ACCIDENT MITIGATION SYSTEM REVIEW

REVISION: 4

DATE: 10/05/98

5.2 CDC DEVELOPMENT - IDENTIFY CRITICAL CHARACTERISTICS AND PARAMETERS

Purpose

1.1 The purpose of this activity is to develop

- Functional/system level critical characteristics
- Database file and reports of the critical parameter for each system and DBEv safety function.
- Discrepancy report

- 1.1 Review each FSAR chapter 14 DBEv, including supporting analyses and calculations, to identify design requirements. Using the Critical Safety Function Diagrams, identify functional/system level critical characteristics for each DBEv.
- 1.2 Using the System Boundary Diagrams identify the components and their critical parameters essential to achieving the functional/system critical characteristics for each DBEv.
- Enter DBEv critical characteristics and parameters into the Tier 2 database (T2DB).
- 1.4 Document source of analyses parameters and key assumptions.
- 1.5 If an inconsistency exists, a discrepancy report shall be prepared in accordance with the discrepancy report process (PP-07).

PARSONS

MILLSTONE UNIT 2 ICAVP PROJECT PROCEDURES

PP-02

TITLE: ACCIDENT MITIGATION SYSTEM REVIEW

REVISION: 4	DATE: 10/05/98	PAGE 10 OF 12

- 1.6 Submit the DBEv functional/system level critical characteristics to the NRC for review.
- 1.7 Provide system and component critical design data to Tier 1 for Systems selected for review.

5.3 CDC VALIDATION - COLLECT SYSTEM DESIGN AND PERFORMANCE DATA

Purpose

- 1.1 The purpose of this activity is to develop
 - Critical System/Component listing including performance requirements and capabilities
 - Discrepancy Reports

- 1.1 Develop system composite database for critical safety function systems using documented information (plant design drawings, calculations, DBDs, test procedures, etc.).
- 1.2 List component design performance requirements into the T2DB.
- 1.3 Document references and source information used to identify the important to safety components and systems.
- 1.4 If a component or system is found to contain a discrepancy, a discrepancy report shall be prepared in accordance with the discrepancy report process (PP-07).

PARSONS

TITLE: ACCIDENT MITIGATION SYSTEM REVIEW

REVISION: 4

DATE: 10/05/98

PAGE 11 OF 12

5.4 CDC VALIDATION - VALIDATE FSAR CHARACTERISTICS

Purpose

- 1.1 The purpose of this activity is to
 - Validate that the Functional/System level Critical Design Characteristics are present in the installed plant systems.
 - Develop Discrepancy Reports

- 1.1 Validate 100% of the functional/system level critical characteristics derived from FSAR chapter 14 and supporting analyses. This validation will be based on review of plant test data, Technical Specifications, calculations, A/E design requirements or alternate methods, as appropriate.
- Review Emergency Operating Procedures versus critical design characteristic to determine consistency.
- 1.3 Document the following information:
 - · Critical system/component design requirement from the FSAR DBEv review
 - Confirmation that the installed design meets the design requirement
 - Validation references
- 1.4 Validation of the Critical Design Characteristics for the NRC selected systems will be coordinated with the Tier 1 SVSR team.
- 1.5 Tier 2 personnel will validate that the Critical Design Characteristics are in place and properly documented for the remaining systems.

PARSONS	MILLSTONE UNIT 2 ICAV PROJECT PROCEDURES	- FF-UZ
TITLE: ACCIDENT MITIGAT	ION SYSTEM REVIEW	************************************
REVISION: 4	DATE: 10/05/98	PAGE 12 OF 12

 Systems and components not meeting the Critical Design Characteristics will be identified as a discrepancy in accordance with PP-07.