

NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

GULF STATES UTILITIES COMPANY

DOCKET NO. 50-458

RIVER BEND STATION, UNIT 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 23 License No. NPF-47

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Gulf States Utilities Company (the licensee) dated September 4, 1987, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFP Chapter I;
 - B. The facility will operate in conformity with the application, as amended, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance: (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this license amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

- 2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment and Paragraph 2.C.(2) of Facility Operating License No. NPF-47 is hereby amended to read as follows:
 - (2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained in Appendix A, as revised through Amendment No. 23 and the Environmental Protection Plan contained in Appendix B, are hereby incorporated in the license. GSU shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. The license amendment is effective as of its date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Jose in Calor

Jose A. Calvo, Director
Project Directorate - IV
Division of Reactor Projects - III,
IV, V and Special Projects
Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical Specifications

Date of Issuarce: May 10, 1988

ATTACHMENT TO LICENSE AMENDMENT NO. 23

FACILITY OPERATING LICENSE NO. NPF-47

DOCKET NO. 50-458

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contains vertical lines indicating the areas of charge.

REMOVE PAGES	INSERT PAGES
3/4 3-63	3/4 3-63
3/4 3-64	3/4 3-64

TABLE 4.3 6-1 CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TR	IP FUNCTION	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION (a)	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
1.	ROD PATTERN CONTROL SYSTEM				The state of the s
	a. Low Power Setpoint	s ^(f)	S/U(b)(e) M(e)	SA [#]	1, 2
	b. High Power Setpoint	s ^(f)	S(U(b)(e) M(e)	sa#	1**
2.	APRM				
	 a. Flow Biased Neutron Flux - Upscale b. Inoperative c. Downscale d. Neutron Flux - Upscale, Startup 	NA NA NA	S/U(b),M S/U(b),M S/U(b),M S/U(b),M	SA(g) NA SA SA	1 1, 2, 5 1 2, 5
3.	SOURCE RANGE MONITORS				
	a. Detector not full in b. Upscale c. Inoperative d. Downscale	NA NA NA	S/U(b),W S/U(b),W S/U(b),W S/U(b),W	NA SA NA SA	2, 5 2, 5 2, 5 2, 5 2, 5
4.	INTERMEDIATE RANGE MONITORS				
	a. Detector not full in b. Upscale c. Inoperative d. Downscale	NA NA NA	S/U(b),W S/U(b),W S/U(b),W S/U(b),W	NA SA NA SA	2, 5 2, 5 2, 5 2, 5
5.	SCRAM DISCHARGE VOLUME				
	a. Water Level-High	NA	м	R#	1, 2, 5*
6.	REACTOR COOLANT SYSTEM RECIRCULATION	FLOW			
	a. Upscale	NA	S/U ^(b) ,M	SA(g)	1

TABLE 4.3.6-1 (Continued)

WITCH THE RESERVE THE AMERICAN TO A STREET WHEN THE STREET

. CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE REQUIREMENTS

NOTES:

- a. Neutron detectors may be excluded from CHANNEL CALIBRATION.
- b. Within 24 hours prior to startup, if not performed within the previous 7 days.
- c. [DELETED]
- d. [DELETED]
- e. Includes reactor manual control multiplexing system input.
- f. Verify the Turbine Bypass valves are closed when THERMAL POWER is greater than 20% RATED THERMAL POWER.
- g. The CHANNEL CALIBRATION shall exclude the flow reference transmitters; these transmitters shall be calibrated at least once per 18 months.
- * With any control rod withdrawn. Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
- # Calibrate trip unit setpoint once per 31 days.
- ** With THERMAL POWER greater than low power setpoint.