STATE OF WISCONSIN

1985

La Crosse Boiling Water Reactor
Environmental Radioactivity Survey

NRC 30-83-647

Wisconsin Department of Health and Social Services
Division of Health
Bureau of Environmental Health
Section of Radiation Protection
P.O. Box 309
Madison, Wisconsin 53701

IE48

# Table of Contents

|        |      |                                                                                                                | Page  | Number |
|--------|------|----------------------------------------------------------------------------------------------------------------|-------|--------|
| Intro  | duct | ion                                                                                                            |       | 1      |
| Sampl: | ing  | Techniques                                                                                                     |       | 1      |
|        |      | 1 Procedures                                                                                                   |       | 2      |
|        |      | ssurance                                                                                                       |       | 4      |
|        |      | ties and Error - Wisconsin                                                                                     |       | 4      |
|        |      | ties - LACBWR                                                                                                  |       | 6      |
| Conclu |      |                                                                                                                |       | 7      |
|        |      | Sample Summary for 1985.                                                                                       |       | 13     |
|        |      | Differences in Reported Wisconsin and LACBWR results.                                                          |       | 15     |
| Table  | 6 -  | EPA Cross Check Results                                                                                        |       | 16     |
|        |      | it of Detection- LACBWR                                                                                        |       | 22     |
| Refer  | ence | S                                                                                                              |       | 24     |
| List   | of T | ables                                                                                                          |       |        |
| Table  | 1.   | Comparison of the yearly average for gross                                                                     |       | 7      |
|        |      | beta activity for air particulate filters for 1985.                                                            |       |        |
| Table  | 2.   | Range of activity for cobalt-60 (Co-60)                                                                        |       | 10     |
|        |      | and cesium-17 (Cs-137) for bottom sed-                                                                         |       |        |
|        |      | iments from the outfall site collected                                                                         |       |        |
|        |      | in 1984 and 1985 - Wisconsin data.                                                                             |       |        |
|        |      | samples.                                                                                                       |       |        |
| Table  | 3.   | Calculated doses to a maximum exposed indiv-                                                                   | - :   | 12     |
|        |      | ual for Wisconsin samples with activities                                                                      |       |        |
|        |      | greater than MDC and background levels.                                                                        |       |        |
| Table  | 4.   | Sample summary for 1905 from the environ-                                                                      | 10.00 | 13     |
|        |      | mental split sample monitoring program                                                                         |       |        |
|        |      | conducted by Wisconsia and LACBWR.                                                                             |       |        |
| Table  | 5.   | Disagreements in the comparison of Wisconsi                                                                    | 1 :   | 15     |
|        |      | and LACBWR reported results from the environ                                                                   |       |        |
|        |      | mental split monitoring program.                                                                               |       |        |
| Table  | 6.   | EPA Cross Check results for 1984 & 1985.                                                                       |       | 16     |
|        |      | Air particulate (gross beta) and air iodine                                                                    |       | 25     |
|        |      | (I-131) results for January - Jure, 1985.                                                                      |       |        |
|        |      | Indicator site - Lock & Dam #8.                                                                                |       |        |
| Table  | 8.   | Air particulate (gross beta) and air iodine                                                                    |       | 26     |
|        |      | (I-131) results for July - December, 1985.                                                                     |       |        |
|        |      | Indicator site - Lock & Dam #8.                                                                                |       |        |
| Table  | 9.   | .   TATE TO TAKE IN TO LEEP TO BE A TO | - 2   | 27     |
|        | 9.7  | (I-131) results for January - June, 1985.                                                                      |       |        |
|        |      | Control site - LaCrosse.                                                                                       |       |        |
| Table  | 10.  | Air particulate (gross beta) and air iodine                                                                    | 7     | 28     |
|        | -    | (I-131) results for July - December, 1985.                                                                     |       |        |
|        |      | Control site - LaCrosse                                                                                        |       |        |

# Table of Contents - continued

|       |     |                                                                                                                                               | Page | number |
|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|------|--------|
| Table | 11. | Gamma isotopic results for January -<br>June, 1985 from the monthly composite of<br>air particulate samples. Indicator site<br>Lock & Dam #8. |      | 29     |
| Table | 12. |                                                                                                                                               |      | 30     |
| Table | 13. | Gamma isotopic results for January -<br>June, 1985 from the monthly composite of<br>air particulate samples. Control site -<br>LaCrosse.      |      | 31     |
| Table | 14. | Gamma isotopic results for July - December, 1985 from the monthly composite of air particulate samples. Control site - LaCrosse.              |      | 32     |
| Table | 15. | Analysis of surface water samples from<br>January - June, 1985. Indicator site -<br>discharge channel.                                        |      | 33     |
| Table | 16. | Analysis of surface water samples from<br>July - December, 1985. Indicator site<br>- discharge channel.                                       |      | 34     |
| Table | 17. |                                                                                                                                               |      | 35     |
| Table | 18. | Analysis of surface water samples from<br>July - December, 1985. Control site -<br>Lock & Dam #8.                                             |      | 36     |
| Table | 19. | Analysis of fish samples for 1985.                                                                                                            |      | 37     |
| Table | 20. | Analysis of fish samples for 1985.                                                                                                            |      | 38     |
| Table | 21. | Analysis of bottom sediments for 1985.                                                                                                        |      | 39     |
|       |     | Analysis of milk samples for 1985                                                                                                             |      | 40     |
| Table | 23. | Analysis of food products for 1985.                                                                                                           |      | 11     |

#### STATE OF WISCONSIN

1985

# LA CROSSE BOILING WATER REACTOR ENVIRONMENTAL RADIOACTIVITY SURVEY

#### INTRODUCTION

This report is prepared under U.S. Nuclear Regulatory Commission Contract NRC 30-83-647 by the State of Wisconsin, Department of Health and Social Services, Section of Radiation Protection. This report covers the calendar year 1985. Results of environmental radioactivity monitoring are listed in tabular form. The data presented consists of duplicative sample analysis such as air and TLD data and split sample analysis conducted by the state radiation protection laboratory or subcontractor and the licensee. A brief description of sample collection techniques and analytical procedures conducted by the state laboratory is also given. A sample collection summary for 1985 is included in Table 3. The sample summary includes type and number of samples collected as well as the range of reported activities for each type of sample analysis.

# SAMPLING TECHNIQUES

# Direct Radiation - Thermoluminescent Dosimeters (TLD's)

Continuous monitoring of direct radiation is performed quarterly using thermoluminescent dosimeters. The dosimeters are placed at 29 locations in the area of the La Crosse Boiling Water Reactor (LACBWR) nuclear power plant.

# Air Samples

Continuous air samples are collected weekly from two stations. Air particulate samples are collected on 47 mm. glass fiber filters. Air iodine samples are collected using charcoal absorbers mounted downstream of the air particulate filters. The nominal sampling rate is 1-2.5 cubic feet of air per minute.

# Surface Water

A split sample is collected monthly at a point close to the discharge of the LACBWR effluent channel, 0.1 mile W. This sample is a grab sample and is collected while the plant is discharging wastewater to the channel. A background surface water sample is also collected monthly from Lock and Dam #8, 0.7 mile N.

### Milk

A raw, split milk sample is collected monthly from one of three local farms located in the Genoa, Wisconsin area.

# Sediment

Sediment is collected from three locations in the Mississippi River channel on a semi-annual basis.

# Fish

Game and scavenger fish are collected periodically from locations in the Mississippi River near the LACBWR nuclear power plant.

# Food Products

A blended sample of mixed vegetables was collected from a local garden.

#### ANALYTICAL PROCEDURES

The procedures given are abstracted to present only the basic steps. The analysis of the samples has been subcontracted to the State Laboratory of Hygiene. A detailed description of the procedures used is available from the State Laboratory of Hygiene.

# Air Particulate Samples - Beta Gamma

Place the 47 mm. glass fiber filter on a 2-inch stainless steel planchet. Beta count in an external gas flow proportional counter. Calculate activity correcting for counter efficiency.

# Air Particulate Samples - Gamma

The monthly composite of air particulate filters is placed on a Ge(Li) detector and the gamma spectrum is collected. Scan the gamma spectrum for any peaks and print out regions of interest which would include possible plant attributable radionuclides. Calculate the activity for isotopes in the regions of interest, regardless if they are above or below the minimum detectable concentration, correcting for counter efficiency and for decay.

# Surface Water - Alpha, Beta Gamma

Filter a 500 ml. aliquot of sample. Evaporate filtrate in a 2-inch stainless steel planchet. Place filter paper in a 2-inch stainless steel planchet and dry at 103 degrees Celsius. Beta and alpha count the soluble and insoluble portions in an external gas flow proportional counter. Calculate activity correcting for counter efficiency and self-absorption.

# Surface Water - Gamma Isotopic

A 3.5 liter sample is placed in a Marinelli beaker and analyzed on a GeLi detector. Scan the gamma spectrum for any peaks and print out regions of interest which would include possible plant attributable radionuclides. Calculate the activity for isotopes in the regions of interest, regardless if they are above or below the minimum detectable concentration, correcting for counter efficiency and for decay.

# Vegetation or Food Product - Alpha, Beta and Gamma Isotopic

Dry sample at 110 degrees Celsius, grind, weigh into stainless steel planchet. Beta and alpha count in an external gas flow proportional counter. Calculate activity correcting for self-absorption and counter efficiency.

The food product sample is finely chopped. The sample is packed to the 500 ml mark of a 500 ml Marinelli beaker, weighed and counted for 900 minutes on a Ge(Li) detector. Scan the gamma spectrum for any peaks and print out regions of interest which would include possible plant attributable radionuclides. Calculate the activity for isotopes in the regions of interest, regardless if they are above or below the minimum detectable concentration, correcting for counter efficiency and for decay.

# Soil or Sediment -Alpha, Beta and Gamma Isotopic

Dry sample at 110 degrees Celsius, grind and weigh into a stainless steel planchet. Beta and alpha count in an external gas flow proportional counter. Calculate activity correcting for self-absorption and counter efficiency.

The dried soil is added to a 500 ml Marinelli beaker, weighed and counted for 100 minutes on a Ge(Li) detector. Scan the gamma spectrum for any peaks and print out regions of interest which would include possible plant attributable radionuclides. Calculate the activity for isotopes in the regions of interest, regardless if they are above or below the minimum detectable concentration, correcting for counter efficiency and for decay.

# Milk - Gamma Isotopic

Procedure same as for Surface Water.

# Milk - Iodine 131 Chemical Extraction

A stable iodine carrier is added to a 2 liter sample of raw milk. The sample is passed through an anion exchange column and the iodine is removed from the resin by batch/extraction using NaOCl. After reduction to elemental iodine by hydroxylamine hydrochloride, the iodine is extracted into carbon tetrachloride reduced with bisulfite, and back extracted into water. The iodine is precipitated as palladous iodide with the chemical yield determined gravimetrically and counted in an external gas flow proportional counter correcting for counter efficiency and for decay.

# Fish - Gamma Isotopic

An edible portion is placed in a 500 ml. Marinelli beaker. Place the sample on a GeLi detector and collect the gamma spectrum. Scan the gamma spectrum for any peaks and print out regions of interest which would include possible plant attributable radionuclides. Calculate the activity for isotopes in the regions of interest, regardless if they are above or below the minimum detectable concentration, correcting for counter efficiency and for decay.

# Direct Radiation

Thermoluminescent dosimeters are supplied by the U.S. Nuclear Regulatory Commission. The exposed TLD's are shipped to NRC Region I and are read by the Commission.

#### QUALITY ASSURANCE

The analysis of the samples is performed under subcontract with the State Laboratory of Hygiene (SLH). SLH maintains its own quality assurance program which was also reviewed by the NRC in January, 1985.

Analytical procedures provide for routine replicate analyses to verify methods and instrument operation. Traceable sources are used to regularly calibrate the counters and daily performance checks are made between calibrations. In addition, quality control charts are maintained on the counters.

SLH participates in the EPA Cross Check program. The quality assurance progam that the SLH participates in include analysis of blind samples, air filters, food, milk, gamma in water, alpha-beta in water, iodine in water, strontium in water and tritium in water. The EPA Cross Check code for SLH is "AF". A complete listing of the EPA Cross Check results for 1984 and 1985 is included in Table 6.

#### SENSITIVITIES AND ERROR - WISCONSIN

Following the recommendations of the Health Physics Society, detection limits will be expressed as a minimum detectable concentration (MDC). The minimum detectable concentration or MDC is an "a priori" estimate of the capability for detecting an activity concentration by a given measurement system, procedure, and type of sample. The MDC should not be viewed as an absolute activity concentration that can or cannot be detected. Minimum detectable concentrations (MDC) are based on the analysis performed and for gamma isotopic analysis nave been calculated for a zero decay time. A listing of the Wisconsin MDC values is included in Table 4.

The Wisconsin definition for minimum detectable concentration follows closely the equation for the lower limits of detection as defined in the NRC contract NRC-30-83-647. Activities defined by the equation for MDC will be used in this report.

The MDC for each radioisotope has been calculated from the following equation:

MDC = 
$$\frac{4.66 \text{ s}_{b}}{\text{E * 7 * 2.22 * Y * S * exp(-dt)}}$$

#### Where:

MDC is the "a priori" lower limit of detection as defined above, as picocuries per unit mass or volume,

sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate, as counts per minute,

E is the counting efficiency, as counts per disintegration,

V is the sample size in units of mass or volume,

2.22 is the number of disintegrations per minute per picocurie,

Y is the fractional radiochemical yield, when applicable,

S is the self-absorption correction factor,

d is the radioactive decay constant for the particular radionuclide, and

t for environmental samples is the elapsed time between sample collection, or end of the sample collection period, and time of counting. Guidelines adopted by the U.S. Environmental Protection Agency are used in the reporting of specific analyses. Results from specific analyses will be reported whether the results are negative, zero, or positive. Caution should be exercised in the interpretation of individual negative values. While a negative activity value does not have physical significance, it is significant when taken together with other observations which indicate that the true value of a distribution is near zero. This procedure will allow all of the data to be reported and will allow a statistical evaluation without an arbitrary cutoff of small or negative numbers. An estimation of bias in the nuclide analyses is then possible as well as a better evaluation of distributions and trends in the environmental data. It is important when reviewing the data in the following tables to compare the reported result to the actual minimum detectable concentration (MCC) for that analysis.

Results for specific analyses will be reported as an activity followed by an error term for that analysis. The error term is a plus or minus counting error term at the 2 sigma (95%) confidence interval and is printed as (+/-).

### SENSITIVITIES - LACEWR

Lower limits of detection (LLD) or minimum detectable activity (MDA) as reported by LACBWR are defined in their manual LACBWR, HEALTH & SAFETY DEPARTMENT PROCEDURE, LACBWR ENVIRONMENTAL MONITORING PROGRAM. The method for calculating the LLD and a representative table of LLD's for LACBWR is included in this report. In most cases, reported activities for LACBWR are less than the required Nuclear Regulatory Commission LLD's.

# CONCLUSIONS

A sample collection summary for 1985 is included in Table 4. The sample summary includes the type and number of samples collected as well as the range of reported activities for each type of sample analysis. Disagreements in the comparison of Wisconsin and LACBWR reported results from the environmental split sample monitoring program are listed in Table 5. Results from the individual sample analyses are listed in Tables 7-23.

# Air Particulate

Wisconsin and LACBWR maintain separate air sampling stations. The indicator site for both Wisconsin and LACBWR is located at Lock & Dam #8, 0.7 miles N. The control site for Wisconsin is located at the state office building in La Crosse, 16 miles N and for LACBWR at the Dairyland Power office in La Crosse. Results from the individual sample analyses are listed in Tables 7-10.

The yearly averages, from a log-normal distribution, for the gross beta analysis on the air particulate filters, are given in Table 1.

Table 1. Comparison of the yearly average for gross beta activity from air particulate filters for 1985.

WI - Section of Radiation Protection LACEWR

units of pCi/M3

Indicator Control Indicator Control 0.016 ± 0.002 0.012 ± 0.002 0.017 ± 0.002 0.017 ± 0.002

The Wisconsin and LACBWR yearly averages for gross beta activity from the air particulate filters are comparable and showed no significant differences between their respective indicator and control sites.

A summary of reported gamma isotopic activities for Wisconsin and LACBWR from the monthly air particulate filter composites is included in Table 4. Results from the individual sample analyses are listed in Tables 11 - 14. The only radioisotope detected in the Wisconsin gamma isotopic analysis above its respective MDC was beryllium-7 (Be-7). Beryllium-7 (Be-7) is a naturally occurring radioisotope that is constantly produced through nuclear reactions between cosmic rays and nuclei in the atmosphere. Beryllium-7 (Be-7) was detected in composites from both the indicator and control sites.

LACBWR does not report naturally occurring radioisotopes and no comparison can be made for the beryllium-7 (Be-7) reported by Wisconsin. All of the reported radioisotopes for LACBWR were at trace activity levels and all were less than the respective Wisconsin MDC's.

At the observed lower levels of activity, the Wisconsin and LACBWR data compared favorably in the gross beta and gamma isotopic analysis on the air particulate samples. Influence by the LACBWR nuclear facility on air quality is not evident when comparing the data from the indicator and control sites.

# Air Iodine

All reported air iodine measurements, for both Wisconsin and LACBWR, were below the required NRC LLD of 0.07  $pCi/M^3$  for both the indicator and the control sites.

# Surface Water

The surface water samples are split samples taken as a grab sample on a monthly basis. The discharge channel is taken as the indicator site and Lock and Dem #8 is taken as the control site.

A summary of reported activities by Wisconsin and LACBWR from the monthly surface water samples is included in Table 4. Disagreements in the reported Wisconsin and LACBWR results are listed in Table 5. Results from the individual sample analyses are listed in Tables 15-18.

The Wisconsin and LACBWR reported activities from the monthly surface water samples taken at the control station, Lock & Dam #8, are all at background levels. All reported activities by Wisconsin for gamma isotopic and tritium were less than the respective Wisconsin minimum detectable concentration (MDC). All reported gamma isotopic activities by LACBWR are less than the respective Wisconsin MDC.

Analysis of the surface water samples taken from the indicator site, discharge channel, by Wisconsin and LACBWR detected small activities of manganese-54 (Mn-54), cobalt-60 (Co-60), cesium-137 (Cs-137), ruthenium-103 (Ru-103) and tritium (H-3). Reported activities above MDC or LLD levels by Wisconsin and LACBWR were comparable except for the disagreements listed in Table 5. All detected activities above MDC or LLD levels were less than the corresponding Nuclear Regulatory Commission reporting levels for radioactivity concentrations in environmental samples.

All activities reported by either Wisconsin or LACBWR are below the standards for uncontrolled areas as specified in ICRP Report No.2 or 10 CFR 20.

Disagreements in the Wisconsin and LACBWR reported results for activities above MDC or LLD levels are listed in Table 5. The disagreement in the reported Co-60 activity for the discharge sample collected 01/15/85 is small. A review of the Wisconsin and LACBWR sample analysis reports did not show any problems in the sample analysis by either Wisconsin or LACBWR. The Wisconsin and LACBWR sample analysis reports were reviewed for the disagreement in the gross beta activity from the discharge sample collected 06/12/85.

Gross beta activities are compared by adding the two individual gross beta activities from the soluble and insoluble portions for Wisconsin and comparing that sum with the LACBWR reported gross beta activity. For Wisconsin the higher gross beta activity was in the insoluble portion. The lower reported result by LACBWR for gross beta activity could be due to improper mixing in the sample preparation of the surface water sample.

Tritium (H-3) is the major source of disagreements between reported activities by Wisconsin and LACBWR. In all cases the reported activity for Wisconsin was less than the Wisconsin MDC for tritium. Disagreements exist in both the control and indicator sites. A review of the Wisconsin quality assurance program involving the EPA Cross Check Program did not detect any problems by Wisconsin in its tritium analyses. It should be noted that except for one case the differences in the reported activities for tritium by Wisconsin and LACBWR were less than the required NRC LLD of 3000 pCi/liter.

# Fish

Both LACBWR and Wisconsin analyze the same samples with LACBWR first performing its analysis and then Wisconsin.

A summary of reported activities by Wisconsin and LACBWR from fish samples is included in Table 4. Disagreements in the reported Wisconsin and LACBWR results are listed in Table 5. Results from the individual sample analyses are listed in Tables 19-20.

The reported Wisconsin activities for potassium-40 (K-40) can not be compared since LACBWR does not report naturally occurring radioisotopes. The disagreement listed in Table 5 for the Co-60 activity in the 03/26/85 walleye sample is small and a review of the Wisconsin and LACBWR sample analysis reports did not detect any problems in the sample analysis by either Wisconsin or LACBWR.

At the low level of reported activities the Wisconsin and LACBWR data compare favorably.

# Bottom Sediments

Both Wisconsin and LACBWR analyze the same samples with LACBWR first performing its analysis and then Wisconsin.

A summary of reported activities by Wisconsin and LACBWR from bottom sediment samples is included in Table 4. Disagreements in the reported Wisconsin and LACBWR results are listed in Table 5. Results from the individual sample analyses are listed in Table 21.

The gamma isotopic analysis of the upstream sample, Lock & Dam #8, 17 Wisconsin did not detect any radioisotopes above the Wisconsin MDC's. Analysis by LACBWR detected only trace activities of cesium-137 (Cs-137) and cobalt-60 (Co-60). The detected activities by LACBWR were less than the respective Wisconsin MDC's or the required NRC LLD's.

Samples collected 06/05/85 and 10/16/85 were comparable in the detected activities.

The highest activities were detected at the discharge point with cobalt-60 (Co-60) and cesium-137 (Cs-137) predominating and smaller detected activities for cesium-134 (Cs-134), manganese-54 (Mn-54) and niobium-95 (Nb-95). Inspection of the Wisconsin data from the discharge point shows a range of activity for cobalt-60 (Co-60) and cesium-137 (Cs-137). This observation was also observed in 1984. The range in activity for cobalt-60 (Co-60) and cesium-137 (Cs-137) for 1984 and 1985 are listed in Table 2. The observed range in activity would tend to indicate that the discharge point is not the best site to observe trends of accumulated radioactivity versus time. correspondence with Dairyland Power Cooperative environmental department personnel, their observations are that the discharge point has a very small area to collect bottom sediment with larger aggregate predominating. This observation together with the fact that there is also a high scouring rate at the discharge point would support the argument that the discharge point is not a good site to study trends of accumulated radioactivity versus time but it is probably the only point available due to the large amount of riprap in the area.

Table 2. Range of activity for cobalt-60 (Co-60) and cesium-137 (Cs-137) for bottom sediments from the outfall site collected in 1984 and 1985 - Wisconsin data.

| Collection | Co-60       | Cs-137      |  |  |
|------------|-------------|-------------|--|--|
|            | (pCi        | /kg dry)    |  |  |
| 03/27/84   | 32400 ± 400 | 11600 ± 300 |  |  |
| 03/27/84   | 16400 ± 300 | 13200 + 300 |  |  |
| 06/26/84   | 9900 ± 300  | 11000 + 200 |  |  |
| 06/26/84   | 7400 ± 200  | 9700 + 200  |  |  |
| 06/05/85   | 620 + 50    | 120 + 30    |  |  |
| 10/16/85   | 8620 ± 170  | 17600 ± 200 |  |  |

From the downstream site, boat launch, trace activities were detected for cobalt-60 (Co-60) and cesium-137 (Cs-137). The detected activities were at or less than the required NRC LLD's and were at approximately the same activity levels detected in 1984.

For samples collected at the upstream and downstream sites the Wisconsin and LACBWR data are comparable. Disagreements are listed in Table 5 for samples taken at the outfall site. The Wisconsin and LACBWR sample analysis reports were reviewed and no problems were noticed in either the Wisconsin or LACBWR sample analysis.

### Milk

The milk samples are obtained as grab samples on a monthly basis and are then split for analysis.

A summary of reported activities by Wisconsin and LACBWR from milk samples is included in Table 4. Disagreements in the reported Wisconsin and LACBWR results are listed in Table 5. Results from the individual sample analyses are listed in Table 22.

Wisconsin detected only naturally occurring potassium-40 above its MDC in its gamma isotopic analysis of the milk samples. Activities for iodine-131 were all below its MDC of 0.40 pCi/l.

LACBWR does not report naturally occurring radioisotopes and a comparison is not possible with the Wisconsin data. All of the reported isotopes were less than the respective Wisconsin MDC's except for those differences listed in Table 5.

The Wisconsin and LACBWR sample analysis reports were reviewed regarding the disagreement listed in Table 5 for the milk sample collected 11/12/85 from the A. Malin farm. No problems were noted in either the Wisconsin or LACBWR sample analysis.

The reported data by Wisconsin for 1985 is comparable to data reported for previous years. Influence by the LACBWR facility is not apparent in the milk samples analyzed by either Wisconsin or LACBWR.

# Vegetation - Food Products

A split sample of food products was taken in 1985. A blended sample of mixed vegetables was collected from a local farm, 1.0 mile NE.

A summary of reported activities by Wisconsin and LACBWR from the food product sample is included in Table 4. Results from the individual sample analyses are listed in Tables 23.

Wisconsin detected only naturally occurring potassium-40 (K-40) above its MDC in its gamma isotopic analysis of the food product sample. Activities for iodine-131 (I-131) were below its MDC of 60 pCi/kg. LACBWR also reported naturally occurring potassium-40 (K-40) and the reported activity for cesium-137 (Cs-137) is below the respective Wisconsin MDC.

Comparison of the Wisconsin and LACBWR results are favorable and influence by the LACBWR facility is not evident in food product samples.

# Dose to Individuals from Gaseous and Liquid & fluents

Dose calculations for gaseous and liquid effluent releases were performed according to the mathematical models illustrated in USNAG Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix T". The doses, listed in Table 3, were calculated for the maximum exposed individual for Wisconsin samples with activities greater than MDC and background levels.

Table 3. Calculated doses to a maximum exposed individual for Wisconsin samples with activities greater than MDC and background levels.

|          |           |         |            | Maxii         | mum Exposed 1 |         |
|----------|-----------|---------|------------|---------------|---------------|---------|
| Sample   |           |         |            | whole         |               |         |
| type     | Descripti | on      | population | body          | bone          | thryoid |
| fish     | 03/25/85  | carp    | infant     |               |               |         |
|          |           | 7.      | child      | 0.0008+0.0004 | NT-90-90      | -       |
|          |           |         | teenager   | 0.007+0.004   |               | -       |
|          |           |         | actualt    | 0.007+0.004   |               |         |
| fish     | 03/26/85  | walleye | in ant     |               | *******       | -       |
|          |           |         | child      | 0.0012+0.0003 | -             | -       |
|          |           |         | tee 4 ver  | 0.011+0.003   |               |         |
|          |           | . 7     | adult      | 0.011+0.003   | -             | -       |
| bottom   | 06/05/85  | catfall | infant     |               | -             | -       |
| sediment |           |         | chila      | 0.006+0.001   |               |         |
|          |           |         | teenager   | 0.030+0.002   |               |         |
|          |           |         | adult      | 0.005+0.001   |               |         |
| bottom   | 06/05/85  | downs-  | infant     |               |               |         |
| sediment |           | stream  | child      | 0.0017+0.0005 |               |         |
|          |           |         | +eenager   | 0.003+0.002   |               |         |
|          |           |         | adult      | 0.0014+0.0004 |               |         |
| bottom   | 10/16/85  | outfall | infart     |               |               |         |
| sediment |           |         | child      | 0.123+0.002   |               |         |
|          |           |         | teenager   | 0.612+0.009   |               |         |
|          |           |         | adult      | 0.110+0.002   |               |         |
| bottom   | 10/16/85  | down-   | infanc     |               |               |         |
| sediment |           | stream  | child      | 0.0014+0.0004 |               |         |
|          |           |         | teenager   | 0.0068+0.0019 |               |         |
|          |           |         | adult      | 0.0012+0.0003 |               |         |
|          |           |         |            |               |               |         |

From Table 3 it is apparent that the most significant dose to a maximum exposed individual is at the outfall site. The outfall site, however, in not readily accessible for individual use for recreational purposes including either fishing or swimming. Doses resulting from gaseous and liquid effluent releases are in compliance with 10 CFR Part 50, Appendix I.

Table 4. Sample summary for 1985 from the environmental split sample monitoring program conducted by Wisconsin and LACSWR.

Wisconsin data

LACSWR data

| Sample type                             |       | Number o | ,           |                                                                                                                  | NRC I | Number of |            |                                                |          |
|-----------------------------------------|-------|----------|-------------|------------------------------------------------------------------------------------------------------------------|-------|-----------|------------|------------------------------------------------|----------|
| (units)                                 |       |          |             | range                                                                                                            |       |           | Analysis   | rang                                           | e        |
| (4.1.4.)                                |       |          |             |                                                                                                                  |       |           |            |                                                |          |
| air particulate                         | 0.003 | 104/101  | gross beta  | 0.001 - 0.051                                                                                                    | 0.01  | 104       | gross beta | 0.009 -                                        | 0.047    |
| (pC1/M3)                                |       | 24       | gamma isoto | pic                                                                                                              |       | 24        | gamma iso  | topic                                          |          |
|                                         | 0.050 | 24/22    | 8e-7        | 0.04 - 0.012                                                                                                     |       |           | 89-7       | analysis not                                   | required |
|                                         | 0.011 | 24/0     | Zr, Nb-95   | -0.004 - 0.005                                                                                                   |       | 24/1      | Zr,Nb-95   | <llo *b="" -<="" td=""><td>0.000081</td></llo> | 0.000081 |
|                                         | 0.005 | 24/0     | Ru-103      | -0.003 - 0.003                                                                                                   | ****  | 24/0      | Ru-103     | <lld< td=""><td>*6</td></lld<>                 | *6       |
|                                         | 0.030 | 24/0     | Ru-106      | -0.010 - 0.02                                                                                                    |       | 24/0      | Ru-106     | <ll0< td=""><td>*6</td></ll0<>                 | *6       |
|                                         | 0.005 | 24/0     | Cs-134      | -0.001 - 0.001                                                                                                   | 0.05  | 24/0      | Cs-134     | <lld< td=""><td></td></lld<>                   |          |
|                                         | 0.005 | 24/0     | Cs-137      | -0.002 - 0.000                                                                                                   | 0.08  | 24/3      | Cs-137     | <lld *b="" -<="" td=""><td></td></lld>         |          |
|                                         | 0.008 | 24/0     | Ce-141      | -0.005 - 0.003                                                                                                   |       | 24/0      | Ce-141     | <lld< td=""><td>*b</td></lld<>                 | *b       |
|                                         | 0.025 | 24/0     | Ce-144      | -0.004 - 0.007                                                                                                   |       | 24/1      | Ce-144     | <ll0 *b="" -<="" td=""><td>0.0015</td></ll0>   | 0.0015   |
|                                         | 0.006 | 24/0     | Co-60       | <moc< td=""><td>****</td><td>24/7</td><td>Co-60</td><td><lld *b="" -<="" td=""><td>0.002</td></lld></td></moc<>  | ****  | 24/7      | Co-60      | <lld *b="" -<="" td=""><td>0.002</td></lld>    | 0.002    |
|                                         | 0.006 | 24/0     | Mn-54       | <mdc< td=""><td></td><td>24/5</td><td>Mn-54</td><td><llo *b="" -<="" td=""><td>0.0007</td></llo></td></mdc<>     |       | 24/5      | Mn-54      | <llo *b="" -<="" td=""><td>0.0007</td></llo>   | 0.0007   |
|                                         | 0.015 | 24/0     | I-131       | <mdc< td=""><td>0.07</td><td>24/1</td><td>1-131</td><td><ll0 *b="" -<="" td=""><td>0.003</td></ll0></td></mdc<>  | 0.07  | 24/1      | 1-131      | <ll0 *b="" -<="" td=""><td>0.003</td></ll0>    | 0.003    |
| air iodine                              | 0.046 | 104/0    | 1-131       | <mdc< td=""><td>0.07</td><td>104/0</td><td>I-131</td><td><ll0 *6="" -<="" td=""><td>0.004</td></ll0></td></mdc<> | 0.07  | 104/0     | I-131      | <ll0 *6="" -<="" td=""><td>0.004</td></ll0>    | 0.004    |
| (pC1/M <sup>3</sup> )                   |       |          |             |                                                                                                                  |       |           |            |                                                |          |
| surface water                           | 1.6   | 24/24    | gross beta  | 3.0 - 286                                                                                                        | 4     | 24/24     | gross bet  | a 2.0 -                                        | 64       |
| (pCi/liter)                             | 750   | 24/2     | H-3         | -200 - 3000                                                                                                      | 2000  | 24/14     | H-3        | <1053 -                                        | 4364     |
| *************************************** |       | 24       | camma isot  | opic                                                                                                             |       | 24        | gamma iso  | topic                                          |          |
|                                         | 9     | 24/1     | Mn-54       | -4 - 149                                                                                                         | 1 15  | 24/3      | Mn-54      | <ll0 *b="" -<="" td=""><td>176.</td></ll0>     | 176.     |
|                                         | 20    | 24/0     | Fe-59       | -8 - 15                                                                                                          | 30    | 24/0      | Fe-59      | <llo< td=""><td>*6</td></llo<>                 | *6       |
|                                         | 13    | 24/0     | Co-58       | -3 - 14                                                                                                          | 15    | 24/0      | Co-58      | <ll0< td=""><td>*6</td></ll0<>                 | *6       |
|                                         | - 11  | 24/3     | Co-50       | -3 - 290                                                                                                         | 1 15  | 24/5      | Co-60      | <ll0 *b="" -<="" td=""><td>344</td></ll0>      | 344      |
|                                         | 22    | 24/0     | Zn-65       | -1 - 14                                                                                                          | 30    | 24/0      | Zn-65      | <ll0< td=""><td>*b</td></ll0<>                 | *b       |
|                                         | 0.4   | 24/0     | I-131       | -0.4 - 0.4                                                                                                       | 1 1   | 24/0      | 1-131      | <llo< td=""><td>*6</td></llo<>                 | *6       |
|                                         | 13    | 24/1     | Cs-134      | -2 - 18                                                                                                          | 15    | 24/0      | Cs-134     | <ll0< td=""><td>*5</td></ll0<>                 | *5       |
|                                         | 12    | 24/1     | Cs-137      | -1 - 37                                                                                                          | 18    | 24/4      | Cs-137     | KLLD *b -                                      | 19       |
|                                         | 15    | 24/0     | Zr-95       | -15 - 23                                                                                                         | 15    | 24/1      | Zr-95      | KLLD *b -                                      | 4        |
|                                         | 15    | 24/0     | Ba. La-140  | -4 - 5                                                                                                           | 1. 15 | 24/0      | Ba, La-140 | <lld< td=""><td>*b</td></lld<>                 | *b       |
|                                         | 12    | 24/0     | Ru-130      | <mdc< td=""><td>****</td><td>24/1</td><td>Ru-103</td><td><ll0 *b="" -<="" td=""><td>17</td></ll0></td></mdc<>    | ****  | 24/1      | Ru-103     | <ll0 *b="" -<="" td=""><td>17</td></ll0>       | 17       |
| bottom sediments                        | 740   | 8/8      | gross beta  | 7000 - 23000                                                                                                     |       | gro       | ss beta    | analysis not                                   | required |
| (pCi/kg dry)                            |       | 6        | gamma isot  | opic                                                                                                             |       | 6         | gamma iso  | topic                                          |          |
|                                         | 50    | 5/1      | Mn-54       | -2 - 180                                                                                                         | ****  | 6/5       | Mn-54      | <ll0 *b="" -<="" td=""><td>267</td></ll0>      | 267      |
|                                         | 70    | 5/0      | Co-58       | -5 - 20                                                                                                          | ****  | 6/0       | Co-58      | <lld< td=""><td>*6</td></lld<>                 | *6       |
|                                         | 90    | 5/4      | Co-60       | 2 - 8520                                                                                                         | ****  | 5/5       | Co-60      | KLLO *5 -                                      | 9726     |
|                                         | 50    | 6/1      | Cs-134      | -2 - 560                                                                                                         | 1 150 | 6/1       | Cs-134     | <ll0 *b="" -<="" td=""><td>888</td></ll0>      | 888      |
|                                         | 80    | 5/4      | Cs-137      | 7 - 17600                                                                                                        | 180   | 5/5       | Os-137     | <6 -                                           | 21340    |
|                                         | 800   | 6/6      | K-40        | 5900 - 13900                                                                                                     | ****  |           | K-40       | analysis not                                   | required |
|                                         | 1900  | 6/0      | Ra-226      | 40 - 1900                                                                                                        |       |           | Ra-226     | analysis not                                   | required |
|                                         | 180   | 6/3      | Pb-214      | 130 - 400                                                                                                        |       |           | Pb-214     | analysis not                                   | required |
|                                         | 200   | 6/3      | 81-214      | 160 - 1570                                                                                                       |       |           | 81-214     | analysis not                                   | required |
|                                         | 300   | 5/2      | 11-208      | 110 - 420                                                                                                        |       |           | T1-208     | analysis not                                   | required |
|                                         | 320   | 5/2      | Ac-228      | 200 - 600                                                                                                        | ****  |           | Ac-208     | analysis not                                   | required |

Table 4. (continued)

Wisconsin data

LACSWR data

| Sample type   | 1   | Number o  | f             |             | NRC  | Number of  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|-----|-----------|---------------|-------------|------|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (units)       | MDC | Samples * | a Analysis    | range       | LLO  | Samples *a | Analysi   | s range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| fish          |     | 8         | gamma isotopi | ic          | 1    | 8          | gamma is  | otopic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (pCi/kg wet)  | 78  | 5 8/8     | K-40          | 2200 - 3500 |      | 8          | K-40      | analysis not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | 6   | 6 8/0     | Mn-54         | -3 - 20     | 1 13 | 8/2        | Mn-54     | <11 - 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 14  | 5 8/0     | Fe-59         | -18 - 50    | 26   | 0 8/0      | Fe-59     | <29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 5   | 4 8/0     | Co-58         | -4 - 40     | 1 13 | 0 8/0      | Co-58     | <12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 7   | 0 8/2     | Co-60         | -8 - 110    | 13   | 0 3/4      | Co-60     | <28 - 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | 13  | 3 8/0     | Zn-65         | -14 - 60    | 26   | 0 8/0      | In-65     | <29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 5   | 1 8/0     | Cs-134        | -2 - 1      | 1 13 | 0 8/0      | Cs-134    | <12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 7   | 4 8/0     | Cs-137        | -4 - 30     | 1 15 | 8/2        | Cs-137    | <11 - 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | 10  | 0 8/0     | Ce-141        | <100        |      | - 8/1      | Ca-141    | <lld *6="" -="" 24<="" td=""></lld>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 130 | 0 8/0     | Nb-95         | <130        |      |            | Nb-95     | <lld *b="" -="" 12<="" td=""></lld>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| milk          |     | 12        | gamma isotop  | ic          |      | 12         | gamma is  | otopic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (pCi/1)       | 120 | 12/12     | K-40          | 1050 - 1560 |      | - 12       | K-40      | analysis not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | 21  | 12/0      | Co-57         | <20         |      | 12/2       | Co-57     | <llo *b="" -="" 21<="" td=""></llo>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 13  | 2 12/0    | Co-60         | <12         |      |            | Co-60     | <llo *b="" -="" 5<="" td=""></llo>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 0.4 | 12/0      | I-131         | -0.4 - 0.3  | 1 1  | 12/0       | 1-131     | (5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 13  | 2 12/0    | Cs-134        | -1 - 8      | 1 1  |            | Cs-134    | (6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 1   |           | Cs-137        | -1 - 8      | 1 1  |            | Cs-137    | <6 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | 1   |           | 8a-140        | -3 - 1      | 1 1  |            | Ba-140    | <26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| food products | 74  | 0 1/1     | gross beta    | 2100        |      | - 1 0      | ross beta | analysis not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (pCi/kg wet)  |     | 1         | gamma isotop  | ic          |      | 1          | gamma is  | the state of the s |
|               | 110 | 0 1/0     | 8e-7          | -16         | 100  | · 1        | 8e-7      | analysis not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | 50  |           | K-40          | 2100        |      | - 1/1      | K-40      | 3130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 5   |           | Co-58         | -5          |      | 10.00      | Co-58     | <7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 5   |           | Co-60         | 10          |      | V 14       | Co-60     | <17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 8   |           | Zr-95         | -4          |      |            | Zr-95     | <13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | 61  |           | I-131         | -13         | 1 60 |            | I-131     | <8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 5   |           | Cs-134        | -1          | 6    |            | Cs-134    | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 5   |           | Cs-137        | -1          | 81   | 7.6        | Cs-137    | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

<sup>\*</sup> a - Number of samples / number of analyses detected above MDC  $r_{\ell}$  LLD.

<sup>\*</sup> b - In most cases, reported activities for LACSWR are less than the required NRC LLD's.

Table 5. Disagreements in the comparison of Wisconsin and LACSWR reported results from the environmental split sample monitoring program.

| Туре            | Collection | Description       |          | Wisc     | consin   |      | LACBWR              |
|-----------------|------------|-------------------|----------|----------|----------|------|---------------------|
| surface water   | 01/15/85   | discharge channel | (H-3)    | -160+270 | (<700    | MDC) | 1509                |
| surface water   | 01/15/85   | discharge channel | (Co-60)  | 31       | 7+10     |      | <mda< td=""></mda<> |
| surface water   | 05/14/85   | discharge channel | (H-3)    | 70+290   | (<700    | MDC) | 2629                |
| surface water   | 06/12/85   | discharge channel | (beta)   | 270      | 0+10     |      | 64+2                |
| surface water   | 06/12/85   | discharge channel | (H-3)    | 120+290  | (<700    | MDC) | 2559                |
| surface water   | 09/10/85   | discharge channel | (H-3)    | 170+300  | (<700    | MDC) | 2396                |
| surface water   | 10/08/85   | discharge channel | (H-3)    | 230+300  | (<700    | MDC) | 1472                |
| surface water   | 11/12/85   | discharge channel | (H-3)    | 280+310  | (<700    | MDC) | 2370                |
| surface water   | 12/10/85   | discharge channel | (H-3)    | 10+310   | (<700    |      | 4354                |
| surface water   | 01/15/85   | Lock & Dam #8     | (H-3)    | 30±280   | (<700    | MDC) | 2264                |
| surface water   | 09/10/85   | Lock & Dam #8     | (H-3)    | 170+300  | (<700    |      | 2396                |
| surface water   | 10/08/85   | Lock & Dam #8     | (H-3)    | 4+300    | (<700    |      | 1472                |
| surface water   | 11/12/85   | Lock & Dam #8     | (H-3)    | 40±300   | (<700    |      | 1650                |
| surface water   | 12/10/85   | Lock & Dam #8     | (H-3)    | -120+310 | (<700    | MDC) | 2619                |
| fish            | 03/26/85   | walleye           | (Co-60)  | . 110    | 0±310    |      | 183 <u>+</u> 23     |
| bottom sediment | 08/05/85   | outfall           | (Co-60)  | 620      | 0+50     |      | 111+21              |
| bottom sediment | 10/16/85   | outfall #2        | (Co-60)  | 8620     | 9+170    |      | 9725+71             |
| bottom sediment | 10/16/85   | outfall #2        | (Cs-134) | 550      | 0+90     |      | 868+23              |
| bottom sediment | 10/16/85   | outfall #2        | (Cs-137) | 17600    | +200     |      | 21340+88            |
| milk            | 11/12/85   | A. Malin          | (Cs-137) | 1+6 (    | (12 MDC) |      | 30+13               |

Table 6. U.S. Environmental Protection Agency's crosscheck program, comparision of EPA and State Laboratory of Hygiene (SLH) results.

| Sample<br>Type | Date<br>Collected | Analysis       | 3  | SLH  | Concentra<br>result<br>1 sigma | EPA  |                  | Deviation |
|----------------|-------------------|----------------|----|------|--------------------------------|------|------------------|-----------|
| Water          | 01-06-84          | Sr-89<br>Sr-90 | Ш  |      | +/-1.5<br>+/-1.1               |      | 5÷/-5<br>4+/-1.5 | 0.9       |
|                |                   | 31-90          |    | 21   | +/-1.1                         | 2.   | +/-1.5           | -3.1      |
| Water          | 01-20-84          | Alpha          |    | 11   | +/-2                           | 10   | 0+/-5.0          | 0.2       |
|                |                   | Beta           |    | 8    | +/-1.8                         | 12   | 2+/-5.0          | -1.5      |
| Food           | 01-27-84          | Sr-89          |    |      | provided                       |      | +/-5.0           |           |
|                |                   | Sr-90          | No |      | provided                       |      | 0+/-5.0          |           |
|                |                   | I-131          |    |      | +/-5                           |      | 0+/-6.0          | 0.6       |
|                |                   | Cs-137         |    |      | +/-5                           |      | 0+/-5.0          | 0.5       |
|                |                   | K              |    | 2958 | +/-180                         | 2720 | 0+/-136          | 3.0       |
| Water          | 02-03-84          | Cr-51          |    |      | <60                            |      | 0+/-5            |           |
|                |                   | Co-60          |    | 11   | +/-3                           |      | 0+/-5            | 0.2       |
|                |                   | Zn-65          |    |      | +/-8                           |      | 0+/-5            | 1.4       |
|                |                   | Ru-106         |    |      | <50                            |      | 1+/-5            |           |
|                |                   | Cs-134         |    |      | +/-5                           |      | 1+/-5            | -0.7      |
|                |                   | Cs-137         |    | 15   | +/-4                           | 1    | 5+/-5            | -0.2      |
| Water          | 02-10-84          | H-3            |    | 2767 | +/-390                         | 238  | 3+/-351          | 1.9       |
| Milk           | 03-02-84          | I-131          |    | 6    | +/-1.0                         | ,    | 5+/-0.9          | 0.0       |
| Water          | 03-09-84          | Ra-226         |    | 4.8  | +/-0.6                         | 4.   | 1+/-0.6          | 1.9       |
|                |                   | Ra-228         |    | 2.2  | +/-0.3                         | 2.0  | 0+/-0.3          | 1.2       |
| Water          | 03-18-84          | Alpha          |    | 5    | +/-2                           |      | 5+/-5.0          | 0.2       |
|                |                   | Beta           |    | 18   | +/-2                           | 20   | 0+/-5.0          | -0.6      |
| Filter         | 03-23-84          | Alpha          |    | 20   | +/-2                           | 1    | 5+/-5            | 1.6       |
|                |                   | Beta           |    | 49   | +/-4                           | 5    | 1+/-5            | -0.6      |
|                |                   | Sr-90          |    | 20   | +/-1.5                         | 2    | 1+/-1.5          | -0.8      |
|                |                   | Cs-137         |    | 12   | +/-5                           | 1    | 0+/-5            | 0.6       |
| Water          | 04-06-84          | I-131          |    | 4    | +/-1.0                         |      | 6+/-0.9          | -4.3      |
| Water          | 04-13-84          | H-3            |    | 3330 | +/-400                         | 350  | 8+/-364          | -0.8      |
| Water          | 05-04-84          | Sr-89          |    | 21   | +/-1.0                         | 2    | 5+/-5            | -1.4      |
|                |                   | Sr-90          |    | 5    | +/-0.7                         |      | 5+/-1.5          | 0.0       |
| Water          | 05-18-84          | Alpha          |    | 4    | +/-1.3                         |      | 3+/-5.0          | 0.3       |
|                |                   | Beta           |    | 8    | +/-1.5                         |      | 6+/-5.0          | 0.6       |

Table 6 (continued)

| Sample<br>Type | Date<br>Collected | Analysis | SLH result<br>+/- 1 sigma | EPA result<br>+/- 1 sigma | Deviation |
|----------------|-------------------|----------|---------------------------|---------------------------|-----------|
| Water          | 06-08-84          | H-3      | 3007+/-400                | 3081+/-389                | -0.2      |
| Water          | 06-01-84          | Cr-51    | 63+/-30                   | 66+/-5                    | -1.2      |
|                |                   | Cc-60    | 32+/-3                    | 31+/-5                    | 0.5       |
|                |                   | Zn-65    | 68+/-7                    | 63+/-5                    | 1.7       |
|                |                   | Ru-106   | <35                       | 29+/-5                    |           |
|                |                   | Cs-134   | 44+/-4                    | 47+/-5                    | -1.0      |
|                |                   | Cs-137   | 37+/-3                    | 37+/-5                    | 0.0       |
| Water          | 06-15-84          | Ra-226   | 4.5                       | 3.5+/-0.53                | 3.4       |
|                |                   | Ra-228   | 1.8                       | 2.0+/-0.30                | -1.0      |
| Milk           | 06-22-84          | Sr-89 No | data provided             | 25+/-5                    |           |
|                |                   | Sr-90    | 17+/-1.5                  | 17+/-1.5                  | 0.4       |
|                |                   | I-131    | 44+/-8                    | 43+/-6                    | 0.2       |
|                |                   | Cs-137   | 39+/-9                    | 35+/-5                    | 1.3       |
|                |                   | K        | 1710+/-210                | 1496+/-75                 | 4.9       |
| Water          | 07-20-84          | Alpha    | 6+/-1.5                   | 6+/-5                     | -0.1      |
|                |                   | Beta     | 9+/-1.7                   | 13+/-5                    | -1.4      |
| Water          | 08-03-84          | I-131    | 33+/-5                    | 34+/-6                    | -0.2      |
| Water          | 08-07-84          | H-3      | 2970+/-360                | 2817+/-356                | 0.7       |
| Filter         | 08-24-84          | Alpha    | 19+/-1.7                  | 17+/-5                    | 0.6       |
|                |                   | Beta     | 47+/-2                    | 51+/-5                    | -1.5      |
|                |                   | Sr-90    | 17+/-1.0                  | 18+/-1.5                  | -1.2      |
|                |                   | Cs-137   | 18+/-5                    | 15+/-5                    | 1.2       |
| Water          | 09-07-84          | Sr-89    | 31+/-1.6                  | 34+/-5                    | -0.9      |
|                |                   | Sr-90    | 20+/-1.1                  | 19+/-1.5                  | 1.2       |
| Water          | 09-14-84          | Ra-226   | 5.1+/-0.7                 | 4.9+/-0.74                | 0.4       |
|                |                   | Ra-228   | 2.1+/-0.4                 | 2.3+/-0.35                | -1.2      |
| Water          | 10-05-84          | Cr-51    | 48+/-16                   | 40+/-5                    | 2.9       |
|                |                   | Co-60    | 19+/-3                    | 20+/-5                    | -0.2      |
|                |                   | Zn-65    | 158+/-9                   | 147+/-7.4                 | 2.5       |
|                |                   | Ru-106   | 47+/-16                   | 47+/-5                    | 0.0       |
|                |                   | Cs-134   | 29+/-3                    | 31+/-5                    | -0.8      |
|                |                   | Cs-137   | 23+/-3                    | 24+/-5                    | -0.2      |
| Water          | 10-12-84          | H-3      | 2783+/-320                | 2810+/-356                | -0.1      |

Table 6 (continued)

| Sample<br>Type | Date<br>Collected | Analysis | SLH result<br>+/- 1 sigma | tion in pCi/s EPA result +/- 1 sigma | Deviation |
|----------------|-------------------|----------|---------------------------|--------------------------------------|-----------|
|                |                   |          |                           |                                      |           |
| Water          | 10-22-84          | Alpha    | 13+/-2                    | 14+/-5.0                             | -0.2      |
|                |                   | Beta     | 69+/-5                    | 64+/-5.0                             | 1.7       |
|                |                   | Ra-226   | 3.0+/-0.5                 | 3.0+/-0.45                           | 0.0       |
|                |                   | Ra-228   | 3.1+/-0.3                 | 2.1+/-0.32                           | 5.2       |
|                |                   | Sr-89    | 12+/-4                    | 11+/-5.0                             | 0.2       |
|                |                   | Sr-90    | 13+/-1.5                  | 12+/-1.5                             | 1.5       |
|                |                   | Co-60    | 15+/-5                    | 14+/-5.0                             | 0.5       |
|                |                   | Cs-134   | <10                       | 2+/-5.0                              |           |
|                |                   | Cs-137   | 15+/-5                    | 14+/-5.0                             | 0.2       |
| Milk           | 10-26-84          | Sr-89 No | data provided             | 22+/-5                               |           |
|                |                   | Sr-90 No | data provided             | 16+/-1.5                             |           |
|                |                   | I-131    | 41+/-9                    | 42+/-6                               | -0.2      |
|                |                   | Cs-137   | 30+/-7                    | 32+/-5                               | -0.6      |
|                |                   | K        | 1567+/-150                | 1517+/-76                            | 1.1       |
| Water          | 11-16-84          | Alpha    | 8+/-4                     | 7+/-5                                | 0.2       |
|                |                   | Beta     | 22+/-2                    | 20+/-5.0                             | 0.8       |
| Filter         | 11-23-84          | Alpha    | 18+/-5                    | 15+/-5                               | 1.2       |
|                |                   | Beta     | 53+/-5                    | 52+/-5                               | 0.2       |
|                |                   | Sr-90    | 20+/-1.5                  | 21+/-1.5                             | -1.2      |
|                |                   | Cs-137   | 11+/-4                    | 10+/-5                               | 0.3       |
| Water          | 12-07-84          | I-131    | 41+/-8                    | 36+/-6                               | 1.4       |
| Water          | 12-14-84          | H-3      | 2977+/-320                | 3182+/-360                           | -1.0      |
| Water          | 01-04-85          | Sr-89    | <1                        | 3+/-5                                |           |
|                |                   | Sr-90    | 31+/-2                    | 30+/-1.5                             | 0.8       |
| Water          | 01-18-85          | Alpha    | 4+/-2                     | 5+/-5                                | -0.3      |
|                |                   | Beta     | 20+/-2                    | 15+/-5                               | 1.6       |
| Food           | 01-25-85          |          | data provided             |                                      |           |
|                |                   | Sr-90 No | data provided             | 26.0+/-1.5                           |           |
|                |                   | I-131    | 33+/-6                    | 35+/-6                               | -0.4      |
|                |                   | Cs-137   | 30+/-6                    | 29+/-5                               | 0.2       |
|                |                   | K        | 1290+/-90                 | 1382+/-120                           | 0.9       |
| Water          | 02-08-85          | Cr-51    | 53+/-18                   | 43+/-5                               | 1.8       |
|                |                   | Co-60    | 18+/-5                    | 20+/-5                               | -0.7      |
|                |                   | Zn-65    | 59+/-5                    | 55+/-5                               | 1.4       |
|                |                   | Ru-106   | 31+/-5                    | 25+/-5                               | 2.0       |
|                |                   | Cs-134   | 35+/-5                    | 35+/-5                               | 0.0       |
|                |                   | Cs-137   | 25+/-5                    | 25+/-5                               | 0.1       |

Table 6 (continued)

| Sample<br>Type | Date<br>Collected | Analysis                                                                                 | SLH result<br>+/- 1 sigma                                                                                                  | tion in pCi/s EPA result +/- 1 sigma                                                                                                  | Deviation                                                |
|----------------|-------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Water          | 02-15-85          | H-3                                                                                      | 3927+/-330                                                                                                                 | 3796+/-366                                                                                                                            | 0.6                                                      |
| Milk           | 03-01-85          | I-131                                                                                    | 9+/-1.0                                                                                                                    | 9+/-0.9                                                                                                                               | 0.6                                                      |
| Water          | 03-15-65          | Ra-226<br>Ra-228                                                                         | 4.3+/-0.8 7.8+/-1.4                                                                                                        | 5.0+/-0.75<br>9.0+/-1.35                                                                                                              | -1.6<br>-1.6                                             |
| Water          | 03-22-85          | Alpha<br>Beta                                                                            | 6+/-3<br>15+/-2                                                                                                            | 6+/-5<br>15+/-5                                                                                                                       | 0.0                                                      |
| Filter         | 03-29-85          | Alpha<br>Beta<br>Sr-90<br>Cs-137                                                         | 12.7+/-4<br>33+/-4<br>15+/-2<br>9.3+/-4                                                                                    | 10.0+/-5.0<br>36.0+/-5.0<br>15.0+/-1.5<br>6.0+/-5.0                                                                                   | 0.9<br>-1.0<br>0.0<br>1.1                                |
| Water          | 04-05-85          | I-131                                                                                    | 8.0+/-1.0                                                                                                                  | 7.5+/-0.8                                                                                                                             | 1.1                                                      |
| Water          | 04-12-85          | H-3                                                                                      | 3480+/-350                                                                                                                 | 3559+/-364                                                                                                                            | -0.4                                                     |
| Water          | 04-19-85          | Alpha<br>Beta<br>Ra-226<br>Ra-228<br>U No<br>Sr-89<br>Sr-90<br>Co-60<br>Cs-134<br>Cs-137 | 34.7+/-3<br>75.3+/-5<br>6.9+/-0.6<br>12.0+/-0.9<br>data provided<br>13.3+/-5<br>12.7+/-1.5<br>14+/-4<br>12+/-4<br>10.7+/-4 | 32.0+/-5.0<br>72.0+/-5.0<br>4.1+/-0.6<br>6.2+/-0.9<br>7.0+/-6.0<br>10.0+/-5.0<br>15.0+/-1.5<br>15.0+/-5.0<br>15.0+/-5.0<br>12.0+/-5.0 | 0.9<br>1.2<br>8.2<br>11.1<br>1.2<br>-2.3<br>-0.3<br>-1.0 |
| Water          | 05-10-85          | Sr-90<br>Sr-89                                                                           | 15.3+/-1.2<br>39.0+/-1.5                                                                                                   | 15.0+/-1.5<br>39.0+/-5.0                                                                                                              | 0.4                                                      |
| Water          | 05-24-85          | Alpha<br>Beta                                                                            | 11.7+/-2<br>13.7+/-1.8                                                                                                     | 12.0+/-5.0                                                                                                                            | -0.1<br>0.9                                              |
| Water          | 06-07-85          | Cr-51<br>Co-60<br>Zn-65<br>Ru-106<br>Cs-134<br>Cs-137                                    | 52+/-8<br>13+/-2<br>50+/-6<br>57+/-19<br>36+/-3<br>19+/-3                                                                  | 44.0+/-5.0<br>14.0+/-5.0<br>47.0+/-5.0<br>62.0+/-5.0<br>35.0+/-5.0<br>20.0+/-5.0                                                      | 2.9<br>-0.2<br>1.2<br>-1.6<br>0.2<br>-0.2                |
| Water          | 06-14-85          | H-3                                                                                      | 2200+/-320                                                                                                                 | 2416+/-351                                                                                                                            | -1.1                                                     |

Table 6 (continued)

| Sample<br>Type | Date<br>Collected | Analysis                                    | SLH result<br>+/- 1 sigma                                        | tion in pCi/sample *a EPA result Deviation +/- 1 sigma Known                           |
|----------------|-------------------|---------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Water          | 06-21-85          | Ra-226<br>Ra-228                            | 3.2+/-0.5<br>5.2+/-0.6                                           | 3.1+/-0.4 0.3<br>4.2+/-0.6 2.7                                                         |
| Milk           | 06-28-85          | Sr-89 No<br>Sr-90<br>I-131<br>Cs-137<br>K   | data provided<br>14+/-2<br>12+/-5<br>11+/-5<br>1660+/-120        | 11.0+/-5.0<br>11.0+/-1.5<br>11.0+/-6.0<br>11.0+/-5.0<br>11.0+/-5.0<br>1525+/-76<br>3.1 |
| Water          | 07-19-85          | Alpha<br>Beta                               | 10.7+/-1.5                                                       | 11.0+/-5.0 0.6<br>8.0+/-5.0 0.7                                                        |
| Food           | 07-26-85          |                                             | data provided<br>data provided<br>32+/-8<br>28+/-8<br>1560+/-100 | 33.0+/-5.0<br>26.0+/-1.5<br>35.0+/-6.0 -0.9<br>29.0+/-5.0 -0.2<br>1514+/-76 1.0        |
| Water          | 08-09-85          | I-131                                       | 29+/-10                                                          | 33.0+/-6.0 -1.3                                                                        |
| Water          | 08-14-85          | H-3                                         | 4453+/-360                                                       | 4480+/-448 -0.1                                                                        |
| Water          | 08-23-85          | U                                           | 5+/-5                                                            | 4.0+/-6.0 0.3                                                                          |
| Filter         | 08-30-85          | Alpha<br>Beta<br>Sr-90<br>Cs-137            | 15.3+/-1.5<br>41.0+/-1.5<br>19.0+/-1.5<br>7.7+/-4                | 13.0+/-5.0 0.8<br>44.0+/-5.0 -1.0<br>18.0+/-1.5 1.2<br>8.0+/-5.0 -0.1                  |
| Water          | 09-06-85          | Sr-89<br>Sr-90                              | 23+/-2<br>6.0+/-1.5                                              | 20.0+/-5.0<br>7.0+/-1.5<br>1.2<br>-1.2                                                 |
| Water          | 09-13-85          | Ra-226<br>Ra-228                            | 8.7+/-1.3<br>3.4+/-0.8                                           | 8.9+/-1.3 -0.3<br>4.6+/-0.7 -2.9                                                       |
| Water          | 09-20-85          | Alpha<br>Beta                               | 7.3+/-1.7                                                        | 8.0+/-5.0 -0.2<br>8.0+/-5.0 0.7                                                        |
| Water          | 10-04-85          | Cr-51<br>Co-60<br>Zn-65<br>Ru-106<br>Cs-134 | <44.<br>19+/-5<br>21+/-5<br><40<br>16+/-5                        | 21.0+/-5.0<br>20.0+/-5.0 -0.3<br>19.0+/-5.0 0.8<br>20.0+/-5.0 -1.3                     |
| Water          | 10-11-85          | Cs-137<br>H-3                               | 19+/-5<br>1823+/-320                                             | 20.0+/-5.0 -0.2<br>1974+/-345 -0.8                                                     |

Table 6 (continued)

| Sample<br>Type | Date<br>Collected | Analysis       | SLH result<br>+/- 1 sigma | EPA result<br>+/- 1 sigma |     |
|----------------|-------------------|----------------|---------------------------|---------------------------|-----|
| Milk           | 10-25-85          |                | data provided             | 48.0+/-5.0                |     |
|                |                   | Sr-90<br>I-131 | 30.7+/-1.8                | 26.0+/-1.5<br>42.0+/-6.0  | 5.4 |
|                |                   | Cs-137         | 56+/-5                    | 56.0+/-5.0                | 0.1 |
|                |                   | K              | 1630+/-180                | 1540.+/-77.0              | 2.0 |
| Water          | 12-06-85          | I-131          | 46+/-5                    | 45.0+/-6.0                | 0.2 |

# \* a - pCi/sample refers to the following:

| Sample | Units                           |
|--------|---------------------------------|
| water  | pCi/liter                       |
| milk   | pCi/liter except for K mg/liter |
| food   | pCi/kg except for K mg/kg       |
| filter | pCi/filter                      |

The LLD is the smallest concentration of radioactive material in a sample that will be detected with 95% probability with 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

LLD = 
$$\frac{4.66 \text{ sb}}{\text{E x V x 2.22 x Y x Exp}(-\lambda \Delta t)}$$

WHERE:

22

LLD is the a priori lower limit of detection as defined above (as picocurie per unit mass or volume).

- s<sub>b</sub> is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute). Typical values of E, V, Y, and Δt shall be used in the calculations.
- E is the counting efficiency (as counts per transformation).

V is the sample size (in units of mass or volume).

2.22 is the number of transformations per minute per picocurie.

Y is the fraction radiochemical yield (when applicable).

 $\lambda$  is the radioactive decay constant for the particular radionuclide.

At is the elapsed time between sample collection (or end of the sample collection period) and time of counting.

- (b) (2,000) LLD drinking water.
- (c) LLD for gamma spectrum analyses not separation and specific isotopic analysis.

ATTACHMENT A

RADIO-ENVIRONMENTAL SAMPLE ANALYSES MAXIMUM LOWER LIMITS OF DETECTION VALUES (LLD)8

|            |                         |                                                 | Sample Type           |                 |                          |
|------------|-------------------------|-------------------------------------------------|-----------------------|-----------------|--------------------------|
| Analysis   | Water<br>pC1/1          | Airborne Particulate<br>or Radiolodine (pC1/m3) | Pish<br>(pC1/Kg, Wet) | M11k<br>(pC1/1) | Sediment<br>(pC1/kg Dry) |
| Gross Bets | 9                       | 1 x 10 <sup>-2</sup>                            |                       |                 |                          |
| Н-3        | 3500(2000) <sup>b</sup> |                                                 |                       |                 |                          |
| Mn-54      | 15                      |                                                 | 130                   |                 |                          |
| Fe-59      | 30                      |                                                 | 260                   |                 |                          |
| Co-58, 60  | 15                      |                                                 | 130                   |                 |                          |
| Zn-65      | 30                      |                                                 | 260                   |                 |                          |
| Zr-95      | 30                      |                                                 |                       |                 |                          |
| NP-95      | 15                      |                                                 |                       |                 |                          |
| I-131      | 3c                      | 7 x 10 <sup>-2</sup>                            |                       | 26              |                          |
| Cs-134     | 15                      | 5 x 10 <sup>-2</sup>                            | 130                   | 15              | 150                      |
| Cs-137     | 18                      | 6 x 10 <sup>-2</sup>                            | 150                   | 18              | 180                      |
| Ba-140     | 09                      |                                                 |                       | 09              |                          |
| La-140     | 20                      |                                                 |                       | 20              |                          |

(See Footnotes a, b, and c on following page.)

# References

La Crosse Boiling Water Reactor, LACBWR, Health & Safety Department Procedure, LACBWR Environmental Monitoring Program, HSP-03.4, Issue 5, pages 29,30.

Radiation Protection Standards, Federal Radiation Council, Report No. 2, September 1961.

U.S. Environmental Protection Agency, Upgrading Environmental Radiation Data, Health Physics Society Committee Report HPSR-1 (1980), EPA 520/1-80-012, August 1980.

U.S. Nuclear Regulatory Commission, Title 10, Part 20.

Wisconsin Department of Health and Social Services, Division of Health, Section of Radiation Protection. NRC 30-83-647, 1984 Annual Report, La Crosse Boiling Water Reactor.

Table 7. Air particulate gross beta and air iodine (I-131) results for January - June, 1985. Indicator site.

LACSWR

1985

Measurements in units of pCi/M^3

WI - Section of Radiation Protection data LACSWR data

Lock & Dam #8 0.7 miles N

| Collection date | Air Particulate | Air Iodine    | Collection date | Air Particulate | Air Iodine |
|-----------------|-----------------|---------------|-----------------|-----------------|------------|
| 01-09-85        | 0.025+/-0.003   | 0.004+/-0.03  | 01-08-85        | 0.052+/-0.006   | <0.00145   |
| 01-16-85        | 0.021+/-0.003   | -0.013+/-0.03 | 01-15-85        | 0.028+/-0.003   | < 0.00131  |
| 01-23-85        | 0.016+/-0.002   | -0.006+/-0.03 | 01-22-85        | 0.037+/-0.003   | <0.00134   |
| 01-30-85        | 0.017+/-0.002   | 0.004+/-0.03  | 01-29-85        | 0.033+/-0.003   | <0.00148   |
| 02-06-85        | 0.020+/-0.003   | -0.003+/-0.05 | 02-05-85        | 0.029+/-0.003   | < 0.00127  |
| 02-13-85        | 0.031+/-0.003   | 0.000+/-0.03  | 02-12-85        | 0.045+/-0.003   | <0.00133   |
| 02-20-85        | 0.021+/-0.003   | 0.011+/-0.03  | 02-19-85        | 0.037+/-0.003   | <0.00118   |
| 02-27-85        | 0.018+/-0.003   | 0.004+/-0.03  | 02-26-85        | 0.033+/-0.003   | <0.00133   |
| 03-06-85        | 0.018+/-0.002   | 0.016+/-0.05  | 03-05-85 * a    | 0.013+/-0.001   | <0.00134   |
| 03-13-85        | 0.018+/-0.003   | 0.017+/-0.03  | 03-12-85        | 0.017+/-0.001   | <0.00127   |
| 03-20-85        | 0.008+/-0.002   | -0.03+/-0.03  | 03-19-85        | 0.010+/-0.001   | <0.00118   |
| 03-27-85        | 0.01!+/-0.002   | 0.003+/-0.03  | 03-26-85        | 0.014+/-0.001   | <0.00158   |
| 04-03-85        | 0.010+/-0.002   | -0.009+/-0.03 | 04-02-85        | 0.015+/-0.001   | <0.00147   |
| 04-10-85        | 0.013+/-0.002   | 0.004+/-0.03  | 04-19-85        | 0.011+/-0.001   | <0.00169   |
| 04-17-85        | 0.017+/-0.003   | -0.008+/-0.03 | 04-16-85        | 0.018+/-0.001   | < 0.00121  |
| 04-24-85        | 0.016+/-0.003   | 0.019+/-0.03  | 04-23-85        | 0.019+/-0.002   | <0.00132   |
| 05-01-85        | 0.010+/-0.002   | -0.011+/-0.03 | 04-30-85        | 0.011+/-0.001   | <0.00131   |
| 05-08-85        | 0.011+/-0.002   | -0.001+/-0.03 | 05-07-85        | 0.015+/-0.002   | < 0.00167  |
| 05-15-85        | 0.011+/-0.002   | 0.001+/-0.04  | 05-14-85        | 0.017+/-0.001   | <0.00174   |
| 05-22-85        | 0.009+/-0.002   | 0.000+/-0.03  | 05-21-85        | 0.010+/-0.001   | <0.00130   |
| 05-29-85        | 0.015+/-0.002   | 0.000+/-0.03  | 05-28-85        | 0.017+/-0.002   | <0.00233   |
| 06-05-85        | 0.001+/-0.002   | -0.03+/-0.04  | 06-04-85        | 0.013+/-0.002   | <0.00175   |
| 06-12-85        | 0.011+/-0.002   | 0.000+/-0.03  | 06-11-85        | 0.014+/-0.002   | < 0.00192  |
| 06-19-85        | 0.012+/-0.002   | 0.005+/-0.03  | 06-18-85        | 0.013+/-0.001   | <0.00161   |
| 06-26-85        | 0.015+/-0.002   | 0.007+/-0.03  | 06-26-85        | 0.021+/-0.002   | <0.00123   |

<sup>\*</sup> a - A new counting instrument was used for gross beta counting of the air particulaate samples.

Table 8. Air particulate gross beta and air iodine (I-131) results for July - December, 1985. Indicator site.

LACBWR

1985

Measurements in units of pCi/M^3

WI - Section of Radiation Protection data

LACSWR data

Lock & Dam #8 0.7 miles N

| Collection date | Air Particulate | Air Iodine    | Collection date | Air Particu'ate | Air Iodine      |
|-----------------|-----------------|---------------|-----------------|-----------------|-----------------|
| 07-03-85        | 0.010+/-0.002   | -0.004+/-0.03 | 07-02-85        | 0.015+/-/.002   | <0.00320        |
| 07-10-85        | 0.017+/-0.002   | -0.001+/-0.03 | 07-09-85        | 0.024+/-7.002   | <0.0344         |
| 07-17-85        | 0.016+/-0.002   | -0.004+/-0.03 | 07-16-85        | 0.021+/-0.002   | < 0.00177       |
| 07-24-85        | 0.015+/-0.002   | -0.018+/-0.02 | 07-23-85        | 0.021+/-0.002   | < 0.00214       |
| 07-31-85        | 0.012+/-0.002   | -0.005+/-0.03 | 07-30-85        | 0.015+/-1.002   | <0.00480        |
| 08-07-85        | 0.016+/-0.002   | -0.004+/-0.03 | 08-06-85        | 0.019+/-0.002   | <0.00426        |
| 08-14-85        | 0.021+/-0.003   | -0.005+/-0.03 | 08-13-85        | 0.021+/-0.002   | <0.00522        |
| 08-21-85        | 0.011+/-0.002   | 0.012+/-0.03  | 08-20-85        | 0.018+/-0.002   | < 0.0171        |
| 08-28-85        | 0.015+/-0.002   | -0.005+/-0.03 | 08-27-85        | 0.016+/-0.002   | <0.00209        |
| 09-04-85        | 0.017+/-0.002   | 0.020+/-0.03  | 09-03-85        | 0.024+/-0.002   | <0.00228        |
| 09-11-85        | 0.012+/-0.002   | 0.002+/-0.03  | 09-10-85        | 0.017+/-0.002   | <0.00190        |
| 09-18-85        | 0.016+/-0.002   | -0.005+/-0.03 | 09-17-85        | 0.024+/-0.002   | <0.00190        |
| 09-25-85        | 0.009+/-0.002   | -0.016+/-0.03 | 09-24-85        | 0.009+/-0.001   | < 0.00173       |
| 10-02-85        | 0.009+/-0.002   | -0.018+/-0.05 | 10-01-85        | 0.016+/-0.002   | <0.00185        |
| 10-09-85        | 0.018+/-0.003   | -0.011+/-0.04 | 10-08-85        | 0.019+/-0.002   | <0.00185        |
| 10-16-85        | 0.010+/-0.002   | 0.013+/-0.03  | 10-15-85        | 0.009+/-0.001   | < 0.00152       |
| 10-23-85        | 0.016+/-0.002   | -0.006+/-0.03 | 10-22-85        | 0.015+/-0.001   | (3.8+/-1.3) E-3 |
| 10-30-85        | 0.012+/-0.002   | -0.007+/-0.04 | 10-29-85        | 0.015+/-0.002   | <0.00154        |
| 11-06-85        | 0.012+/-0.002   | 0.001+/-0.04  | 11-05-85        | 0.019+/-0.002   | <0.00481        |
| 11-13-85        | 0.012+/-0.002   | -0.010+/-0.04 | 11-12-85        | 0.011+/-0.001   | <0.0018         |
| 11-20-85        | 0.018+/-0.003   | -0.004+/-0.03 | 11-19-85        | 0.017+/-0.002   | <0.00166        |
| 11-27-85        | 0.025+/-0.003   | -0.005+/-0.04 | 11-26-85        | 0.030+/-0.003   | <0.00188        |
| 12-04-85        | * 1             | * 1           | 12-03-85        | 0.033+/-0.002   | <0.00202        |
| 12-11-85        | 0.051+/-0.004   | -0.004+/-0.03 | 12-10-85        | 0.047+/-0.003   | <0.00211        |
| 12-18-85        | 0.033+/-0.003   | 0.005+/-0.03  | 12-18-85        | 0.028+/-0.002   | <0.00156        |
| 12-25-85        | 0.025+/-0.003   | -0.007+/-0.04 | 12-26-85        | 0.018+/-0.001   | <0.00128        |
| 01-01-86        | 0.013+/-0.002   | -0.016+/-0.03 | 12-31-85        | 0.018+/-0.002   | (4.2+/-2.1) E-3 |
|                 |                 |               |                 |                 |                 |

<sup>\*</sup> a - Sampler was not properly connected resulting in no air flow through the sampler.

Table 9. Air particulate gross beta and air iodine (I-131) results for January - June, 1985. Control site.

LACSWR

1985

| Measurements in u | units of pC1/M^3     |                |                 |                 |            |
|-------------------|----------------------|----------------|-----------------|-----------------|------------|
| NI - Section of A | Radiation Protection | n data         | LACSWR data     |                 |            |
| La Crosse         |                      |                | LaCrossa        |                 |            |
| 15.6 miles N      |                      |                | 16 miles N      |                 |            |
| Collection date   | Air Particulate      | Air Iodine     | Collection date | Air Particulate | Air Iodine |
| 01-07-85          | 0.023+/-0.002        | 0.001+/-0.02   | 01-08-85        | 0.045+/-0.005   | <0.00142   |
| 01-14-85          | 0.010+/-0.001        | 0.015+/-0.03   | 01-15-85        | 0.029+/-0.003   | <0.00114   |
| 01-21-85          | 0.013+/-0.001        | -0.003+/-0.011 | 01-22-85        | 0.031+/-0.905   | < 0.00135  |
| 01-28-85          | 0.012+/-0.001        | 0.006+/-0.02   | 01-29-85        | 0.032+/-0.004   | <0.00146   |
| 02-04-85          | 0.015+/-0.001        | 0.011+/-0.02   | 02-05-85        | 0.023+/-0.004   | <0.00168   |
| 02-11-85          | * *                  | * *            | 02-12-85        | 0.035+/-0.004   | <0.00175   |
| 02-19-85          | 0.020+/-0.001        | 0.007+/-0.011  | 02-19-85        | 0.043+/-0.004   | < 0.00136  |
| 02-25-85          | 0.028:/-0.002        | 0.009+/-0.02   | 02-26-85        | 0.033+/-0.003   | <0.00126   |
| 03-04-85          | 0.013+/-0.001        | -0.004+/-0.02  | 03-05-85 * c    | 0.012+/-0.001   | <0.00155   |
| 03-11-85          | 0.014+/-0.001        | 0.010+/-0.02   | 03-12-85        | 0.015+/-0.001   | < 0.00142  |
| 03-18-85          | 0.008+/-0.001        | -0.004+/-0.012 | 03-19-85        | 0.009+/-0.001   | <0.00152   |
| 0?-25-85          | 0.5100/-0.001        | 0.009+/-0.02   | 03-26-85        | 0.012+/-0.001   | <0.00259   |
| 04-01-85 * b      | 0.013+/-0.005        | 0.013+/-0.04   | 04-02-85        | 0.014+/-0.001   | < 0.00169  |
| 04-08-85          | 0.009+/-0.001        | 0.05+/-0.03    | 04-09-85        | 0.012+/-0.001   | <0.00215   |
| 04-15-85          | 0.016+/-0.002        | -0.012+/-0.02  | 04-16-85        | 0.018+/-0.002   | <0.00117   |
| 04-22-85          | 0.016+/-0.002        | -0.005+/-0.02  | 04-23-85        | 0.017+/-0.002   | < 0.00159  |
| 04-29-85          | 0.008+/-0.001        | 0.000+/-0.013  | 04-30-85        | 0.010+/-0.001   | <0.00154   |
| 05-06-85          | 0.012+/-0.001        | 0.000+/-0.02   | 05-07-85        | 0.017+/-0.002   | <0.00185   |
| 05-13-85          | 0.012+/-0.001        | -0.013+/-0.02  | 05-14-85        | 0.018+/-0.002   | <0.00144   |
| 05-20-85          | 0.009+/-0.001        | 0.002+/-0.02   | 05-21-85        | 0.012+/-0.001   | <0.00175   |
| 05-28-85          | 0.011+/-0.001        | 0.003+/-0.02   | 05-28-85        | 0.017+/-0.002   | <0.00177   |
| 06-03-85          | 0.005+/-0.001        | -0.016+/-0.02  | 06-04-85        | 0.013+/-0.002   | <0.00185   |
| 06-10-85          | 0.011+/-0.001        | -0.002+/-0.02  | 06-11-85        | 0.015+/-0.002   | <0.00190   |
| 06-17-85          | 0.013+/-0.001        | -0.002+/-0.02  | 06-18-85        | 0.017+/-0.002   | <0.00202   |
| 06-24-85          | 0.003+/-0.002        | 0.000+/-0.02   | 06-26-85        | 0.026+/-0.002   | <0.00182   |
| 07-01-85          | 0.012+/-0.001        | 0.000+/-0.02   |                 |                 |            |

<sup>\*</sup> a - Sampler was not operating.

<sup>\*</sup> b - Sampler was not operating for approximately 5.8 days.

<sup>\*</sup> c - A new counting instrument was used for gross beta counting of the air particulate filters starting 03/05/85.

Table 10. Air particulate gross beta and air iodine (I-131) results for July - December, 1985. Control site.

# LACBWR

1985

| Measurements | in | units | of | oCt. | /M*3 |
|--------------|----|-------|----|------|------|
|              |    |       |    |      |      |

| H | 1 - | Section | of | Radiation | Protection | data | LACSWR de | ata |
|---|-----|---------|----|-----------|------------|------|-----------|-----|
|   |     |         |    |           |            |      |           |     |

La Crosse
15.6 miles N
16 miles N

|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IV MITOS N      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air Particulate | Air Iodine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Collection date | Air Particulate                  | Air Iodine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.017+/-0.002   | -0.001+/-0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 07-02-85        | 0.015+/-0.002                    | <0.00320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.020+/-0.002   | -0.001+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07-09-85        | 0.024+/-0.002                    | <0.0344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.016+/-0.002   | -0.017+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07-16-85        |                                  | <0.00177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.014+/-0.001   | 0.001+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07-23-85        |                                  | <0.00214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.012+/-0.001   | 0.000+/-0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 07-30-85        | 0.0000 1 000000                  | <0.00488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.011+/-0.001   | 0.004+/-0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08-06-85        |                                  | <0.00426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.015+/-0.001   | 0.001+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 08-13-85        |                                  | <0.00522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.011+/-0.001   | 0.006+/-0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08-20-85        | 0.018+/-0.002                    | < 0.0171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.017+/-0.001   | -0.003+/-0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08-27-85        |                                  | <0.00209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.015+/-0.002   | -0.002+/-0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 09-03-85        |                                  | <0.00228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.009+/-0.001   | 0.003+/-0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09-10-85        |                                  | <0.00190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.012+/-0.001   | -0.007+/-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 09-17-85        |                                  | <0.00190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.009+/-0.001   | -0.001+/-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                  | <0.00173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.012+/-0.001   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5 5.0 5.5     |                                  | <0.00175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.011+/-0.001   | -0.019+/-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                  | <0.00203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.015+/-0.001   | -0.014+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-15-85        |                                  | < 0.00152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.012+/-0.001   | -0.004+/-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-22-85        |                                  | <0.00192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.010+/-0.001   | -0.005+/-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-29-85        |                                  | <0.00146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.010+/-0.001   | -0.002+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-05-85        | 0.019+/-0.002                    | <0.00193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.015+/-0.001   | -0.005+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-12-85        | 0.014+/-0.002                    | <0.00174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.017+/-0.001   | -0.018+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-29-85        |                                  | <0.00148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.019+/-0.001   | 0.303+/-0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12-03-65        |                                  | <0.00323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.048+/-0.003   | -0.008+/-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12-10-85        | The second section of the second | <0.00295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.000+/-0.001   | -0.018+/-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                  | <0.00244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.024+/-0.002   | -0.012+/-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                  | <0.00208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.012+/-0.001   | -0.003+/-0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12-31-85        | 0.017+/-0.002                    | <0.00321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 0.017+/-0.002<br>0.020+/-0.002<br>0.016+/-0.002<br>0.016+/-0.001<br>0.012+/-0.001<br>0.015+/-0.001<br>0.017+/-0.001<br>0.017+/-0.001<br>0.015+/-0.002<br>0.009+/-0.001<br>0.012+/-0.001<br>0.012+/-0.001<br>0.012+/-0.001<br>0.012+/-0.001<br>0.012+/-0.001<br>0.012+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.015+/-0.001<br>0.019+/-0.001<br>0.019+/-0.001<br>0.048+/-0.003<br>0.000+/-0.001<br>0.024+/-0.002 | 0.017+/-0.002   | Air Particulate                  | Air Particulate  0.017+/-0.002 -0.001+/-0.014  0.020+/-0.002 -0.001+/-0.02  0.020+/-0.002 -0.001+/-0.02  0.016+/-0.002 -0.017+/-0.02  0.016+/-0.002 -0.017+/-0.02  0.016+/-0.002 -0.017+/-0.02  0.014+/-0.001 0.001+/-0.02  0.012+/-0.001 0.001+/-0.013  0.012+/-0.001 0.004+/-0.015  0.015+/-0.001 0.004+/-0.015  0.015+/-0.001 0.001+/-0.02  0.015+/-0.001 0.001+/-0.02  0.015+/-0.001 0.001+/-0.02  0.015+/-0.001 0.001+/-0.02  0.015+/-0.001 0.001+/-0.014  08-20-85 0.018+/-0.002  0.017+/-0.001 -0.002+/-0.013  08-27-85 0.016+/-0.002  0.015+/-0.002 -0.002+/-0.018  09-03-85 0.016+/-0.002  0.015+/-0.002 -0.002+/-0.018  09-03-85 0.016+/-0.002  0.015+/-0.001 0.003+/-0.016  09-10-85 0.017+/-0.002  0.012+/-0.001 -0.001+/-0.03  0.012+/-0.001 -0.001+/-0.03  0.012+/-0.001 -0.001+/-0.03  0.012+/-0.001 -0.001+/-0.03  0.012+/-0.001 -0.001+/-0.03  0.012+/-0.001 -0.001+/-0.03  0.012+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.001+/-0.03  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.012+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.012+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.012+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.012+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.012+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 -0.005+/-0.03  10-29-85 0.018+/-0.002  0.015+/-0.001 |

Table 11. Gamma isotopic results for January - June, 1985 from the monthly composite of air particulate samples. Indicator site - Lock & Dam #8.

# LACBWR

1985

-----

# Measurements in units of pC1/M^3

WI - Section of Radiation Protection data

Lock & Dam #8

|          | January        | February       | March          | April          | May            | June           |
|----------|----------------|----------------|----------------|----------------|----------------|----------------|
| 8e-7     | 0.06+/-0.05    | 0.11+/-0.05    | 0.07+/-0.02    | 0.08+/-0.04    | 0.10+/-0.03    | 0.09+/-0.03    |
| Zr,Nb-95 | -0.001+/-0.011 | -0.004+/-0.010 | -0.001+/-0.005 | 0.004+/-0.009  | 0.000+/-0.006  | -0.001+/-0.005 |
| Ru-103   | -0.002+/-0.005 | 0.003+/-0.006  | 0.000+/-0.002  | -0.003+/-0.004 | 0.001+/-0.003  | -0.001+/-0.002 |
| Ru-106   | -0.010+/-0.04  | 0.02+/-0.04    | 0.000+/-0.016  | -0.005+/-0.03  | -0.007+/-0.018 | 0.003+/-0.016  |
| Cs-134   | 0.001+/-0.004  | 0.000+/-0.004  | 0.000+/-0.002  | 0.001+/-0.003  | 0.000+/-0.002  | -0.001+/-0.002 |
| Cs-137   | -0.001+/-0.005 | 0.000+/-0.005  | 0.000+/-0.002  | -0.001+/-0.004 | -0.001+/-0.002 | 0.000+/-0.002  |
| Co-141   | 0.003+/-0.008  | -0.005+/-0.007 | -0.001+/-0.003 | 0.000+/-0.006  | 0.002+/-0.004  | 0.001+/-0.003  |
| Ce-144   | 0.002+/-0.02   | 0.002+/-0.02   | 0.007+/-0.010  | -0.001+/-0.018 | 0.005+/-0.012  | 0.000+/-0.009  |

Isotopes other than those reported were not detected.

LACSWR data

Lock & Dam #8 0.7 miles N

| Januar                                                                                                                                                                 | y February                                                                                                                            | March                                                                                                   | April                                                                       | May                                             | June                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| 8e-7 *                                                                                                                                                                 |                                                                                                                                       |                                                                                                         |                                                                             |                                                 | .,                  |
| Zr,Nb-95 <mc< td=""><td>A 8.1E-5+/-6.1E-5</td><td><mda< td=""><td><moa< td=""><td><mda< td=""><td>(MDA</td></mda<></td></moa<></td></mda<></td></mc<>                  | A 8.1E-5+/-6.1E-5                                                                                                                     | <mda< td=""><td><moa< td=""><td><mda< td=""><td>(MDA</td></mda<></td></moa<></td></mda<>                | <moa< td=""><td><mda< td=""><td>(MDA</td></mda<></td></moa<>                | <mda< td=""><td>(MDA</td></mda<>                | (MDA                |
| Ru-103 <mc< td=""><td>A <mda< td=""><td>ADA&gt;</td><td>ACM&gt;</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mc<>                         | A <mda< td=""><td>ADA&gt;</td><td>ACM&gt;</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>                         | ADA>                                                                                                    | ACM>                                                                        | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Ru-106 (MC                                                                                                                                                             | A <mda< td=""><td><mda< td=""><td><moa< td=""><td><mda< td=""><td>ACM&gt;</td></mda<></td></moa<></td></mda<></td></mda<>             | <mda< td=""><td><moa< td=""><td><mda< td=""><td>ACM&gt;</td></mda<></td></moa<></td></mda<>             | <moa< td=""><td><mda< td=""><td>ACM&gt;</td></mda<></td></moa<>             | <mda< td=""><td>ACM&gt;</td></mda<>             | ACM>                |
| Cs-134 <mc< td=""><td>A <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<></td></mc<> | A <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Cs-137 <mc< td=""><td>A <mda< td=""><td><mda< td=""><td>9.4E-4+/-2.5E-4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mc<>     | A <mda< td=""><td><mda< td=""><td>9.4E-4+/-2.5E-4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>     | <mda< td=""><td>9.4E-4+/-2.5E-4</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>     | 9.4E-4+/-2.5E-4                                                             | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Ce-141 <mc< td=""><td>A <moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></moa<></td></mc<> | A <moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Ce-144 (MC                                                                                                                                                             | A <moa< td=""><td><mda< td=""><td>1.5E-3+/-8.9E-4</td><td><moa< td=""><td><moa< td=""></moa<></td></moa<></td></mda<></td></moa<>     | <mda< td=""><td>1.5E-3+/-8.9E-4</td><td><moa< td=""><td><moa< td=""></moa<></td></moa<></td></mda<>     | 1.5E-3+/-8.9E-4                                                             | <moa< td=""><td><moa< td=""></moa<></td></moa<> | <moa< td=""></moa<> |
| Co-60 (MC                                                                                                                                                              | A 1.0E-4+/-1.7E-4                                                                                                                     | 2.3E-4+/-5.6E-4                                                                                         |                                                                             | 2.0E-3+/-6.2E-4                                 |                     |
| I-131 <#C                                                                                                                                                              |                                                                                                                                       | <moa></moa>                                                                                             |                                                                             | 2.8E-3+/-1.5E-3                                 | <mda< td=""></mda<> |

<sup>\*</sup> a - The isotope is not required for analysis.

Table 12. Gamma isotopic results for July - December, 1985 from the monthly composite of air particulate samples. Indicator site - Lock & Dam #8.

# LACSWR

1985

h

Measurements in units of pCi/M<sup>3</sup>

WI - Section of Radiation Protection data

Lock & Dam #8 0.7 miles N

|           | July           | August         | September      | October        | November       | December       |
|-----------|----------------|----------------|----------------|----------------|----------------|----------------|
| 8e-7      | 0.10+/-0.04    | 0.11+/-0.03    | 0.04+/-0.04    | 0.06+/-0.03    | 0.06+/-0.03    | 0.06+/-0.04    |
| Zr, Nb-95 | -0.002+/-0.006 | 0.001+/-0.005  | 0.005+/-0.009  | 0.004+/-0.006  | 0.001+/-0.007  | 0.003+/-0.009  |
| Ru-103    | 0.001+/-0.003  | -0.001+/-0.003 | -0.002+/-0.004 | 0.000+/-0.003  | 0.000+/-0.003  | 0.003+/-0.004  |
| Ru-106    | -0.002+/-0.022 | -0.003+/-0.016 | 0.003+/-0.03   | -0.004+/-0.02  | -0.003+/-0.02  | 0.003+/-0.03   |
| Cs-134    | 0.000+/-0.003  | 0.000+/-0.002  | 0.001+/-0.003  | 0.000+/-0.002  | 0.001+/-0.003  | 0.001+/-0.003  |
| Cs-137    | 0.000+/-0.002  | -0.001+/-0.002 | 0.000+/-0.003  | -0.001+/-0.002 | -0.001+/-0.002 | -0.002+/-0.003 |
| Ce-141    | -0.001+/-0.005 | 0.001+/-0.004  | -0.002+/-0.006 | 0.000+/-0.003  | -0.001+/-0.004 | -0.002+/-0.006 |
| Ce-144    | 0.004+/-0.012  | -0.004+/-0.009 | 0.000+/-0.016  | 0.005+/-0.011  | -0.003+/-0.011 | -0.004+/-0.015 |

Isotopes other than those reported were not detected.

#### LACBWR data

Lock & Dam #8

| V. ( MIIOS N | July                                                                                                                                                            | August                                                                                                                              | September                                                                                               | October                                                                     | November                                        | December            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| 8e-1         | .,                                                                                                                                                              | .,                                                                                                                                  |                                                                                                         |                                                                             |                                                 |                     |
| Zr,Nb-95     | <mda< td=""><td><mda< td=""><td><mda< td=""><td><moa< td=""><td><mda< td=""><td>KOM</td></mda<></td></moa<></td></mda<></td></mda<></td></mda<>                 | <mda< td=""><td><mda< td=""><td><moa< td=""><td><mda< td=""><td>KOM</td></mda<></td></moa<></td></mda<></td></mda<>                 | <mda< td=""><td><moa< td=""><td><mda< td=""><td>KOM</td></mda<></td></moa<></td></mda<>                 | <moa< td=""><td><mda< td=""><td>KOM</td></mda<></td></moa<>                 | <mda< td=""><td>KOM</td></mda<>                 | KOM                 |
| Ru-103       | <mda< td=""><td><mda< td=""><td><moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></moa<></td></mda<></td></mda<> | <mda< td=""><td><moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></moa<></td></mda<> | <moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Ru-106       | <moa< td=""><td>&lt; MOA</td><td><moa< td=""><td>&lt; MOA</td><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></moa<></td></moa<>                       | < MOA                                                                                                                               | <moa< td=""><td>&lt; MOA</td><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></moa<>            | < MOA                                                                       | <moa< td=""><td><mda< td=""></mda<></td></moa<> | <mda< td=""></mda<> |
| Cs-134       | <3.43 E-4                                                                                                                                                       | (3.27 E-4                                                                                                                           | <3.15 E-4                                                                                               | (MDA                                                                        | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Cs-137       | <3.63 E-4                                                                                                                                                       | <2.57 E-4                                                                                                                           | <3.89 E-4                                                                                               | <mda< td=""><td><mda< td=""><td>ACM</td></mda<></td></mda<>                 | <mda< td=""><td>ACM</td></mda<>                 | ACM                 |
| Ce-141       | <moa< td=""><td><moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></moa<></td></moa<> | <moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Ce-144       | <mda< td=""><td><moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></moa<></td></mda<> | <moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| 1-131        | <5.70 E-3                                                                                                                                                       | <1.84 E-3                                                                                                                           | <1.73 E-3                                                                                               | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Mn-54        | 3.9E-4+/-1.8E-4                                                                                                                                                 | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Co-60        | 4.1E-4+/-7.7E-4                                                                                                                                                 | <moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |

<sup>\*</sup> a - The isotope is not required for analysis.

Table 13. Gamma isotopic results for January - June, 1985 from the monthly composite of air particulate samples. Control site - La Crosse.

#### LACBWR

1985

Measurements in units of pCi/M^3

WI - Section of Radiation Protection data

La Crosse 15.6 miles N

|           | January       | February      | March          | April          | May           | June           |
|-----------|---------------|---------------|----------------|----------------|---------------|----------------|
| Be-7      | 0.044+/-0.011 | 0.058+/-0.017 | 0.09+/-0.03    | 0.102+/-0.018  | 0.12+/-0.02   | 0.11+/-0.02    |
| Zr, Nb-95 | 0.000+/-0.002 | 0.000+/-0.003 | 0.000+/-0.006  | 0.000+/-0.003  | 0.001+/-0.004 | 0.000+/-0.002  |
| Ru-103    | 0.000+/-0.001 | 0.000+/-0.002 | -0.001+/-0.003 | -0.001+/-0.001 | 0.000+/-0.002 | -0.001+/-0.001 |
| Ru-106    | 0.002+/-0.007 | 0.008+/-0.012 | 0.001+/-0.02   | -0.001+/-0.010 | 0.002+/-0.012 | 0.000+/-0.008  |
| Cs-134    | 0.000+/-0.001 | 0.000+/-0.001 | 0.000+/-0.002  | 0.000+/-0.001  | 0.000+/-0.001 | 0.000+/-0.001  |
| Cs-137    | 0.000+/-0.001 | 0.000+/-0.001 | -0.001+/-0.003 | 0.000+/-0.001  | 0.000+/-0.002 | 0.000+/-0.001  |
| Ce-141    | 0.001+/-0.001 | 0.001+/-0.002 | 0.000+/-0.004  | 0.000+/-0.002  | 0.001+/-0.003 | 0.000+/-0.002  |
| Ce-144    | 0.001+/-0.004 | 0.002+/-0.007 | -0.001+/-0.012 | 0.005+/-0.006  | 0.000+/-0.007 | 0.001+/-0.005  |

Isotopes other the those reported were not detected.

LACSWR

La Crosse 16 miles N

|          | January                                                                                                                                                 | February                                                                                                                    | March                                                                                               | April                                                                       | May                                             | June                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| 8e-7     |                                                                                                                                                         |                                                                                                                             |                                                                                                     | * 4                                                                         | * *                                             |                     |
| Zr.Nb-95 | <mda< td=""><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></mda<></td></mda<>               | <mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></mda<>               | < MDA                                                                                               | < MDA                                                                       | <moa< td=""><td><mda< td=""></mda<></td></moa<> | <mda< td=""></mda<> |
| Ru-103   | AOR>                                                                                                                                                    | KMDA                                                                                                                        | <moa< td=""><td><mda< td=""><td>&lt; MOA</td><td><mda< td=""></mda<></td></mda<></td></moa<>        | <mda< td=""><td>&lt; MOA</td><td><mda< td=""></mda<></td></mda<>            | < MOA                                           | <mda< td=""></mda<> |
| Ru-106   | <mda< td=""><td><moa -<="" td=""><td>AOM</td><td><moa< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></moa<></td></moa></td></mda<>     | <moa -<="" td=""><td>AOM</td><td><moa< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></moa<></td></moa>     | AOM                                                                                                 | <moa< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""></mda<></td></mda<> | <mda< td=""></mda<> |
| Cs-134   | ADA                                                                                                                                                     | <mda< td=""><td>&lt; MOA</td><td>ADA&gt;</td><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></mda<>                | < MOA                                                                                               | ADA>                                                                        | <moa< td=""><td><mda< td=""></mda<></td></moa<> | <mda< td=""></mda<> |
| Cs-137   | <mda< td=""><td><moa< td=""><td><mda< td=""><td><mda< td=""><td>1.3E-3+/-2.2E-4</td><td>5.1E-4+/-2.1E-4</td></mda<></td></mda<></td></moa<></td></mda<> | <moa< td=""><td><mda< td=""><td><mda< td=""><td>1.3E-3+/-2.2E-4</td><td>5.1E-4+/-2.1E-4</td></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""><td>1.3E-3+/-2.2E-4</td><td>5.1E-4+/-2.1E-4</td></mda<></td></mda<>     | <mda< td=""><td>1.3E-3+/-2.2E-4</td><td>5.1E-4+/-2.1E-4</td></mda<>         | 1.3E-3+/-2.2E-4                                 | 5.1E-4+/-2.1E-4     |
| Ce-141   | <mda< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td>(MOA</td></mda<></td></mda<></td></mda<></td></mda<>                   | <mda< td=""><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td>(MOA</td></mda<></td></mda<></td></mda<>                   | <mda< td=""><td>&lt; MDA</td><td><mda< td=""><td>(MOA</td></mda<></td></mda<>                       | < MDA                                                                       | <mda< td=""><td>(MOA</td></mda<>                | (MOA                |
| Ce-144   | KOM>                                                                                                                                                    | <mda< td=""><td><moa< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MDA</td></mda<></td></mda<></td></moa<></td></mda<>    | <moa< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MDA</td></mda<></td></mda<></td></moa<>        | <mda< td=""><td><mda< td=""><td>&lt; MDA</td></mda<></td></mda<>            | <mda< td=""><td>&lt; MDA</td></mda<>            | < MDA               |
| Co-60    | <mda< td=""><td>5.4E-4+/-8.1E-4</td><td><mda< td=""><td><mda< td=""><td>1.5E-3+/-6.8E-4</td><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<> | 5.4E-4+/-8.1E-4                                                                                                             | <mda< td=""><td><mda< td=""><td>1.5E-3+/-6.8E-4</td><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td>1.5E-3+/-6.8E-4</td><td><mda< td=""></mda<></td></mda<>     | 1.5E-3+/-6.8E-4                                 | <mda< td=""></mda<> |
| Mn-54    | 6.7E-4+/-3.8E-4                                                                                                                                         | 4.5E-4+/-2.1E-4                                                                                                             | <mda< td=""><td>7.3E-4+/-2.3E-4</td><td>Annual State of Contract Con-</td><td></td></mda<>          | 7.3E-4+/-2.3E-4                                                             | Annual State of Contract Con-                   |                     |

<sup>\*</sup> a - The isotope is not required for analysis.

Table 14. Gamma isotopic results for July - December, 1985 from the monthly composite of air particulate samples. Control site - La Crosse.

LACBWR

1985

Measurements in units of pCi/M<sup>3</sup>

WI - Section of Radiation Protection data

La Crosse 15.6 miles N

|           | July           | August         | September      | October        | November      | December       |
|-----------|----------------|----------------|----------------|----------------|---------------|----------------|
| 8e-7      | 0.114+/-0.017  | 0.08+/-0.02    | 0.060+/-0.018  | 0.075+/-0.016  | 0.056+/-0.012 | 0.057+/-0.013  |
| Zr, Nb-95 | -0.001+/-0.003 | 0.001+/-0.003  | 0.001+/-0.004  | 0.000+/-0.003  | 0.000+/-0.002 | 0.000+/-0.002  |
| Ru-103    | 0.000+/-0.002  | -0.001+/-0.001 | 0.000+/-0.003  | 0.000+/-0.001  | 0.000+/-0.001 | 0.000+/-0.001  |
| Ru-106    | 0.006+/-0.011  | -0.004+/-0.007 | 0.004+/-0.011  | -0.002+/-0.010 | 0.001+/-0.007 | -0.005+/-0.007 |
| Cs-134    | 0.000+/-0.001  | -0.001+/-0.001 | 0.000+/-0.001  | 0.001+/-0.001  | 0.000+/-0.001 | 0.000+/-0.001  |
| Cs-137    | 0.000+/-0.001  | 0.000+/-0.001  | 0.000+/-0.001  | 0.000+/-0.001  | 0.000+/-0.001 | 0.000+/-0.001  |
| Ce-141    | 0.000+/-0.002  | -0.001+/-0.002 | 0.000+/-0.002  | 0.001+/-0.002  | 0.001+/-0.001 | 0.000+/-0.001  |
| Cs-144    | 0.005+/-0.006  | -0.002+/-0.005 | -0.001+/-0.006 | 0.001+/-0.005  | 0.001+/-0.004 | -0.001+/-0.004 |

Isotopes other than those reported were not detected.

LACSWR

La Crosse 16 miles N

|          | July                                                                                                                                                                | August                                                                                                                                  | September                                                                                                   | October                                                                         | November                                            | December            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|
| 8e-7     |                                                                                                                                                                     |                                                                                                                                         | * .                                                                                                         |                                                                                 | * *                                                 |                     |
| Zr,Nb-95 | <mda< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></mda<>                | <mda< td=""><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>                | <mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>                | < MDA                                                                           | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<> |
| Ru-103   | <moa< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<></td></moa<>                | <mda< td=""><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>                | <mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>                | < MDA                                                                           | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<> |
| Ru-106   | <moa< td=""><td><mda< td=""><td><moa< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></moa<></td></mda<></td></moa<>                | <mda< td=""><td><moa< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></moa<></td></mda<>                | <moa< td=""><td>&lt; MDA</td><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></moa<>                | < MDA                                                                           | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<> |
| Cs-134   | 4.74 E-4                                                                                                                                                            | ₹3.55 E-4                                                                                                                               | <3.91 E-4                                                                                                   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>     | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<> |
| Cs-137   | <3.24 E-3                                                                                                                                                           | 43.77 E-4                                                                                                                               | <4.11 E-4                                                                                                   | <mda< td=""><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></mda<>     | <moa< td=""><td><mda< td=""></mda<></td></moa<>     | <mda< td=""></mda<> |
| Ce-141   | <mda< td=""><td><mda< td=""><td><mda< td=""><td><moa< td=""><td><mda -<="" td=""><td><mda< td=""></mda<></td></mda></td></moa<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><moa< td=""><td><mda -<="" td=""><td><mda< td=""></mda<></td></mda></td></moa<></td></mda<></td></mda<> | <mda< td=""><td><moa< td=""><td><mda -<="" td=""><td><mda< td=""></mda<></td></mda></td></moa<></td></mda<> | <moa< td=""><td><mda -<="" td=""><td><mda< td=""></mda<></td></mda></td></moa<> | <mda -<="" td=""><td><mda< td=""></mda<></td></mda> | <mda< td=""></mda<> |
| Ce-144   | <moa< td=""><td><moa< td=""><td><moa< td=""><td>&lt; MDA</td><td><moa< td=""><td>MDA</td></moa<></td></moa<></td></moa<></td></moa<>                                | <moa< td=""><td><moa< td=""><td>&lt; MDA</td><td><moa< td=""><td>MDA</td></moa<></td></moa<></td></moa<>                                | <moa< td=""><td>&lt; MDA</td><td><moa< td=""><td>MDA</td></moa<></td></moa<>                                | < MDA                                                                           | <moa< td=""><td>MDA</td></moa<>                     | MDA                 |
| I-131    | <6.90 E-3                                                                                                                                                           | <2.68 E-3                                                                                                                               | <1.92 E-3                                                                                                   | <mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>     | <mda< td=""><td><mda< td=""></mda<></td></mda<>     | <mda< td=""></mda<> |

<sup>\*</sup> a - The isotope is not required for analysis.

Table 15. Analysis of surface water samples from January - June, 1985. Indicator site.

LACSWR

| Measurements         | in  | uni  | ts | of  | oC1/   | liter |
|----------------------|-----|------|----|-----|--------|-------|
| Linea a a Lamber Lea | 111 | were | -  | ~ . | D-0 17 | 11500 |

| WI - Section of Radi | lation Protection | iata       | Effluent channel<br>0.1 mile # |              |              |             |
|----------------------|-------------------|------------|--------------------------------|--------------|--------------|-------------|
| Collection Date      | 01-15-85          | 02-12-85   | 03-12-85                       | 04-09-85     | 05-14-85     | 06-12-85    |
| Gross Alpha-sol.     | 1.0+/-1.0         | 2.3+/-1.3  | 0.1+/-0.8                      | 1.8+/-1.1    | 2.1+/-1.5    | 3.7+/-1.8   |
| Gross Alpha-insol    | 0.3+/-0.6         | 0.2+/-0.5  | 0.4+/-0.7                      | 3.2+/-0.6    | 0.2+/-0.7    | 5.8+/-1.4   |
| Gross Beta-sol.      | 12.0+/-1.7        | 15.2+/-1.5 | 8.6+/-1.5                      | 8.1+/-1.5    | 4.1+/-1.3    | 61+/-4      |
| Gross Beta-insol.    | 16.2+/-1.8        | 13.2+/-1.8 | 3.1+/-1.2                      | 1.6+/-1.1    | 1.3+/-1.0    | 225+/-6     |
| H-3                  | -160+/-270        | 3000+/-330 | 170+/-290                      | -140+/-310   | 70+/-290     | 70+/-290    |
| Sr-89                | -0.5+/-0.6        | 1.7+/-1.0  | 0.3+/-0.5                      | -0.15+/-0.4  | 0.3+/-0.6    | 0.7+/-0.6   |
| Sr-90                | 0.3+/-0.6         | 0.0+/-1.0  | 0.17+/-0.5                     | 1.1+/-0.4    | 1.0+/-0.6    | 0.5+/-0.5   |
| I-131                | -0.02+/-0.5       | 8+/-6 * a  | -0.37+/-0.15                   | -0.14+/-0.10 | -0.32+/-0.11 | 0.09+/-0.19 |
| Gamma Isotopic       |                   |            |                                |              |              |             |
| Mn-54                | 7+/-5             | 4+/-5      | 0+/-4                          | 0+/-4        | 0+/-2        | 149+/-18    |
| Fe-59                | 15+/-11           | 9+/-9      | 3+/-8                          | 2+/-8        | -1+/-4       | 10+/-20     |
| Co-58                | 8+/-5             | 4+/-5      | 0+/-4                          | -2+/-4       | 0+/-2        | 14+/-12     |
| Co-60                | 37+/-10           | 12+/-7     | 4+/-6                          | 0+/-5        | -1+/-2       | 290+/-30    |
| Zn-65                | 2+/-10            | 14+/-12    | 4+/-10                         | 2+/-10       | 0+/-4        | 13+/-30     |
| Cs-134               | 1+/-5             | 6+/-5      | 5+/-5                          | 1+/-4        | -1+/-2       | 18+/-11     |
| Cs-137               | 7+/-6             | 2+/-5      | 4+/-5                          | 2+/-5        | 0+/-2        | 37+/-14     |
| Ir-95                | 13+/-12           | 6+/-11     | -1+/-10                        | 1+/-10       | -2+/-5       | 23+/-20     |
| 8a, La-140           | 2+/-8             | 2+/-7      | -4+/-6                         | -2+/-6       | -4+/-3       | 1+/-7       |

<sup>\*</sup> a - The reported data is from a gamma isotopic analysis. Isotopes other than those reported were not detected.

| LACSWR data     |                                                                                                                                                                   | 244                                                                                                                                 | fluent channel                                                                                          |                                                                             |                                                 |                     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| CACOMA Gata     |                                                                                                                                                                   | 611                                                                                                                                 |                                                                                                         |                                                                             |                                                 |                     |
|                 |                                                                                                                                                                   |                                                                                                                                     | 0.1 mile W                                                                                              |                                                                             |                                                 |                     |
| Collection Date | 01-15-85                                                                                                                                                          | 02-12-85                                                                                                                            | 03-12-85                                                                                                | 04-09-85                                                                    | 05-14-85                                        | 06-12-85            |
| Gross Alpha     | <6.8                                                                                                                                                              | <14                                                                                                                                 | <20                                                                                                     | <19                                                                         | <15                                             | <25                 |
| Gross Beta      | 27+/-3                                                                                                                                                            | 38+/-3                                                                                                                              | 6.1+/-0.8                                                                                               | 6.7+/-0.9                                                                   | 4.3+/-0.8                                       | 54+/-2              |
| H-3             | 1509                                                                                                                                                              | 3222                                                                                                                                | <1107                                                                                                   | <1084                                                                       | 2629                                            | 2559                |
| Gamma Isotopic  |                                                                                                                                                                   | 200                                                                                                                                 | 10.040                                                                                                  |                                                                             |                                                 |                     |
| Mn-54           | <mda< td=""><td><mda< td=""><td>15+/-5</td><td>&lt; MOA</td><td>MDA</td><td>175+/-11</td></mda<></td></mda<>                                                      | <mda< td=""><td>15+/-5</td><td>&lt; MOA</td><td>MDA</td><td>175+/-11</td></mda<>                                                    | 15+/-5                                                                                                  | < MOA                                                                       | MDA                                             | 175+/-11            |
| Fe-59           | <mda< td=""><td><moa< td=""><td><mda< td=""><td><mda< td=""><td><mca< td=""><td><moa< td=""></moa<></td></mca<></td></mda<></td></mda<></td></moa<></td></mda<>   | <moa< td=""><td><mda< td=""><td><mda< td=""><td><mca< td=""><td><moa< td=""></moa<></td></mca<></td></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""><td><mca< td=""><td><moa< td=""></moa<></td></mca<></td></mda<></td></mda<> | <mda< td=""><td><mca< td=""><td><moa< td=""></moa<></td></mca<></td></mda<> | <mca< td=""><td><moa< td=""></moa<></td></mca<> | <moa< td=""></moa<> |
| Co-58           | < MDA                                                                                                                                                             | <mda< td=""><td><moa< td=""><td><mda< td=""><td><moa< td=""><td>AOM&gt;</td></moa<></td></mda<></td></moa<></td></mda<>             | <moa< td=""><td><mda< td=""><td><moa< td=""><td>AOM&gt;</td></moa<></td></mda<></td></moa<>             | <mda< td=""><td><moa< td=""><td>AOM&gt;</td></moa<></td></mda<>             | <moa< td=""><td>AOM&gt;</td></moa<>             | AOM>                |
| Co-60           | <mda< td=""><td>25+/-11</td><td><mda< td=""><td>&lt; MOA</td><td>ADM</td><td>344+/-16</td></mda<></td></mda<>                                                     | 25+/-11                                                                                                                             | <mda< td=""><td>&lt; MOA</td><td>ADM</td><td>344+/-16</td></mda<>                                       | < MOA                                                                       | ADM                                             | 344+/-16            |
| In-65           | <moa:< td=""><td><mda< td=""><td><moa< td=""><td><mda< td=""><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></mda<></td></moa<></td></mda<></td></moa:<> | <mda< td=""><td><moa< td=""><td><mda< td=""><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></mda<></td></moa<></td></mda<> | <moa< td=""><td><mda< td=""><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></mda<></td></moa<> | <mda< td=""><td><moa< td=""><td><mda< td=""></mda<></td></moa<></td></mda<> | <moa< td=""><td><mda< td=""></mda<></td></moa<> | <mda< td=""></mda<> |
| I-131           | (MDA                                                                                                                                                              | <mda< td=""><td><moa< td=""><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></moa<></td></mda<>                       | <moa< td=""><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></moa<>                       | <mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<>                       | < MDA                                           | < MDA               |
| Cs-134          | <mda -<="" td=""><td><mda< td=""><td>&lt; MDA</td><td><moa< td=""><td>&lt; MDA</td><td>&lt; MDA</td></moa<></td></mda<></td></mda>                                | <mda< td=""><td>&lt; MDA</td><td><moa< td=""><td>&lt; MDA</td><td>&lt; MDA</td></moa<></td></mda<>                                  | < MDA                                                                                                   | <moa< td=""><td>&lt; MDA</td><td>&lt; MDA</td></moa<>                       | < MDA                                           | < MDA               |
| Cs-137          | <mda< td=""><td>10+/-5</td><td><moa< td=""><td><mda< td=""><td><mda< td=""><td>19+/-6</td></mda<></td></mda<></td></moa<></td></mda<>                             | 10+/-5                                                                                                                              | <moa< td=""><td><mda< td=""><td><mda< td=""><td>19+/-6</td></mda<></td></mda<></td></moa<>              | <mda< td=""><td><mda< td=""><td>19+/-6</td></mda<></td></mda<>              | <mda< td=""><td>19+/-6</td></mda<>              | 19+/-6              |
| Zr-95           | < MOA                                                                                                                                                             | KOM                                                                                                                                 | <mda< td=""><td>&lt; MOA</td><td>4+/-2</td><td><mda< td=""></mda<></td></mda<>                          | < MOA                                                                       | 4+/-2                                           | <mda< td=""></mda<> |
| 8a, La-140      | <mda< td=""><td><moa></moa></td><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td>AGM&gt;</td></mda<></td></mda<></td></mda<>                                  | <moa></moa>                                                                                                                         | <mda< td=""><td>&lt; MDA</td><td><mda< td=""><td>AGM&gt;</td></mda<></td></mda<>                        | < MDA                                                                       | <mda< td=""><td>AGM&gt;</td></mda<>             | AGM>                |
| Ru-103          | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>17+/-4</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>                | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>17+/-4</td></mda<></td></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""><td><mda< td=""><td>17+/-4</td></mda<></td></mda<></td></mda<>              | <mda< td=""><td><mda< td=""><td>17+/-4</td></mda<></td></mda<>              | <mda< td=""><td>17+/-4</td></mda<>              | 17+/-4              |

Table 16. Analysis of surface water samples from July - December, 1985. Indicator site.

LACBWR 1985

| Measurements in uni | ts of pCi/liter                                                                                                                                    |                                                                                                                          |                                                                                                       |                                                                           |                                               |                   |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|-------------------|
| WI - Section of Rad | fation Protection                                                                                                                                  | data Ff                                                                                                                  | fluent channel                                                                                        |                                                                           |                                               |                   |
|                     |                                                                                                                                                    |                                                                                                                          | 0.1 mile W                                                                                            |                                                                           |                                               |                   |
| Collection Date     | 07-09-85                                                                                                                                           | 08-13-85                                                                                                                 | 09-10-85                                                                                              | 10-08-85                                                                  | 11-12-85                                      | 12-10-85          |
| Gross Alpha-sol.    | 1.8+/-1.7                                                                                                                                          | 1.6+/-1.2                                                                                                                | 0.3+/-0.9                                                                                             | 1.1+/-1.0                                                                 | 1.4+/-1.2                                     | 0.7+/-1.1         |
| Gross Alpha-insol   | 0.5+/-0.7                                                                                                                                          | 2.3+/-1.1                                                                                                                | 0.3+/-0.6                                                                                             | 1.0+/-0.7                                                                 | 0.6+/-0.7                                     | -0.1+/-0.6        |
| Gross Beta-sol.     | 4.2+/-1.3                                                                                                                                          | 9.4+/-1.6                                                                                                                | 6.3+/-1.4                                                                                             | 5.0+/-1.3                                                                 | 4.6+/-1.3                                     | 3.3+/-1.          |
| Gross Beta-insol.   | 0.2+/-0.9                                                                                                                                          | 2.3+/-1.1                                                                                                                | 2.4+/-1.1                                                                                             | 1.6+/-1.1                                                                 | 2.1+/-1.1                                     | -0.1+/-0.1        |
| H-3                 | -160+/-300                                                                                                                                         | 3000+/-300                                                                                                               | 170+/-300                                                                                             | 230+/-300                                                                 | 280+/-310                                     | 10+/-31           |
| Sr-89               | -0.4+/-0.6                                                                                                                                         | -1.2+/-0.4                                                                                                               | -0.2+/-0.4                                                                                            | 0.9+/-0.5                                                                 | 0.5+/-0.5                                     | -1.0+/-0.         |
| Sr-90               | 0.9+/-0.6                                                                                                                                          | 1.0+/-0.4                                                                                                                | 0.8+/-0.4                                                                                             | 0.2+/-0.5                                                                 | 0.09+/-0.5                                    | 0.8+/-0.          |
| 1-131               | -0.13+/-0.11                                                                                                                                       | 0.10+/-0.11                                                                                                              | 0.11+/-0.05                                                                                           | -0.97+/-0.05                                                              | -0.12+/-0.07                                  | 0.34+/-0.1        |
| Gamma Isotopic      | ***************************************                                                                                                            | ******                                                                                                                   | 4.1.1.1. 4.44                                                                                         | -4.9177-4.00                                                              | -0.1277-0.01                                  | 0.347/-0.1        |
| Mn-54               | -1+/-4                                                                                                                                             | -1+/-5                                                                                                                   | -1+/-4                                                                                                | 1+/-4                                                                     | 1+/-4                                         | -3+/-             |
| Fe-59               | 4+/-10                                                                                                                                             | 1+/-9                                                                                                                    | 7+/-9                                                                                                 | 5+/-9                                                                     | 2+/-8                                         | 4+/-1             |
| Co-58               | 2+/-5                                                                                                                                              | 0+/-5                                                                                                                    | 6+/-5                                                                                                 | 1+/-5                                                                     | 2+/-4                                         | 0+/-              |
| Co-60               | 0+/-5                                                                                                                                              | 6+/-1                                                                                                                    | -1+/-5                                                                                                | 0+/-5                                                                     | -1+/-5                                        | 0+/-              |
| In-65               | 1+/-10                                                                                                                                             | -1+/-9                                                                                                                   | 2+/-10                                                                                                | 8+/-11                                                                    | 8+/-12                                        | 5+/-1             |
| Cs-134              | 1+/-5                                                                                                                                              | -1+/-6                                                                                                                   | -1+/-6                                                                                                | 2+/-6                                                                     | 12+/-6                                        | -1+/-             |
| Cs-137              | -1+/-6                                                                                                                                             | 5+/-5                                                                                                                    | 5+/-5                                                                                                 | -1+/-5                                                                    | 1+/-6                                         | 0+/-              |
| Ir-95               | -8+/-9                                                                                                                                             | 2+/-12                                                                                                                   | 5+/-11                                                                                                | 4+/-12                                                                    | 2+/-11                                        | -7+/-1            |
| Ba, La-140          | -3+/-6                                                                                                                                             | -3+/-6                                                                                                                   | -1+/-6                                                                                                | -4+/-7                                                                    | -2+/-6                                        | -2+/-             |
| Isotopes other than | those reported we                                                                                                                                  | ere not detected.                                                                                                        |                                                                                                       |                                                                           |                                               |                   |
| LACSWR data         |                                                                                                                                                    | £4                                                                                                                       | fluent channel                                                                                        |                                                                           |                                               |                   |
|                     |                                                                                                                                                    |                                                                                                                          | 0.1 mile W                                                                                            |                                                                           |                                               |                   |
| Collection Date     | 07-09-85                                                                                                                                           | 08-13-85                                                                                                                 | 09-10-85                                                                                              | 10-08-85                                                                  | 11-12-85                                      | 12-10-8           |
| Gross Alpha         | <24                                                                                                                                                | <28                                                                                                                      | <28                                                                                                   | <35.1                                                                     | <25.2                                         | <22.              |
| Gross Beta          | 2.0+/-0.7                                                                                                                                          | 8.8+/-1.0                                                                                                                | 2.4+/-0.7                                                                                             | 10.9+/-1.2                                                                | 3.4+/-0.8                                     | 3.6+/-0.          |
| H-3                 | <1053                                                                                                                                              | 3218                                                                                                                     | 2396                                                                                                  | 1472                                                                      | 2370                                          | 436               |
| Gamma Isotopic      |                                                                                                                                                    |                                                                                                                          |                                                                                                       |                                                                           |                                               |                   |
| Mn-54               | <moa></moa>                                                                                                                                        | <mda< td=""><td>AOM</td><td><mda< td=""><td>&lt; MDA</td><td><mo< td=""></mo<></td></mda<></td></mda<>                   | AOM                                                                                                   | <mda< td=""><td>&lt; MDA</td><td><mo< td=""></mo<></td></mda<>            | < MDA                                         | <mo< td=""></mo<> |
| Fe-59               | <moa></moa>                                                                                                                                        | <mda< td=""><td>&lt; MOA</td><td>&lt; MDA</td><td>&lt; MOA</td><td>CMO</td></mda<>                                       | < MOA                                                                                                 | < MDA                                                                     | < MOA                                         | CMO               |
| Co-58               | <mda< td=""><td><moa< td=""><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mo< td=""></mo<></td></mda<></td></mda<></td></moa<></td></mda<> | <moa< td=""><td><mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mo< td=""></mo<></td></mda<></td></mda<></td></moa<>   | <mda< td=""><td>&lt; MDA</td><td><mda< td=""><td><mo< td=""></mo<></td></mda<></td></mda<>            | < MDA                                                                     | <mda< td=""><td><mo< td=""></mo<></td></mda<> | <mo< td=""></mo<> |
| Co-60               | <moa< td=""><td>15+/-10</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mc< td=""></mc<></td></mda<></td></mda<></td></mda<></td></moa<>  | 15+/-10                                                                                                                  | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mc< td=""></mc<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mc< td=""></mc<></td></mda<></td></mda<> | <mda< td=""><td><mc< td=""></mc<></td></mda<> | <mc< td=""></mc<> |
| Zn-65               | <moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><moa< td=""><td>&lt;#0</td></moa<></td></mda<></td></mda<></td></mda<></td></moa<> | <mda< td=""><td><mda< td=""><td><mda< td=""><td><moa< td=""><td>&lt;#0</td></moa<></td></mda<></td></mda<></td></mda<>   | <mda< td=""><td><mda< td=""><td><moa< td=""><td>&lt;#0</td></moa<></td></mda<></td></mda<>            | <mda< td=""><td><moa< td=""><td>&lt;#0</td></moa<></td></mda<>            | <moa< td=""><td>&lt;#0</td></moa<>            | <#0               |
| I-131               | <moa< td=""><td>AOM&gt;</td><td><moa< td=""><td><moa< td=""><td><mda< td=""><td><md< td=""></md<></td></mda<></td></moa<></td></moa<></td></moa<>  | AOM>                                                                                                                     | <moa< td=""><td><moa< td=""><td><mda< td=""><td><md< td=""></md<></td></mda<></td></moa<></td></moa<> | <moa< td=""><td><mda< td=""><td><md< td=""></md<></td></mda<></td></moa<> | <mda< td=""><td><md< td=""></md<></td></mda<> | <md< td=""></md<> |
| Cs-134              | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>CNO</td></mda<></td></mda<></td></mda<></td></mda<></td></mda<>    | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>CNO</td></mda<></td></mda<></td></mda<></td></mda<>      | <mda< td=""><td><mda< td=""><td><mda< td=""><td>CNO</td></mda<></td></mda<></td></mda<>               | <mda< td=""><td><mda< td=""><td>CNO</td></mda<></td></mda<>               | <mda< td=""><td>CNO</td></mda<>               | CNO               |
| Cs-137              | (MDA                                                                                                                                               | 13+/-4                                                                                                                   | <mda< td=""><td><mda< td=""><td>AOM</td><td><m0< td=""></m0<></td></mda<></td></mda<>                 | <mda< td=""><td>AOM</td><td><m0< td=""></m0<></td></mda<>                 | AOM                                           | <m0< td=""></m0<> |
| Zr-95               | <moa< td=""><td>KMDA</td><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>(MD</td></mda<></td></mda<></td></mda<></td></moa<>                   | KMDA                                                                                                                     | <mda< td=""><td><mda< td=""><td><mda< td=""><td>(MD</td></mda<></td></mda<></td></mda<>               | <mda< td=""><td><mda< td=""><td>(MD</td></mda<></td></mda<>               | <mda< td=""><td>(MD</td></mda<>               | (MD               |
|                     |                                                                                                                                                    |                                                                                                                          |                                                                                                       |                                                                           |                                               |                   |
| 8a, La-140          | < MDA                                                                                                                                              | <mda< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MD.</td></mda<></td></mda<></td></mda<></td></mda<> | <mda< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MD.</td></mda<></td></mda<></td></mda<>          | <mda< td=""><td><mda< td=""><td>&lt; MD.</td></mda<></td></mda<>          | <mda< td=""><td>&lt; MD.</td></mda<>          | < MD.             |

Table 17. Analysis of surface water samples from January - June, 1985. Control site - Lock & Dam #8.

LACBWR 1985

| Measurements in unit | s of pCi/liter   |             |                              |             |              |              |
|----------------------|------------------|-------------|------------------------------|-------------|--------------|--------------|
| WI - Section of Radi | ation Protection | óata        | Lock & Dam #8<br>0.7 miles N |             |              |              |
| Collection Date      | 01-15-85         | 02-12-85    | 03-12-85                     | 04-09-85    | 05-14-85     | 06-11-85     |
| Gross Alpha-sol.     | 1.8+/-1.2        | 1.6+/-1.2   | -0.1+/-0.8                   | 0.7+/-0.9   | 0.7+/-1.3    | 1.3+/-1.5    |
| Gross Alpha-insol    | 0.5+/-0.8        | 0.4+/-0.5   | 0.0+/-0.6                    | 1.0+/-0.8   | 0.5+/-0.8    | 0.7+/-0.7    |
| Gross Beta-sol.      | 3.7+/-1.3        | 4.1+/-1.3   | 5.1+/-1.3                    | 3.9+/-1.3   | 4.9+/-1.3    | 5.1+/-1.4    |
| Gross Beta-insol.    | 0.0+/-0.9        | 0.5+/-1.0   | 2.5+/-1.1                    | 0.5+/-1.0   | 0.8+/-1.0    | 0.1+/-1.0    |
| H-3                  | 30+/-280         | -30+/-290   | -140+/-290                   | -200+/-310  | 90+/-290     | -190+/-290   |
| Sr-89                | 0.0+/-0.5        | 0.3+/-0.4   | -0.06+/-0.7                  | -0.2+/-0.3  | 1.3+/-0.4    | -0.6+/-0.6   |
| Sr-90                | 0.0+/-0.5        | 0.0+/-0.4   | 0.08+/-0.6                   | 0.3+/-0.3   | 0.5+/-0.4    | 1.0+/-0.6    |
| I-131                | 0.03+/-0.15      | 0.11+/-0.18 | 0.28+/-0.14                  | 0.18+/-0.12 | -0.31+/-0.14 | -0.01+/-0.17 |
| Gamma Isotopic       |                  |             |                              |             |              |              |
| Mn-54                | 3+/-2            | 0+/-4       | -2+/-4                       | -3+/-4      | -4+/-7       | -4+/-7       |
| Fe-59                | -1+/-9           | 4+/-9       | -5+/-7                       | 3+/-9       | -4+/-13      | 5+/-14       |
| Co-58                | 0+/-6            | -2+/-4      | 3+/-5                        | 0+/-4       | -3+/-7       | -1+/-7       |
| Co-60                | 4+/-4            | -1+/-5      | 0+/-5                        | 2+/-6       | 0+/-7        | -3+/-7       |
| 2n-65                | 0+/-9            | 6+/-10      | 4+/-10                       | 7+/-11      | 2+/-15       | 8+/-17       |
| Cs-134               | 8+/-4            | 4+/-5       | 5+/-5                        | 1+/-5       | -2+/-7       | -1+/-7       |
| Cs-137               | 2+/-4            | 4+/-5       | 5+/-5                        | 1+/-5       | -1+/-8       | 1+/-8        |
| Ir-95                | 9+/-11           | -1+/-10     | -1+/-10                      | 2+/-11      | -6+/-15      | -4+/-15      |
| Ba, La-140           | 4+/-7            | 0+/-7       | -4+/-5                       | -4+/-8      | 2+/-8        | 5+/-8        |

Isotopes other than those reported were not detected.

| 06-11-85<br><25<br>2.7+/-0.7 |
|------------------------------|
| <25<br>2.7+/-0.7             |
| 2.7+/-0.7                    |
|                              |
| <1075                        |
|                              |
| < MOA                        |
| <mda< td=""></mda<>          |
| 4+/-2                        |
|                              |

Table 18. Analysis of surface water samples from July - December, 1985. Control site - Lock & Dam #8.

Measurements in units of pCi/liter

LACBWR 1985

| WI - Section of Radi | ation Protection | data         | Lock & Dam #8<br>0.7 miles N |              |              |             |  |
|----------------------|------------------|--------------|------------------------------|--------------|--------------|-------------|--|
| Collection Date      | 07-09-85         | 08-13-85     | 09-10-85                     | 10-08-85     | 11-12-85     | 12-10-85    |  |
| Gross Alpha-sol.     | 1.1+/-1.4        | 1.2+/-1.1    | 0.6+/-1.0                    | 1.1+/-1.1    | 0.5+/-0.9    | 2.3+/-1.4   |  |
| Gross Alpha-insol    | 0.4+/-0.7        | 0.4+/-0.6    | 0.2+/-0.5                    | 0.5+/-0.6    | 0.1+/-0.5    | -0.4+/-0.6  |  |
| Gross Beta-sol.      | 4.5+/-1.3        | 3.8+/-1.3    | 3.8+/-1.2                    | 4.5+/-1.3    | 3.0+/-1.1    | 3.0+/-1.3   |  |
| Gross Beta-insol.    | 0.5+/-1.0        | 0.24/-0.9    | 2.5+/-1.1                    | 0.7+/-1.0    | 1.3+/-1.0    | 0.1+/-1.0   |  |
| H-3                  | 180+/-300        | -130+/-290   | 170+/-300                    | 4+/-300      | 40+/-300     | -120+/-310  |  |
| Sr-89                | -1.2+/-0.4       | 0.3+/-0.3    | 0.13+/-0.4                   | -0.12+/-0.4  | -0.7+/-0.8   | -1.0+/-0.5  |  |
| Sr-90                | 0.9+/-0.4        | 0.2+/-0.3    | 0.17+/-0.4                   | 0.19+/-0.4   | 0.3+/-0.6    | 0.9+/-0.5   |  |
| I-131                | 0.03+/-0.11      | -0.28+/-0.12 | 0. 5+/-0.06                  | -0.07+/-0.05 | -0.06+/-0.07 | 0.42+/-0.08 |  |

|         |                                                                      | 0. 5+/-0.05                                                                                                          | -0.07+/-0.05                                                                                                                                     | -0.06+/-0.07                                                                                                                                                                   | 0.42+/-0.08 |
|---------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|         |                                                                      |                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                |             |
| -2+/-1  | 0+/-4                                                                | 1+/-4                                                                                                                | -3+/-7                                                                                                                                           | -1+/-7                                                                                                                                                                         | 1+/-4       |
| -3+/-13 | -2+/-8                                                               | 2+/-10                                                                                                               | -8+/-15                                                                                                                                          | -7+/-14                                                                                                                                                                        | 4+/-9       |
| -3+/-7  | 0+/-5                                                                | 3+/-5                                                                                                                | -3+/-7                                                                                                                                           | 3+/-7                                                                                                                                                                          | 0+/-4       |
| -2+/-8  | -2+/-6                                                               | 0+/-5                                                                                                                | -1+/-7                                                                                                                                           | 1+/-8                                                                                                                                                                          | 3+/-6       |
| \$4/=15 | 2-/-10                                                               | 4+/-11                                                                                                               | 7+/-17                                                                                                                                           | 2+/-15                                                                                                                                                                         | 9+/-11      |
| -1+/-7  | -1+/-5                                                               | -1+/-6                                                                                                               | 0+/-8                                                                                                                                            | -1+/-9                                                                                                                                                                         | 6+/-6       |
| -1+/-8  | -1+/-5                                                               | 0+/-5                                                                                                                | 1+/-8                                                                                                                                            | -1+/-8                                                                                                                                                                         | 1+/-5       |
| -5+/-15 | 5+/-11                                                               | 5+/-11                                                                                                               | -15+/-15                                                                                                                                         | -2+/-16                                                                                                                                                                        | 4+/-12      |
| 3+/-8   | -2+/-6                                                               | -4+/-7                                                                                                               | 0+/-8                                                                                                                                            | 3+/-8                                                                                                                                                                          | -3+/-6      |
|         | -3+/-13<br>-3+/-7<br>-2+/-8<br>5+/-15<br>-1+/-7<br>-1+/-0<br>-5+/-15 | -3+/-13 -2+/-8<br>-3+/-7 0+/-5<br>-2+/-8 -2+/-6<br>5+/-15 2-/-10<br>-1+/-7 -1+/-5<br>-1+/-9 -1+/-5<br>-5+/-15 5+/-11 | -3+/-13 -2+/-8 2+/-10 -3+/-7 0+/-5 3+/-5 -2+/-8 -2+/-6 0+/-5 5+/-15 2-/-10 4+/-11 -1+/-7 -1+/-5 -1+/-6 -1+/-9 -1+/-5 0+/-5 -5+/-15 5+/-11 5+/-11 | -3+/-13 -2+/-8 2+/-10 -8+/-15 -3+/-7 0+/-5 3+/-5 -3+/-7 -2+/-8 -2+/-6 0+/-5 -1+/-7 5+/-15 2-/-10 4+/-11 7+/-17 -1+/-7 -1+/-5 -1+/-6 0+/-8 -1+/-8 -1+/-5 5+/-11 5+/-11 -15+/-15 | -2+/-7      |

Isotopes other than those reported were not detected.

| LACSWR data     |                                                                                                                                                      |                                                                                                                          | Lock & Dam #8                                                                                |                                                                  |           |                     |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------|---------------------|
|                 |                                                                                                                                                      |                                                                                                                          | 0.7 miles N                                                                                  |                                                                  |           |                     |
| Collection Date | 07-09-85                                                                                                                                             | 08-13-85                                                                                                                 | 09-10-85                                                                                     | 10-08-85                                                         | 11-12-85  | 12-10-85            |
| Gross Alpha     | <24                                                                                                                                                  | <22                                                                                                                      | <28                                                                                          | <35.1                                                            | <25.2     | <22.5               |
| Gross Beta      | 2.4+/-0.7                                                                                                                                            | 3.1+/-0.5                                                                                                                | 4.5+/-0.8                                                                                    | 10.3+/-1.1                                                       | 3.5+/-0.8 | 3.7+/-0.7           |
| H-3             | <1053                                                                                                                                                | <1045                                                                                                                    | 2396                                                                                         | 1472                                                             | 1650      | 2619                |
| Gamma Isotopic  |                                                                                                                                                      |                                                                                                                          |                                                                                              |                                                                  |           |                     |
| Mn-54           | < MDA                                                                                                                                                | <mda< td=""><td>&lt; MDA</td><td>8.0+/-4.0</td><td>&lt; MDA</td><td>&lt; MDA</td></mda<>                                 | < MDA                                                                                        | 8.0+/-4.0                                                        | < MDA     | < MDA               |
| Fe-59           | <moa< td=""><td><mda< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></mda<></td></mda<></td></moa<>            | <mda< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></mda<></td></mda<>            | <mda< td=""><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></mda<>            | <mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<>            | < MDA     | < MDA               |
| Co-58           | <moa< td=""><td>ACM&gt;</td><td>AOM&gt;</td><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></moa<>                                    | ACM>                                                                                                                     | AOM>                                                                                         | <mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<>            | < MDA     | < MDA               |
| Co-60           | < MDA                                                                                                                                                | <mda< td=""><td><mda< td=""><td><moa< td=""><td>&lt; MOA</td><td>&lt; MDA</td></moa<></td></mda<></td></mda<>            | <mda< td=""><td><moa< td=""><td>&lt; MOA</td><td>&lt; MDA</td></moa<></td></mda<>            | <moa< td=""><td>&lt; MOA</td><td>&lt; MDA</td></moa<>            | < MOA     | < MDA               |
| Zn-65           | CMDA                                                                                                                                                 | <mda< td=""><td><moa< td=""><td>&lt; MOA</td><td>&lt;#DA</td><td>&lt; MDA</td></moa<></td></mda<>                        | <moa< td=""><td>&lt; MOA</td><td>&lt;#DA</td><td>&lt; MDA</td></moa<>                        | < MOA                                                            | <#DA      | < MDA               |
| I-131           | <mda< td=""><td>AOM</td><td><mda< td=""><td><mda< td=""><td>&lt; MOA</td><td><mda< td=""></mda<></td></mda<></td></mda<></td></mda<>                 | AOM                                                                                                                      | <mda< td=""><td><mda< td=""><td>&lt; MOA</td><td><mda< td=""></mda<></td></mda<></td></mda<> | <mda< td=""><td>&lt; MOA</td><td><mda< td=""></mda<></td></mda<> | < MOA     | <mda< td=""></mda<> |
| Cs-134          | <mda< td=""><td><mda< td=""><td><moa< td=""><td><moa< td=""><td>&lt; MDA</td><td><mda< td=""></mda<></td></moa<></td></moa<></td></mda<></td></mda<> | <mda< td=""><td><moa< td=""><td><moa< td=""><td>&lt; MDA</td><td><mda< td=""></mda<></td></moa<></td></moa<></td></mda<> | <moa< td=""><td><moa< td=""><td>&lt; MDA</td><td><mda< td=""></mda<></td></moa<></td></moa<> | <moa< td=""><td>&lt; MDA</td><td><mda< td=""></mda<></td></moa<> | < MDA     | <mda< td=""></mda<> |
| Cs-137          | <moa< td=""><td>&lt; MDA</td><td>&lt; MDA</td><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></moa<>                                  | < MDA                                                                                                                    | < MDA                                                                                        | <mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td></mda<>            | < MDA     | < MDA               |
| 2r-95           | <mda< td=""><td><mda< td=""><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></mda<></td></mda<>                       | <mda< td=""><td><mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td><td>&lt; MDA</td></mda<></td></mda<>                       | <mda< td=""><td>&lt; MDA</td><td>&lt; MDA</td><td>&lt; MDA</td></mda<>                       | < MDA                                                            | < MDA     | < MDA               |
| 8a, La-140      | <mda< td=""><td><mda< td=""><td><mda< td=""><td><moa< td=""><td>&lt; MOA</td><td>&lt; MDA</td></moa<></td></mda<></td></mda<></td></mda<>            | <mda< td=""><td><mda< td=""><td><moa< td=""><td>&lt; MOA</td><td>&lt; MDA</td></moa<></td></mda<></td></mda<>            | <mda< td=""><td><moa< td=""><td>&lt; MOA</td><td>&lt; MDA</td></moa<></td></mda<>            | <moa< td=""><td>&lt; MOA</td><td>&lt; MDA</td></moa<>            | < MOA     | < MDA               |
|                 |                                                                                                                                                      |                                                                                                                          |                                                                                              |                                                                  |           |                     |

Table 19. Analysis of fish samples for 1985.

LACBWR

1985

| Measurements in unit | ts of pCi/kg (wet) |                  |            |            |            |            |
|----------------------|--------------------|------------------|------------|------------|------------|------------|
| WI - Section of Rad  | iation Protection  | data             |            |            |            |            |
| Collection Date      | 03-26-85           | 03-26-85         | 08-05-85   | 06-05-85   | 09-26-85   | 09-26-8    |
| Туре                 | carp               | walleye          | walleye    | carp       | catfish    | car        |
| Gamma Isotopic       |                    |                  |            |            |            |            |
| K-40                 | 3200+/-700         | 3500+/-500       | 2900+/-600 | 2200+/-500 | 2700+/-500 | 2600+/-500 |
| Mn-54                | 17+/-30            | -3+/-20          | 20+/-30    | -2+/-30    | -3+/-20    | 2+/-20     |
| Fe-59                | 50+/-90            | -5+/-70          | -18+/-110  | -18+/-100  | 30+/-50    | -4+/-6     |
| Co-58                | 40+/-40            | 2+/-30           | 30+/-40    | -4+/-40    | 6+/-30     | 7+/-3      |
| Co-60                | 70+/-40            | 110+/-30         | -3+/-40    | -8+/-30    | 1+/-30     | 20+/-30    |
| Zn-65                | 20+/-80            | 50+/-50          | -14+/-80   | 10+/-70    | 80+/-60    | 4+/-6      |
| Cs-134               | -2+/-30            | -1+/-19          | -2+/-20    |            | -1+/-20    | 1+/-21     |
| Cs-137               | 30+/-30            | 8+/-20           | 19+/-30    |            | -4+/-20    | -4+/-3     |
| Isotopes other than  | those reported we  | re not detected. |            |            |            |            |
| LACSMR data          |                    |                  |            |            |            |            |
| Collection Date      | 03-26-85           | 03-26-85         | 06-05-85   | 06-05-85   | 09-26-85   | 09-26-85   |
| Туре                 | carp               | walleye          | walleye    | carp       | carp       | catfish    |
| Gamma Isotopic       |                    |                  |            |            |            |            |
| K-40                 |                    | * 4              |            |            | * 4        |            |
| Mn-54                | 44+/-8             | 23+/-8           | <13        | <11        | <10        | <1         |
| Fe-59                | <20                | <29              | <29        | <23        | <21        | <2'        |
| Co-58                | <5.5               | <12              | <12        | <11        | <10        | (          |
| Co-60                | 79+/-19            | 183+/-23         | <28        | <25        | <25        | <2         |
| Zn-65                | <21                | <23              | <20        | <50        | <20        | <2         |
| Cs-134               | <11                | <12              | <12        | <12        | <12        | <1         |
|                      |                    |                  |            |            |            |            |
| Cs-137               | 37+/-8             | 55+/-10          | <15        | <14        | <11        | <13        |

<sup>\*</sup> a - Analysis is not required.

Table 20. Analysis of fish samples for 1985.

# LACBWR

1985

# Measurements in units of pCi/kg (wet)

# WI - Section of Radiation Protection data

| Collection Date | 10-22-85   | 10-22-85   |
|-----------------|------------|------------|
| Туре            | carp       | walleye    |
| Gamma Isotopic  |            |            |
| K-40            | 1000+/-300 | 1500+/-300 |
| Mn-54           | -3+/-14    | -3+/-13    |
| Fe-59           | 11+/-40    | 18+/-50    |
| Co-58           | -6+/-13    | -12+/-17   |
| Co-60           | 10+/-18    | 40+/-20    |
| Zn-65           | -5+/-30    | 15+/-30    |
| Cs-134          | 5+/-13     | -3+/-12    |
| Cs-137          | 5+/-13     | 11+/-15    |

Isotopes other than those reported were not detected.

# LACSWR data

| Collection Date | 10-22-85 | 10-22-85 |
|-----------------|----------|----------|
| Туре            | carp     | walleye  |
| Gamma Isotopic  |          |          |
| K-40            | * 4      | * 8      |
| Mn-54           | <6.94    | <3.8     |
| Fe-59           | <12      | <11      |
| Co-58           | <7.36    | <4.2     |
| Co-60           | 31+/-14  | 3+/-10   |
| Zn-65           | <18.8    | <12.3    |
| Cs-134          | <8.1     | <4.5     |
| Cs-137          | <9.5     | <4.5     |
| Ce-141          | * *      | * *      |
| Nb-95           | 12+/-6   |          |

<sup>\*</sup> a - Analysis is not required.

Table 21. Analysis of bottom sediments for 1985.

LACBWR 1985

Measurements in units of pCi/kg (dry)

# WI - Section of Radiation Protection data

| Collection Date<br>Type<br>Location | 06-05-85<br>bottom sed.<br>outfall | 08-05-85<br>bottom sed.<br>boat launch | 05-05-85<br>bottom sed.<br>Lock & Dam #8 | 10-16-85<br>bottom sed.<br>outfall \$2 | 10-16-85<br>bottom sed.<br>downstream | 10-16-85<br>bottom sed.<br>upstream |
|-------------------------------------|------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------|-------------------------------------|
| Analysis                            |                                    |                                        |                                          |                                        |                                       |                                     |
| Gross beta (dry)                    | 11000+/-4000                       | 19000+/-4000                           | 11000+/-4000                             | 13000+/-4000                           | 23000+/-5000                          | 7000+/-4000                         |
| Gross alpha (dry)                   | 800+/-4000                         | 14000+/-7000                           | 5000+/-5000                              | 3000+/-4000                            | 3000+/-5000                           | -500+/-3000                         |
| Gamma Isotopic                      |                                    |                                        |                                          |                                        |                                       |                                     |
| Mn-54                               | 30+/-30                            | 50+/-30                                | 16+/-14                                  | 180+/-70                               | -2+/-30                               | 5+/-17                              |
| Co-58                               | -2+/-40                            | -5+/-40                                | -4+/-30                                  | -4+/-110                               | 20+/-40                               | 3+/-20                              |
| Co-60                               | 620+/-50                           | 140+/-50                               | 20+/-20                                  | 8620+/-170                             | 110+/-40                              | 2+/-19                              |
| Cs-134                              | -2+/-30                            | -2+/-30                                | 19+/-18                                  | 560+/-90                               | 30+/-30                               | -2+/-17                             |
| Cs-137                              | 120+/-30                           | 140+/-30                               | 7+/-16                                   | 17600+/-200                            | 160+/-40                              | 17+/-15                             |
| K-40                                | 5700+/-500                         | 13900+/-800                            | 5300+/-500                               | 6300+/-500                             | 13200+/00                             | 5900+/-400                          |
| Ra-226 * a                          | 40+/-400                           | 500+/-500                              | 500+/-306                                | 1900+/-1400                            | 1200+/-600                            | 200+/-300                           |
| Pb-2'4 * a                          | 150+/-40                           | 300+/-50                               | 130+/-40                                 | 300+/-150                              | 400+/-70                              | 140+/-30                            |
| 81-014 * 8                          | 200+/-50                           | 340+/-60                               | 160+/-40                                 | 1570+/-160                             | 510+/-70                              | 200+/-40                            |
| T1-208 * a                          | 110+/-70                           | 360+/-80                               | 200+/-50                                 | 160+/-190                              | 420+/-100                             | 170+/-50                            |
| Ac-228 * a                          | 230+/-100                          | 210+/-110                              | 200+/-70                                 | 600+/-300                              | 410+/-130                             | 250+/-60                            |

<sup>\*</sup>a - Naturally occurring radioisotopes Ac-228 and T1-208 are from the Thorium-232 decay series. Ra-225, Pb-214, and 81-214 are from the Uranium-238 decay series.
Isotopes other than those reported were not detected.

#### LACSWR data

| Collection Date<br>Type<br>Location | 06-05-85<br>bottom sed.<br>outfall | 06-05-85<br>bottom sed.<br>boat launch                                                           | 06-05-85<br>bottom sed.<br>Lock & Dam #8                            | 10-16-85<br>bottom sed.<br>outfall #2                           | 10-16-85<br>bottom sed.<br>downstream | 10-16-85<br>bottom sed.<br>upstream |
|-------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|-------------------------------------|
| Analysis                            |                                    |                                                                                                  |                                                                     |                                                                 |                                       |                                     |
| Gross beta (dry)                    | * 5                                | * 6                                                                                              | * 6                                                                 | * 5                                                             | * 6                                   | * 6                                 |
| Gross alpha (dry) Gamma Isotopic    | 2 b                                | * 6                                                                                              | * 6                                                                 | * 5                                                             | * 6                                   | * 6                                 |
| Mn-54                               | 25+/-7                             | 21+/-7                                                                                           | - KOM                                                               | 267+/-24                                                        | 21+/-7                                | 10+/-3                              |
| Co-58                               | ACM>                               | <moa< td=""><td>&lt; MDA</td><td>AOM&gt;</td><td><mda< td=""><td>AGM&gt;</td></mda<></td></moa<> | < MDA                                                               | AOM>                                                            | <mda< td=""><td>AGM&gt;</td></mda<>   | AGM>                                |
| Co-60                               | 177+/-21                           | 139+/-17                                                                                         | 13-/-10                                                             | 9726+/-71                                                       | 100+/-20                              | <mda< td=""></mda<>                 |
| Nb-95                               | 20+/-7                             | 26+/-8                                                                                           | < MOA                                                               | <mda< td=""><td>24+/-10</td><td><mda< td=""></mda<></td></mda<> | 24+/-10                               | <mda< td=""></mda<>                 |
| Cs-134                              | MOA                                | <mda< td=""><td><mda< td=""><td>858+/-28</td><td>&lt;11</td><td>&lt;6.2</td></mda<></td></mda<>  | <mda< td=""><td>858+/-28</td><td>&lt;11</td><td>&lt;6.2</td></mda<> | 858+/-28                                                        | <11                                   | <6.2                                |
| Cs-137                              | 147+/-9                            | 173+/-13                                                                                         | 19+/-5                                                              | 21340+/-88                                                      | 111+/-15                              | <6.2                                |
| K-40                                | * 5                                | * 5                                                                                              | * b                                                                 | * 6                                                             | * 5                                   | * 6                                 |
| Ra-226 * a                          | * 6                                | * 5                                                                                              | * 6                                                                 | * 6                                                             | * 6                                   | » b                                 |
| Pb-214 * a                          | * 9                                | * 6                                                                                              | * 6                                                                 | * b                                                             | * 5                                   | * 6                                 |
| 81-214 * a                          | * 6                                | * b                                                                                              | * 6                                                                 | * 6                                                             | * 6                                   | * 6                                 |
| T1-208 * a                          | * 6                                | * b                                                                                              | * 5                                                                 | * 5                                                             | * 6                                   |                                     |
| Ac-228 * a                          | * 6                                | * 6                                                                                              |                                                                     | * 6                                                             | * b                                   | * 6                                 |

<sup>\*</sup> b - Analysis was not required.

Table 22. Analysis of milk samples for 1985.

# WISCONSIN DIVISION OF HEALTH SECTION OF RADIATION

LACBWR 1985

| Measurements in units | of pc1/1tte      |                   | Malin - 2.1 mile<br>Malin - 1.0 mile | - · · · · · · · · · · · · · · · · · · · |              |            |
|-----------------------|------------------|-------------------|--------------------------------------|-----------------------------------------|--------------|------------|
| WI - Section of Radia | ition Protection |                   | dretti - 1.4 mile                    |                                         |              |            |
| Collection date       | 01-15-85         | 02-12-85          | 03-12-85                             | 04-09-85                                | 05-14-85     | 06-11-8    |
| Location<br>Isotope:  | A. Malin         | P. Malin          | Pedretti                             | A. Malin                                | P. Nelin     | Pedrett    |
| I-131                 | -0.05+/-0.15     | -0.05+/-0.17      | 0.24+/-0.14                          | -0.04+/-0.11                            | -0.38+/-0.12 | 0.32+/-0.1 |
| 8a, La-143            | 0+/-4            | 5+/-5             | 7+/-6                                | 2+/-5                                   | -2+/-6       | -2+/-      |
| Cs-134                | 4+/-6            | 3+/7              | -1+/-6                               | 0+/-6                                   | 8+/-6        | 1+/-       |
| Cs-137                | 7+/-6            | 6+/-7             | 5+/-6                                | 1+/-7                                   | 0+/-7        | 4+/-       |
| K-40                  | 1480+/-190       |                   |                                      |                                         | 1560+/-180   | 1330+/-1   |
| Sr-90                 | 3.8+/-0.7        | 4.2+/-1.0         | 5.1+/-0.8                            | 3.5+/-0.6                               | 5.5+/-0.7    | 7.0+/-0.   |
| Collection date       | 07-09-85         | 08-13-85          | 09-10-65                             | 10-08-85                                | 11-12-85     | 12-10-6    |
| .ncation<br>(sotope:  | P. Malin         | P. Malin          | Pedrutti                             | P. Malin                                | A. Malin     | Pedret     |
| [-131                 | -0.25+/-0.10     | 0.06+/-0.11       | 0.17+/-0.05                          | 0.02+/-0.05                             | -0.20+/-0.07 | -0.13+/-0. |
| Ba, La-1+V            | -2+/-6           | 0+/-7             | -2+/-6                               | -3+/-6                                  | -1+/-6       | -5+/       |
| Cs-124                | 2+/-6            | -1+/-7            | -1+/-7                               | 3+/-5                                   | 6+/-5        | -1+/       |
| Cs-131                | -1+/-7           | 4+/-6             | 8+/-6                                | -1+/-7                                  | 1+/-6        | 3+/        |
| (-10                  | 1520+/-190       | 1140+/-180        |                                      |                                         | 1290+/-180   | 1440+/-1   |
| Sr-90                 | 2.9+/-0.8        | 2.2+/-0.6         | 4.3+/-0.6                            |                                         | 2.5+/-0.7    | 2.4+/-0    |
| Isotopes other than t | those reported w | ere not detected. |                                      |                                         |              |            |
| LACSWR data           |                  |                   |                                      |                                         |              |            |
| Collection date       | 01-15-85         | 02-12-85          | 03-12-85                             | 04-09-85                                | 05-14-85     | 06-11-8    |
| ocation               | A. Malin         | P. Malin          | Pedretti                             | A. Malin                                | P. Malin     | Pedrett    |
| sotope:               |                  |                   |                                      |                                         | r. Maiini    | reciret    |
| [-131                 | <5.9             | <4.5              | <4.5                                 | <5.0                                    | <5.5         | <5         |
| Ba, La-140            | <22              | <23               | <22                                  | <23                                     | <26          | <          |
| Cs-134                | <5.7             | <5.4              | <4.8                                 | <5.3                                    | <6.9         | <5         |
| Cs-127                | <6.1             | 15+/-5            | <6.1                                 | <6.8                                    | <5.9         | <6         |
| K-40                  | * 4              | * 4               | * 4                                  | * *                                     | * a          |            |
| Collection date       | 07-09-85         | 08-13-85          | 09-10-85                             | 10-08-85                                | 11-12-85     | 12-10-     |
| Location              | P. Malin         | P. Malin          | Pedretti                             | P. Malin                                | A. Malin     | Pedret     |
| (sotone:              |                  |                   |                                      |                                         |              |            |
| I-131                 | (4.5             | <4.8              | <2.1                                 | <4.3                                    | <1.9         | <4         |
| La-140                | <6.1             | ('6               | <5.4                                 | <5.3                                    | 4            | <4         |
| Cs-131                | <5.1             | <5.8              | <2.1                                 | <4.2                                    | <3.8         | <5         |
| CJ-137                | <5.4             | 1.2+/-7           | <16                                  | <6.2                                    | 30+/-13      | 9+/        |
| X-40                  | * 4              | * a               | * 1                                  | * 4                                     | * a          | *          |
| 9a-140                | -11              | /11               | /11                                  | /00                                     |              |            |

22

<MDA

<MDA

<MDA

84-140

Nb-95

Co-57

Co-60

(27

13+/-3

<MDA

<MDA

<14

<MOA

CHOA

A CMDA

<23

<MDA

**ADM** 

< MDA

<13

<MDA

18+/-16

5+/-5

<22

**ADM** 

<MDA

21+/-12

<sup>\*</sup> a - The isotope was not specifically analyzed for.

Table 23. Analysis of food products for 1985.

# LACBWR

1985

# Measurements in units of pCi/kilogram (wet)

# WI - Section of Radiation Protection data

| Collection Date | 08-06-85     |
|-----------------|--------------|
| Туре            | food product |
| Location        | A. Malin     |
| Analysis        |              |
| Gross beta      | 2100+/-500   |
| Gross alpha     | -100+/-400   |
| Gamma Isotopic  |              |
| 9e-7            | -16+/-50     |
| K-40            | 2100+/-130   |
| ¢o-58           | -5+/-5       |
| Co-60           | 10+/-7       |
| 2r-95           | -4+/-12      |
| I-131           | -13+/-9      |
| Cs-134          | -1+/-5       |
| Cs-137          | -1+/-5       |
|                 |              |

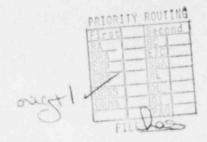
Isotopes other than those reported were not detected.

# LACSWR data

| 08-06-85     |
|--------------|
|              |
| food product |
| A. Malin     |
|              |
|              |
| * 3          |
| 3130+/-1950  |
| (1           |
| <11          |
| <13          |
| <            |
| <            |
| 27+/-1       |
|              |

<sup>\*</sup> a - The isotope was not specifically analyzed for.




# State of Wisconsin \ DEPARTMENT OF HEALTH AND SOCIAL SERVICES

April 25, 1986

DIVISION OF HEALTH MAIL ADDRESS: 1 WEST WILSON STREET P.O. BOX 309 MADISON, WISCONSIN 53701-0309

Phone: 608 - 273-5180

Mr. James G. Keppler 124 Regional Administrator U.S. Nuclear Regulatory Commission 799 Roosevelt Road GLEN ELLYN IL 60137



Dear Mr. Keppler:

Enclosed are the annual environmental radioactivity reports for 1985 for the Kewaunee Nuclear Power Plant, Point Beach Nuclear Power Plant and the LaCrosse Boiling Water Reactor. These reports are being submitted in accordance with the reporting provisions of the U.S. Nuclear Regulatory Commission Contract #NRC 30-83-647.

Sincerely,

ce ( . McDonnell, Chief Section of Radiation Protection

Enclosures

APR 2 8 1986

18 1648