QUAD-CITIES NUCLEAR POWER STATION

UNITS 1 AND 2

MONTHLY PERFORMANCE REPORT

AUGUST, 1988

COMMONWEALTH EDISON COMPANY

AND

IOWA-ILLINOIS GAS & ELECTRIC COMPANY NRC DOCKET NOS. 50-254 AND 50-265 LICENSE NOS. DPR-29 AND DPR-30

1424

0027H/0061Z

TABLE OF CONTENTS

I. Introduction

. .

II. Summary of Operating Experience

A. Unit One B. Unit Two

- III. Plant or Procedure Changes, Tests, Experiments, and Safety Related Maintenance
 - A. Amondments to Facility License or Technical Specifications
 - B. Facility or Procedure Changes Requiring NRC Approval
 - C. Tests and Experiments Requiring NRC Approval
 - D. Corrective Maintenance of Safety Related Equipment
- IV. Licensee Event Reports
- V. Data Tabulations
 - A. Operating Data Report
 - B. Average Daily Unit Power Level
 - C. Unit Shutdowns and Power Reductions
- VI. Unique Reporting Requirements
 - A. Main Stram Relief Valve Operations
 - B. Control Rod Drive Scram Timing Data
- VII. Refueling Information.
- VIII. Glossary

I. INTRODUCTION

Quad-Cities Nuclear Power Station is composed of two Boiling Water Reactors, each with a Maximum Dependable Capacity of 769 MWe Net, located in Cordova, Illinois. The Station is jointly owned by Commonwealth Edison Company and Iowa-Illinois Gas & Electric Company. The Nuclear Steam Supply Systems are General Electric Company Boiling Water Reactors. The Architect/Enginee: was Sargent & Lundy, Incorporated, and the primary construction contractor was United Engineers & Constructors. The Mississippi River is the condenser cooling water source. The plant is subject to license numbers DPR-29 and DPR-30, issued October 1, 1971, and March 21, 1972, respectively; pursuant to Docket Numbers 50-254 and 50-265. The date of initial Reactor criticalities for Units One and Two, respectively were October 18, 1971, and April 26, 1972. Commercial generation of power began on February 18, 1973 for Unit One and March '0, 1973 for Unit Two.

This report was compiled by Verna Koselka and Lynne Deelsnyder, telephone number 309-654-2241, extensions 2240 and 2185.

II. SUMMARY OF OPERATING EXPERIENCE

A. Unit One

Unit One began the month of August operating in Economic Generation Control (EGC). At 0827, the unit was taken off of EGC and at 1200, a load reduction was taken to 200 MWe due to high river temperatures. Between August 1 and 9, power levels fluc*uated because of high river temperatures. On August 9, at 0100, a load reduction was taken to 200 MWe at the request of the Chicago Load Dispatcher. From August 10 to 14, the unit operated at full power. On August 14, at 0215, a load reduction to 651 MWe was taken at the request of the Chicago Load Dispatcher. On August 15, at 0545, a load decrease was taken to 200 MWe due to high river temperature. Power levels fluctuated on the sixteenth and seventeenth, and then were held constant at approximately 230 MWe until August 20. Fetween August 20 and 24 power levels were adjusted at the request of the Chicago Load Dispatcher. On August 20 and 24 power levels were adjusted at the request of the Chicago Load Dispatcher. On August 20 and 24 power levels were adjusted at the request of the Chicago Load Dispatcher. On August 20 and 24 power levels were adjusted at the request of the Chicago Load Dispatcher. On August 20 and 24 power levels were adjusted at the request of the Chicago Load Dispatcher. On August 24, at 0903, the unit was placed in EGC. The unit operated in EGC or was maintained near full power for the remainder of the month with minor interruptions to perform routine surveillances.

B. Unit Two

Unit Two began the month of August still in the shutdown mode due to the main generator ground fault occurring at the end of July. Investigations were made into the problem and repairs were performed until August 11 when the mode switch was placed in REFUEL. On August 14, at 0830, the mode switch was placed in STARTUP. Control rod patterns were adjusted and the reactor became critical at 1133. At 1900, the mode switch was placed in RUN. On August 15, at 0251, the generator was synchronized to the grid. 200 MWe was reached at 0500. Power levels were held constant due to high river temperatures until August 16 when load was increased to 650 MWe. On August 17, at 2055, a load reduction was taken to 200 MWe due to high river temperatures and held constant until August 20. At 0720, an ascent to full power was begun. 700 MWe was reached at 1245 and held constant due to high river temperature. For the remainder of the month the unit operated near full power with power level adjustments made at the request of the Chicago Load Dispatcher and routine surveillances were performed.

III. PLANT OR PROCEDURE CHANGES, TESTS, EXPERIMENTS, AND SAFETY RELATED MAINTENANCE

A. Amendments to Facility License or Technical Specifications

There were no Amendments to the Facility License or Technical Specifications for the reporting period.

P. Facility or Procedure Changes Requiring NRC Approval

There were no Facility or Procedure changes requiring NRC approval for the reporting period.

C. Tests and Experiments Requiring NRC Approval

There were no Tests or Experiments requiring NRC approval for the reporting period.

D. Corrective Maintenance of Safety Related Equipment

The following represents a tabular summary of the major safety related maintenance performed on Units One and Two during the reporting period. This summary includes the following: Work Request Numbers, Licensee Event Report Numbers, Components, Cause of Malfunctions, Results and Effects on Safe Operation, and Action Taken to Prevent Repetition.

UNIT 1 MAINTENANCE SUMMARY

WORK REQUEST NO.: Q61813

LER NUMBER: 87-024

COMPONENT: System 0020 - Repaired drywell steel connection per ECN QC-87S-20.

CAUSE OF MALFUNCTION: Cause of malfunction was due to inadequate verification of the as-built configuration against design drawings during original construction.

<u>RESULTS & EFFECTS ON SAFE OPERATION</u>: Sargent & Lundy performed an analysis that revealed 13 connections not meeting FSAR design requirements but were meeting operability requirements. Therefore safety implications were minimal.

ACTION TAKEN TO PREVENT REPETITION: Immediate corrective action was to repair the 13 connections under engineering change notices QC-87S-24 and 27. To prevent reoccurrence, the Eugineering department now requires a dimensional verification for all safety related verifications under the modification program as of April, 1987.

WORK REQUEST NO.: Q62057

LER NUMBER: 87-16

COMPONENT: System 2000 - Cleaned and lapped seats and disc on 1-2001-4.

CAUSE OF MALFUNCTION: This malfunction was caused by dirt and corrosion products in the process line being transferred to the valve seat.

<u>RESULTS & EFFECTS ON SAFE OPERATION</u>: Leakage limit in this event has minimal safety consequences since the total leakage determined does not represent a probable leakage from the primary containment during accident conditions.

ACTION TAKEN TO PREVENT REPETITION: Valve (2001-3 and 4) seats were cleaned and lapped. Also, the disc was ground on valve 2001-4. Previous failures of these valves have initiated Action Item Record No. 88-29 to determine a more suitable type of valve for this application.

WORK REQUEST NO.: Q62058

LER NUMBER: 87-16

COMPONENT: System 2000 - Cleaned and lapped seats on 1-2001- ...

CAUSE OF MALFUNCTION: This malfunction was caused by dirt and corrosion products in the process line being transferred to the valve seat.

<u>RESULTS & EFFECTS ON SAFE OPERATION</u>: Leakage limit in this event has minimal safety consequences since the total leakage determined does not represent a probable leakage from the primary containment during accident conditions.

ACTION TAKEN TO PREVENT REPETITION: Valve (2001-3 and 4) seats were cleaned and lapped. Also the disc was ground on valve 2001-4. Previous failures of these valves have initiated Action Item Record No. 88-29 to determine a more suitable type of valve for this application.

UNIT 2 MAINTENANCE SUMMARY

WORK REQUEST NO.: Q58943

LER NUMBER: N/A

. . .

4 4 4

COMFONENT: System 2300 - Removed old HPCI steam trap, 2-2301-1, and reinstalled new trap and piping.

CAUSE OF MALFUNCTION: This deviation report was not written due to a malfunction, but to document a planned evolution.

RESULTS & EFFECTS ON SAFE OPERATION: Since no malfunction occurred, there were no results or effects on safe operation.

ACTION TAKEN TO PREVENT REPETITION: There was like-for-like replacement of the steam line drain trap 2-2301-1 and associated piping.

IV. LICENSEE EVENT REPORTS

The following is a abular summary of all licensee event reports for Quad-Cities Units C...a and Two occurring during the reporting period, pursuant to the reportable occurrence reporting requirements as set forth in sections 6.6.8.1. and 6.6.8.2. of the Technical Specifications.

UNIT 1

Licensee Event Report Number	Date	Title of Occurrence
86~010	6-14-88	Nylon butt splices in PAM instruments
88-012	8-7-88	1/2A SBGT high flow
88-013	8-22-88	lA Core Spray Room Cooler inoperable/making RCIC inoperable
88-014	8-24-88	HPCI steam high flow outside Tech Specs
	Unit 2	
88-025	8-23-88	HPCI isolation during preparation for special test

V. DATA TABULATIONS

The following data tabulations are presented in this report:

A. Operating Data Report

- B. Average Daily Unit Power Level
- C. Unit Shutdowns and Power Reductions

APPENDIX C

*

OPERATING DATA REPORT

			Oren			
				DOCKET N	050-254	
				UN	IT ONE	
				DA	TE Septemb	er 9, 1988
				COURI ETER	v Lynne Dee	lsnyder
				COMPLETED	200 654 2	2/1
				TELEPHO	NE 309-034-2	241
0	RATING STATUS	0000	080188			
1.	REPORTING PERIOD:	2400	083188	GNOSS HOURS IN REPORTING P	ERIOJ: 7	44
2	CURRENTLY AUTHOR	ZED POW	ER LEVEL IMW		CITY (MWe-Net): _	769
	DESIGN ELECTRICAL	RATING IN	(Wo-Net):	89		
1	POWER LEVEL TO WH	CH RESTR	ICTED IIF ANY) (MR(2 Net):N/A		
4	REASONS FOR RESTR	ICTION IIP	ANY):			
				THIS MONT	H YR TO DATE	CUMULATIVE
5.	NUMBER OF HOURS P	EACTOR	AS CRITICAL		5606.2	114670.5
8.	REACTOR RESERVE S	HUTDOWN	HOURS		0.0	3421.9
7.	HOURS GENERATOR	ON LINE .			5352.2	110810.4
	UNIT RESERVE SHUT	DOWN HOL		0.0	0.0	909.2
	GROSS THERMAL EN	ROY GEN	ERATED MWH	1337086	11801468	235142225
	GROES ELECTRICAL	INFROY O	ENERATED IN	415514	3805035	76228537
	UNDER ELECTRICAL			393813	3625134	71528423
	NET ELECTRICAL EN	ENGT GEN	ERATED IMAR	100.0	95.8	80.2
12.	FEACTOR SERVICE P	ACTOR		100.0	95.8	82.6
13.	REACTOR AVAILABI	UTY FACT	OM	100.0	91.4	77.5
14	LINIT SERVICE FACTO					same day to be a sub-

	100.0	91.4	77.5
	100.0	91.4	78.2
15.	68.8	80.5	65.1
16.	UNIT CAPACITY FACTOR IDEM MOCI	78.5	63.4
17.	UNIT CAPACITY FACTOR (Using Design MWH)	5.9	5.4
18.	UNIT FORCED OUTAGE RATE		

19. SHUTDOWNS SCHEDULED OVER NEXT & MONTHS ITYPE, DATE AND DURATION OF EACHI:

20.	IF SHUT DOWN AT ENO OF REPORT PERIOD. ISTIMATED DATE OF	STARTUP		_
21.	UNITS IN TEST STATUS IPRIOR TO COMMERCIAL OPERATION :	FORECAST	ACHIEVED	
	INITIAL CRITICALITY			
	INITIAL ELECTRICITY			
	COMMEPCIAL OPERATION			

APPENDIX C

OPERATING DATA REPORT

DOCKET NO.	50-265
UNIT	TWO
DATE	September 9, 1988
COMPLETED BY	Lynne Deelsnyder
TELEPHONE	309-654-2241

0	TRATING STATUS 0000 08018	8		
1.	REPORTING PERIOD: 2400 08318	GROSS HOURS IN REPORTING PER	100:744	240
2.	CURRENTLY AUTHORIZED POWER LEVEL DESIGN ELECTRICAL RATING (MW-NR):	189 MAX. DEPEND. CAPACIT	TY (MWo-Net):	769
3.	POWER LEVEL TO WHICH RESTRICTED I	ANY) (MWe Net): N/A		
4	REASONS FOR RESTRICTION (IF ANY):			
		THIS MONTH	YR TO DATE	CUMULATIVS
8.	NUMBER OF HOURS REACTOR WAS DRITH	AL	3428.8	108085.9
	REACTOR RESERVE SHUTDOWN HOURS	0.0	0.0	2985.8
	HOURS GENERATOR ON LINE	405.2	3346.9	104882.2
		0.0	0.0	702.9
		787867	7012447	224383014
Я.	GROSS THERMAL ENERGY GENERATED I	244301	2245901	71803685
10.	GROSS ELECTRICAL ENERGY GENERATED	229610	2136932	67696957
11.	NET ELECTRICAL ENERGY GENERATED	MWN)		76.1
12	FEACTOR SERVICE FACTOR			20.2
13.	REACTOR AVAILABILITY FACTOR		38.0	18.2
14	UNIT SERVICE FACTOR		57.2	73.8
15	UNIT AVAILABILITY FACTOR	54.5	57.2	74.3
	UNIT CAPACITY FACTOR IVER NOCI	40.1	47.5	62.0
		39.1	40.3	60.4
17	UNIT CAPACITY PACTOR (Curry Daugh Mit	45.5	16.8	8.7
18	UNIT FORCED OUTAGE MATE			
19	SHUTDOWNS SCHEDULED OVER NEXT 6	WONTHS ITYPE. DATE, AND DURATION OF	EACH):	

20.	IF SHUT DOWN AT END OF REPORT PERIOD. ESTIMATED DATE OF	STARTUP:		
21.	UNITS IN TEST STATUS IPRIOR TO COMMERCIAL OPERATIONI	FORECAST	ACHIEVED	
	INITIAL CRITICALITY			
	INITIAL ELECTRICITY			
	COMMERCIAL OPERATION			

APPENDIX S AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO.	50-254	
UNIT	ONE	
DATE	September 9,	1988
COMPLETED BY	Lynne Deelsny	der
TELEPHONE	309-654-2241	1

MON	H AUGUST. 1988
DAY	AVERAGE DAILY POWER LEVEL
	500
	372
	398
	264
	194
	184
,	187
	269
	372
10	671
11	786
12	730
13	703
14	679
15	446
	445

DAY	AVERAGE DAILY POWER LEVEL (MWe-Net)
17	461
18	203
	325
20	497
21	604
22	639
23	583
24	819
25	692
26	710
27	721
28.	698
29	725
30	721
37	711

INSTRUCTIONS

16

On this form, list the average daily unit power level in MWe Net for each day in the reporting month. Compute to the neuest whole megawatt.

These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line (or the rostructed power level line). In such cases, the average daily unit power output sheet should be footnoted to explain the apparent anomaly.

APPENDIX B AVERAGE DAILY UNIT POWER LEVEL

DOCKET NO. ________

UNIT TWO

DATE September 9, 1988

COMPLETED BY Lynne Deelsnyder

TELEPHONE 309-654-2241

AVERAGE DAILY POWER LEVEL (MWe-Net)	DAY	AVERAGE DAILY POWER LEVEL (4:We-Net) 459
-8	18	203
-6	16	330
-6	20	484
-5	21	591
-5	22	667
-5	23	656
-1	24	720
-2	28	752
5	28	753
-9	27	697
-8	28	669
-10	29	668
-13	30	733
186	31	718
101		

INSTRUCTIONS

MONTH AUGUST, 1988

On this form, list the average daily unit power level in MWe-Net for each day in the reporting month. Compute to the nea.cst whole megawatt.

These figures will be used to plot a graph for each reporting month. Note that when maximum dependable capacity is used for the net electrical rating of the unit, there may be occasions when the daily average power level exceeds the 100% line for the restricted power level line). In such cases, the average daily unit power output sheet should be (outnoted to explain the apparent anomaly.

1D/5A

APPENDIX D UNIT SECTOOWNS AND POWER REDUCTIONS

QTP 300-S13 **Revision** 6 August 1982

DOCKET NO. 50-254

UNIT NAME QUAD-CITIES UNIT O E

September 9, 1988 DATE

REPORT MONTH AUGUST, 1988

COMPLETED BY L. Deelsnyder TELEPHONE

309-654-2241

NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT	CORRECTIVE ACTIONS/COMMENTS
88-18	880802	F	.0	н	5		ZZ	222222	Power Reduction Taken Due to High River Temperatures
88-19	880804	F	0.0	н	5		ZZ	ZZZZŻZ	Power Reduction Taken Due to High River Temperatures
38-20	880805	F	0.0	H	5		ZZ	ZZZZZZ	Power Reduction Taken Due to High River Temperatures
88-21	380815	F	0.0	Н	5		ZZ	ZZZZZZ	Power Reduction Taken Due to High River Temperatures
18-22	880818	F	0.0	H	5		ZZ	ZZZZZZ	Power Reduction Taken Due to High River Temperatures
1.									APPROVED
	1.1.1								AUG 1 6 1982

VCUSK

ID/SA

APPENDIX D UNIT SHUTDOWNS AND POWER KEDUCTIONS

QTP 300-S13 **Revision** 6 August 1982

1

DOCKET NO. 50-265

UNIT NAME QUAD-CITIES UNIT TWO

DATE September 9, 1988

REPORT MONTH AUGUST, 1988

COMPLETED BY L. Deelsnyder

TELEDIONE

						_		-1 -100	
NO.	DATE	TYPE F OR S	DURATION (HOURS)	REASON	METHOD OF SHUTTING DOWN REACTOR	LICENSEE EVENT REPORT NO.	SYSTEM CODE	COMPONENT	CORRECTIVE ACTIONS/COMMENTS
88-11	880801	F	338.8	A	4		HA	GENERA	Main Generator Ground Fault
88-12	880818	F	0.0	н	5		ZZ	222222	Power Reduction Taken Due to High River Temperatures
	1								
	1								
			1.04						
					10				
						1.14.2		-	APPROVED
	1		1.26.2			12.1			AUG 1 6 1982

VCUSK

VI. UNIQUE REPORTING REQUIREMENTS

The following items are included in this report based on prior commitments to the commission:

A. MAIN STEAM RELIEF VALVE OPERATIONS

There were no Main Steam Relief Valve Operations for the reporting period.

B. CONTROL ROD DRIVE SCRAM TIMING DATA FOR UNITS ONE AND TWO

The basis for reporting this data to the Nuclear Regulatory Commission are specified in the surveillance requirements of Technical Specifications 4.3.C.1 and 4.3.C.2.

The following table is a complete summary of Units One and Two Control Rod Drive Scram Timing for the reporting period. All scram timing was performed with reactor pressure greater than 800 psig.

RESULTS OF SCRAM TIMING MEASUREMENTS

PERFORMED ON UNIT 1 & 2 CONTROL

ROD DRIVES, FROM 1-1-88 TO 12-31-88

		AVERA	GE TIME I TED FROM	N SECONDS	AT %	MAX. TIME FOR 90% INSERTION	DESCRIPTION		
DATE	NUMBER	5	20	50	90	7 sec.	Technicai Specification 3.3.C.1 &		
DATE	OF HOUS	0.375	0.900	2.00	3.5		3.3.C.2 (Average Scram Insertion Time)		
5-16-86	89	0.29	0.67	1.45	2.56	3.07 (G-11)	Unit 1, Hot Scram Timing A Sequence		
6-17-88	2	0.30	0.68	1.49	2.55	2.60 (P-7)	Unit 1, G-7 and P-7 Hot Scram Timing (P-7 had probe replaced.)		
6-27-88	177	0.31	0.68	1.44	2.52	2.96 (H-5)	Unit 2 Hot Scram Timing		
7-2-88	1	0.29	0.63	1.35	2.36	2.36 (P-11)	Unit 2, P-11 Hot Scram Timed after accumulator work.		
8-24-88	1	0.27	0.63	1.40	2.47	2.47 (B-8)	Unit 2, B-8 Hot Scram Timed after accumulator work, Q68923		
9-8-88	1	0.32	0.71	1.48	2.61	2.61 (F-11)	Unit 2, F-11 Hot Scram Timed after accumulator work, Q69472		

7.0

VII. REFUELING INFORMATION

The following information about future reloads at Quad-Cities Station was requested in a January 26, 1978, licensing memorandum (78-24) from D. E. O'Brien to C. Reed, et al., titled "Dresden, Quad-Cities, and Zion Station--NRC Request for Refueling Information", dated January 18, 1978.

QUAD-CITIES REFUELING INFORMATION REQUEST

CTP 300-532 Revision 1 March 1978

1.	Unit:	Q1	Reload:	9	Cycle:	10
2.	Scheduled	date for	next refueling	shutdown:		6-10-89
3.	Scheduled	date for	restart followi	ng refueli	ng:	9=289
	and the second second					and the second se

4. Will refueiing or resumption of operation thereafter require a technical specification change or other license amendment:

NOT AS YET DETERMINED.

 Scheduled date(s) for submitting proposed licensing action and supporting information:

MARCH 10, 1989

 Important licensing considerations associated with refueling, e.g., new or different fuel design or supplier, unreviewed design or performance aralysis methods, significant changes in fuel design, new operating procedures:

NONE AT PRESENT TIME.

7. The number of fuel assemblies.

a. Number of assemblies in core: 724 b. Number of assemblies in spent fuel pool: 1773

 The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:

a.	Licensed	storage	capacity	for	spent	fuel:		3657
----	----------	---------	----------	-----	-------	-------	--	------

b. Planned increase in licensed storage:

 The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity: 2008

APPROVED

0

APR 2 0 1978

Q. C. O. S. R.

-1-

QUAD-CITIES REFUELING

QTP 300-532 Ravision 1 March 1978 0

* .	Unit:	Q2	Reload: 9 Cycle:	10
•	Scheduled	date	for next refueling shutdown:	12-2-89
	Scheduled	date	for restart following refueling:	3-3-90

- Will refueling or resumption of operation thereafter require a technical specification change or other license amendment: NOT AS YET DETERMINED.
- Scheduled date(s) for submitting promosed licensing action and supporting information:

SEPTEMBER 2, 1989

2

3

0

6. Important licensing considerations associated with refueling, e.g., new or different fuel design or supplier, unreviewed design or performance analysis methods, significant changes in fuel design, new operating procedures:

NONE AT PRESENT TIME.

7. The number of fuel assemblies.

a. Number of assemblies in core:

b. Number of assemblies in spent fuel pool:

- The present licensed spent fuel pool storage capacity and the size of any increase in licensed storage capacity that has been requested or is planned in number of fuel assemblies:
 - a. Licensed storage capacity for spent fuel:
 - b. Planned increase in licensed storage:
- 9. The projected date of the last refueling that can be discharged to the spent fuel pool assuming the present licensed capacity: 2008

APPROVED

1

.

0

725

1475

3897

0

APR 2 0 1978

Q. C. O. S. R.

-1-

VIII. GLOSSARY

The following abbreviations which may have been used in the Monthly Report, are defined below:

ACAD/CAM	-	Atmospheric Containment Atmospheric Dilution/Containment
		Atmospheric Monitoring
ANSI	*	American National Standards Institute
APRM		Average Power Range Monitor
ATWS	-	Anticipated Transient Without Scram
BWR	÷.,	Boiling Water Reactor
CRD	*	Control Rod Drive
EHC		Electro-Hydraulic Control System
EOF	-	Emergency Operations Facility
GSEP	× .	Generating Stations Emergency Plan
HEPA	12	High-Efficiency Particulate Filter
HPCI		High Pressure Coolant Injection System
HRSS	-	High Radiation Sampling System
IPCLRT	÷	Integrated Primary Containment Leak Rate Test
IRM		Intermediate Range Monitor
ISI		Inservice Inspection
LER	-	Licensee Event Report
LLRT		Local Leak Rate Test
LPCI		Low Pressure Coolant Injection Mode of RHRS
LPRM	-	Local Power Range Monitor
MAPLHGR	-	Maximum Average Planar Linear Heat Generation Rate
MCPR		Minimum Critical Power Ratio
MFLCPR		Maximum Fraction Limiting Critical Power Ratio
MPC	-	Maximum Permissible Concentration
MSIV		Main Steam Isolation Valve
NIOSH	×.	National Institute for Occupational Safety and Health
PCI		Primary Containment Isolation
PCIOMR	-	Preconditioning Interim Operating Management Recommendations
RBCCW		Reactor Building Closed Cooling Water System
RBM	-	Rod Block Monitor
RCIC	-	Reactor Core Isolation Cooling System
RHRS	-	Residual Heat Removal System
RPS	-	Reactor Protection System
RWM	-	Rod Worth Minimizer
SBGTS		Standby Gas Treatment System
SBLC	-	Standby Liquid Control
SDC	-	Shutdown Cooling Mode of RHRS
SDV		Scram Discharge Volume
SRM		Source Range Monitor
TBCCW	-	Turbine Building Closed Cooling Water System
TIP	-	Traversing Incore Probe
TSC	-	Technical Support Center

0027H/0061Z

Commonwealth Edison Quad Cities Nuclear Power Station 22710 206 Avenue North Cordova, Illinois 61242 Telephone 309/654-2241

RAR-88-42

August 31, 1988

Director of Nuclear Reactor Regulations U. S. Nuclear Regulatory Commission Mail Station P1-137 Wasnington, D. C. 20555

Enclosed for your information is the Monthly Performance Report covering the operation of Quad-Cities Nuclear Power Station, Units One and Two, during the month of August, 1988.

Respectfully,

COMMONWEALTH EDISON COMPANY QUAD-CITIES NUCLEAR POWER STATION

R. A. Robey

Services Superintendent

RAR/vmk

Enclosure

TEXY