50-369/413

MEMORANDUM FOR:

DISTRIBUTION

FROM:

Carl H. Berlinger, Chief

Reactor Systems Branch, PWR-A

SUBJECT:

SUMMARY OF JANUARY 22, 1986 MEETING REGARDING B&W'S PLAN FOR

LICENSING FUEL IN DUKE PLANTS

On January 22, 1986, NRR staff met with representatives of Babcock & Wilcox Company and Duke Power Company to discuss the B&W plan for licensing fuel loading in Duke Power Company's plants having Westinghouse NSSS. The attendees are listed in Enclosure 1.

In the meeting, a Duke representative gave a brief perspective of Duke Power Company's plan to have B&W fuel loaded in the Westinghouse NSSS plants. B&W representatives gave an overview of their fuel program and licensing activity, details of B&W fuel design and experience, details of the B&W fuel analytical program, and licensing schedule. Enclosure 2 contains an outline of the B&W presentation with proprietary information deleted.

The staff gave no commitments on the review schedule in the absence of an official submittal, but identified the NRC contact as Carl Berlinger, Chief, Reactor Systems Branch, Division of PWR Licensing-A.

Original signed by:

Carl H. Berlinger, Chief Reactor Systems Branch, PWR-A

Enclosure: As stated

DISTRIBUTION Central Files RSB reading CBerlinger RLobel YHsii

A PSB: PWR-A YHS 1 i 2/2 4/86 RSB:PWR-A:SL RLobe1 2/2 /86

RSB:PWR-A:BC CBerlinger 2/4/86

MEETING SUMMARY DISTRIBUTION LIST

NRC PDR

Local PDR

H. Thompson

F. Schroeder D. Ziemenn

R. Cilimberg

H. Berkow

B. Youngblood M. Schaaf

OELD

E. Jordon

NRC Participants

- T. Novak B. Sheron
- E. Rossi
- C. Berlinger
- W. Jensen W. Brooks
- S. Wu
- J. Wilson D. Hood

- K. Jabbour M. Dunenfeld

NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

FEB 26 1986

MEMORANDUM FOR:

DISTRIBUTION

FROM:

Carl H. Berlinger, Chief

Reactor Systems Branch, PWR-A

SUBJECT:

SUMMARY OF JANUARY 22, 1986 MEETING REGARDING B&W'S PLAN FOR

LICENSING FUEL IN DUKE PLANTS

On January 22, 1986, NRR staff met with representatives of Babcock & Wilcox Company and Duke Power Company to discuss the B&W plan for licensing fuel loading in Duke Power Company's plants having Westinghouse NSSS. The attendees are listed in Enclosure 1.

In the meeting, a Duke representative gave a brief perspective of Duke Power Company's plan to have B&W fuel loaded in the Westinghouse NSSS plants. B&W representatives gave an overview of their fuel program and licensing activity, details of B&W fuel design and experience, details of the B&W fuel analytical program, and licensing schedule. Enclosure 2 contains an outline of the B&W presentation with proprietary information deleted.

The 'taff gave no commitments on the review schedule in the absence of an official submittal, but identified the NRC contact as Carl Berlinger, Chief, Reactor Systems Branch, Division of PWR Licensing-A.

Pary H. Berlinger, Chief Reactor Systems Branch, PWR-A

Enclosure: As stated

ENCLOSURE 1

NAME

Frank McPhatter Jim Taylor Walton Jensen Jerry Wilson Dave Hood Gene Hsii K. Jabbour T. Novak Neal Rutherford Carl Berlinger Ernie Coppola Ken Canady Joe Cudlin Jim Taylor Mike Hannah Ray King George Meyer Barclay Andrews Gary Hanson R. O. Sharpe Walter Brooks Marvin Dunenfeld Shih-Liang Wu B. Sheron Ernie Rossi

ORGANIZATION

B&W B&W NRC/RSB NRC/RSB NRC/PWR-A/PAD-4 NRC/PWR-A/RSB NRC/PWR-A/PAD-4 NRC/NRR/PWR-A Duke Power Company NRC/NRR/PWR-A (RSB) B&W/Fuel Project Manager Duke Power BAW B&W BAW B&W B&W FSW B&W Duke Power Company NRC/PWR-A/RSB NRC/PWR-A/RSB NRC/PWR-A/RSB NRC/DSRO NRC/PWR-A

Encours 2

B&W/DUKE/NRC MANAGEMENT MEETING JANUARY 22, 1986

AGENDA

Ι.	INTRODUCTION AND MEETING OBJECTIVE	J.	н.	TAYLOR/B&W
II.	DUKE POWER COMPANY PERSPECTIVE	Κ.	s.	CANADY/DPC
III.	OVERVIEW OF FUEL PROGRAM AND LICENSING ACTIVITIES	м.	Α.	HANNAH/B&W
IV.	DETAILS OF BAW FUEL DESIGN AND EXPERIENCE	R.	Α.	KING/B&W
٧.	DETAILS OF B&W FUEL ANALYTICAL PROGRAM AND LICENSING SCHEDULE	. J.	J.	CUDLIN/B&W
VI.	CONCLUDING DISCUSSION	ALI	L	

Agenda

L	Introduction and Meeting Objective	J.H. Taylor/B&W
Π.	Duke Power Company Perspective	K.S. Canady/DPC
Ш.	Overview of Fuel Program and	
And	Licensing Activities	M.A. Hannah/B&W
IV.	Details of B&W Fuel Design and	
	Experience	R.A. King/B&W
V.	Details of B&W Fuel Analytical	
	Program and Licensing Schedule	J.J. Cudlin/B&W
VI.	Concluding Discussion	All

Meeting Objectives

- Inform NRC Management of B&W's Plan for Licensing Fuel in Duke Power's McGuire and Catawba Units
- Obtain NRC Concurrence With This Plan So That the
 Licensing Review Process Can Commence

Overview of Fuel Program and Licensing Activites

- Background
- Fuel Design & Experience
- B&W Analytical Programs
- Licensing Strategy
- Schedule
- Summary

Background

- B&W Met With NRC Staff February 15, 1985 to Discuss Plans for Fuel in W NSSS
- Staff Concurred With Plan, But Said B&W Needed Customer Before Resources Could Be Committed To Review Process
- B&W Received a Contract From Duke Power for Catawba and McGuire Reload Fuel Beginning in 1990

B&W Fuel Experience

- B&W Has Been Designing and Manufacturing Commercial
 Nuclear Fuel for Over 25 Years
- 4267 15 x 15 Fuel Assemblies Have Been Irradiated in B&W Designed NSSS (Oconee Class)
- 416 15 x 15 Fuel Assemblies Have Been Irradiated in W Designed NSSS (Conn Yankee)
- B&W Fuel Integrity Matches the Industry Average (99.996% in 1985)

B&W/NFI

- Nuclear Fuel Industries of Japan Entered Into A License Agreement With B&W in 1976 For Design and Manufacturing Technology
- NFI Supplies 40% of Japanese PWR Market Including
 W 14 x 14, 15 x 15, and 17 x 17 Designs
- Of the 1014 Reload Fuel Assemblies Irradiated to Date, No Leakers Have Been Detected

B&W Domestic

Experience

B&W

Assistance

To NFI

B&W

Fuel

for

W NSSS

B&W Fuel Assembly Design Experience

	Operating
• Incorporates B&W Standard Design Features	Experience
Grid Restraint	US/Japan
Top & Bottom Spring Fuel Support	US/Japan
Rods Seated on Lower End Fitting	US/Japan
Keyable Grid/Fuel Rod Support	US/Japan
Dished/Chamfered Fuel Pellets	US/Japan
Zircaloy Intermediate Grids	US
• Other Design Features	
Reconstitutable	US/Japan
Mixing Vanes	US/Japan
Leaf Springs	US/Japan

Design Qualification

Full Size Prototype Testing

- Flow Testing
- Fuel Assembly Structural
- Component Structural
- Reactor Thermal-Hydraulic

Demonstration Program

- Four Fuel Assemblies
- McGuire Unit 2, Cycle 4 Mid 1987
- Target Burnup: 45,000 MWd/mtU (4 Cycles)
- Post Irradiation Exam (PIE) After Each Cycle

B&W Topicals Applicable to Westinghouse NSSSs

Topical	Code	Use
annual management	MAN MATTER	Fuel Rod Performance
		Core DNB Analysis
		Core DNB Analysis
10156	LYNXT	Core DNB Analysis
10115A	NULIF	Cross Section Calculation
10116A	PDQ	Depletion Studies
10118A	PDQ	Reactivity & Power Distribution
10119A	PDQ	Nuclear Uncertainty
10125A	FLAVE	Maneuvering
10152A	NOODLE	Multidimensional Studies
10084A	CROV	Creep Collapse Analysis
10148	REPLOD3	Reflood Hydraulics
10155	FOAM2	Core Mixture Level
	10115A 10116A 10118A 10119A 10125A 10152A 10084A	10141A TACO2 10129A LYNX1 10130A LYNX2 10156 LYNXT 10115A NULIF 10116A PDQ 10118A PDQ 10118A PDQ 10119A PDQ 10125A FLAME 10152A NOODLE 10084A CROV

PROPRIETARY Topical Reports

Licensing Strategy

- Submit Codes and Methods Topicals on a Schedule
 That Will Permit Their Approval Prior to the Start
 of Application Analyses (McGuire 2 Cycle 6 in 1989)
- Have Online Review for Safety and ECCS Areas to Facilitate Schedule and Make Most Efficient Use of Resources

Schedule of Fuel Program and Licensing Activities

The state of the s

1986

1987

1988

1989

1990

Prototype Testing

Demo Assembly Irradiation

Codes & Methods Topicals

McGuire 2 Cycle 6 Analyses

ist Batch Irradiation

NRC Review

Summary

- The B&W Fuel Assembly Design Is A Combination of Design Features Proven Through Operation in the US and Japan
- B&W's Analytical Capability Is Well Established and
 Modifications to Make Them Applicable to W NSSS
 Are in Progress

The second secon

B&W and Duke Power Have Established a Licensing Plan for Inserting B&W/In Catawba and McGuire That Should Allow Effective Utilization of Resourcesat B&W, Duke, and the NRC

Design Description

Development Overview

Test Program Description

Demonstration Program

Reload Fuel Assembly

Fuel Assembly Design

Compatible With Resident Fuel Assemblies, Reactor Intenals,
 Control Comonents and Storage/Handling Equipment.

	Operating
 Incorporates B&W Standard Design Features 	Experience
Grid Restraint	US/Japan
Top & Bottom Spring Fuel Support	US/Japan
Rods Seated on Lower End Fitting	US/Japan
Keyable Grid/Fuel Rod Support	US/Japan
Dished/Chamfered Fuel Pellets	US/Japan
Zircaloy Intermediate Grids	US
• Other Design Features	
Reconstitutable	US/Japan
Mixing Vanes	US/Japan

PROPRIETARY

Fuel Assembly Design Comparison

Reload

B&W Design

Assembly

B&W Design

Licensee

Design

Mk-B

NFI

Parameter

Rod Array

No. Rods

No. Guide Thimbles

No. Instrument Tubes

No. Spacer Grids

Fuel Length (In.)

Rod Pitch (In.)

Materials

Fuel Clad

Guide Thimble

Instrument Tube

Intermediate Grids

End Grids

Fuel Rods

Outside Diameter (In.)

Clad Thickness (In.)

Dia. Gap (In.)

Fuel Density %

PROPRIETARY

Comparison of Fuel Assembly Designs

W.B. McGuire: Units 1 & 2

Original	Current	BAY	
Design	Design	Assembly	
LOPAR	OFA	Design	

Parameter

Rod Array

No. Pael Rods

No. Guide Thimbles

No. Instrument Tubes

No. Spacer Grids

Fuel Rod Pitch (In.)

Assembly Envelope (In.)

Pasi Stack Length

Materials

Fuel Clad

Guide Thimble

Instrument Tube

Intermediate Grids

2 End Grids

Tuel Rode:

Outside Ma.

Clad Thickness

Die Gep

*Fuel Pellets:

Diameter

Length

Density (% Theoretical)

"Guide Thimbles:

Upper Section OD/1(h.)

Lower Section OD/t(in.)

"Instrument Tube:

OD/t

Fuel Assembly Design/Testing/Manufacturing Major Milestones

1985 1986 1987 1988 1989 1990

MAJOR MILESTONE:

TEST PROGRAM

DEMONSTRATION PROGRAM

FIRST FUEL FABRICATION

PROPRIETAR

Test Program

Objective: Perform Mechanical/Hydraulic Tests to Support Licensing and Qualify Design for Full Batch Implementation (1990)

Test Hardware: Full Size Prototype Fuel Assembly and Control Components

Flow Testing

Mean and and and the fall of the

- △P and Lift
- . Life and Wear
- · Control Rod/Thimble Plug

Fuel Assembly Structural

- · Lateral, Axial, Torsional Stiffness
- · Frequency and Damping

Component Structural

- Spacer Grid Seismic
- · Joint Strengths "
- · Misc. Hardware

Reactor Thermal-Hydraulic

- · Critical Heat Flux (CHF)
- Laser Doppler Velocimeter (LDV)

Demonstration Program

- Four Fuel Assemblies
- McGuire Unit 2, Cycle 4 Mid 1987
- Target Burnup: 45,000 MWd/mtU (4 Cycles)
- Post Irradiation Exam (PIE) After Each Cycle
 - Precharacterized
 - Detailed Visual (Video & Photo)
 - Fuel Assembly Growth
 - Fuel Rod Growth/Shoulder Gap Closure
 - Spacer Grid Elevations
 - Holddown Spring Set

Summary

- Fuel Assembly Design Based on Proven Technology and Design Experience
- Comprehensive Test Program and Demonstration Irradiation Provide Verification of Design for Full Batch Implementation

McGuire Unit 2/Cycle 6 Reload Licensing Plan

- Major Activities
- Schedule
- Questions

JJ Cudlin B&W Fuel Engineering

NRC 1/22/86 McGuire Unit 2/Cycle 6 Reload Licensing Plan

Major Activities

- Methods and Code Development
- Preparation and Submittal of Topical Reports
- NRC Review
- Plant Specific Analyses
- Reload Report

PROPRIETARY

McGuire Unit 2/Cycle 6 Reload Licensing Plan

Topical Reports

Man and a direct of the state o

1985 1986 1987 1988 1989 1990

Licensing

CHF TR
Operating Limits Methods TR
Mechanical, SCD, and
Transient Analysis TR's
ECCS Code TR's
ECCS Evaluation Model TR
Design Limits Analysis
Reload Report

NAC Review
(Dn-Line and Post-Submittal)
B&W Activity
NAC Activity

McGuire Unit 2/Cycle 6 Reload Licensing Plan

Questions

- Will the NRC Support the Licensing Plan?
- Will the NRC Provide On-Line Review in the Core T/H and ECCS/Safety Areas?
- Will the NRC Identify Contacts for Kick-Off Meetings in All/Some Areas?